ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-10
    Description: Heki (2011) and Heki and Enomoto (2013) claimed that anomalous, yet similar, increases of ionospheric total electron content (TEC) started ~40 min prior to the 2011 Tohoku-Oki, as well as before other Mw〉8 earthquakes. The authors concluded that the reported TEC anomalies were likely related to the pending earthquakes, suggesting also that TEC monitoring may be useful for future earthquake prediction. Here we carefully examine the findings of Heki (2011) and Heki and Enomoto (2013) by performing new analyses of the same TEC data. Our interpretation is that the 40 min onset of the ionospheric precursors is an artifact induced by the definition of the reference line adopted in analyzing TEC variations. We also discuss this repeatability in the tectonic and geodynamic context of the earthquakes. By performing a Superimposed Epoch Analysis of TEC data, we show that, however, the TEC increase reported by Heki (2011) was not particularly anomalous. We conclude that the TEC precursors reported by Heki (2011) and Heki and Enomoto (2013) are not useful for developing short-term earthquake prediction capabilities.
    Description: Published
    Description: 1383–1393
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Ionosphere ; Total Electron Content ; Earthquake precursors ; Short-term earthquake prediction ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4380–4399, doi:10.1002/2014GC005560.
    Description: The 16°N segment of the East Pacific Rise is the most overinflated and shallowest of this fast-spreading ridge, in relation with an important magma flux due to the proximity of the Mathematician hotspot. Here, we analyze the detailed morphology of the axial dome and of the Axial Summit Trough (AST), the lava morphology, and the geometry of fissures and faults, in regard to the attributes of the magma chamber beneath and of the nearby hotspot. The data used are 1 m resolution bathymetry combined with seafloor photos and videos. At the dome summit, the AST is highly segmented by 10 third-order and fourth-order discontinuities over a distance of 30 km. Often, two contiguous and synchronous ASTs coexist. Such a configuration implies a wide (1100 m minimum) zone of diking. The existence of contiguous ASTs, their mobility, their general en echelon arrangement accommodating the bow shape of the axial dome toward the hotspot, plus the existence of a second magma lens under the western half of the summit plateau, clearly reflect the influence of the hotspot on the organization of the spreading system. The different ASTs exhibit contrasted widths and depths. We suggest that narrow ASTs reflect an intense volcanic activity that produces eruptions covering the tectonic features and partially filling the ASTs. AST widening and deepening would indicate a decrease in volcanic activity but with continued dike intrusions at the origin of abundant sets of fissures and faults that are not masked by volcanic deposits.
    Description: This work was supported by a PhD Scholarship of Brittany Region and Université de Bretagne Occidentale (France) and has benefited from funding by the Europôle Mer and Labex-Mer of the European Institute for Marine Studies (IUEM).
    Description: 2015-05-26
    Keywords: East Pacific Rise ; Axial summit trough ; Hotspot ; Segmentation ; Lava ; Spreading processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4157–4179, doi:10.1002/2014GC005477.
    Description: The history of emplacement, tectonic evolution, and dismemberment of a central volcano within the rift valley of the slow spreading Mid-Atlantic Ridge at the Lucky Strike Segment is deduced using near-bottom sidescan sonar imagery and visual observations. Volcano emplacement is rapid (〈1 Myr), associated with focused eruptions, and with effusion rates feeding lava flows that bury tectonic features developed prior to and during volcano construction. This volcanic phase likely requires efficient melt pooling and a long-lived crustal magma chamber as a melt source. A reduction in melt supply triggers formation of an axial graben rifting the central volcano, and the onset of seafloor spreading may eventually split it. At Lucky Strike, this results in two modes of crustal construction. Eruptions and tectonic activity focus at a narrow graben that bisects the central volcano and contains the youngest lava flows, accumulating a thick layer of extrusives. Away from the volcano summit, deformation and volcanic emplacement is distributed throughout the rift valley floor, lacking a clear locus of accretion and deformation. Volcanic emplacement on the rift floor is characterized by axial volcanic ridges fed by dikes that propagate from the central axial magma chamber. The mode of rapid volcano construction and subsequent rifting observed at the Lucky Strike seamount is common at other central volcanoes along the global mid-ocean ridge system.
    Description: he TowCam delployment for seafloor imaging during the Graviluck'06 cruise was supported by NSF grant OCE-0623744 to A.S. and D.J.F., and by WHOI Deep Ocean Exploration Institute funding (AS & DF). D.J.F. also benefitted from a visiting position at IPGP to carry out this work. The field data acquisition for the Lustre'96 cruise was supported by NSF grant OCE-9505579. The Flores, Sudaçores, and SISMOMAR cruises where funded by CNRS/IFREMER (France).
    Description: 2015-05-07
    Keywords: Mid-ocean ridges ; Volcanism ; Tectonics ; Rifting ; Sonar ; Faulting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4230–4253, doi:10.1002/2014GC005509.
    Description: Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.
    Description: Phil Wannamaker and Virginie Maris gratefully acknowledge funding by the U.S. National Science Foundation under grants EAR08–43725 and EAR08–38043 through the Earthscope and Geophysics programs. The 2D inversion capability received development support under U.S. Department of Energy contract DE-PS36-04GO94001. Rob Evans was supported through Earthscope grant EAR08–44041 and Shane McGary through a National Defense Science and Engineering Graduate (NDSEG) fellowship. Fieldwork in Canada was made possible by an NSERC Discovery Grant and a Canadian Foundation for Innovation award to Martyn Unsworth.
    Description: 2015-05-11
    Keywords: Cascadia ; Electrical resistivity ; Magnetotellurics ; Plate coupling ; Episodic tremor and slip ; Arc magmatism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8800–8817, doi:10.1002/2014JC010488.
    Description: Ice-Tethered Profilers (ITP), deployed in the Arctic Ocean between 2004 and 2013, have provided detailed temperature and salinity measurements of an assortment of halocline eddies. A total of 127 mesoscale eddies have been detected, 95% of which were anticyclones, the majority of which had anomalously cold cores. These cold-core anticyclonic eddies were observed in the Beaufort Gyre region (Canadian water eddies) and the vicinity of the Transpolar Drift Stream (Eurasian water eddies). An Arctic-wide calculation of the first baroclinic Rossby deformation radius Rd has been made using ITP data coupled with climatology; Rd ∼ 13 km in the Canadian water and ∼8 km in the Eurasian water. The observed eddies are found to have scales comparable to Rd. Halocline eddies are in cyclogeostrophic balance and can be described by a Rankine vortex with maximum azimuthal speeds between 0.05 and 0.4 m/s. The relationship between radius and thickness for the eddies is consistent with adjustment to the ambient stratification. Eddies may be divided into four groups, each characterized by distinct core depths and core temperature and salinity properties, suggesting multiple source regions and enabling speculation of varying formation mechanisms.
    Description: Funding was provided by the National Science Foundation Polar Programs award ARC-1107623.
    Description: 2015-06-22
    Keywords: Arctic halocline ; Rossby deformation radius ; Mesoscale eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4651–4670, doi:10.1002/2014GC005569.
    Description: Multiple late Pleistocene glaciations that extended onto the continental shelf offshore Massachusetts, USA, may have emplaced as much as 100 km3 of freshwater (salinity 〈5 ppt) in continental shelf sediments. To estimate the volume and extent of offshore freshwater, we developed a three-dimensional, variable-density model that couples fluid flow and heat and solute transport for the continental shelf offshore Massachusetts. The stratigraphy for our model is based on high-resolution, multichannel seismic data. The model incorporates the last 3 Ma of climate history by prescribing boundary conditions of sea level change and ice sheet extent and thickness. We incorporate new estimates of the maximum extent of a late Pleistocene ice sheet to near the shelf-slope break. Model results indicate that this late Pleistocene ice sheet was responsible for much of the emplaced freshwater. We predict that the current freshwater distribution may reach depths up to 500 meters below sea level and up to 30 km beyond Martha's Vineyard. The freshwater distribution is strongly dependent on the three-dimensional stratigraphy and ice sheet history. Our predictions improve our understanding of the distribution of offshore freshwater, a potential nonrenewable resource for coastal communities along recently glaciated margins.
    Description: This work was funded by NSF-OCE-0824368.
    Description: 2015-06-05
    Keywords: Pleistocene ; Hydrogeology ; Continental shelf ; Glaciation ; Freshwater resources
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8838–8857, doi:10.1002/2014JC010134.
    Description: We present a year-round assessment of the hydrographic variability within the East Greenland Coastal Current on the Greenland shelf from five synoptic crossings and 4 years of moored hydrographic data. From the five synoptic sections the current is observed as a robust, surface intensified flow with a total volume transport of 0.66 ± 0.18 Sv and a freshwater transport of 42 ± 12 mSv. The moorings showed heretofore unobserved variability in the abundance of Polar and Atlantic water masses in the current on synoptic scales. This is exhibited as large vertical displacement of isotherms (often greater than 100 m). Seasonally, the current is hemmed into the coast during the fall by a full depth Atlantic Water layer that has penetrated onto the inner shelf. The Polar Water layer in the current then thickens through the winter and spring seasons increasing the freshwater content in the current; the timing implies that this is probably driven by the seasonally varying export of freshwater from the Arctic and not the local runoff from Greenland. The measured synoptic variability is enhanced during the winter and spring period due to a lower halocline and a concurrent enhancement in the along-coast wind speed. The local winds force much of the high-frequency variability in a manner consistent with downwelling, but variability distinct from downwelling is also visible.
    Description: This work was funded by the National Science Foundation grant OCE-1130008, NASA grant NNX13AK88G, and the Ocean and Climate Change Institute at the Woods Hole Oceanographic Institution.
    Description: 2015-06-23
    Keywords: Greenland ; Freshwater ; Coastal current ; Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 41 (2014): 8438–8444, doi:10.1002/2014GL061574.
    Description: Along the continental margins, rivers and submarine groundwater supply nutrients, trace elements, and radionuclides to the coastal ocean, supporting coastal ecosystems and, increasingly, causing harmful algal blooms and eutrophication. While the global magnitude of gauged riverine water discharge is well known, the magnitude of submarine groundwater discharge (SGD) is poorly constrained. Using an inverse model combined with a global compilation of 228Ra observations, we show that the SGD integrated over the Atlantic and Indo-Pacific Oceans between 60°S and 70°N is (12 ± 3) × 1013 m3 yr−1, which is 3 to 4 times greater than the freshwater fluxes into the oceans by rivers. Unlike the rivers, where more than half of the total flux is discharged into the Atlantic, about 70% of SGD flows into the Indo-Pacific Oceans. We suggest that SGD is the dominant pathway for dissolved terrestrial materials to the global ocean, and this necessitates revisions for the budgets of chemical elements including carbon.
    Description: This work was supported by the Ministry of Oceans and Fisheries, Korea, through the Korea Institute of Marine Science and Technology (KIMST) (20120176) and National Research Foundation (NRF) of Korea (2013R1A2A1A05004343 and 2013R1A1A1058203). Charette and Moore's contributions were supported by the US National Science Foundation through the GEOTRACES project.
    Keywords: Submarine groundwater discharge ; Radium ; Inverse modeling ; Land-ocean interaction ; Brackish groundwater ; Coastal flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8411–8420, doi:10.1002/2014GL062256.
    Description: Large, deep-keeled icebergs are ubiquitous in Greenland's outlet glacial fjords. Here we use the movement of these icebergs to quantify flow variability in Sermilik Fjord, southeast Greenland, from the ice mélange through the fjord to the shelf. In the ice mélange, a proglacial mixture of sea ice and icebergs, we find that icebergs consistently track the glacier speed, with slightly faster speeds near terminus and episodic increases due to calving events. In the fjord, icebergs accurately capture synoptic circulation driven by both along-fjord and along-shelf winds. Recirculation and in-/out-fjord variations occur throughout the fjord more frequently than previously reported, suggesting that across-fjord velocity gradients cannot be ignored. Once on the shelf, icebergs move southeastward in the East Greenland Coastal Current, providing wintertime observations of this freshwater pathway.
    Description: Funding for this study was provided by National Science Foundation grants OCE-1130008 and ARC-0909274, and by the University of Oregon.
    Description: 2015-06-11
    Keywords: Icebergs ; Fjord circulation ; Ice mélange ; East Greenland Current ; Greenland ice sheet ; Iceberg melt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: video/quicktime
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4692–4711, doi:10.1002/2014GC005563.
    Description: A multifaceted study of the slow spreading Mid-Atlantic Ridge (MAR) at 16.5°N provides new insights into detachment faulting and its evolution through time. The survey included regional multibeam bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam system, and an extensive rock-dredging program. At different times, detachment faulting was active along ∼50 km of the western flank of the study area, and may have dominated spreading on that flank for the last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, noncorrugated massifs, and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal a new detachment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corrugated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters). Multiscale corrugations are observed 2–3 km from the detachment breakaway suggesting that they formed in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-angle (6°) detachment footwall near its termination are intensely faulted and fissured; this deformation may be enhanced by the low angle of the emerging footwall. Active detachment faulting currently is limited to the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large portion of the eastern flank on crust 〉2 Ma, indicating that within the last 5 Ma parts of the ridge axis have experienced periods of two-sided detachment faulting.
    Description: This work was supported by the National Science Foundation grant OCE-1155650.
    Description: 2015-06-05
    Keywords: Oceanic detachment faults ; AUV Sentry ; Mid-Atlantic Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8627–8645, doi:10.1002/2014JC010099.
    Description: One of the most remarkable features of contemporary oceanic climate change is the warming and contraction of Antarctic Bottom Water over much of global ocean abyss. These signatures represent changes in ventilation mediated by mixing and entrainment processes that may be location-specific. Here we use available data to document, as best possible, those mixing processes as Weddell Sea Deep and Bottom Waters flow along the South Orkney Plateau, exit the Weddell Sea via Orkney Passage and fill the abyssal Scotia Sea. First, we find that an abrupt transition in topography upstream of Orkney Passage delimits the extent of the coldest waters along the Plateau's flanks and may indicate a region of especially intense mixing. Second, we revisit a control volume budget by Heywood et al. (2002) for waters trapped within the Scotia Sea after entering through Orkney Passage. This budget requires extremely vigorous water mass transformations with a diapycnal transfer coefficient of inline image m2 s−1. Evidence for such intense diapycnal mixing is not found in the abyssal Scotia Sea interior and, while we do find large rates of diapycnal mixing in conjunction with a downwelling Ekman layer on the western side of Orkney Passage, it is insufficient to close the budget. This leads us to hypothesize that the Heywood budget is closed by a boundary mixing process in which the Ekman layer associated with the Weddell Sea Deep Water boundary current experiences relatively large vertical scale overturning associated with tidal forcing along the southern boundary of the Scotia Sea.
    Description: KLP gratefully acknowledges salary support from Woods Hole Oceanographic Institution bridge support funds. ACNG acknowledges the support of a Philip Leverhulme Prize. LJ and MPM were supported by the ANDREX project, funded by the U.K. National Environment Research Council (NE/E01366X/1).
    Description: 2015-06-16
    Keywords: Mixing ; Transport ; Control volume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8619–8626, doi:10.1002/2014GL062107.
    Description: We describe the recent occurrence of a region of diminished sea ice cover or “notch” offshore of the Kangerdlugssuaq Fiord, the site of the largest tidewater glacier along Greenland's southeast coast. The notch's location is consistent with a topographically forced flux of warm water toward the fiord, and the decrease of the sea ice cover is shown to be associated with a regional warming of the upper ocean that began in the mid-1990s. Sea ice in the vicinity of the notch also exhibits interannual variability that is shown to be associated with a seesaw in surface temperature and sea ice between southeast and northeast Greenland that is not describable solely in terms of the North Atlantic Oscillation. We therefore argue that other modes of atmospheric variability, including the Lofoten Low, are required to fully document the changes to the climate that are occurring along Greenland's east coast.
    Description: G.W.K.M. was supported by the Natural Sciences and Engineering Research Council of Canada. F.S. and M.O. were supported by NSF OCE 1130008 and NASA NNX13AK88G.
    Description: 2015-06-02
    Keywords: Greenland ; Sea ice ; Interannual variability ; Lofoten Low ; Icelandic Low
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 1115–1132, doi:10.1002/2014GC005709.
    Description: The NoMelt experiment imaged the mantle beneath 70 Ma Pacific seafloor with the aim of understanding the transition from the lithosphere to the underlying convecting asthenosphere. Seafloor magnetotelluric data from four stations were analyzed using 2-D regularized inverse modeling. The preferred electrical model for the region contains an 80 km thick resistive (〉103 Ωm) lithosphere with a less resistive (∼50 Ωm) underlying asthenosphere. The preferred model is isotropic and lacks a highly conductive (≤10 Ωm) layer under the resistive lithosphere that would be indicative of partial melt. We first examine temperature profiles that are consistent with the observed conductivity profile. Our profile is consistent with a mantle adiabat ranging from 0.3 to 0.5°C/km. A choice of the higher adiabatic gradient means that the observed conductivity can be explained solely by temperature. In contrast, a 0.3°C/km adiabat requires an additional mechanism to explain the observed conductivity profile. Of the plausible mechanisms, H2O, in the form of hydrogen dissolved in olivine, is the most likely explanation for this additional conductivity. Our profile is consistent with a mostly dry lithosphere to 80 km depth, with bulk H2O contents increasing to between 25 and 400 ppm by weight in the asthenosphere with specific values dependent on the choice of laboratory data set of hydrous olivine conductivity and the value of mantle oxygen fugacity. The estimated H2O contents support the theory that the rheological lithosphere is a result of dehydration during melting at a mid-ocean ridge with the asthenosphere remaining partially hydrated and weakened as a result.
    Description: Funding for the NoMELT experiment was provided by the National Science Foundation through the following grant numbers: OCE-0927172, OCE-0928270, OCE-1459649, and OCE-0928663.
    Description: 2015-10-18
    Keywords: Water ; Lithosphere-asthenosphere boundary ; Olivine ; Magnetotellurics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 120 (2015): 3199–3208, doi:10.1002/2014JD022584.
    Description: We present the first continuous in situ atmospheric observations from the central Iceland Sea collected from a meteorological buoy deployed for a 2 year period between 23 November 2007 and 21 August 2009. We use these observations to evaluate the ERA-Interim reanalysis product and demonstrate that it represented low-level meteorological fields and surface turbulent fluxes in this region very well. The buoy observations showed that moderate to strong winds were common from any direction, while wind speeds below 5 ms−1 were relatively rare. The observed low-level air temperature and surface heat fluxes were related to the wind direction with cold-air outbreaks most common from the northwest. Mean wintertime turbulent heat fluxes were modest (〈60 Wm−2), but the range was substantial. High heat flux events, greater than 200 Wm−2, typically occurred every 1–2 weeks in the winter, with each event lasting on average 2.5 days with an average total turbulent heat flux of ∼200 Wm−2 out of the ocean. The most pronounced high heat flux events over the central Iceland Sea were associated with cold-air outbreaks from the north and west forced by a deep Lofoten Low over the Norwegian Sea.
    Description: This work was funded in part by the Ocean and Climate Change Institute at the Woods Hole Oceanographic Institution and NSF grant OCE-1433958.
    Description: 2015-10-24
    Keywords: Iceland Sea ; Met buoy ; Heat flux ; Nordic Seas ; Cold-air outbreak
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 1887–1903, doi:10.1002/2014JC010555.
    Description: Alongshore force balances, including the role of nonlinear advection, in the shoaling and surf zones onshore of a submarine canyon are investigated using a numerical modeling system (Delft3D/SWAN). The model is calibrated with waves and alongshore flows recorded over a period of 1.5 months at 26 sites along the 1.0, 2.5, and 5.0 m depth contours spanning about 2 km of coast. Field observation-based estimates of the alongshore pressure and radiation-stress gradients are reproduced well by the model. Model simulations suggest that the alongshore momentum balance is between the sum of the pressure and radiation-stress gradients and the sum of the nonlinear advective terms and bottom stress, with the remaining terms (e.g., wind stress and turbulent mixing) being negligible. The simulations also indicate that unexplained residuals in previous field-based estimates of the momentum balance may be owing to the neglect of the nonlinear advective terms, which are similar in magnitude to the sum of the forcing (pressure and radiations stress gradients) and to the bottom stress.
    Description: Funding was provided by a joint WHOI-USGS postdoctoral scholarship, NSF, ONR, and ASD(R&E).
    Description: 2015-09-23
    Keywords: Alongshore momentum balance ; Nonlinear advection ; Surfzone currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 1638–1681, doi:10.1002/2014JC010245.
    Description: Field observations from the spring of 2008 on the Louisiana shelf were used to elucidate the mechanisms of wave energy dissipation over a muddy seafloor. After a period of high discharge from the Atchafalaya River, acoustic measurements showed the presence of 20 cm thick mobile fluid-mud layers during and after wave events. While total wave energy dissipation (D) was greatest during the high energy periods, these periods had relatively low normalized attenuation rates (κ = Dissipation/Energy Flux). During declining wave-energy conditions, as the fluid-mud layer settled, the attenuation process became more efficient with high κ and low D. The transition from high D and low κ to high κ and low D was caused by a transition from turbulent to laminar flow in the fluid-mud layer as measured by a Pulse-coherent Doppler profiler. Measurements of the oscillatory boundary layer velocity profile in the fluid-mud layer during laminar flow reveal a very thick wave boundary layer with curvature filling the entire fluid-mud layer, suggesting a kinematic viscosity 2–3 orders of magnitude greater than that of clear water. This high viscosity is also consistent with a high wave-attenuation rates measured by across-shelf energy flux differences. The transition to turbulence was forced by instabilities on the lutocline, with wavelengths consistent with the dispersion relation for this two-layer system. The measurements also provide new insight into the dynamics of wave-supported turbidity flows during the transition from a laminar to turbulent fluid-mud layer.
    Description: This work was supported by Office of Naval Research Award N00014-06-1–0718, which was part of the ONR Multidisciplinary University Research Initiative (MUD-MURI): entitled ‘‘Mechanisms of Fluid-Mud Interactions Under Waves.’’ Additional support was provided by National Science Foundation grant 1059914.
    Description: 2015-09-19
    Keywords: Fluid mud ; Wave dissipation ; Laminar and turbulent wave boundary layers ; Lutocline instabilities ; Wave-supported turbidity flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 120 (2015): 2600–2615, doi:10.1002/2014JB011579.
    Description: The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M 〉 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a few days and are localized near the MCF system.
    Description: This work was funded by USGS NEHRP proposal G10AP00101 and NSF proposal 0943906.
    Description: 2015-10-28
    Keywords: Geothermal field ; Earthquakes ; Fault creep
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3989–3997, doi:10.1002/2015GL063827.
    Description: Stirring along isopycnals is a significant factor in determining the distribution of tracers within the ocean. Salinity anomalies on density surfaces from Argo float profiles are used to investigate horizontal stirring and estimate eddy mixing lengths. Eddy mixing length and velocity fluctuations from the ECCO2 global state estimate are used to estimate horizontal diffusivity at a 300 km scale in the upper 2000 m with near-global coverage. Diffusivity varies by over two orders of magnitude with latitude, longitude, and depth. In all basins, diffusivity is elevated in zonal bands corresponding to strong current regions, including western boundary current extension regions, the Antarctic Circumpolar Current, and equatorial current systems. The estimated mixing lengths and diffusivities provide an observationally based data set that can be used to test and constrain predictions and parameterizations of eddy stirring.
    Description: This work was supported by the National Science Foundation under grants OCE-13-55668 and OCE-95-21468 and the Office of Naval Research under grants N00014-12-1-0336 and N00014-13-1-0484.
    Description: 2015-11-21
    Keywords: Eddy stirring ; Diffusivity ; Mixing length ; Spice ; Argo
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 3542-3566, doi:10.1002/2014JC010620.
    Description: We present the results of a 6 week time series of carbonate system and stable isotope measurements investigating the effects of sea ice on air-sea CO2 exchange during the early melt period in the Canadian Arctic Archipelago. Our observations revealed significant changes in sea ice and sackhole brine carbonate system parameters that were associated with increasing temperatures and the buildup of chlorophyll a in bottom ice. The warming sea-ice column could be separated into distinct geochemical zones where biotic and abiotic processes exerted different influences on inorganic carbon and pCO2 distributions. In the bottom ice, biological carbon uptake maintained undersaturated pCO2 conditions throughout the time series, while pCO2 was supersaturated in the upper ice. Low CO2 permeability of the sea ice matrix and snow cover effectively impeded CO2 efflux to the atmosphere, despite a strong pCO2 gradient. Throughout the middle of the ice column, brine pCO2 decreased significantly with time and was tightly controlled by solubility, as sea ice temperature and in situ melt dilution increased. Once the influence of melt dilution was accounted for, both CaCO3 dissolution and seawater mixing were found to contribute alkalinity and dissolved inorganic carbon to brines, with the CaCO3 contribution driving brine pCO2 to values lower than predicted from melt-water dilution alone. This field study reveals a dynamic carbon system within the rapidly warming sea ice, prior to snow melt. We suggest that the early spring period drives the ice column toward pCO2 undersaturation, contributing to a weak atmospheric CO2 sink as the melt period advances.
    Description: We acknowledge support from the Polar Continental Shelf Program (PCSP) of Natural Resources Canada, the Natural Sciences and Engineering Research Council of Canada, the Northern Scientific Training Program, Canada Economic Development, and Fisheries and Oceans Canada.
    Description: 2015-11-19
    Keywords: Sea ice ; Carbon cycling ; CO2 ; Brines ; Stable isotopes ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 744–759, doi:10.1002/2014GB005079.
    Description: Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate-carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate-carbon feedback.
    Description: We are grateful for support from the U.S. Department of Energy Office of Science and the National Science Foundation (NSF). J.T.R. and F.H. received support from the Regional and Global Climate Modeling Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research (BER) Program in the U.S. Department of Energy Office of Science. J.T.R., K.L., E.M., W.F., J.K.M., S.C.D., and N.N.M. received funding from the NSF project “Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle“ (AGS-1048827, AGS-1021776, and AGS-1048890). The Community Earth System Modeling project receives support from both NSF and BER.
    Description: 2015-12-02
    Keywords: Atlantic meridional overturning circulation ; Net primary production ; Stratification ; Ecosystems ; Carbon-concentration feedback
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4028–4047, doi:10.1002/2014JC010425.
    Description: The interactions between waves, tidal currents, and bathymetry near New River Inlet, NC, USA are investigated to understand the effects on the resulting hydrodynamics and sediment transport. A quasi-3-D nearshore community model, NearCoM-TVD, is used in this integrated observational and modeling study. The model is validated with observations of waves and currents at 30 locations, including in a recently dredged navigation channel and a shallower channel, and on the ebb tidal delta, for a range of flow and offshore wave conditions during May 2012. In the channels, model skills for flow velocity and wave height are high. Near the ebb tidal delta, the model reproduces the observed rapid onshore (offshore) decay of wave heights (current velocities). Model results reveal that this sharp transition coincides with the location of the breaker zone over the ebb tidal delta, which is modulated by semidiurnal tides and by wave intensity. The modulation of wave heights is primarily owing to depth changes rather than direct wave-current interaction. The modeled tidally averaged residual flow patterns show that waves play an important role in generating vortices and landward-directed currents near the inlet entrance. Numerical experiments suggest that these flow patterns are associated with the channel-shoal bathymetry near the inlet, similar to the generation of rip currents. Consistent with other inlet studies, model results suggest that tidal currents drive sediment fluxes in the channels, but that sediment fluxes on the ebb tidal delta are driven primarily by waves.
    Description: Funding was provided by the Office of Naval Research (N00014-13-1–0120 and N00014-14-1-0586) and the Office of the Assistant Secretary of Defense for Research and Engineering.
    Description: 2015-12-07
    Keywords: Wave-current interaction ; Sediment transport ; New River ; Morphological evolution ; Tidal inlet
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 6432–6437, doi:10.1002/2015GL064456.
    Description: The Galápagos is a flourishing yet fragile ecosystem whose health is particularly sensitive to regional and global climate variations. The distribution of several species, including the Galápagos Penguin, is intimately tied to upwelling of cold, nutrient-rich water along the western shores of the archipelago. Here we show, using reliable, high-resolution sea surface temperature observations, that the Galápagos cold pool has been intensifying and expanding northward since 1982. The linear cooling trend of 0.8°C/33 yr is likely the result of long-term changes in equatorial ocean circulation previously identified. Moreover, the northward expansion of the cold pool is dynamically consistent with a slackening of the cross-equatorial component of the regional trade winds—leading to an equatorward shift of the mean position of the Equatorial Undercurrent. The implied change in strength and distribution of upwelling has important implications for ongoing and future conservation measures in the Galápagos.
    Description: K.B.K. acknowledges support from the Alfred P. Sloan Foundation, the James E. and Barbara V. Moltz Fellowship administered by the Woods Hole Oceanographic Institution (WHOI) Ocean and Climate Change Institute (OCCI), and the National Science Foundation (NSF) Physical Oceanography program (grant OCE–1233282). S.J. acknowledges support from WHOI. C.W.B. was supported by the NOAA Center for Satellite Applications and Research.
    Description: 2016-02-06
    Keywords: Upwelling ; Conservation ; Penguins ; Galapagos ; Ocean circulation ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7648–7654, doi:10.1002/2015GL064944.
    Description: The mass loss at Nioghalvfjerdsbræ is primarily due to rapid submarine melting. Ocean data obtained from beneath the Nioghalvfjerdsbræ ice tongue show that melting is driven by the presence of warm (1°C) Atlantic Intermediate Water (AIW). A sill prevents AIW from entering the cavity from Dijmphna Sund, requiring that it flow into the cavity via bathymetric channels to the south at a pinned ice front. Comparison of water properties from the cavity, Dijmphna Sund, and the continental shelf support this conclusion. Overturning circulation rates inferred from observed melt rates and cavity stratification suggest an exchange flow between the cavity and the continental shelf of 38mSv, sufficient to flush cavity waters in under 1 year. These results place upper bounds on the timescales of external variability that can be transmitted to the glacier via the ice tongue cavity.
    Description: NASA Grant Number: NNX13AK88G, NSF Grant Number: OCE-1434041
    Description: 2016-03-22
    Keywords: 79North ; Ice tongue ; NEGIS ; Nioghalvfjerdsfjorden ; Circulation ; Ice-ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 324 (2015): 565–577, doi:10.1002/jez.b.22631.
    Description: This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path-dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems.
    Description: NSF Grant Numbers: 1243575, 1127611
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6492–6507, doi:10.1002/2014JC010198.
    Description: We present the horizontal kinetic energy (KE) balance of near-inertial currents in the mixed layer and explain shear evolution in the transition layer using observations from a mooring at 15.26° N in the Arabian Sea during the southwest monsoon. The highly sheared and stratified transition layer at the mixed-layer base varies between 5 m and 35 m and correlates negatively with the wind stress. Results from the mixed layer near-inertial KE (NIKE) balance suggest that wind energy at times can energize the transition layer and at other times is fully utilized within the mixed layer. A simple two layer model is utilized to study the shear evolution in the transition layer and shown to match well with observations. The shear production in this model arises from alignment of wind stress and shear. Although the winds are unidirectional during the monsoon, the shear in the transition layer is predominantly near-inertial. The near-inertial shear bursts in the observations show the same phasing and magnitude at near-inertial frequencies as the wind-shear alignment term.
    Description: NASA Grant Number: NNX12AD47G, NSF Grant Number: 0928138, ONR Grant Numbers: N00014-11-1-0429 and N00014-10-1-0273, NSF Grant Number: OCE-0745508
    Description: 2016-03-26
    Keywords: Near inertial energy ; Transition layer ; Near inertial shear
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6289–6308, doi:10.1002/2015JC010844.
    Description: Surfzone and inner-shelf tracer dispersion are observed at an approximately alongshore-uniform beach. Fluorescent Rhodamine WT dye, released near the shoreline continuously for 6.5 h, is advected alongshore by breaking-wave- and wind-driven currents, and ejected offshore from the surfzone to the inner-shelf by transient rip currents. Novel aerial-based multispectral dye concentration images and in situ measurements of dye, waves, and currents provide tracer transport and dilution observations spanning about 350 m cross-shore and 3 km alongshore. Downstream dilution of near-shoreline dye follows power law decay with exponent −0.33, implying that a tenfold increase in alongshore distance reduces the concentration about 50%. Coupled surfzone and inner-shelf dye mass balances close, and in 5 h, roughly half of the surfzone-released dye is transported offshore to the inner-shelf. Observed cross-shore transports are parameterized well ( inline image, best fit slope inline image) using a bulk exchange velocity and mean surfzone to inner-shelf dye concentration difference. The best fit cross-shore exchange velocity inline image is similar to a temperature-derived exchange velocity on another day with similar wave conditions. The inline image magnitude and observed inner-shelf dye length scales, time scales, and vertical structure indicate the dominance of transient rip currents in surfzone to inner-shelf cross-shore exchange during moderate waves at this alongshore-uniform beach.
    Description: National Science Foundation Graduate Research Fellowship Grant Number: DGE1144086, California Sea Grant Number: R/CONT-207TR
    Description: 2016-03-19
    Keywords: Surfzone ; Inner-shelf ; Tracer ; Cross-shore transport ; Mixing ; Pollution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5932–5944, doi:10.1002/2015JC010914.
    Description: The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (〈1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
    Description: U.S. National Science Foundation Office of Polar Programs NSF OPP ANT-1126311, National Oceanic and Atmospheric Administration Office of Exploration and Research NOAA OER NA14OAR4320158, European Research Council Advanced Investigator Grant Number: 294757
    Keywords: Melt ponds ; Light transmittance ; Albedo ; ROV ; Spatial variability ; Shortwave radiation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1145–1164, doi:10.1002/2015GB005141.
    Description: Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.
    Description: NOAA Climate Observation Division; National Science Foundation (NSF) Center for Microbial Oceanography: Research and Education (C-MORE) Grant Numbers: EF0424599, OCE-1153656, OCE-1260164; Gordon and Betty Moore Foundation Marine Microbiology Investigator
    Description: 2016-02-13
    Keywords: Primary productivity ; Microbial ecology ; Station ALOHA ; Temporal variability ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 8367–8372, doi:10.1002/2015GL065394.
    Description: The nature of the Jurassic Quiet Zone (JQZ), a region of low-amplitude oceanic magnetic anomalies, has been a long-standing debate with implications for the history and behavior of the Earth's geomagnetic field and plate tectonics. To understand the origin of the JQZ, we studied high-resolution sea surface magnetic anomalies from the Hawaiian magnetic lineations and correlated them with the Japanese magnetic lineations. The comparison shows the following: (i) excellent correlation of anomaly shapes from M29 to M42; (ii) remarkable similarity of anomaly amplitude envelope, which decreases back in time from M19 to M38, with a minimum at M41, then increases back in time from M42; and (iii) refined locations of pre-M25 lineations in the Hawaiian lineation set. Based on these correlations, our study presents evidence of regionally and possibly globally coherent pre-M29 magnetic anomalies in the JQZ and a robust extension of Hawaiian isochrons back to M42 in the Pacific crust.
    Description: National Science Foundation Grant Numbers: OCE-1029965, OCE-1233000, OCE-1029573
    Description: 2016-04-24
    Keywords: Jurassic Quiet Zone ; Magnetic anomaly ; Plate tectonics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 8333–8340, doi:10.1002/2015GL065459.
    Description: We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.
    Description: Woods Hole Oceanographic Institution Summer Student Fellowship Program; NSF. Grant Numbers EAR-13-16333, EAR-1220075
    Description: 2016-04-23
    Keywords: Crustal viscosity ; Crustal composition ; Flow laws ; Lower crust ; Andesite
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2829–2847, doi:10.1002/2015GC005882.
    Description: Local and regional S-wave splitting in the offshore South Island of the New Zealand plate-boundary zone provides constraints on the spatial and depth extent of the anisotropic structure with an enhanced resolution relative to land-based and SKS studies. The combined analysis of offshore and land measurements using splitting tomography suggests plate-boundary shear dominates in the central and northern South Island. The width of this shear zone in the central South Island is about 200 km, but is complicated by stress-controlled anisotropy at shallow levels. In northern South Island, a broader (〉200 km) zone of plate-boundary parallel anisotropy is associated with the transitional faulting between the Alpine fault and Hikurangi subduction and the Hikurangi subduction zone itself. These results suggest S-phases of deep events (∼90 km) in the central South Island are sensitive to plate-boundary derived NE-SW aligned anisotropic media in the upper-lithosphere, supporting a “thin viscous sheet” deformation model.
    Description: United States National Ocean Bottom Seismograph Instrumentation Pool
    Description: 2016-02-29
    Keywords: Anisotropy ; Deformation ; Tomography ; S-wave splitting ; Plate-boundary ; Stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7992–8000, doi:10.1002/2015GL065980.
    Description: Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.
    Description: U.S. Geological Survey Coastal and Marine Geology Program; Global Change and Land Use Program
    Keywords: Sediment transport ; Tidal wetlands ; Wetland stability ; Wetland vulnerability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1471–1494, doi:10.1002/2014GB005037.
    Description: The direct respiration of sinking organic matter by attached bacteria is often invoked as the dominant sink for settling particles in the mesopelagic ocean. However, other processes, such as enzymatic solubilization and mechanical disaggregation, also contribute to particle flux attenuation by transferring organic matter to the water column. Here we use observations from the North Atlantic Ocean, coupled to sensitivity analyses of a simple model, to assess the relative importance of particle-attached microbial respiration compared to the other processes that can degrade sinking particles. The observed carbon fluxes, bacterial production rates, and respiration by water column and particle-attached microbial communities each spanned more than an order of magnitude. Rates of substrate-specific respiration on sinking particle material ranged from 0.007 ± 0.003 to 0.173 ± 0.105 day−1. A comparison of these substrate-specific respiration rates with model results suggested sinking particle material was transferred to the water column by various biological and mechanical processes nearly 3.5 times as fast as it was directly respired. This finding, coupled with strong metabolic demand imposed by measurements of water column respiration (729.3 ± 266.0 mg C m−2 d−1, on average, over the 50 to 150 m depth interval), suggested a large fraction of the organic matter evolved from sinking particles ultimately met its fate through subsequent remineralization in the water column. At three sites, we also measured very low bacterial growth efficiencies and large discrepancies between depth-integrated mesopelagic respiration and carbon inputs.
    Description: U.S. Environmental Protection Agency (EPA) STAR Grant Number: FP-91744301-0; National Science Foundation Grant Numbers OCE-1061883, EF-0424599, OCE-1155438, OCE-1059884, OCE-1031143; Gordon and Betty Moore Foundation Grant Numbers: 3301, 3789; Gordon and Betty Moore Foundation; Woods Hole Oceanographic Institution
    Description: 2016-03-25
    Keywords: Carbon cycle ; Particle flux ; Bacterial growth efficiency ; Bacterial respiration ; Microbial respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1266–1282, doi:10.1002/2014GB004913.
    Description: Determinations of the net community production (NCP) in the upper ocean and the particle export production (EP) should balance over long time and large spatial scales. However, recent modeling studies suggest that a horizontal decoupling of flux-regulating processes on submesoscales (≤10 km) could lead to imbalances between individual determinations of NCP and EP. Here we sampled mixed-layer biogeochemical parameters and proxies for NCP and EP during 10, high-spatial resolution (~2 km) surface transects across strong physical gradients in the Sargasso Sea. We observed strong biogeochemical and carbon flux variability in nearly all transects. Spatial coherence among measured biogeochemical parameters within transects was common but rarely did the same parameters covary consistently across transects. Spatial variability was greater in parameters associated with higher trophic levels, such as chlorophyll in 〉5.0 µm particles, and variability in EP exceeded that of NCP in nearly all cases. Within sampling transects, coincident EP and NCP determinations were uncorrelated. However, when averaged over each transect (30 to 40 km in length), we found NCP and EP to be significantly and positively correlated (R = 0.72, p = 0.04). Transect-averaged EP determinations were slightly smaller than similar NCP values (Type-II regression slope of 0.93, standard deviation = 0.32) but not significantly different from a 1:1 relationship. The results show the importance of appropriate sampling scales when deriving carbon flux budgets from upper ocean observations.
    Description: NASA Ocean Carbon and Biogeochemistry program Grant Number: NNX11AL94G; WHOI Postdoctoral Scholar fellowship; NASA ACE Grant Number: NNX12AJ25G; NSF Grant Number: OCE-0752366
    Description: 2016-02-29
    Keywords: Submesoscale biogeochemical variability ; Export production ; Net community production ; Sargasso Sea carbon flux balance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 60 (2015): 2059–2078, doi:10.1002/lno.10155.
    Description: Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond that hosts near annual, localized A. fundyense blooms. Machine-based image classifiers differentiating A. fundyense life cycle stages were developed and results were compared to manually corrected IFCB samples, manual microscopy-based estimates of A. fundyense abundance, previously published data describing prevalence of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed by a rapid and near complete conversion to small, gamete cells. The gametic period (∼3 d) coincided with a spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic phase (∼4 d) during which cell sizes returned to their normal range but cell division and diel vertical migration ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates of division, which were more than twice those predicted from batch cultures grown at similar temperatures in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fundyense population through its complete bloom cycle and demonstrate growth and sexual induction rates much higher than are typically observed in culture.
    Description: National Science Foundation Grant Number: OCE-0430724, OCE-0911031, and OCE-1314642; National Institutes of Health Grant Number: NIEHS-1P50-ES021923-01; National Park Service (NPS) Cooperative Agreement Grant Number: H238015504; Gordon and Betty Moore Foundation Grant Number: #2649 to HMS; IOF Grant Number: MOHAB PIOF-GA-252260
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2994–3014, doi:10.1002/2015GC005743.
    Description: At slow-spreading mid-ocean ridges, crustal accretion style can vary significantly along and across ridge segments. In magma-poor regions, seafloor spreading can be accommodated largely by tectonic processes, however, the internal structure and formation mechanism of such highly tectonized crust are not fully understood. We analyze multibeam bathymetry and potential field data from the Rainbow area of the Mid-Atlantic Ridge (35°40'N–36°40'N), a section of the ridge that shows diverse accretion styles. We identify volcanic, tectonized and sedimented terrain and measure exposed fault area to estimate the tectonic strain, T, and the fraction of magmatic accretion, M. Estimated T values range from 0.2–0.4 on ridge segments to 0.6-0.8 at the Rainbow nontransform discontinuity (NTD). At segment ends T is asymmetric, reflecting asymmetries in accretion rate, topography and faulting between inside and outside offset corners. Detachment faults have formed preferentially at inside corners, where tectonic strain is higher. We identify at least two oceanic core complexes on the fossil trace of the NTD, in addition to the Rainbow massif, which occupies the offset today. A gravity high and low magnetization suggest that the Rainbow massif, which hosts a high-temperature hydrothermal system, was uplifted by a west dipping detachment fault. Asymmetric plate ages indicate localization of tectonic strain at the inside corners and migration of the detachment toward and across the ridge axis, which may have caused emplacement of magma into the footwall. Hydrothermal circulation and heat extraction is possibly favored by increased permeability generated by fracturing of the footwall and deep-penetrating second-generation faults.
    Description: NSF Grant Numbers: OCE-0961151 , OCE-0961680
    Description: 2016-03-13
    Keywords: Oceanic detachment faults ; Geomorphology ; Crustal accretion ; Slow-spreading ridges ; Nontransform discontinuities ; Gravity anomalies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8195–8220, doi:10.1002/2014JC010111.
    Description: Eddies can influence biogeochemical cycles through a variety of mechanisms, including the excitation of vertical velocities and the horizontal advection of nutrients and ecosystems, both around the eddy periphery by rotational currents and by the trapping of fluid and subsequent transport by the eddy. In this study, we present an analysis of the influence of mesoscale ocean eddies on near-surface chlorophyll (CHL) estimated from satellite measurements of ocean color. The influences of horizontal advection, trapping, and upwelling/downwelling on CHL are analyzed in an eddy-centric frame of reference by collocating satellite observations to eddy interiors, as defined by their sea surface height signatures. The influence of mesoscale eddies on CHL varies regionally. In most boundary current regions, cyclonic eddies exhibit positive CHL anomalies and anticyclonic eddies contain negative CHL anomalies. In the interior of the South Indian Ocean, however, the opposite occurs. The various mechanisms by which eddies can influence phytoplankton communities are summarized and regions where the observed CHL response to eddies is consistent with one or more of the mechanisms are discussed. This study does not attempt to link the observed regional variability definitively to any particular mechanism but provides a global overview of how eddies influence CHL anomalies.
    Description: This work was funded by NASA grants NNX08AI80G, NNX08AR37G, and NNX10AO98G. DJM gratefully acknowledges NASA grant NNX13AE47G and NSF grant OCE-1048897.
    Description: 2015-06-01
    Keywords: Mesoscale eddies ; Satellite observations ; Physical-biological interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4445–4467, doi:10.1002/2014GC005473.
    Description: Mangaia hosts the most radiogenic Pb-isotopic compositions observed in ocean island basalts and represents the HIMU (high µ = 238U/204Pb) mantle end-member, thought to result from recycled oceanic crust. Complete geochemical characterization of the HIMU mantle end-member has been inhibited due to a lack of deep submarine glass samples from HIMU localities. We homogenized olivine-hosted melt inclusions separated from Mangaia lavas and the resulting glassy inclusions made possible the first volatile abundances to be obtained from the HIMU mantle end-member. We also report major and trace element abundances and Pb-isotopic ratios on the inclusions, which have HIMU isotopic fingerprints. We evaluate the samples for processes that could modify the volatile and trace element abundances postmantle melting, including diffusive Fe and H2O loss, degassing, and assimilation. H2O/Ce ratios vary from 119 to 245 in the most pristine Mangaia inclusions; excluding an inclusion that shows evidence for assimilation, the primary magmatic H2O/Ce ratios vary up to ∼200, and are consistent with significant dehydration of oceanic crust during subduction and long-term storage in the mantle. CO2 concentrations range up to 2346 ppm CO2 in the inclusions. Relatively high CO2 in the inclusions, combined with previous observations of carbonate blebs in other Mangaia melt inclusions, highlight the importance of CO2 for the generation of the HIMU mantle. F/Nd ratios in the inclusions (30 ± 9; 2σ standard deviation) are higher than the canonical ratio observed in oceanic lavas, and Cl/K ratios (0.079 ± 0.028) fall in the range of pristine mantle (0.02–0.08).
    Description: M.J. acknowledges NSF grants EAR-1145202, EAR-1348082, EAR-1347377, and OCE-1153894 that supported this work. E.F.R.-K. thanks the European Synthesys FP7 “Capacities” Specific Program for financing part of the analytical cost of this research. K.T.K. acknowledges French ANR grant ANR-09-BLAN-038 (project SlabFlux) that supported this work. The Nordsim facility is funded and operated as a joint Nordic research infrastructure under an agreement with NOS-N.
    Description: 2015-05-28
    Keywords: Volatiles ; Mantle geochemistry ; Melt inclusions ; HIMU ; Cook Islands ; Mangaia ; Hot spot
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8162–8176, doi:10.1002/2014JC010256.
    Description: The surface layer of the southeast Pacific Ocean (SEP) requires an input of cold, fresh water to balance heat gain, and evaporation from air-sea fluxes. Models typically fail to reproduce the cool sea surface temperatures (SST) of the SEP, limiting our ability to understand the variability of this climatically important region. We estimate the annual heat budget of the SEP for the period 2004–2009, using data from the upper 250 m of the Stratus mooring, located at 85°W 20°S, and from Argo floats. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at more than 15 depth levels. We use a new method for estimating the advective component of the heat budget that combines Argo profiles and mooring velocity data, allowing us to calculate monthly profiles of heat advection. Averaged over the 6 year study period, we estimate a cooling advective heat flux of −41 ± 29 W m−2, accomplished by a combination of the mean gyre circulation, Ekman transport, and eddies. This compensates for warming fluxes of 32 ± 4 W m−2 due to air-sea fluxes and 7 ± 9 W m−2 due to vertical mixing and Ekman pumping. A salinity budget exhibits a similar balance, with advection of freshwater (−60 psu m) replenishing the freshwater lost through evaporation (47 psu m) and Ekman pumping (14 psu m).
    Description: This work was supported by NOAA's Climate Program Office and by NSF grant OCE-0745508.
    Description: 2015-05-28
    Keywords: Southeast Pacific ; Heat budget ; Argo ; Stratus mooring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in MicrobiologyOpen 3 (2014): 860–874, doi:10.1002/mbo3.209.
    Description: Microbial source tracking is an area of research in which multiple approaches are used to identify the sources of elevated bacterial concentrations in recreational lakes and beaches. At our study location in Darwin, northern Australia, water quality in the harbor is generally good, however dry-season beach closures due to elevated Escherichia coli and enterococci counts are a cause for concern. The sources of these high bacteria counts are currently unknown. To address this, we sampled sewage outfalls, other potential inputs, such as urban rivers and drains, and surrounding beaches, and used genetic fingerprints from E. coli and enterococci communities, fecal markers and 454 pyrosequencing to track contamination sources. A sewage effluent outfall (Larrakeyah discharge) was a source of bacteria, including fecal bacteria that impacted nearby beaches. Two other treated effluent discharges did not appear to influence sites other than those directly adjacent. Several beaches contained fecal indicator bacteria that likely originated from urban rivers and creeks within the catchment. Generally, connectivity between the sites was observed within distinct geographical locations and it appeared that most of the bacterial contamination on Darwin beaches was confined to local sources.
    Keywords: 454 Pyrosequencing ; Australia ; Bacteria ; DGGE ; Fecal ; Sewage ; Tracking ; Tropical
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 41 (2014): 8987–8993, doi:10.1002/2014GL062274.
    Description: Observations at the Columbia River plume show that wave breaking is an important source of turbulence at the offshore front, which may contribute to plume mixing. The lateral gradient of current associated with the plume front is sufficient to block (and break) shorter waves. The intense whitecapping that then occurs at the front is a significant source of turbulence, which diffuses downward from the surface according to a scaling determined by the wave height and the gradient of wave energy flux. This process is distinct from the shear-driven mixing that occurs at the interface of river water and ocean water. Observations with and without short waves are examined, especially in two cases in which the background conditions (i.e., tidal flows and river discharge) are otherwise identical.
    Description: This work was supported by the Office of Naval Research, as part of the Data Assimilation and Remote Sensing for Littoral Applications (DARLA) project and in coordination with the Rivers and Inlets (RIVET) program.
    Keywords: Wave breaking ; Turbulence ; Mixing ; Wave-current interaction ; River plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8935–8943, doi:10.1002/2014GL061357.
    Description: Superstorm Sandy was a massive storm that impacted the U.S. East Coast on 22–31 October 2012, generating large waves, record storm surges, and major damage. The Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system was applied to hindcast this storm. Sensitivity experiments with increasing complexity of air-sea-wave coupling were used to depict characteristics of this immense storm as it underwent tropical to extratropical transition. Regardless of coupling complexity, model-simulated tracks were all similar to the observations, suggesting the storm track was largely determined by large-scale synoptic atmospheric circulation, rather than by local processes resolved through model coupling. Analyses of the sea surface temperature, ocean heat content, and upper atmospheric shear parameters showed that as a result of the extratropical transition and despite the storm encountering much cooler shelf water, its intensity and strength were not significantly impacted. Ocean coupling was not as important as originally thought for Sandy.
    Description: Research support provided by USGS Coastal Process Project, NOAA grant NA11NOS0120033, and NASA grant NNX13AD80G is much appreciated.
    Description: 2015-06-16
    Keywords: Hurricane Sandy ; Landfall ; Air-sea-wave coupling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 5 (2015): 1278–1290, doi:10.1002/ece3.1437.
    Description: Compound-specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC-D and Δ15NC-D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC-D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian-specific nitrogen trophic discrimination factor (TDFGlu-Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC-D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi-TDFGlu-Phe equation with the avian-specific TDFGlu-Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu-Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.
    Description: This research was funded by National Science Foundation Office of Polar Programs [grants ANT-0125098, ANT-0739575] and the 2013 Antarctic Science Bursaries.
    Keywords: Amino acid ; Avian ; Compound-specific stable isotope analysis ; Diet ; Fractionation ; Penguin ; Trophic position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 3 (2015): 49–65, doi:10.1002/2014EF000274.
    Description: How climate controls hurricane variability has critical implications for society is not well understood. In part, our understanding is hampered by the short and incomplete observational hurricane record. Here we present a synthesis of intense-hurricane activity from the western North Atlantic over the past two millennia, which is supported by a new, exceptionally well-resolved record from Salt Pond, Massachusetts (USA). At Salt Pond, three coarse grained event beds deposited in the historical interval are consistent with severe hurricanes in 1991 (Bob), 1675, and 1635 C.E., and provide modern analogs for 32 other prehistoric event beds. Two intervals of heightened frequency of event bed deposition between 1400 and 1675 C.E. (10 events) and 150 and 1150 C.E. (23 events), represent the local expression of coherent regional patterns in intense-hurricane–induced event beds. Our synthesis indicates that much of the western North Atlantic appears to have been active between 250 and 1150 C.E., with high levels of activity persisting in the Caribbean and Gulf of Mexico until 1400 C.E. This interval was one with relatively warm sea surface temperatures (SSTs) in the main development region (MDR). A shift in activity to the North American east coast occurred ca. 1400 C.E., with more frequent severe hurricane strikes recorded from The Bahamas to New England between 1400 and 1675 C.E. A warm SST anomaly along the western North Atlantic, rather than within the MDR, likely contributed to the later active interval being restricted to the east coast.
    Description: Funding was provided by US National Science Foundation (awards 0903020 and 1356708), the Risk Prediction Initiative at the Bermuda Institute for Ocean Sciences (BIOS), US Department of Energy National Institute for Climate Change Research, National Oceanic and Atmospheric Administration (award NA11OAR431010), and the Dalio Explore Fund.
    Keywords: Tropical cyclones ; Climate change ; Holocene ; Common era ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 126–147, doi:10.1002/2014GC005517.
    Description: Here we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens has been seismically imaged on a slow-spreading ridge. Vapor-saturation pressures, calculated from CO2 and H2O contents of Lucky Strike melt inclusions, range from approximately 300–3000 bars, corresponding to depths of 0.5–9.9 km below the seafloor. Approximately 50% of the melt inclusions record crystallization depths of 3–4 km, corresponding to the seismically imaged melt lens depth, while an additional ∼35% crystallize at depths 〉 4 km. This indicates that while crystallization is focused within the melt lens, significant crystallization also occurs in the lower crust and/or upper mantle. The melt inclusions span a range of major and trace element concentrations from normal to enriched basalts. Trace element ratios at all depths are heterogeneous, suggesting that melts are not efficiently homogenized in the mantle or crust, despite the presence of a melt lens. This is consistent with the transient nature of magma chambers proposed for slower-spreading ridges. To investigate the petrogenesis of the melt inclusion compositions, we compare the measured trace element compositions to theoretical melting calculations that consider variations in the melting geometry and heterogeneities in the mantle source. The full range of compositions can be produced by slight variations in the proportion of an Azores plume and depleted upper mantle components and changes in the total extent of melting.
    Description: thanked for his help with sample preparation. The GRAVILUCK'06 and Bathyluck'08 cruises where financed by the French Ministry of Research. This work was supported by NSF grant OCE-0926422 to A.M.S., OCE-PRF-1226130 to V.D.W., OCE-1333492 to S.A.S., and EAR-09-48666 to M.D.B., and by ANR (France) Mothseim Project NT05-342213 to J.E.
    Description: 2015-07-20
    Keywords: Slow-spreading ridge ; Lucky Strike ; Melt inclusions ; Volatiles ; Melt lens
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2096–2111, doi:10.1002/2014JC010573.
    Description: In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years, with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.
    Description: This research was supported by the Regional and Global Climate Modeling Program of the US Department of Energy Office of Science (WW). Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
    Keywords: Zapiola Rise ; Zapiola anticyclone ; Argentine Basin ; Sedimentation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 30 (2015): 353–368, doi:10.1002/2014PA002667.
    Description: Approximately synchronous with the onset of Heinrich Stadial 1 (HS1), δ13C decreased throughout most of the upper (~1000–2500 m) Atlantic, and at some deeper North Atlantic sites. This early deglacial δ13C decrease has been alternatively attributed to a reduced fraction of high-δ13C North Atlantic Deep Water (NADW) or to a decrease in the NADW δ13C source value. Here we present new benthic δ18O and δ13C records from three relatively shallow (~1450–1650 m) subpolar Northeast Atlantic cores. With published data from other cores, these data form a depth transect (~1200–3900 m) in the subpolar Northeast Atlantic. We compare Last Glacial Maximum (LGM) and HS1 data from this transect with data from a depth transect of cores from the Brazil Margin. The largest LGM-to-HS1 decreases in both benthic δ13C and δ18O occurred in upper waters containing the highest NADW fraction during the LGM. We show that the δ13C decrease can be explained entirely by a lower NADW δ13C source value, entirely by a decrease in the proportion of NADW relative to Southern Ocean Water, or by a combination of these mechanisms. However, building on insights from model simulations, we hypothesize that reduced ventilation due to a weakened but still active Atlantic Meridional Overturning Circulation also contributed to the low δ13C values in the upper North Atlantic. We suggest that the benthic δ18O gradients above ~2300 m at both core transects indicate the depth to which heat and North Atlantic deglacial freshwater had mixed into the subsurface ocean by early HS1.
    Description: The work was supported by NSF grants OCE13-35191, OCE07-50880, and OCE05-84911 to the Woods Hole Oceanographic Institution.
    Keywords: Heinrich Stadial 1 ; Deglacial d13C minimum ; Atlantic Circulation ; Benthic d18O ; Benthic d13C
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3431–3441, doi:10.1002/2015GL063494.
    Description: The impact on the upper ocean of the passage of a short, intense storm over a Southern Ocean site, in proximity to an Antarctic Circumpolar Current front, is characterized. The storm causes a wind-induced deepening of the mixed layer and generates an inertial current. Immediate poststorm observations indicate a mixed layer extending to approximately 50 m depth. Subsequent measurements show the upper ocean to have restratified, injecting near-inertial shear in stratified waters within 1 day of the storm's passage. This time scale for the development of near-inertial shear is 1 order of magnitude shorter than that predicted by the β dispersion paradigm. The observed rapid changes in upper ocean stratification point to the existence of an as yet undocumented, efficient mechanism for injection of near-inertial shear into the stratified ocean that is in turn associated with enhanced turbulence and mixing.
    Description: The SOFine project is funded by the UK Natural Environmental Research Council (NERC) (grant NE/G001510/1).
    Description: 2015-11-07
    Keywords: Upper ocean ; Restratification ; Near-inertial shear
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 510–526, doi:10.1002/2014PA002741.
    Description: Global warming lowers the solubility of gases in the ocean and drives an enhanced hydrological cycle with increased nutrient loads delivered to the oceans, leading to increases in organic production, the degradation of which causes a further decrease in dissolved oxygen. In extreme cases in the geological past, this trajectory has led to catastrophic marine oxygen depletion during the so-called oceanic anoxic events (OAEs). How the water column oscillated between generally oxic conditions and local/global anoxia remains a challenging question, exacerbated by a lack of sensitive redox proxies, especially for the suboxic window. To address this problem, we use bulk carbonate I/Ca to reconstruct subtle redox changes in the upper ocean water column at seven sites recording the Cretaceous OAE 2. In general, I/Ca ratios were relatively low preceding and during the OAE interval, indicating deep suboxic or anoxic waters exchanging directly with near-surface waters. However, individual sites display a wide range of initial values and excursions in I/Ca through the OAE interval, reflecting the importance of local controls and suggesting a high spatial variability in redox state. Both I/Ca and an Earth System Model suggest that the northeast proto-Atlantic had notably higher oxygen levels in the upper water column than the rest of the North Atlantic, indicating that anoxia was not global during OAE 2 and that important regional differences in redox conditions existed. A lack of correlation with calcium, lithium, and carbon isotope records suggests that neither enhanced global weathering nor carbon burial was a dominant control on the I/Ca proxy during OAE 2.
    Description: Z.L. thanks NSF OCE 1232620. J.D.O. is supported by an Agouron Postdoctoral Fellowship. T.W.L. acknowledges support from the NSF-EAR and NASA-NAI. A.R. thanks the support of NERC via NE/J01043X/1.
    Description: 2015-11-13
    Keywords: I/Ca ; OAE 2 ; Oxygenation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2555–2570, doi:10.1002/2014JC010564.
    Description: We tested the hypothesis that humpback whales aggregate at the southern flank of Stellwagen Bank (SB) in response to internal waves (IWs) generated semidiurnally at Race Point (RP) channel because of the presence of their preferred prey, planktivorous fish, which in turn respond to zooplankton concentrated by the predictable IWs. Analysis of synthetic aperture radar (SAR) images indicates that RP IWs approach the southern flank of SB frequently (∼62% of the images). Published reports of whale sighting data and archived SAR images point to a coarse spatial coincidence between whales and Race Point IWs at SB's southern flank. The responses of whales to IWs were evaluated via sightings and behavior of humpback whales, and IWs were observed in situ by acoustic backscatter and temperature measurements. Modeling of IWs complemented the observations, and results indicate a change of ∼0.4 m/s in current velocity, and ∼1.5 Pa in dynamic pressure near the bottom, which may be sufficient for bottom fish to detect the IWs. However, fish were rare in our acoustic observations, and fish response to the IWs could not be evaluated. RP IWs do not represent the leading edge of the internal tide, and they may have less mass-transport potential than typical coastal IWs. There was large interannual variability in whale sightings at SB's southern flank, with decreases in both numbers of sightings and proportion of sightings where feeding was observed from 2008 to 2013. Coincidence of whales and IWs was inconsistent, and results do not support the hypothesis.
    Description: We would also like to acknowledge funding from the National Oceanic and Atmospheric Administration Sea Grant (Woods Hole), the Woods Hole Oceanographic Institution, the ESA, and the German Aerospace Center.
    Description: 2015-10-02
    Keywords: Humpback whales ; Nonlinear internal waves ; Shallow temperate bank ; Ecological hotspots
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 3624–3639, doi:10.1002/2014JC010352.
    Description: The net ecosystem metabolism of the seagrass Thalassia testudinum was studied across a nutrient and productivity gradient in Florida Bay, Florida, using the Eulerian control volume, eddy covariance, and biomass addition techniques. In situ oxygen fluxes were determined by a triangular Eulerian control volume with sides 250 m long and by eddy covariance instrumentation at its center. The biomass addition technique evaluated the aboveground seagrass productivity through the net biomass added. The spatial and temporal resolutions, accuracies, and applicability of each method were compared. The eddy covariance technique better resolved the short-term flux rates and the productivity gradient across the bay, which was consistent with the long-term measurements from the biomass addition technique. The net primary production rates from the biomass addition technique, which were expected to show greater autotrophy due to the exclusion of sediment metabolism and belowground production, were 71, 53, and 30 mmol carbon m−2 d−1 at 3 sites across the bay. The net ecosystem metabolism was 35, 25, and 11 mmol oxygen m−2 d−1 from the eddy covariance technique and 10, −103, and 14 mmol oxygen m−2 d−1 from the Eulerian control volume across the same sites, respectively. The low-flow conditions in the shallow bays allowed for periodic stratification and long residence times within the Eulerian control volume that likely reduced its precision. Overall, the eddy covariance technique had the highest temporal resolution while producing accurate long-term flux rates that surpassed the capabilities of the biomass addition and Eulerian control volume techniques in these shallow coastal bays.
    Description: This research was conducted under Everglades National Park permit # EVER-2011-SCI-0057. This study received financial support from the Jones Environmental and Barley Scholars Program at the University of Virginia and the National Science Foundation (Chemical Oceanography grant OCE-0536431).
    Description: 2015-11-22
    Keywords: Eddy covariance ; Eulerian ; Metabolism ; Seagrass ; Eddy correlation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4324–4339, doi:10.1002/2014JC010547.
    Description: In the coastal ocean off the Northeast U.S., the sea surface temperature (SST) in the first half of 2012 was the highest on the record for the past roughly 150 years of recorded observations. The underlying dynamical processes responsible for this extreme event are examined using a numerical model, and the relative contributions of air-sea heat flux versus lateral ocean advective heat flux are quantified. The model accurately reproduces the observed vertical structure and the spatiotemporal characteristics of the thermohaline condition of the Gulf of Maine and the Middle Atlantic Bight waters during the anomalous warming period. Analysis of the model results show that the warming event was primarily driven by the anomalous air-sea heat flux, while the smaller contribution by the ocean advection worked against this flux by acting to cool the shelf. The anomalous air-sea heat flux exhibited a shelf-wide coherence, consistent with the shelf-wide warming pattern, while the ocean advective heat flux was dominated by localized, relatively smaller-scale processes. The anomalous cooling due to advection primarily resulted from the along-shelf heat flux divergence in the Gulf of Maine, while in the Middle Atlantic Bight the advective contribution from the along-shelf and cross-shelf heat flux divergences was comparable. The modeling results confirm the conclusion of the recent analysis of in situ data by Chen et al. (2014a) that the changes in the large-scale atmospheric circulation in the winter of 2011–2012 primarily caused the extreme warm anomaly in the spring of 2012. The effect of along-shelf or cross-shelf ocean advection on the warm anomalies from either the Scotian Shelf or adjacent continental slope was secondary.
    Description: K.C. was supported by the Woods Hole Oceanographic Institution Postdoctoral Scholar program, the Coastal Ocean Institute, and the National Science Foundation (NSF) under grant OCE-1435602. G.G.G. was supported by NSF grants OCE-1435602 and OCE-1129125. Y.-O.K. was supported by the NSF grant OCE-1435602. W.G.Z. was supported by the NSF grant OCE-1129125.
    Description: 2015-12-15
    Keywords: Extreme temperature ; Heat budget ; Northeast U.S. coastal ocean ; Numerical modeling ; Air-sea interaction ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Field Robotics 32 (2015): 632–654, doi:10.1002/rob.21572.
    Description: We report the derivation and experimental evaluation of a stable adaptive identifier to estimate rigid body rotations using rotors in Geometric Algebra (GA). This work is motivated by the need for in situ estimation of the alignment between sensors commonly used in underwater vehicle navigation. Here we derive an adaptive identifier using a geometric interpretation of the error to drive first-order rotor kinematics. We prove that it is Lyapunov stable, and we show that it is asymptotically stable in the presence of persistent excitation. We use the identifier to estimate the alignment between the Doppler velocity log sonar and the fiber optic gyrocompass used by underwater vehicles for dead reckoning (DR). We evaluate this method in the laboratory with a remotely operated vehicle (ROV), and then with an autonomous underwater vehicle (AUV) operating in the field at 1,200 m depth. Our results show that this technique reduces dead reckoning navigation errors on these platforms and provides comparable performance to previously reported SO(3) constrained Linear Algebra (LA) approaches. The rotor identifier has a number of advantages over these previously reported methods, including a more straightforward derivation, simpler gain tuning, increased computational efficiency, and reduced data manipulation.
    Description: This work was supported in part by the National Defense Science and Engineering Graduate Program (MJS), the Edwin A. Link Foundation (MJS), the WHOI Academic Programs Office (MJS), The Jessie B. Cox Endowed Fund in Support of Scientific Staff (JCK), and The Penzance Endowed Fund in Support of Assistant Scientists (JCK).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 4032–4039, doi:10.1002/2015GL063065.
    Description: Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg−1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m−3 d−1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m−2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.
    Description: The authors acknowledge support from the National Science Foundation (NSF) through an NSF Science and Technology Center, the Center for Microbial Oceanography Research and Education (C-MORE; NSF EF-0424599). D.N. also was supported by NSF (OCE-1129644) and an Independent Study Award from the Woods Hole Oceanographic Institution (WHOI). D.M.K. was also supported by the Gordon and Betty Moore Foundation. WHOI Summer Student Fellow Cole Stites-Clayton, Stanford University, contributed to early stages of Seaglider data analysis and was supported by an NSF REU grant to WHOI (OCE-1156952).
    Keywords: Primary productivity ; Glider ; Diel ; Oxygen ; Net community production ; Hawaii
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    John Wiley & Sons
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 4301-4308, doi:10.1002/2015GL064480.
    Description: Continents on Earth periodically assemble to form supercontinents and then break up again into smaller continental blocks (the Wilson cycle). Previous highly developed numerical models incorporate fixed continents while others indicate that continent movement modulates flow. Our simplified numerical model suggests that continental drift is fundamental. A thermally insulating continent is anchored at its center to mantle flow on an otherwise stress-free surface for infinite Prandtl number cellular convection with constant material properties. Rayleigh numbers exceed 107, while continent widths and chamber lengths approach Earth's values. The Wilson cycle is reproduced by a unique, rugged monopolar “continental drift convection cell.” Subduction occurs at the cell's upstream end with cold slabs dipping at an angle beneath the moving continent (as found in many continent/subduction regions on Earth). Drift enhances vertical heat transport up to 30%, especially at the core-mantle boundary, and greatly decreases lateral mantle temperature differences.
    Description: Funding was provided by NSF grants EAR-1010432 and EAR-1316333.
    Description: 2015-12-02
    Keywords: Cellular convection ; Wilson cycle ; Continental drift ; Oscillation ; Subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: video/mp4
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 4931–4939, doi:10.1002/2015GL064431.
    Description: The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for 〉90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.
    Description: Funding to N.F.G. was provided by the University of Hong Kong and the National Research Foundation Singapore under its Singapore NRF Fellowship scheme (National Research Fellow Award NRF-RF2012-03), as administered by the Earth Observatory of Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. S.C.D. and K.A.H. acknowledge support from the National Science Foundation and Woods Hole Oceanographic Institution.
    Keywords: AMO ; NAO ; Coral del11B proxy ; pH
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4205–4225, doi:10.1002/2015JC010790.
    Description: The Intertropical Convergence Zone (ITCZ) is a major source of the surface freshwater input to the tropical open ocean. Under the ITCZ, sea-surface salinity (SSS) fronts that extend zonally across the basins are observed by the Aquarius/SAC-D mission and Argo floats. This study examined the evolution and forcing mechanisms of the SSS fronts. It is found that, although the SSS fronts are sourced from the ITCZ-freshened surface waters, the formation, structure, and propagation of these fronts are governed by the trade wind driven Ekman processes. Three features characterize the governing role of Ekman forcing. First, the SSS fronts are associated with near-surface salinity-minimum zones (SMZs) of 50–80 m deep. The SMZs are formed during December–March when the near-equatorial Ekman convergence zone concurs with an equatorward displaced ITCZ. Second, after the formation, the SMZs are carried poleward away at a speed of ∼3.5 km d−1 by Ekman transport. The monotonic poleward propagation is a sharp contrast to the seasonal north/south oscillation of the ITCZ. Lastly, each SMZ lasts about 12–15 months until dissipated at latitudes beyond 10°N/S. The persistence of more than 1 calendar year allows two SMZs to coexist during the formation season (December–March), with the newly formed SMZ located near the equator while the SMZ that is formed in the previous year located near the latitudes of 10–15° poleward after 1 year's propagation. The contrast between the ITCZ and SMZ highlights the dominance of Ekman dynamics on the relationship between the SSS and the ocean water cycle.
    Description: The study was supported by the NASA Ocean Salinity Science Team (OSST) under grant NNX12AG93G. Support from the NOAA Office of Climate Observation (OCO) under grant NA09OAR4320129 and NASA Ocean Vector Wind Science Team (OVWST) under grant NNA10AO86G in developing OAFlux evaporation and surface wind stress used in the study is gratefully acknowledged.
    Description: 2015-12-08
    Keywords: Sea-surface salinity fronts ; Salinity-minimum zones ; Tropical water cycle and salinity ; Aquarius salinity observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2303-2321, doi:10.1002/2015GC005797.
    Description: We reconstruct the history of the mode of accretion of an area of the Mid-Atlantic Ridge south of the Kane fracture zone using bathymetric morphology. The area includes 200 km of the spreading axis and reaches to 10 Ma on either side. We distinguish three tectonic styles: (1) volcanic construction with eruption and intrusion of magma coupled with minor faulting, (2) extended terrain with abundant large-offset faults, (3) detachment faulting marked by extension on single long-lived faults. Over 40% of the seafloor is made of extended terrain and detachment faults. The area includes products of seven spreading segments. The spreading axis has had detachment faulting or extended terrain on one or both sides for 70% of the last 10 Ma. In some parts of the area, regions of detachment faulting and extended terrain lie close to segment boundaries. Regions of detachment faulting initiated at 10 Ma close to the adjacent fracture zones to the north and south, and then expanded away from them. We discuss the complex evidence from gravity, seismic surveys, and bathymetry for the role of magma supply in generating tectonic style. Overall, we conclude that input of magma at the spreading axis has a general control on the development of detachment faulting, but the relationship is not strong. Other factors may include a positive feedback that stabilizes detachment faulting at the expense of volcanic extension, perhaps through the lubrication of active detachment faults by the formation of low friction materials (talc, serpentine) on detachment fault surfaces.
    Description: 2016-01-22
    Keywords: Slow spreading ridges ; Mid-Atlantic Ridge ; Detachment faults
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Advanced Science 2 (2015): 1500025, doi:10.1002/advs.201500025.
    Description: Clofazimine is an orally administered drug that massively bioaccumulates in macrophages, forming membrane-bound intracellular structures possessing nanoscale supramolecular features. Here, a library of phenazine compounds derived from clofazimine is synthesized and tested for ability to accumulate and form ordered molecular aggregates inside cells. Regardless of chemical structure or physicochemical properties, bioaccumulation is consistently greater in macrophages than in epithelial cells. Microscopically, some self-assembled structures exhibit a pronounced, diattenuation anisotropy signal, evident by the differential absorption of linearly polarized light, at the peak absorbance wavelength of the phenazine core. The measured anisotropy is well above the background anisotropy of endogenous cellular components, reflecting the self-assembly of condensed, insoluble complexes of ordered phenazine molecules. Chemical variations introduced at the R-imino position of the phenazine core lead to idiosyncratic effects on the compounds' bioaccumulation behavior as well as on the morphology and organization of the resulting intracellular structures. Beyond clofazimine, these results demonstrate how the self-assembly of membrane permeant, orally bioavailable small molecule building blocks can endow cells with unnatural structural elements possessing chemical, physical, and functional characteristics unlike those of other natural cellular components.
    Description: The authors acknowledge financial support from NIH (Grant R01GM078200 to G.R.R. and R01EB002583 to R.O.), a Rackham Predoctoral Fellowship Award to K.A.M., and University of Michigan M-Cubed funds awarded to K.A.S. and G.R.R.
    Keywords: Aggregation ; Biocrystals ; Chromophores ; Clofazimine ; Medicinal chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2582–2597, doi:10.1002/2015GC005927.
    Description: The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.
    Description: This work was supported by National Science Foundation grants OCE-0841114 and OCE-0840894, and the Seafloor Electromagnetic Methods Consortium at Scripps Institution of Oceanography.
    Description: 2016-02-16
    Keywords: Subduction zones ; Fluids ; Oceanic crust ; Bending faults
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7705–7713, doi:10.1002/2015GL065003.
    Description: We present the first noble gas observations in a proglacial fjord in Greenland, providing an unprecedented view of surface and submarine melt pathways into the ocean. Using Optimum Multiparameter Analysis, noble gas concentrations remove large uncertainties inherent in previous studies of meltwater in Greenland fjords. We find glacially modified waters with submarine melt concentrations up to 0.66 ± 0.09% and runoff 3.9 ± 0.29%. Radiogenic enrichment of Helium enables identification of ice sheet near-bed melt (0.48 ± 0.08%). We identify distinct regions of meltwater export reflecting heterogeneous melt processes: a surface layer of both runoff and submarine melt and an intermediate layer composed primarily of submarine melt. Intermediate ocean waters carry the majority of heat to the fjords' glaciers, and warmer deep waters are isolated from the ice edge. The average entrainment ratio implies that ocean water masses are upwelled at a rate 30 times the combined glacial meltwater volume flux.
    Description: We gratefully acknowledge funding from WHOI's Ocean and Climate Change Institute, the Doherty Postdoctoral Scholarship, and ship time from the Advanced Climate Dynamics Summer School (SiU grant NNA-2012/10151).
    Description: 2016-03-30
    Keywords: Glacial melt ; Noble gases ; Tracers ; Meltwater ; Greenland ; Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7589–7597, doi:10.1002/2015GL065284.
    Description: Broadband seismic stations were deployed across the Ross Ice Shelf (RIS) in November 2014 to study ocean gravity wave-induced vibrations. Initial data from three stations 100 km from the RIS front and within 10 km of each other show both dispersed infragravity (IG) wave and ocean swell-generated signals resulting from waves that originate in the North Pacific. Spectral levels from 0.001 to 10 Hz have the highest accelerations in the IG band (0.0025–0.03 Hz). Polarization analyses indicate complex frequency-dependent particle motions, with energy in several frequency bands having distinctly different propagation characteristics. The dominant IG band signals exhibit predominantly horizontal propagation from the north. Particle motion analyses indicate retrograde elliptical particle motions in the IG band, consistent with these signals propagating as Rayleigh-Lamb (flexural) waves in the ice shelf/water cavity system that are excited by ocean wave interactions nearer the shelf front.
    Description: Bromirski, Diez, and Gerstoft were supported by NSF grant PLR 1246151. Stephen and Bolmer were supported by NSF grant PLR-1246416. Wiens, Aster, and Nyblade were supported under NSF grants PLR-1142518, 1141916, and 1142126, respectively. Bromirski also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107. The NIB data were collected under NSF grant OPP-0229546 and were downloaded from the IRIS DMC archives.
    Description: 2016-03-16
    Keywords: Ocean wave-ice shelf interactions ; Infragravity waves ; Dispersed gravity wave arrivals ; Polarization analysis ; Rayleigh-Lamb waves ; Flexural waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7639–7647, doi:10.1002/2015GL065043.
    Description: Oceanic internal waves are closely linked to turbulence. Here a relationship between vertical wave number (kz) spectra of fine-scale vertical kinetic energy (VKE) and turbulent dissipation ε is presented using more than 250 joint profiles from five diverse dynamic regimes, spanning latitudes between the equator and 60°. In the majority of the spectra VKE varies as inline image. Scaling VKE with inline image collapses the off-equatorial spectra to within inline image but underestimates the equatorial spectrum. The simple empirical relationship between VKE and ε fits the data better than a common shear-and-strain fine-scale parameterization, which significantly underestimates ε in the two data sets that are least consistent with the Garrett-Munk (GM) model. The new relationship between fine-scale VKE and dissipation rate can be interpreted as an alternative, single-parameter scaling for turbulent dissipation in terms of fine-scale internal wave vertical velocity that requires no reference to the GM model spectrum.
    Description: National Science Foundation Grant Numbers: OCE-0728766, OCE-0425361, OCE-0424953, OCE-1029722, OCE-0622630, OCE-1030309, OCE-1232962, and Office of Naval Research Grant Number: N00014-10-10315
    Keywords: Internal waves ; Turbulence ; Mixing ; Vertical kinetic energy ; Finestructure parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7687–7695, doi:10.1002/2015GL065530.
    Description: Onshore intrusions of offshore waters onto the Mid-Atlantic Bight shelf can greatly affect shelf circulation, biogeochemistry, and fisheries. Previous studies have concentrated on onshore intrusions of slope water. Here we present a direct intrusion of Gulf Stream warm-core ring water onto the shelf representing a previously unknown exchange process at the shelfbreak. Impingement of warm-core rings at the shelfbreak generates along-isobath intrusions that grow like Pinocchio's nose, extending hundreds of kilometers to the southwest. By combining satellite and Ocean Observatory Initiative Pioneer Array data and idealized numerical simulations, we discover that the intrusion results from topographically induced vorticity variation of the ring water, rather than from entrainment of the shelfbreak frontal jet. This intrusion of the Gulf Stream ring water has important biogeochemical implications and could facilitate migration of marine species across the shelfbreak barrier and transport low-nutrient surface Gulf Stream ring water to the otherwise productive shelfbreak region.
    Description: National Science Foundation Grant Number: OCE-1129125
    Keywords: Mid-Atlantic Bight ; Cross-shelf exchange ; Onshore intrusion ; Warm-core ring ; OOI Pioneer Array ; Vorticity dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6542–6563, doi:10.1002/2015JC010751.
    Description: Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September–October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.
    Description: King Abdullah University of Science and Technology (KAUST) Grant Numbers: USA 00002, KSA 00011, KSA 00011/02; National Science Foundation; WHOI Academic Program Office Grant Number: OCE0927017
    Description: 2016-03-29
    Keywords: Anthropogenic tracers ; Red Sea Outflow Water ; Transit time ; Formation ; Spreading ; Residence time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 7584–7590, doi:10.1002/2014GL061637.
    Description: Two near-surface dye releases were mapped on scales of minutes to hours temporally, meters to order 1 km horizontally, and 1–20 m vertically using a scanning, depth-resolving airborne lidar. In both cases, dye evolved into a series of rolls with their major axes approximately aligned with the wind and/or near-surface current. In both cases, roll spacing was also of order 5–10 times the mixed layer depth, considerably larger than the 1–2 aspect ratio expected for Langmuir cells. Numerical large-eddy simulations under similar forcing showed similar features, even without Stokes drift forcing. In one case, inertial shear driven by light winds induced large aspect ratio large-eddy circulation. In the second, a preexisting lateral mixed layer density gradient provided the dominant forcing. In both cases, the growth of the large-eddy structures and the strength of the resulting dispersion were highly dependent on the type of forcing.
    Description: Support for the 2004 field experiment was provided by the Cecil H. and Ida M. Green Technology Innovation Fund and Coastal Ocean Institute grant 27001545, both through Woods Hole Oceanographic Institution, and by Office of Naval Research grant N00014-01-1-0984. Support for the 2011 field experiments was provided by ONR grants N00014-09-1-0194, N00014-09-1-0175, N00014-11-WX-21010, N00014-12-WX-21031, and N00014-09-1-0460 and NSF grants OCE-0751734 and OCE-0751653. Simulations were supported under grant N00014-09-1-0268.
    Description: 2015-05-06
    Keywords: Large-eddy circulation ; Ocean surface mixed layer ; Lidar ; Fluorescent dye ; Numerical model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 29 (2014): 1072–1093, doi:10.1002/2014PA002674.
    Description: The last deglaciation was characterized by a series of millennial-scale climate events that have been linked to deep ocean variability. While often implied in interpretations, few direct constraints exist on circulation changes at mid-depths. Here we provide new constraints on the variability of deglacial mid-depth circulation using combined radiocarbon and neodymium isotopes in 24 North Atlantic deep-sea corals. Their aragonite skeletons have been dated by uranium-series, providing absolute ages and the resolution to record centennial-scale changes, while transects spanning the lifetime of a single coral allow subcentennial tracer reconstruction. Our results reveal that rapid fluctuations of water mass sourcing and radiocarbon affected the mid-depth water column (1.7–2.5 km) on timescales of less than 100 years during the latter half of Heinrich Stadial 1. The neodymium isotopic variability (−14.5 to −11.0) ranges from the composition of the modern northern-sourced waters towards more radiogenic compositions, suggesting the presence of a greater southern-sourced component at some times. However, in detail, simple two-component mixing between well-ventilated northern-sourced and radiocarbon-depleted southern-sourced water masses cannot explain all our data. Instead, corals from ~15.0 ka and ~15.8 ka may record variability between southern-sourced intermediate waters and radiocarbon-depleted northern-sourced waters, unless there was a major shift in the neodymium isotopic composition of the northern end-member. In order to explain the rapid shift towards the most depleted radiocarbon values at ~15.4 ka, we suggest a different mixing scenario involving either radiocarbon-depleted deep water from the Greenland-Iceland-Norwegian Seas or a southern-sourced deep water mass. Since these mid-depth changes preceded the Bolling-Allerod warming and were apparently unaccompanied by changes in the deep Atlantic, they may indicate an important role for the intermediate ocean in the early deglacial climate evolution.
    Description: This study was supported by Natural Environment Research Council grant NE/F016751/1, Marie Curie International Reintegration grant IRG 230828, and Leverhulme Trust grant RPG-398 to TvdF, as well as a Phillip Leverhulme Prize, Marie Curie International Reintegration Grant, and European Research Council grant to L.F.R.
    Description: 2015-05-20
    Keywords: Heinrich stadial ; Deglaciation ; Atlantic meridional overturning circulation ; Neodymium isotopes ; Radiocarbon ; Deep sea corals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 608–633, doi:10.1002/2014JC010254.
    Description: The coastal waters of the northern portion of the California Current System experience a seasonal decline in oxygen concentrations and hypoxia over the summer upwelling season that results in negative impacts on habitat for many organisms. Using a regional model extending from 43°N to 50°N, with an oxygen component developed in this study, drivers of seasonal and regional oxygen variability are identified. The model includes two pools of detritus, which was an essential addition in order to achieve good agreement with the observations. The model was validated using an extensive array of hydrographic and moored observations. The model captures the observed seasonal decline as well as spatial trends in bottom oxygen. Spatially, three regions of high respiration are identified as locations where hypoxia develops each modeled year. Two of the regions are previously identified recirculation regions. The third region is off of the Washington coast. Sediment oxygen demand causes the region on the Washington coast to be susceptible to hypoxia and is correlated to the broad area of shallow shelf (〈60 m) in the region. Respiration and circulation-driven divergence contribute similar (60, 40%, respectively) amounts to the integrated oxygen budget on the Washington coast while respiration dominates the Oregon coast. Divergence, or circulation, contributes to the oxygen dynamics on the shelf in two ways: first, through the generation of retention features, and second, by determining variability.
    Description: This work was supported by a postdoctoral fellowship to Samantha Siedlecki from JISAO and the Program on Climate Change at the University of Washington, and grants from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) (NA09NOS4780180) and the National Science Foundation (NSF) (OCE0942675) as part of the Pacific Northwest Toxins (PNWTOX) project.
    Description: 2015-08-05
    Keywords: Hypoxia ; Oxygen ; Respiration ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Microbiology 17 (2015): 1510–1519, doi:10.1111/1462-2920.12571.
    Description: Here we investigated whether there is evidence of local adaptation in strains of an ancestrally marine dinoflagellate to the lacustrine environment they now inhabit (optimal genotypes) and/or if they have evolved phenotypic plasticity (a range of phenotypes). Eleven strains of Polarella glacialis were isolated and cultured from three different environments: the polar seas, a hyposaline and a hypersaline Antarctic lake. Local adaptation was tested by comparing growth rates of lacustrine and marine strains at their own and reciprocal site conditions. To determine phenotypic plasticity, we measured the reaction norm for salinity. We found evidence of both, limited local adaptation and higher phenotypic plasticity in lacustrine strains when compared with marine ancestors. At extreme high salinities, local lake strains outperformed other strains, and at extreme low salinities, strains from the hyposaline lake outperformed all other strains. The data suggest that lake populations may have evolved higher phenotypic plasticity in the lake habitats compared with the sea, presumably due to the high temporal variability in salinity in the lacustrine systems. Moreover, the interval of salinity tolerance differed between strains from the hyposaline and hypersaline lakes, indicating local adaptation promoted by different salinity.
    Description: This work was supported by a grant from the Australian Antarctic Research Assessment Committee to J.L-P and KR and by The Swedish Research Council (621-2009-5324) to KR. RL has been financed by a Marie Curie Intra-European Fellowship (PIEF-GA-2009–235365, EU) and a Juan de la Cierva fellowship (JCI-2010–06594, Ministry of Science and Innovation, Spain).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 925–946, doi:10.1002/2014GC005692.
    Description: Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise.
    Description: European Research Council under the European Union's Seventh Framework Programme . Grant Number: FP7/2007–2013
    Keywords: Mid-ocean ridge ; Permeability ; Grain size ; Simulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 579–599, doi:10.1002/2014GC005576.
    Description: The three-dimensional velocity and temperature fields surrounding an isolated thermal plume in a fluid with temperature-dependent viscosity are measured using Particle-Image Velocimetry and thermochromatic liquid crystals, respectively. The experimental conditions are relevant to a plume rising through the mantle. It is shown that while the velocity and the isotherm surrounding the plume can be used to visualize the plume, they do not reveal the finer details of its structure. However, by computing the Finite-Time Lyapunov Exponent fields from the velocity measurements, the material lines of the flow can be found, which clearly identify the shape of the plume head and characterize the behavior of the flow along the plume stem. It is shown that the vast majority of the material in the plume head has undergone significant stretching and originates from a wide region very low in the fluid domain, which is proposed as a contributing factor to the small-scale isotopic variability observed in ocean-island basalt regions. Lastly, the Finite-Time Lyapunov Exponent fields are used to calculate the steady state rise velocity of the thermal plume, which is found to scale linearly with the Rayleigh number, in contrast to some previous work. The possible cause and the significance of these conflicting results are discussed, and it is suggested that the scaling relationship may be affected by the temperature-dependence of the fluid viscosity in the current work.
    Description: This work was funded by the National Science Foundation (grant EAR-055199) and the MAPS Dean's Office at UCL.
    Description: 2015-09-04
    Keywords: Mantle plumes ; Hot spots ; Mantle flow ; Mantle processes ; Fluid dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/avi
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 2326–2332, doi:10.1002/2014GL062759.
    Description: Results from three hydrographic surveys across the East Greenland Current between 2011 and 2013 are presented with focus on the freshwater sources. End-member analysis using salinity, δ18O, and nutrient data shows that while meteoric water dominated the freshwater content, a significant amount of Pacific freshwater was present near Denmark Strait with a maximum in August 2013. While in 2011 and 2012 the net sea ice melt was dominated by brine, in 2013 it became close to zero. The amount of Pacific freshwater observed near Denmark Strait in 2013 is as large as the previous maximum in 1998. This, together with the decrease in meteoric water and brine, suggests a larger contribution from the Canadian Basin. We hypothesize that the increase of Pacific freshwater is the result of enhanced flux through Bering Strait and a shorter pathway of Pacific water through the interior Arctic to Fram Strait.
    Description: The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7 2007–2013) under grant agreement 308299, NACLIM Project, and from the U.S. National Science Foundation under grant OCE-085041.
    Description: 2015-10-01
    Keywords: East Greenland Current ; Freshwater ; Pacific Water ; Sea-ice melt ; Nordic Seas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2370-2384, doi:10.1002/2014JC010516.
    Description: Expendable bathythermographs (XBTs) have been launched along a repeat track from New Jersey to Bermuda from the CMV Oleander through the NOAA/NEFSC Ship of Opportunity Program about 14 times per year since 1977. The XBT temperatures on the Middle Atlantic Bight shelf are binned with 10 km horizontal and 5 m vertical resolution to produce monthly, seasonally, and annually averaged cross-shelf temperature sections. The depth-averaged shelf temperature, Ts, calculated from annually averaged sections that are spatially averaged across the shelf, increases at 0.026 ± 0.001°C yr−1 from 1977 to 2013, with the recent trend substantially larger than the overall 37 year trend (0.11 ± 0.02°C yr−1 since 2002). The Oleander temperature sections suggest that the recent acceleration in warming on the shelf is not confined to the surface, but occurs throughout the water column with some contribution from interactions between the shelf and the adjacent Slope Sea reflected in cross-shelf motions of the shelfbreak front. The local warming on the shelf cannot explain the region's amplified rate of sea level rise relative to the global mean. Additionally, Ts exhibits significant interannual variability with the warmest anomalies increasing in intensity over the 37 year record even as the cold anomalies remain relatively uniform throughout the record. Ts anomalies are not correlated with annually averaged coastal sea level anomalies at zero lag. However, positive correlation is found between 2 year lagged Ts anomalies and coastal sea level anomalies, suggesting that the region's sea level anomalies may serve as a predictor of shelf temperature.
    Description: J.F. was supported as a Woods Hole Oceanographic Institution Summer Student Fellow by the National Science Foundation's Research Experiences for Undergraduates through OCE-0649139. M.A. received support through OCE-1332667 and G.G. through OCE-1435602.
    Description: 2015-09-27
    Keywords: Oleander ; Ocean heat content ; Expendable bathythermograph ; Shelfbreak front ; Sea level ; Middle Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 120 (2015): 2119–2142, doi:10.1002/2014JB011501.
    Description: We use high-resolution multibeam bathymetry, shipboard gravity, side-scan sonar images, and magnetic anomaly data collected on conjugate flanks of the Mid-Atlantic Ridge at 25°N–27°30′N and out to ~27 Ma crust to investigate the crustal evolution of the ridge. Substantial variations in crustal structure and thickness are observed both along and across isochrons. Along isochrons within spreading segments, there are distinct differences in seafloor morphology and gravity-derived crustal thickness between inside and outside corners. Inside corners are associated with shallow depths, thin crust, and enhanced normal faulting while outside corners have greater depths, thicker crust, and more limited faulting. Across-isochrons, systematic variations in crustal thickness are observed at two different timescales, one at ~2–3 Myr and another at 〉10 Myr, and these are attributed to temporal changes in melt supply at the ridge axis. The shorter-term variations mostly are in-phase between conjugate ridge flanks, although the actual crustal thickness can be significantly different on the two flanks at any given time. We observe no correlation between crustal thickness and spreading rate. Thus, during periods of low melt supply, tectonic extension must increase to accommodate the full plate separation rate. This extension commonly is concentrated in long-lived faults on only one side of the axial valley, resulting in strong across-axis asymmetries in crustal thickness and seafloor morphology. The thin-crust flank has few volcanic features and exhibits elevated, blocky topography with large-offset, often irregular faults, while the conjugate thicker-crust flank shows shorter-offset, regular faulting, and common volcanic features. The variations in melt supply at the ridge axis most likely are caused either by episodic convection in the subaxial mantle or by variable melting of chemically heterogeneous mantle.
    Description: This study was funded by Chinese Natural Science Foundation grant 41206034 and Chinese Postdoc Scholarship award 2012M511130 (T.W.), by Ministry of Science and Technology 973 Project award 2012CB417303, and by the WHOI Henry Bryant Bigelow Chair (J.L.). ARSRP and MAREAST data acquisition was funded by Office of Naval Research grant N00014-90-J-6121 and by U.S. National Science Foundation grant OCE-9503561, respectively.
    Description: 2015-10-21
    Keywords: Crustal thickness ; Seafloor morphology ; Mid-Atlantic Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 656–676, doi:10.1002/2015GB005120.
    Description: The formation of the toxic and bioaccumulating monomethylmercury (MMHg) in marine systems is poorly understood, due in part to sparse data from many ocean regions. We present dissolved mercury (Hg) speciation data from 10 stations in the North and South Equatorial Pacific spanning large water mass differences and gradients in oxygen utilization. We also compare the mercury content in suspended particles from six stations and sinking particles from three stations to constrain local Hg sources and sinks. Concentrations of total Hg (THg) and methylated Hg in the surface and intermediate waters of the Equatorial and South Pacific suggest Hg cycling distinct from that of the North Pacific gyre. Maximum concentrations of 180 fM for both MMHg and dimethylmercury (DMHg) are observed in the Equatorial Pacific. South of the equator, concentrations of MMHg and DMHg are less than 100 fM. Sinking fluxes of particulate THg can reasonably explain the shape of dissolved THg profiles, but those of MMHg are too low to account for dissolved MMHg profiles. However, methylated Hg species are lower than predicted from remineralization rates based on North Pacific data, consistent with limitation of methylation in Equatorial and South Pacific waters. Full water column depth profiles were also measured for the first time in these regions. Concentrations of THg are elevated in deep waters of the North Pacific, compared to those in the intermediate and surface waters, and taper off in the South Pacific. Comparisons with previous measurements from nearby regions suggest little enrichment of THg or MMHg over the past 20 years.
    Description: Financial support for this study was provided by the National Science Foundation in a grant from the Chemical Oceanography Program (OCE-1031271) to C.H. Lamborg and M.A. Saito and a Graduate Student Fellowship to K.M. Munson.
    Description: 2015-11-25
    Keywords: Mercury ; Speciation ; Sinking fluxes ; Oxygen minimum zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 3522–3541, doi:10.1002/2014JC010492.
    Description: A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.
    Description: Research support was provided by National Oceanic and Atmospheric Administration (NOAA) grant NA06NOS4780245 for the Gulf of Maine Toxicity (GOMTOX) program. RH and DJM were also supported by NOAA grant NA11NOS4780023 under the PCMHAB program. YL was partly supported by Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the George D. Grice Postdoctoral Scholarship.
    Description: 2015-11-19
    Keywords: Gulf of Maine ; Circulation modeling ; Data assimilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 793-811, doi:10.1002/2014GB005001.
    Description: Mesoscale eddies in Oxygen Minimum Zones (OMZs) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent “natural tracer experiments” with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ε; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3−), nitrite (NO2−), and biogenic N2 associated with an anticyclonic mode-water eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3− was nearly exhausted, we measured the highest δ15N values for both NO3− and NO2− (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L−1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2− reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ε for NO3− reduction (up to ~30‰ in the presence of NO2−). However, the overall ε for N-loss was calculated to be only ~13–14‰ (as compared to canonical values of ~20–30‰) assuming a closed system and only slightly higher assuming an open system (16–19‰). Our results were similar whether calculated from the disappearance of DIN (NO3− + NO2−) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ε values for NO3− reduction to NO2− and NO2− reduction to N2 of ~16–21‰ and ~12‰, respectively, when the effect of NO2− oxidation could be removed. These results, together with the relationship between N and O of NO3− isotopes and the difference in δ15N between NO3− and NO2−, confirm a role for NO2− oxidation in increasing the apparent ε associated with NO3− reduction. The lower ε for N-loss calculated in this study could help reconcile the current imbalance in the global N budget if representative of global OMZ N-loss.
    Description: This work was supported by the Deutsche Forschungsgemeinschaft- project SFB-754 (www.sfb754.de), SOPRAN II (grant FKZ 03F0611A; www.sopran.pangaea.de), NSF grants OCE 0851092 and OCE 1154741 to M.A.A., and a NSERC Postdoctoral Fellowship to A.B.
    Description: 2015-12-06
    Keywords: Mesoscale eddy ; Isotope effects ; N-loss
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 4309–4317, doi:10.1002/2015GL063917.
    Description: We investigate the mechanisms of normal fault initiation and evolution in the subducting Pacific Plate near the Mariana Trench, through bathymetry analysis and geodynamic modeling. We model the subducting plate as an elastoplastic slab subjected to tectonic forcing at the trench, including vertical load, bending moment, and horizontal tensional force. In our simulations, normal faults initiate within the outer rise region and reach maximum throw toward the trench. This result holds over a wide range of tectonic forcing and is consistent with observations of the Challenger Deep region, where multibeam bathymetry data indicate faults initiate near the outer rise at 70–110 km from the trench and reach maximum throw at 10–35 km from the trench. However, models require a horizontal tensional force with magnitude comparable to axial vertical load to jointly explain the observed seafloor bathymetry, location of maximum normal fault throw, and prevalence of normal faults dipping toward the trench.
    Description: This work was supported by the Mariana Trench Project of the South China Sea Institute of Oceanology of Chinese Academy of Sciences, Chinese National 985 project 1350141509, Ministry of Science and Technology 973 project award 2012CB417303, and Chinese Scholarship Council 201406260134.
    Description: 2015-12-02
    Keywords: Normal faulting ; Subducting plate ; Mariana Trench ; Slab pull
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 1082–1106, doi:10.1002/2014JF003398.
    Description: We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times 〉7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (〈330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.
    Description: Research by J. Carmichael was supported by a NASA NESSF Fellowship grant NNX08AU82H and NSF grant ANT-0424589. The fieldwork and additional analyses were supported by the National Science Foundation's Office of Polar Programs (NSF-OPP) through ARC-1023382, awarded to I. Joughin, and ARC-1023364, awarded to S. B. Das and M. D. Behn. Matt King is a recipient of an Australian Research Council Future Fellowship (project number FT110100207).
    Description: 2015-12-25
    Keywords: Western Greenland Ice Sheet ; Icequakes ; Statistical signal processing ; GPS ; Supraglacial lakes ; Seismic threshold monitoring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 60 (2015): 1332–1343, doi:10.1002/lno.10098.
    Description: Understanding the behavior of larval invertebrates during planktonic and settlement phases remains an open and intriguing problem in larval ecology. Larvae modify their vertical swimming behavior in response to water column cues to feed, avoid predators, and search for settlement sites. The larval eastern oyster (Crassostrea virginica) can descend in the water column via active downward swimming, sinking, or “diving,” which is a flick and retraction of the ciliated velum to propel a transient downward acceleration. Diving may play an important role in active settlement, as diving larvae move rapidly downward in the water column and may regulate their proximity to suitable settlement sites. Alternatively, it may function as a predator-avoidance escape mechanism. We examined potential hydrodynamic triggers to this behavior by observing larval oysters in a grid-stirred turbulence tank. Larval swimming was recorded for two turbulence intensities and flow properties around each larva were measured using particle image velocimetry. The statistics of flow properties likely to be sensed by larvae (fluid acceleration, deformation, vorticity, and angular acceleration) were compared between diving and non-diving larvae. Our analyses showed that diving larvae experienced high average flow accelerations in short time intervals (approximately 1–2 s) prior to dive onset, while accelerations experienced by non-diving larvae were significantly lower. Further, the probability that larvae dove increased with the fluid acceleration they experienced. These results indicate that oyster larvae actively respond to hydrodynamic signals in the local flow field, which has ecological implications for settlement and predator avoidance.
    Description: This work was supported by NSF grant OCE-0850419, NOAA Sea Grant NA14OAR4170074, grants from the WHOI Coastal Ocean Institute, discretionary WHOI funds, a WHOI Ocean Life Fellowship to LM, and a Grove City College Swezey Fellowship to EA.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5766–5789, doi:10.1002/2014JC010490.
    Description: Impacts of the multichannel river network on plume dynamics in the Pearl River estuary were examined using a high-resolution 3-D circulation model. The results showed that during the dry season the plume was a distinct feature along the western coast of the estuary. The plume was defined as three water masses: (a) riverine water (〈5 psu), (b) estuarine water (12–20 psu), and (c) diluted water (〉22 psu), respectively. A significant amount of low-salinity water from Hengmen and Hongqimen was transported through a narrow channel between the QiAo Island and the mainland of the Pearl River delta during the ebb tide and formed a local salinity-gradient feature (hereafter referred to as a discharge plume). This discharge plume was a typical small-scale river plume with a Kelvin number K = 0.24 and a strong frontal boundary on its offshore side. With evidence of a significant impact on the distribution and variability of the salinity and flow over the West Shoal, this plume was thought to be a major feature of the Pearl River plume during the dry season. The upstream multichannel river network not only were the freshwater discharge sources but also played a role in establishing an estuarine-scale subtidal pressure gradient. This pressure gradient was one of the key dynamical processes controlling the water exchange between discharge and river plumes in the Pearl River estuary. This study clearly showed the role of the river network and estuary interaction on river plume dynamics.
    Description: The research work was supported by the National Natural Science Foundation of China (grant 41206005), the Ocean Public Welfare Scientific Research Project, State Oceanic Administration of the People's Republic of China (grant 201305019-3) and the CAS Strategic Pilot Science and Technology (XDA11020205). Changsheng Chen's participation was supported by the International Center for Marine Studies, Shanghai Ocean University.
    Description: 2016-02-21
    Keywords: River plume ; Multichannel river network ; River and estuary interaction ; Pearl River estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5698–5709, doi:10.1002/2015JC010872.
    Description: Recent field investigations of the damping of ocean surface waves over fluid muds have revealed waves on the interface between the thin layer of fluid mud and the overlying much thicker column of clear water, accompanied by bed forms on the erodible seabed beneath the fluid mud. The frequencies and wavelengths of the observed interfacial waves are qualitatively consistent with the linear dispersion relationship for long interfacial waves, but the forcing mechanism is not known. To understand the forcing, a linear model is proposed, based on the layer-averaged hydrostatic equations for the fluid mud, together with the Meyer-Peter-Mueller equation for the sediment transport within the underlying seabed, both subject to oscillatory forcing by the surface waves. If the underlying seabed is nonerodible and flat, the model indicates parametric instability to interfacial waves, but the threshold for instability is not met by the observations. If the underlying seabed is erodible, the model indicates that perturbations to the seabed elevation in the presence of the oscillatory forcing create interfacial waves, which in turn produce stresses within the fluid mud that force a net transport of sediment within the seabed toward the bed form crests, thus causing growth of both bed forms and interfacial waves. The frequencies, wavelengths, and growth rates are in qualitative agreement with the observations. A competition between mixing created by the interfacial waves and gravitational settling might control the thickness, density, and viscosity of the fluid muds during periods of strong forcing.
    Description: This study was supported by the Coastal Geodynamics Program at the Office of Naval Research and by the Physical Oceanography Program at the National Science Foundation.
    Keywords: Sediment transport ; Fluid mud ; Instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1165–1178, doi:10.1002/2015GB005106.
    Description: Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.
    Description: NSF Grant Numbers: AGS-1020594, EF-0424599; WHOI Grant Number: AGS-0328342; UVA; UK SOLAS Knowledge Transfer; SOLAS Project Integration Grant Number: NE/E001696/1
    Description: 2016-02-13
    Keywords: Ocean ; Ammonia ; Nitrogen ; Natural
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/x-tex
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 8088–8097, doi:10.1002/2015GL065727.
    Description: The Ross Sea sustains a rich ecosystem and is the most productive sector of the Southern Ocean. Most of this production occurs within a polynya during the November–February period, when the availability of dissolved iron (dFe) is thought to exert the major control on phytoplankton growth. Here we combine new data on the distribution of dFe, high-resolution model simulations of ice melt and regional circulation, and satellite-based estimates of primary production to quantify iron supply and demand over the Ross Sea continental shelf. Our analysis suggests that the largest sources of dFe to the euphotic zone are wintertime mixing and melting sea ice, with a lesser input from intrusions of Circumpolar Deep Water and a small amount from melting glacial ice. Together these sources are in approximate balance with the annual biological dFe demand inferred from satellite-based productivity algorithms, although both the supply and demand estimates have large uncertainties.
    Keywords: Iron ; Ross Sea ; Biogeochemical cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 8098–8105, doi:10.1002/2015GL065814.
    Description: The influence and fate of westward propagating eddies that impinge on the Kuroshio were observed with pressure sensor-equipped inverted echo sounders (PIESs) deployed east of Taiwan and northeast of Luzon. Zero lag correlations between PIES-measured acoustic travel times and satellite-measured sea surface height anomalies (SSHa), which are normally negative, have lower magnitude toward the west, suggesting the eddy-influence is weakened across the Kuroshio. The observational data reveal that impinging eddies lead to seesaw-like SSHa and pycnocline depth changes across the Kuroshio east of Taiwan, whereas analogous responses are not found in the Kuroshio northeast of Luzon. Anticyclones intensify sea surface and pycnocline slopes across the Kuroshio, while cyclones weaken these slopes, particularly east of Taiwan. During the 6 month period of overlap between the two PIES arrays, only one anticyclone affected the pycnocline depth first at the array northeast of Luzon and 21 days later in the downstream Kuroshio east of Taiwan.
    Description: Ministry of Science and Technology (MOST) of Taiwan Grant Number: NSC-101-2611-M-002-018-MY3; US Office of Naval Research (ONR) Grant Number: N00014-12-1-0445; MA Grant Number: N00014-15-1-2593; ONR Grant Numbers: N00014-10-1-0397, N00014-10-1-0308, N00014-10-1-0468
    Description: 2016-03-08
    Keywords: Kuroshio ; Mesoscale eddy ; Eddy-Kuroshio interaction ; Pressure sensor-equipped inverted echo sounder
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 7625–7644, doi:10.1002/2014JC010030.
    Description: Aquarius observations feature a prominent zonal sea-surface salinity (SSS) front that extends across the tropical Pacific between 2–10°N. By linking to Argo subsurface salinity observations and satellite-derived surface forcing datasets, the study discovered that the SSS front is not a stand-alone feature; it is in fact the surface manifestation of a low-salinity convergence zone (LSCZ) located within 100 m of the upper ocean. The near-surface salinity budget analysis suggested that, although the LSCZ is sourced from the rainfall in the Inter-tropical convergence zone (ITCZ), its generation and maintenance are governed by the wind-driven Ekman dynamics, not the surface evaporation-minus-precipitation flux. Three distinct features highlight the relationship between the oceanic LSCZ and the atmospheric ITCZ. First, the seasonal movement of the LSCZ is characterized by a monotonic northward displacement starting from the near-equatorial latitudes in boreal spring, unlike the ITCZ that is known for its seasonal north-south displacement. Second, the lowest SSS waters in the LSCZ are locked to the northern edge of the Ekman salt convergence throughout the year, but have no fixed relationship with the ITCZ rain band. Collocation between the LSCZ and ITCZ occurs only during August-October, the time that the ITCZ rain band coincides with the Ekman convergence zone. Lastly, the SSS front couples with the Ekman convergence zone but not the ITCZ. The evidence reinforces the findings of the study that the Ekman processes are the leading mechanism of the oceanic LSCZ and the SSS front is the surface manifestation of the LSCZ.
    Description: The study was supported by the NASA Ocean Salinity Science Team (OSST) under grant NNX12AG93G. Support from the NOAA Office of Climate Observation (OCO) under grant NA09OAR4320129 and NASA Ocean Vector Wind Science Team (OVWST) under grant NNA10AO86G in developing OAFlux evaporation and surface wind stress used in the study is gratefully acknowledged.
    Description: 2015-05-18
    Keywords: Aquarius/SAC-D mission ; Sea surface salinity front ; Surface freshwater flux ; Ekman dynamics ; Tropical low-salinity waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 28 (2014): 1295–1310, doi:10.1002/2014GB004890.
    Description: The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.
    Description: This work was supported by the Department of Energy Office of Science Biological and Environmental Research Division, the National Science Foundation Decadal and Regional Climate Prediction using Earth System Models (EaSM) program (NSF AGS 1048890 and AGS 1048827), and NASA Carbon Cycle Science (NASA NNX11AF96G). G.K.A. acknowledges a NOAA Climate and Global Change postdoctoral fellowship. J.B.M. and E.J.D. thank NOAA's Climate Program Office's Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) program for support
    Keywords: Carbon cycle ; Climate variability ; Drought ; Fire ; Terrestrial ecosystems ; Atmospheric CO2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8495–8511, doi:10.1002/2014JC010211.
    Description: Oceanic frontal instabilities are of importance for the vertical exchange of properties in the ocean. Submesoscale, O(1) Rossby number, dynamics are particularly relevant for inducing the vertical (and lateral) flux of buoyancy and tracers in the mixed layer, but how these couple with the stratified pycnocline is less clear. Observations show surface fronts often persist beneath the mixed layer. Here we use idealized, three-dimensional model simulations to show how surface fronts that extend deeper into the pycnocline invoke enhanced vertical fluxes through the coupling of submesoscale and mesoscale instabilities. We contrast simulations in which the front is restricted to the mixed layer with those in which it extends deeper. For the deeper fronts, we examine the effect of density stratification on the vertical coupling. Our results show deep fronts can dynamically couple the mixed layer and pycnocline on time scales that increase with the peak stratification beneath the mixed layer. Eddies in the interior generate skew fluxes of buoyancy and tracer oriented along isopycnals, thus providing an adiabatic pathway for the interior to interact with the mixed layer at fronts. The vertical enhancement of tracer fluxes through the mesoscale-submesoscale coupling described here is thus relevant to the vertical supply of nutrients for phytoplankton in the ocean. A further implication for wind-forced fronts is that the vertical structure of the stream function characterizing the exchange between the interior and the mixed layer exhibits significant qualitative differences compared to a linear combination of existing parameterizations of submesoscale eddies in the mixed layer and mesoscale eddies in the interior. The discrepancies are most severe within the mixed layer suggesting a potential role for Ekman-layer dynamics absent in existing submesoscale parameterizations.
    Description: S.R. and A.T. acknowledge financial support from the National Science Foundation (NSF OCE-0928138) and the Office of Naval Research (ONR N00014-09-1-0196, ONR N00014-12-1-0101). A.M. acknowledges funding from the National Science Foundation (NSF OCE-0928617) and the Office of Naval Research (ONR N00014-12-1-0101).
    Description: 2015-06-11
    Keywords: Submesoscale ; Mixed layer ; Meso-submeso coupling ; Deep fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4905–4919, doi:10.1002/2014GC005536.
    Description: We present new laser ablation ICP-MS trace element concentration data for 28 elements in 97 mid-ocean ridge basalt (MORB) glasses that cover all major spreading centers as well as Tl concentration data for all mineral phases in five lherzolites from the Lherz massif, France. The ratio between the elements thallium (Tl) and cerium (Ce) is nearly constant in MORB, providing evidence that the depleted MORB mantle (DMM) has uniform Ce/Tl. Lherzolite mineral data reveal that sulfides are heterogeneous and contain between 23 and 430 ng/g of Tl while all other minerals contain Tl below the analytical detection limit of ∼1 ng/g. We argue that Tl in MORB is controlled by residual sulfide during mantle melting. To investigate the observed relationship between Tl and Ce, we conduct models of fractional mantle melting, which show that the constant Ce/Tl in MORB is only reproduced if the ratio between clinopyroxene and sulfide in the upper mantle varies by less than 10%. In addition, the rate of melting for these two phases must be nearly identical as otherwise melt depletion and refertilization processes would lead to Ce/Tl fractionation. These model results allow us to establish a relationship for the sulfur content of DMM: [S]DMM = SCSS × Mcpx /Rcpx, where SCSS is the sulfur concentration of a silicate melt at sulfide saturation, Rcpx is the melt reaction coefficient, and Mcpx is the modal abundance of clinopyroxene in the DMM. Using this equation, we calculate that the average upper mantle sulfur concentration is 195 ± 45 μg/g.
    Description: We acknowledge funding from NSF grant EAR 1119373 to SGN and an award from the WHOI Deep Ocean Exploration Institute to SGN and NS and funding from the Deep Carbon Observatory to MDB.
    Description: 2015-06-18
    Keywords: Thallium ; Sulfide ; Mantle ; Trace elements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8512–8529, doi:10.1002/2014JC010221.
    Description: Using the “interior + surface quasigeostrophic” (isQG) method, the density and horizontal velocity fields of the ocean's interior can be retrieved from surface data. This method was applied to the Simple Ocean Data Assimilation (SODA) and the Hybrid Coordinate Ocean Model (HYCOM)/Navy Coupled Ocean Data Assimilation (NCODA) reanalysis data sets. The input surface data include sea surface height (SSH), sea surface temperature (SST), sea surface salinity (SSS), and a region-averaged stratification. The retrieved subsurface fields are compared with reanalysis data for three tested regions, and the results indicate that the isQG method is robust. The isQG method is particularly successful in the energetic regions like the Gulf Stream region with weak stratification, and the Kuroshio region with strong correlation between sea surface density (SSD) and SSH. It also works, though less satisfactorily, in the Agulhas leakage region. The performance of the isQG method in retrieving subsurface fields varies with season, and peaks in winter when the mixed layer is deeper and stratification is weaker. In addition, higher-resolution data may facilitate the isQG method to achieve a more successful reconstruction for the velocity retrieval. Our results suggested that the isQG method can be used to reconstruct the ocean interior from the satellite-derived SSH, SST, and SSS data in the near future.
    Description: This work was jointly supported by the MOST of China (grant 2011CB403505 & 2014CB953904), the China Special Fund for Meteorological Research in the Public Interest (NO. GYHY201406008), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA11010304), National Natural Science Foundation of China (grant 41376021). J. Wang is supported by the National Science Foundation (NSF) through grant OCE-1234473.
    Description: 2015-06-12
    Keywords: IsQG method ; Sea surface and interior ; Reconstruction ; Satellite remote sensing ; SODA reanalysis ; HYCOM/NCODA reanalysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4958–4983, doi:10.1002/2014GC005567.
    Description: Combined analyses of deep tow magnetic anomalies and International Ocean Discovery Program Expedition 349 cores show that initial seafloor spreading started around 33 Ma in the northeastern South China Sea (SCS), but varied slightly by 1–2 Myr along the northern continent-ocean boundary (COB). A southward ridge jump of ∼20 km occurred around 23.6 Ma in the East Subbasin; this timing also slightly varied along the ridge and was coeval to the onset of seafloor spreading in the Southwest Subbasin, which propagated for about 400 km southwestward from ∼23.6 to ∼21.5 Ma. The terminal age of seafloor spreading is ∼15 Ma in the East Subbasin and ∼16 Ma in the Southwest Subbasin. The full spreading rate in the East Subbasin varied largely from ∼20 to ∼80 km/Myr, but mostly decreased with time except for the period between ∼26.0 Ma and the ridge jump (∼23.6 Ma), within which the rate was the fastest at ∼70 km/Myr on average. The spreading rates are not correlated, in most cases, to magnetic anomaly amplitudes that reflect basement magnetization contrasts. Shipboard magnetic measurements reveal at least one magnetic reversal in the top 100 m of basaltic layers, in addition to large vertical intensity variations. These complexities are caused by late-stage lava flows that are magnetized in a different polarity from the primary basaltic layer emplaced during the main phase of crustal accretion. Deep tow magnetic modeling also reveals this smearing in basement magnetizations by incorporating a contamination coefficient of 0.5, which partly alleviates the problem of assuming a magnetic blocking model of constant thickness and uniform magnetization. The primary contribution to magnetic anomalies of the SCS is not in the top 100 m of the igneous basement.
    Description: This research is funded by National Science Foundation of China (grant 91028007, grant 91428309), Program for New Century Excellent Talents in University, and Research Fund for the Doctoral Program of Higher Education of China (grant 20100072110036).
    Description: 2015-06-27
    Keywords: Deep tow magnetic survey ; Magnetic anomaly ; Crustal evolution ; Modeling ; International Ocean Discovery Program Expedition 349 ; South China Sea tectonics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Ecology 103 (2015): 202–218, doi:10.1111/1365-2745.12334.
    Description: Schedules of survival, growth and reproduction are key life-history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population growth or decline, such data help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change and how to develop successful management tools for endangered or invasive species. Matrix population models summarize the life cycle components of survival, growth and reproduction, while explicitly acknowledging heterogeneity among classes of individuals in the population. Matrix models have comparable structures, and their emergent measures of population dynamics, such as population growth rate or mean life expectancy, have direct biological interpretations, facilitating comparisons among populations and species. Thousands of plant matrix population models have been parameterized from empirical data, but they are largely dispersed through peer-reviewed and grey literature, and thus remain inaccessible for synthetic analysis. Here, we introduce the compadre Plant Matrix Database version 3.0, an open-source online repository containing 468 studies from 598 species world-wide (672 species hits, when accounting for species studied in more than one source), with a total of 5621 matrices. compadre also contains relevant ancillary information (e.g. ecoregion, growth form, taxonomy, phylogeny) that facilitates interpretation of the numerous demographic metrics that can be derived from the matrices. Large collections of data allow broad questions to be addressed at the global scale, for example, in genetics (genbank), functional plant ecology (try, bien, d3) and grassland community ecology (nutnet). Here, we present compadre, a similarly data-rich and ecologically relevant resource for plant demography. Open access to this information, its frequent updates and its integration with other online resources will allow researchers to address timely and important ecological and evolutionary questions.
    Keywords: Big data ; Comparative approach ; Elasticity ; Matrix population model ; Open access ; Plant population and community dynamics ; Population growth rate ; Sensitivity ; Transient dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 52–76, doi:10.1002/2014PA002662.
    Description: North Atlantic climate archives provide evidence for increased storm activity during the Little Ice Age (150 to 600 calibrated years (cal years) B.P.) and centered at 1700 and 3000 cal years B.P., typically in centennial-scale sedimentary records. Meteorological (tropical versus extratropical storms) and climate forcings of this signal remain poorly understood, although variability in the North Atlantic Oscillation (NAO) or Atlantic Meridional Overturning Circulation (AMOC) are frequently hypothesized to be involved. Here we present records of late Holocene storminess and coastal temperature change from a Bermudian submarine cave that is hydrographically circulated with the coastal ocean. Thermal variability in the cave is documented by stable oxygen isotope values of cave benthic foraminifera, which document a close linkage between regional temperature change and NAO phasing during the late Holocene. However, erosion of terrestrial sediment into the submarine cave provides a “storminess signal” that correlates with higher-latitude storminess archives and broader North Atlantic cooling events. Understanding the driver of this storminess signal will require higher-resolution storm records to disentangle the contribution of tropical versus extratropical cyclones and a better understanding of cyclone activity during hemispheric cooling periods. Most importantly, however, the signal in Bermuda appears more closely correlated with proxy-based evidence for subtle AMOC reductions than NAO phasing.
    Description: Field support for this project was provided by the Williams and Nolan Families and the Walsingham Land Trust, and data support from the Bermuda Weather Service and R. Johnson (BIOS). Awards from the National Sciences and Engineering Research Council of Canada (Alexander Graham Bell CGS and Post-Doctoral Fellowship) and the inaugural Johanna M. Resig Fellowship from the Cushman Foundation for Foraminiferal Research provided primary research support, along with research grants from the Geologic Society of America, Cave Research Foundation, the Bermuda Zoological Society, WHOI Ocean and Climate Change Institute, and in part funded by the NSF Division of Ocean Sciences (Award #1519557).
    Description: 2015-08-18
    Keywords: Bermuda ; Submarine caves ; Benthic foraminifera ; Oxygen isotopes ; NAO ; AMOC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 1318–1332, doi:10.1002/2014JC010386.
    Description: The West Greenland Current System (WGCS) transports heat and freshwater into the Labrador Sea, influencing the formation of Labrador Sea Water, a key component of the Atlantic Meridional Overturning Circulation. Notwithstanding its importance, relatively little is known about the structure and transport of this current system and its seasonal and interannual variability. Here we use historical hydrographic data from 1992 to 2008, combined with AVISO satellite altimetry, to diagnose the mean properties as well as seasonal and interannual variability of the boundary current system. We find that while the surface, fresh, cold West Greenland Current is amplified in summer, the subsurface warm, salty Irminger Current has maximum transport in winter, when its waters are also warmer and saltier. Seasonal changes in the total transport are thus mostly due to changes in the baroclinic structure of the current. By contrast, we find a trend toward warmer/saltier waters and a slowdown of the WGCS, within the period studied. The latter is attributed to changes in the barotropic component of the current. Superimposed on this trend, warm and salty anomalies transit through the system in 1997 and 2003 and are associated with a rapid increase in the transport of the boundary current due to changes in the baroclinic component. The boundary current changes precede similar changes in the interior with a 1–2 year lag, indicating that anomalies advected into the region by the boundary current can play an important role in the modulation of convection in the Labrador Sea.
    Description: T.R. and F.S. were supported by NSF OCE grants 0525929 and 0850416. A.B. was supported by NSF OCE grant 0623192.
    Description: 2015-08-25
    Keywords: Labrador Sea ; Seasonal variability ; Interannual variability ; West Greenland Current ; Irminger Current ; Observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 174–195, doi:10.1002/2014PA002649.
    Description: During the last deglaciation, the ventilation of the subarctic Pacific is hypothesized to have changed dramatically, including the rejuvenation of a poorly ventilated abyssal water mass that filled the deep ocean, and fluctuations in the strength of North Pacific intermediate and deep water formation at millennial timescales. Foraminiferal radiocarbon reconstructions of past ventilation changes in the Pacific are valuable but are hampered by poor carbonate preservation, low sediment accumulation rates, bias from bioturbation, and poorly constrained past surface reservoir age. In this study, we present paired benthic-planktonic radiocarbon measurements from the Okhotsk Sea and Emperor Seamounts. We take advantage of large contemporaneous peaks in benthic abundances from the last glacial maximum, Bolling-Allerod (BA), and early Holocene to produce time slices of radiocarbon from 1 to 4 km water depth. We explore the impact of uncertain surface reservoir age and evaluate several approaches to quantifying past ocean radiocarbon distribution using our NW Pacific data and a compilation of published data from the North Pacific. Both the calendar age and the absolute value of an ocean radiocarbon estimate depend on the assumed surface reservoir age. But for a time slice from a small geographical area with radiocarbon-independent stratigraphic correlation between cores, the shape of a water column profile is independent of surface reservoir age. The NW Pacific profiles are similar in shape to the compilation profiles for the entire North Pacific, which suggests that deglacial surface reservoir age changes across the N Pacific did not diverge dramatically across the areas sampled. The Last Glacial Maximum (LGM) profile 〉2 km spans a wide range of values, ranging from values similar to today to lower than today. However, by the BA the profile has a similar shape to today. Ultimately, local surface reservoir ages, end-member water mass composition, and mixing ratios must each be constrained before a radiocarbon activity reconstruction can be used to confidently infer ventilation changes.
    Description: Support for this project was from NSF grants 0526764, 8312240, and 9912122, and the Williams College Divisional Research Funding Committee. M.S.C. participated in the GAIN writing retreat, which was support by NSF grants 0620101 and 0620087.
    Description: 2015-09-12
    Keywords: Deglaciation ; Radiocarbon ; Pacific Ocean ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/gif
    Format: text/plain
    Format: application/postscript
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 30 (2015): 226–252, doi:10.1002/2014PA002717.
    Description: Most annually resolved climate reconstructions of the Common Era are based on terrestrial data, making it a challenge to independently assess how recent climate changes have affected the oceans. Here as part of the Past Global Changes Ocean2K project, we present four regionally calibrated and validated reconstructions of sea surface temperatures in the tropics, based on 57 published and publicly archived marine paleoclimate data sets derived exclusively from tropical coral archives. Validation exercises suggest that our reconstructions are interpretable for much of the past 400 years, depending on the availability of paleoclimate data within, and the reconstruction validation statistics for, each target region. Analysis of the trends in the data suggests that the Indian, western Pacific, and western Atlantic Ocean regions were cooling until modern warming began around the 1830s. The early 1800s were an exceptionally cool period in the Indo-Pacific region, likely due to multiple large tropical volcanic eruptions occurring in the early nineteenth century. Decadal-scale variability is a quasi-persistent feature of all basins. Twentieth century warming associated with greenhouse gas emissions is apparent in the Indian, West Pacific, and western Atlantic Oceans, but we find no evidence that either natural or anthropogenic forcings have altered El Niño–Southern Oscillation-related variance in tropical sea surface temperatures. Our marine-based regional paleoclimate reconstructions serve as benchmarks against which terrestrial reconstructions as well as climate model simulations can be compared and as a basis for studying the processes by which the tropical oceans mediate climate variability and change.
    Description: J.E.T. and K.J.A. acknowledge Woods Hole Oceanographic Institution for internal support. K.J.A. acknowledges the Frank and Lisina Hoch Endowed Fund at the Woods Hole Oceanographic Institution for support. N.J.A. is supported by an Australian Research Council QEII fellowship (DP110101161), and this research contributes to ARC Discovery Grant DP140102059. M.N.E. is supported by NSF/ATM0902794 and NSF/ATM0902715. J.Z. was supported by an Indian Ocean Marine Research Centre fellowship and an Honorary Research Fellowship by the University of the Witwatersrand. H.C.W. is supported by the Deutsche Forschungsgemeinschaft through DFG-Research Center/Cluster of Excellence “The Ocean in the Earth System” at the University of Bremen (MARUM Fellowship). C.G. acknowledges MARUM–Center for Marine Environmental Sciences for internal support. K.H.K. is supported by NOAA grant NA11OAR4310171.
    Keywords: Climate reconstruction ; Corals ; Paleoceanography ; Last millennium climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2784–2799, doi:10.1002/2014JC010643.
    Description: To better understand the current carbon cycle and potentially detect its change in the rapidly changing Arctic Ocean, we examined sinking particles collected quasi-continuously over a period of 7 years (2004–2011) by bottom-tethered sediment trap moorings in the central Canada Basin. Total mass flux was very low (〈100 mg m−2 d−1) at all sites and was temporally decoupled from the cycle of primary production in surface waters. Extremely low radiocarbon contents of particulate organic carbon and high aluminum contents in sinking particles reveal high contributions of resuspended sediment to total sinking particle flux in the deep Canada Basin. Station A (75°N, 150°W) in the southwest quadrant of the Canada Basin is most strongly influenced while Station C (77°N, 140°W) in the northeast quadrant is least influenced by lateral particle supply based on radiocarbon content and Al concentration. The results at Station A, where three sediment traps were deployed at different depths, imply that the most likely mode of lateral particle transport was as thick clouds of enhanced particle concentration extending well above the seafloor. At present, only 1%–2% of the low levels of new production in Canada Basin surface waters reaches the interior basin. Lateral POC supply therefore appears to be the major source of organic matter to the interior basin. However, ongoing changes to surface ocean boundary conditions may influence both lateral and vertical supply of particulate material to the deep Canada Basin.
    Description: This research was funded by the NSF Division of Polar Programs (ARC-0909377), the Ocean and Climate Change Institute of Woods Hole Oceanographic Institution, and ETH Zürich. J.H. and M.K. were partly supported by the National Research Foundation of Korea grant funded by the Korean Government (2011–0013629).
    Keywords: Canada Basin ; Particulate organic carbon ; Lateral supply ; Radiocarbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 175–193, doi:10.1002/2014GB004935.
    Description: The attenuation of sinking particle fluxes through the mesopelagic zone is an important process that controls the sequestration of carbon and the distribution of other elements throughout the oceans. Case studies at two contrasting sites, the oligotrophic regime of the Bermuda Atlantic Time-series Study (BATS) and the mesotrophic waters of the west Antarctic Peninsula (WAP) sector of the Southern Ocean, revealed large differences in the rates of particle-attached microbial respiration and the average sinking velocities of marine particles, two parameters that affect the transfer efficiency of particulate matter from the base of the euphotic zone into the deep ocean. Rapid average sinking velocities of 270 ± 150 m d−1 were observed along the WAP, whereas the average velocity was 49 ± 25 m d−1 at the BATS site. Respiration rates of particle-attached microbes were measured using novel RESPIRE (REspiration of Sinking Particles In the subsuRface ocEan) sediment traps that first intercepts sinking particles then incubates them in situ. RESPIRE experiments yielded flux-normalized respiration rates of 0.4 ± 0.1 day−1 at BATS when excluding an outlier of 1.52 day−1, while these rates were undetectable along the WAP (0.01 ± 0.02 day−1). At BATS, flux-normalized respiration rates decreased exponentially with respect to depth below the euphotic zone with a 75% reduction between the 150 and 500 m depths. These findings provide quantitative and mechanistic insights into the processes that control the transfer efficiency of particle flux through the mesopelagic and its variability throughout the global oceans.
    Description: Funding was provided by the University of Alaska Fairbanks, Woods Hole Oceanographic Institution (WHOI) Rinehart Access to the Sea Program, the WHOI Coastal Oceans Institute, WHOI Academic Programs Office, and the National Science Foundation (NSF) for support of PAL (ANT-0823101), FOODBANCS, and WAPflux (ANT- 83886600) projects. A grant from the NSF Carbon and Water Program (06028416) supported the development of these methods.
    Description: 2015-08-25
    Keywords: Biological pump ; Marine particles ; Carbon flux ; Sinking velocity ; Microbial respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2488–2503, doi:10.1002/2014JC010317.
    Description: The transport of the Atlantic Meridional Overturning Circulation (AMOC) varies considerably on the seasonal time scale at 26.5°N, according to observations made at the RAPID-MOCHA array. Previous studies indicate that the local wind stress at 26.5°N, especially a large wind stress curl at the African coast, is the leading contributor to this seasonal variability. The purpose of the present study is to examine whether nonlocal wind stress forcing, i.e., remote forcing from latitudes away from 26.5°N, affects the seasonal AMOC variability at the RAPID-MOCHA array. Our tool is a two-layer and wind-driven model with a realistic topography and an observation-derived wind stress. The seasonal cycle of the modeled AMOC transport agrees well with RAPID-MOCHA observations while the amplitude is in the lower end of the observational range. In contrast to previous studies, the seasonal AMOC variability at 26.5°N is not primarily forced by the wind stress curl at the eastern boundary, but is a result of a basin-wide adjustment of ocean circulation to seasonal changes in wind stress. Both the amplitude and phase of the seasonal cycle at 26.5°N are strongly influenced by wind stress forcing from other latitudes, especially from the subpolar North Atlantic. The seasonal variability of the AMOC transport at 26.5°N is due to the seasonal redistribution of the water mass volume and is driven by both local and remote wind stress. Barotropic processes make significant contributions to the seasonal AMOC variability through topography-gyre interactions.
    Description: This study has been supported by the National Science Foundation (OCE 0927017).
    Description: 2015-10-02
    Keywords: Atlantic Overturning Circulation ; Transport ; Seasonal variability ; RAPID-MOCHA array ; Wind stress ; Remote forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 1065–1078, doi:10.1002/2014JC010292.
    Description: The role of mesoscale eddies in the uptake of anthropogenic chlorofluorocarbon-11 (CFC-11) gas is investigated with a 1/20° eddy-resolving numerical ocean model of a region of the Southern Ocean. With a relatively fast air-sea equilibrium time scale (about a month), the air-sea CFC-11 flux quickly responds to the changes in the mixed layer CFC-11 partial pressure (pCFC-11). At the mesoscale, significant correlations are observed between pCFC-11 anomaly, anomalies in sea surface temperature (SST), net heat flux, and mixed layer depth. An eddy-centric analysis of the simulated CFC-11 field suggests that anticyclonic warm-core eddies generate negative pCFC-11 anomalies and cyclonic cold-core eddies generate positive anomalies of pCFC-11. Surface pCFC-11 is modulated by mixed layer dynamics in addition to CFC-11 air-sea fluxes. A negative cross correlation between mixed layer depth and surface pCFC-11 anomalies is linked to higher CFC-11 uptake in anticyclones and lower CFC-11 uptake in cyclones, especially in winter. An almost exact asymmetry in the air-sea CFC-11 flux between cyclones and anticyclones is found.
    Description: We gratefully acknowledge NSF support of the MOBY project (grant OCE-1048926 to MIT and OCE-1048897 to WHOI). In addition, P.G. and D.J.M. thank NASA for partial support of this work through grant NNX13AE47G.
    Description: 2015-08-23
    Keywords: Mesoscale eddies ; Chlorofluorocarbon-11 ; Air-sea flux ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...