ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2015-12-22
    Beschreibung: Whereas ice cores from high-accumulation sites in coastal Antarctica clearly demonstrate annual layering, it is debated whether a seasonal signal is also preserved in ice cores from lower-accumulation sites further inland and particularly on the East Antarctic Plateau. In this study, we examine 5 m of early Holocene ice from the Dome Fuji (DF) ice core at a high temporal resolution by continuous flow analysis. The ice was continuously analysed for concentrations of dust, sodium, ammonium, liquid conductivity, and water isotopic composition. Furthermore, a dielectric profiling was performed on the solid ice. In most of the analysed ice, the multi-parameter impurity data set appears to resolve the seasonal variability although the identification of annual layers is not always unambiguous. The study thus provides information on the snow accumulation process in central East Antarctica. A layer counting based on the same principles as those previously applied to the NGRIP (North Greenland Ice core Project) and the Antarctic EPICA (European Project for Ice Coring in Antarctica) Dronning Maud Land (EDML) ice cores leads to a mean annual layer thickness for the DF ice of 3.0 ± 0.3 cm that compares well to existing estimates. The measured DF section is linked to the EDML ice core through a characteristic pattern of three significant acidity peaks that are present in both cores. The corresponding section of the EDML ice core has recently been dated by annual layer counting and the number of years identified independently in the two cores agree within error estimates. We therefore conclude that, to first order, the annual signal is preserved in this section of the DF core. This case study demonstrates the feasibility of determining annually deposited strata on the central East Antarctic Plateau. It also opens the possibility of resolving annual layers in the Eemian section of Antarctic ice cores where the accumulation is estimated to have been greater than in the Holocene. © Author(s) 2015.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-12-14
    Beschreibung: The widely used detailed SNOWPACK model has undergone constant development over the years. A notable recent extension is the introduction of a Richards equation (RE) solver as an alternative for the bucket-type approach for describing water transport in the snow and soil layers. In addition, continuous updates of snow settling and new snow density parameterizations have changed model behavior. This study presents a detailed evaluation of model performance against a comprehensive multiyear data set from Weissfluhjoch near Davos, Switzerland. The data set is collected by automatic meteorological and snowpack measurements and manual snow profiles. During the main winter season, snow height (RMSE: 〈 4.2 cm), snow water equivalent (SWE, RMSE: 〈 40 mm w.e.), snow temperature distributions (typical deviation with measurements: 〈 1.0 °C) and snow density (typical deviation with observations: 〈 50 kg m−3) as well as their temporal evolution are well simulated in the model and the influence of the two water transport schemes is small. The RE approach reproduces internal differences over capillary barriers but fails to predict enough grain growth since the growth routines have been calibrated using the bucket scheme in the original SNOWPACK model. However, the agreement in both density and grain size is sufficient to parameterize the hydraulic properties successfully. In the melt season, a pronounced underestimation of typically 200 mm w.e. in SWE is found. The discrepancies between the simulations and the field data are generally larger than the differences between the two water transport schemes. Nevertheless, the detailed comparison of the internal snowpack structure shows that the timing of internal temperature and water dynamics is adequately and better represented with the new RE approach when compared to the conventional bucket scheme. On the contrary, the progress of the meltwater front in the snowpack as detected by radar and the temporal evolution of the vertical distribution of melt forms in manually observed snow profiles do not support this conclusion. This discrepancy suggests that the implementation of RE partly mimics preferential flow effects.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Copernicus
    In:  EPIC3EGU General Assembly 2015, Vienna, Austria, 2015-04-12-2015-04-17Geophysical Research Abstracts Vol. 17, EGU2015-4520, 2015, Copernicus
    Publikationsdatum: 2015-04-20
    Beschreibung: A still open question is how equilibrium warming in response to increasing radiative forcing (equilibrium climate sensitivity S) is depending on background climate. We here bring paleo-data based evidence on the state-dependency of S by using CO2 proxy data together with model-based reconstruction of land ice albedo over the last 5 million years. We find that the land-ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcings depends on the CO2 data set used. Over the last 2 million years the combined S_[CO2,LI] from CO2 and land-ice albedo forcing is state-dependent and during interglacials at least twice as high as during glacials, thus CO2 doubling leads to an interglacial warming of 5 K. In the Pliocene data uncertainties prevents a well-supported calculation, but our analysis suggests that S_[CO2,LI] during a land-ice free northern hemisphere was smaller than during interglacials of the Pleistocene.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-07-19
    Beschreibung: Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009–2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths 〉 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W m−2 in summer and with heat released back into the water column at a rate of less than 1 W m−2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 647, doi:10.3389/fmicb.2014.00647.
    Beschreibung: The Southern Ocean is currently subject to intense investigations, mainly related to its importance for global biogeochemical cycles and its alarming rate of warming in response to climate change. Microbes play an essential role in the functioning of this ecosystem and are the main drivers of the biogeochemical cycling of elements. Yet, the diversity and abundance of microorganisms in this system remain poorly studied, in particular with regards to changes along environmental gradients. Here, we used amplicon sequencing of 16S rRNA gene tags using primers covering both Bacteria and Archaea to assess the composition and diversity of the microbial communities from four sampling depths (surface, the maximum and minimum of the oxygen concentration, and near the seafloor) at 10 oceanographic stations located in Bransfield Strait [northwest of the Antarctic Peninsula (AP)] and near the sea ice edge (north of the AP). Samples collected near the seafloor and at the oxygen minimum exhibited a higher diversity than those from the surface and oxygen maximum for both bacterial and archaeal communities. The main taxonomic groups identified below 100 m were Thaumarchaeota, Euryarchaeota and Proteobacteria (Gamma-, Delta-, Beta-, and Alphaproteobacteria), whereas in the mixed layer above 100 m Bacteroidetes and Proteobacteria (mainly Alpha- and Gammaproteobacteria) were found to be dominant. A combination of environmental factors seems to influence the microbial community composition. Our results help to understand how the dynamic seascape of the Southern Ocean shapes the microbial community composition and set a baseline for upcoming studies to evaluate the response of this ecosystem to future changes.
    Beschreibung: This work was supported by the Brazilian National Counsel of Technological and Scientific Development (Polar Canion CNPq 556848/2009-8, ProOasis CNPq 565040/2010-3, Interbiota CNPq 407889/2013-2 and INCT-MAR-COI). Alex Enrich-Prast received a CNPq Productivity fellowship. Camila N. Signori was supported by a WHOI Mary Sears Visitor Award (for the microbial community analyses) and by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for the “Doctorate Sandwich” scholarship (n. 18835/12-0).
    Schlagwort(e): Antarctica ; Pyrosequencing ; Microbial community structure ; Environmental factors ; Microbial oceanography ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Format: application/postscript
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 104, doi:10.3389/fmicb.2015.00104.
    Beschreibung: Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.
    Beschreibung: This work was supported by funding from the University of Massachusetts Amherst to DeAngelis and the National Science Foundation Long-term Ecological Research (LTER) Program.
    Schlagwort(e): Climate change ; Microbial ecology ; Ribosomal RNA ; rrn operon copy number ; Trophic strategy
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 90, doi:10.3389/fmicb.2015.00090.
    Beschreibung: Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture.
    Beschreibung: SAW, MA, CN, and CAP were supported by NSF PIRE grant OISE-0968211. GeoChip analysis was supported by the Office of the Vice President for Research at the University of Oklahoma and NSF MacroSystems Biology program EF-1065844 to JZ.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    Frontiers Media
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Cellular Neuroscience 8 (2015): 455, doi:10.3389/fncel.2014.00455.
    Beschreibung: Here we summarize the evidence from two “giant” presynaptic terminals—the squid giant synapse and the mammalian calyx of Held—supporting the involvement of nanodomain calcium signals in triggering of neurotransmitter release. At the squid synapse, there are three main lines of experimental evidence for nanodomain signaling. First, changing the size of the unitary calcium channel current by altering external calcium concentration causes a non-linear change in transmitter release, while changing the number of open channels by broadening the presynaptic action potential causes a linear change in release. Second, low-affinity calcium indicators, calcium chelators, and uncaging of calcium all suggest that presynaptic calcium concentrations are as high as hundreds of micromolar, which is more compatible with a nanodomain type of calcium signal. Finally, neurotransmitter release is much less affected by the slow calcium chelator, ethylene glycol tetraacetic acid (EGTA), in comparison to the rapid chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA). Similarly, as the calyx of Held synapse matures, EGTA becomes less effective in attenuating transmitter release while the number of calcium channels required to trigger a single fusion event declines. This suggests a developmental transformation of microdomain to nanodomain coupling between calcium channels and transmitter release. Calcium imaging and uncaging experiments, in combination with simulations of calcium diffusion, indicate the peak calcium concentration seen by presynaptic calcium sensors reaches at least tens of micromolar at the calyx of Held. Taken together, data from these provide a compelling argument that nanodomain calcium signaling gates very rapid transmitter release.
    Beschreibung: This work was supported by a CRP grant from the National Research Foundation of Singapore and by the World Class Institute (WCI) Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (MEST) (NRF Grant Number: WCI 2009-003) (to George J. Augustine), and by Operating Grants from the Canadian Institutes of Health Research (MOP-77610, MOP-81159, MOP-14692, VIH-105441) and Canada Research Chair (to Lu-Yang Wang).
    Schlagwort(e): Neurotransmitter release ; Calcium signaling ; Calcium channels ; Presynaptic terminals ; Synaptic vesicle trafficking
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 1288, doi:10.3389/fmicb.2015.01288.
    Beschreibung: We used culture-based and culture-independent approaches to discover diversity and ecology of anaerobic jakobids (Excavata: Jakobida), an overlooked, deep-branching lineage of free-living nanoflagellates related to Euglenozoa. Jakobids are among a few lineages of nanoflagellates frequently detected in anoxic habitats by PCR-based studies, however only two strains of a single jakobid species have been isolated from those habitats. We recovered 712 environmental sequences and cultured 21 new isolates of anaerobic jakobids that collectively represent at least ten different species in total, from which four are uncultured. Two cultured species have never been detected by environmental, PCR-based methods. Surprisingly, culture-based and culture-independent approaches were able to reveal a relatively high proportion of overall species diversity of anaerobic jakobids—60 or 80%, respectively. Our phylogenetic analyses based on SSU rDNA and six protein-coding genes showed that anaerobic jakobids constitute a clade of morphologically similar, but genetically and ecologically diverse protists—Stygiellidae fam. nov. Our investigation combines culture-based and environmental molecular-based approaches to capture a wider extent of species diversity and shows Stygiellidae as a group that ordinarily inhabits anoxic, sulfide- and ammonium-rich marine habitats worldwide.
    Beschreibung: This work was supported by grants from the Czech Science Foundation (project GA14-14105S), the Grant Agency of Charles University (project 301711), Charles University Specific Research SVV 260208/2015. VE and MP acknowledge support from NSF OCE-0849578 and OCE-0326175 for DHAB and Cariaco data. Unpublished data from Saanich Inlet were generously provided by Steven Hallam whose long-term research at this site is made possible through funding from the Tula Foundation-funded Centre for Microbial Diversity and Evolution, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research for Saanich Inlet data.
    Schlagwort(e): Cryptic species ; Environmental clones ; Marine communities ; Species diversity ; Anaerobic protists
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/msword
    Format: application/fasta
    Format: application/pdf
    Format: application/vnd.ms-excel
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 596, doi:10.3389/fmicb.2015.00596.
    Beschreibung: Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.
    Beschreibung: This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0644491 awarded to AV.
    Schlagwort(e): Mercury ; Metacinnabar ; Sulfur chemosynthesis ; Thiobacillus ; Thiosulfate ; Mercury sulfide dissolution ; Sulfur metabolism ; Sulfur oxidation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 901, doi:10.3389/fmicb.2015.00901.
    Beschreibung: Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4–293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50′ N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.
    Beschreibung: This work was partly supported by grants from the US National Science Foundation to SS (OCE-0452333, 1136727), to TS (OCE-0117117, 0525907, 0961186, 1043064, 0327261, 1131620), to WS and KD (1434798), as well as a grant by the WHOI Deep Ocean Exploration Institute to SB, TS, and SS.
    Schlagwort(e): Hydrothermal vents ; Colonization ; Species sorting ; Settlement ; Volcanic eruption ; 16S rRNA ; Epsilonproteobacteria ; Disturbance
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 605, doi:10.3389/fmicb.2014.00605.
    Beschreibung: Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.
    Beschreibung: K. Kormas was partially supported by the University of Thessaly through a sabbatical in 2013. Supported by NSF grants OCE-0849578 to Virginia P. Edgcomb and Joan M. Bernhard and OCE-1061391 to Joan M. Bernhard and Virginia P. Edgcomb.
    Schlagwort(e): Eukaryote ; DHABs ; Discovery ; Urania, L’ Atalante ; Diversity ; rRNA
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2015): 794, doi:10.3389/fmicb.2014.00794.
    Beschreibung: Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined, and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) from natural aerosol samples in seawater over a 7 days period to (1) evaluate the role of extraction time in trace metal dissolution behavior and (2) explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples), to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples). Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples). Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.
    Beschreibung: This work was supported by NSF-OCE grant 0850467 to Adina Paytan, NSF-OCE grant 1233261 to Mak A. Saito, and NATO Science for Peace Grant to Adina Paytan and Anton F. Post (SfP 982161). Katherine R. M. Mackey was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology (Grant No. NSF 1103575) and Chia-Te Chien by an international graduate student fellowship from the ministry of education, Taiwan.
    Schlagwort(e): Aerosols ; Atmospheric deposition ; Phytoplankton ; Trace metals ; Ligands
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 197, doi:10.3389/fmicb.2015.00197.
    Beschreibung: Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
    Beschreibung: This work was fostered by grants from WHOI's Arctic Research Initiative to MJLC and AS, as well as a Center for Dark Energy Biosphere Investigations (CDEBI) grant OCE-0939564 to WDO.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    Copernicus
    In:  EPIC3EGU General Assembly 2015, Vienna, 2015-04-13-2015-04-17Copernicus
    Publikationsdatum: 2015-05-11
    Beschreibung: Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core (Weikusat et al. 2010, 2011). Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2015-05-11
    Beschreibung: Ice is a common mineral at the Earth’s surface. How much ice is stored in the Greenland and Antarctic ice sheets depends on its mechanical properties. Therefore properties of ice directly impact on human society through its role in controlling sea level. The bulk behaviour of large ice masses is the result of the behaviour of the ensemble of individual ice grains. This is strongly influenced by the viscoplastic anisotropy of these grains and their lattice orientation. Numerical modelling provides a better insight into the mechanics of ice from the micro to the ice sheet scale. We present numerical simulations that predict the microstructural evolution of an aggregate of pure ice grains at different strain rates. We simulate co-axial deformation and dynamic recrystallization up to large strain using a full-field approach. The crystal plasticity code (Lebensohn et al., 2009) is used to calculate the response of a polycrystalline aggregate that deforms by purely dislocation glide, applying a Fast Fourier Transform (FFT). This code is coupled with the ELLE microstructural modelling platform to include intracrystalline recovery, as well as grain boundary migration driven by the reduction of surface and strain energies. The results show a strong effect of recrystallization on the final microstructure, producing larger and more equiaxed grains, with smooth boundaries. This effect does not significantly modify the single-maximum pattern of c-axes that are distributed at a low angle to the shortening direction. However, in experiments with significant recrystallization the a-axes rotate towards the elongation axis at the same time as the c-axes rotate towards the compression axis. If slip systems on prismatic and/or pyramidal planes are active, it is thought that a-axes gradually concentrate with depth (Miyamoto, 2005). The bulk activity of the slip systems is different depending on the relative activity of deformation versus recrystallization: the non-basal slip systems are more active at high strain in experiments with dynamic recrystallization compared to those experiments with low recrystallization activity.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    facet.materialart.
    Unbekannt
    Copernicus
    In:  EPIC3EGU General Assembly 2015, Vienna, 2015-04-13-2015-04-17Copernicus
    Publikationsdatum: 2015-05-11
    Beschreibung: The ice sheets in Greenland and Antarctica contain a significant amount of air within their upper approximately thousand meters and air hydrates below. While this air is still in exchange with the atmosphere in the permeable firn, the gas is entrapped at the firn-ice transition at 60 – 120 m depth. Understanding the dominant deformation mechanisms is essential to interpret paleo-atmosphere records and to allow a more realistic model of ice sheet dynamics. Recent research shows how the presence of air bubbles can significantly influence microdynamical processes such as grain growth and grain boundary migration (Azuma et al., 2012, Roessiger et al., 2014). Therefore, numerical modelling was performed focussing on the mechanical properties of ice with air inclusions and the implications of the presence of bubbles on recrystallisation. The full-field crystal plasticity code of Lebensohn (2001), using a Fast Fourier Transform (FFT), was coupled to the 2D numerical microstructural modelling platform Elle, following the approach by Griera et al. (2013), and used to simulate dynamic recrystallization of pure ice (Montagnat et al., 2013). FFT calculates the viscoplastic response of polycrystalline and polyphase materials that deform by dislocation glide, takes into account the mechanical anisotropy of ice and calculates dislocation densities using the local gradient of the strain-rate field. Incorporating a code for polyphase grain boundary migration driven by surface and internal strain energy reduction, based on the methodology of Becker et al. (2008) and Roessiger et al. (2014), now also enables us to model deformation of ice with air bubbles. The presence of bubbles leads to an increase in strain localization, which reduces the bulk strength of the bubbly ice. In the absence of dynamic recrystallisation, air bubbles quickly collapse at low strains and spherical to elliptical bubble shapes are only maintained when recrystallisation is activated. Our modelling confirms that strain-induced grain boundary migration already occurs in the uppermost levels of ice sheets (Kipfstuhl et al. 2009, Weikusat et al. 2009).
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    Copernicus
    In:  EPIC3EGU General Assembly 2015, Vienna, Austria, 2015-04-12-2015-04-17Copernicus
    Publikationsdatum: 2015-05-11
    Beschreibung: Ice cores are the only climate archives incorporating paleo-atmosphere as individual gas inclusions, enabling the extraction and analysis of the contained gasses. A firm understanding of the processes involved is mandatory for a reliable interpretation of the gas records. One prominent process is the transition from air bubbles to crystalline air hydrates, which is known to influence, at least temporarily, the gas mixing ratios by diffusion and fractionation. This transition is still not understood completely and the existing theories do not explain the large diversity of observed hydrate morphologies. Raman tomographic measurements using the AWI cryo-Raman system provide 3D reconstructions of air hydrate morphologies. The results show complex growth structures that emphasize the importance of crystallography, microstructure and ice rheology for the hydrate formation process. Accurate hydrate volumes can be calculated from the 3D objects, improving the estimates of total gas contents.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2015-05-11
    Beschreibung: The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5–7.9, 5.7–5.0, 4.1–3.7, and 3.0–2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0–1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    facet.materialart.
    Unbekannt
    Copernicus
    In:  EPIC3Biogeosciences Discussions, Copernicus, 12(10), pp. 7449-7490, ISSN: 1810-6285
    Publikationsdatum: 2015-05-28
    Beschreibung: Thermokarst lakes are important emitters of methane, a potent greenhouse gas. However, accurate estimation of methane flux from thermokarst lakes is difficult due to their remoteness and observational challenges associated with the heterogeneous nature of ebullition (bubbling). We used multi-temporal high-resolution (9–11 cm) aerial images of an interior Alaskan thermokarst lake, Goldstream Lake, acquired 2 and 4 days following freeze-up in 2011 and 2012, respectively, to characterize methane ebullition seeps and to estimate whole-lake ebullition. Bubbles impeded by the lake ice sheet form distinct white patches as a function of bubbling rate vs. time as ice thickens. Our aerial imagery thus captured in a single snapshot the ebullition events that occurred before the image acquisition. Image analysis showed that low-flux A- and B-type seeps are associated with low brightness patches and are statistically distinct from high-flux C-type and Hotspot seeps associated with high brightness patches. Mean whole-lake ebullition based on optical image analysis in combination with bubble-trap flux measurements was estimated to be 174 ± 28 and 216 ± 33 mL gas m−2 d−1 for the years 2011 and 2012, respectively. A large number of seeps demonstrated spatio-temporal stability over our two-year study period. A strong inverse exponential relationship (R2 ≥ 0.79) was found between percent surface area of lake ice covered with bubble patches and distance from the active thermokarst lake margin. Our study shows that optical remote sensing is a powerful tool to map ebullition seeps on lake ice, to identify their relative strength of ebullition and to assess their spatio-temporal variability.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , notRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 358, doi:10.3389/fmicb.2015.00358.
    Beschreibung: Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing microbial genomes from soil using metagenomics have been challenging due to the tremendous diversity and relatively uniform distribution of genomes found in this system. Here we used enrichment techniques in an attempt to decrease the complexity of a soil microbiome prior to sequencing by submitting it to a range of physical and chemical stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these microcosms at the end of the treatment yielded 540 Mb of assembly using standard de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from which we could recover novel bacterial genomes, plasmids and phages. The recovered genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2), Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances ranging from rare (〈0.0001%) to relatively abundant (〉0.01%) in the original soil microbiome. Furthermore, we detected them in samples collected from geographically distant locations, particularly more in temperate soils compared to samples originating from high-latitude soils and deserts. To the best of our knowledge, this study is the first successful attempt to assemble multiple bacterial genomes directly from a soil sample. Our findings demonstrate that developing pertinent enrichment conditions can stimulate environmental genomic discoveries that would have been impossible to achieve with canonical approaches that focus solely upon post-sequencing data treatment.
    Beschreibung: This research was supported by the French National Research Agency (Agence National de Recherche) project Metasoil (Projet ANR-08-GENM-025). TOD was funded by the Rhone-Alpes Région. LM was supported with a PhD fellowship from the Région Rhône-Alpes.
    Schlagwort(e): Rare biosphere ; Soil ; Metagenomics ; Environmental genomics ; Plasmids ; Phages
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Format: image/jpeg
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 646, doi:10.3389/fmicb.2014.00646.
    Beschreibung: Rising temperatures and changing winds drive the expansion of the highly productive polynyas (open water areas surrounded by sea ice) abutting the Antarctic continent. Phytoplankton blooms in polynyas are often dominated by the haptophyte Phaeocystis antarctica, and they generate the organic carbon that enters the resident microbial food web. Yet, little is known about how Phaeocystis blooms shape bacterial community structures and carbon fluxes in these systems. We identified the bacterial communities that accompanied a Phaeocystis bloom in the Amundsen Sea polynya during the austral summers of 2007–2008 and 2010–2011. These communities are distinct from those determined for the Antarctic Circumpolar Current (ACC) and off the Palmer Peninsula. Diversity patterns for most microbial taxa in the Amundsen Sea depended on location (e.g., waters abutting the pack ice near the shelf break and at the edge of the Dotson glacier) and depth, reflecting different niche adaptations within the confines of this isolated ecosystem. Inside the polynya, P. antarctica coexisted with the bacterial taxa Polaribacter sensu lato, a cryptic Oceanospirillum, SAR92 and Pelagibacter. These taxa were dominated by a single oligotype (genotypes partitioned by Shannon entropy analysis) and together contributed up to 73% of the bacterial community. Size fractionation of the bacterial community [〈3 μm (free-living bacteria) vs. 〉3 μm (particle-associated bacteria)] identified several taxa (especially SAR92) that were preferentially associated with Phaeocystis colonies, indicative of a distinct role in Phaeocystis bloom ecology. In contrast, particle-associated bacteria at 250 m depth were enriched in Colwellia and members of the Cryomorphaceae suggesting that they play important roles in the decay of Phaeocystis blooms.
    Beschreibung: This work received financial support from NSF Antarctic Sciences awards ANT-1142095 (Anton F. Post), ANT-0839069 and ANT-0741409 (Patricia L. Yager), and ANT-0839012 (Hugh W. Ducklow). We further acknowledge the support by “Oden Southern Ocean,” SWEDARP 2010/2011, a project organized by the Swedish Polar Research Secretariat and National Science Foundation Office of Polar Programs.
    Schlagwort(e): Amundsen Sea polynya ; Phytoplankton bloom ; Phaeocystis antarctica ; Microbial community structure ; Mutualism
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: image/jpeg
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Cellular and Infection Microbiology 4 (2015): 176, doi:10.3389/fcimb.2014.00176.
    Beschreibung: In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health—not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.
    Beschreibung: Support for this work was provided to Janelle R. Thompson by the National Research Foundation of Singapore through the Center for Environmental Sensing and Modeling (CENSAM) and by the MIT Civil and Environmental Engineering Department; to Hanny E. Rivera by the MIT Presidential Fellowship; to Collin J. Closek by the National Geographic Society; and to Mónica Medina by NSF projects IOS 1146880 and IOS 0926906.
    Schlagwort(e): Coral ; Holobiont ; Metamorphosis ; Biological ; Symbiosis ; Pollution and global change ; Ecosystem ; Bacterial interactions
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 1090, doi:10.3389/fmicb.2015.01090.
    Beschreibung: Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their functional gene pool and of the geochemical activities they support. Here, we report on a metagenome (~160 million reads) analysis of the microbial community associated with a P. antarctica bloom event in the Amundsen Sea polynya (West Antarctica). Genomes of the most abundant Bacteroidetes and Proteobacteria populations have been reconstructed and a network analysis indicates a strong functional partitioning of these bacterial taxa. Three of them (SAR92, and members of the Oceanospirillaceae and Cryomorphaceae) are found in close association with P. antarctica colonies. Distinct features of their carbohydrate, nitrogen, sulfur and iron metabolisms may serve to support mutualistic relationships with P. antarctica. The SAR92 genome indicates a specialization in the degradation of fatty acids and dimethylsulfoniopropionate (compounds released by P. antarctica) into dimethyl sulfide, an aerosol precursor. The Oceanospirillaceae genome carries genes that may enhance algal physiology (cobalamin synthesis). Finally, the Cryomorphaceae genome is enriched in genes that function in cell or colony invasion. A novel pico-eukaryote, Micromonas related genome (19.6 Mb, ~94% completion) was also recovered. It contains the gene for an anti-freeze protein, which is lacking in Micromonas at lower latitudes. These draft genomes are representative for abundant microbial taxa across the Southern Ocean surface.
    Beschreibung: This work was performed with financial support from NSF Antarctic Sciences awards ANT-1142095 to AP.
    Schlagwort(e): Southern Ocean ; Amundsen Sea Polynya ; Phytoplankton bloom ; Phaeocystis ; Micromonas ; Microbial communities ; Metagenomics ; Genome reconstruction
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    Publikationsdatum: 2022-05-26
    Beschreibung: .© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 568, doi:10.3389/fmicb.2014.00568.
    Beschreibung: The human mouth is an excellent system to study the dynamics of microbial communities and their interactions with their host. We employed oligotyping to analyze, with single-nucleotide resolution, oral microbial 16S ribosomal RNA (rRNA) gene sequence data from a time course sampled from the tongue of two individuals, and we interpret our results in the context of oligotypes that we previously identified in the oral data from the Human Microbiome Project. Our previous work established that many of these oligotypes had dramatically different distributions between individuals and across oral habitats, suggesting that they represented functionally different organisms. Here we demonstrate the presence of a consistent tongue microbiome but with rapidly fluctuating proportions of the characteristic taxa. In some cases closely related oligotypes representing strains or variants within a single species displayed fluctuating relative abundances over time, while in other cases an initially dominant oligotype was replaced by another oligotype of the same species. We use this high temporal and taxonomic level of resolution to detect correlated changes in oligotype abundance that could indicate which taxa likely interact synergistically or occupy similar habitats, and which likely interact antagonistically or prefer distinct habitats. For example, we found a strong correlation in abundance over time between two oligotypes from different families of Gamma Proteobacteria, suggesting a close functional or ecological relationship between them. In summary, the tongue is colonized by a microbial community of moderate complexity whose proportional abundance fluctuates widely on time scales of days. The drivers and functional consequences of these community dynamics are not known, but we expect they will prove tractable to future, targeted studies employing taxonomically resolved analysis of high-throughput sequencing data sampled at appropriate temporal intervals and spatial scales.
    Beschreibung: Supported by National Institutes of Health (NIH) National Institute of Dental and Craniofacial Research Grant DE022586 (to Gary G. Borisy). Daniel R. Utter was supported by the Woods Hole Partnership Education Program; A. Murat Eren was supported by a G. Unger Vetlesen Foundation grant to the Marine Biological Laboratory; David B. Mark Welch was supported by NSF DBI-1262592
    Schlagwort(e): Human microbiome ; Oral microbiota ; 16S ribosomal RNA ; Haemophilus ; Neisseria ; Streptococcus ; Veillonella
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 563, doi:10.3389/fmicb.2014.00563.
    Beschreibung: The genus Vibrio is a metabolically diverse group of facultative anaerobic bacteria, common in aquatic environments and marine hosts. The genus contains several species of importance to human health and aquaculture, including the causative agents of human cholera and fish vibriosis. Vibrios display a wide variety of known life histories, from opportunistic pathogens to long-standing symbionts with individual host species. Studying Vibrio ecology has been challenging as individual species often display a wide range of habitat preferences, and groups of vibrios can act as socially cohesive groups. Although strong associations with salinity, temperature and other environmental variables have been established, the degree of habitat or host specificity at both the individual and community levels is unknown. Here we use oligotyping analyses in combination with a large collection of existing Vibrio 16S ribosomal RNA (rRNA) gene sequence data to reveal patterns of Vibrio ecology across a wide range of environmental, host, and abiotic substrate associated habitats. Our data show that individual taxa often display a wide range of habitat preferences yet tend to be highly abundant in either substrate-associated or free-living environments. Our analyses show that Vibrio communities share considerable overlap between two distinct hosts (i.e., sponge and fish), yet are distinct from the abiotic plastic substrates. Lastly, evidence for habitat specificity at the community level exists in some habitats, despite considerable stochasticity in others. In addition to providing insights into Vibrio ecology across a broad range of habitats, our study shows the utility of oligotyping as a facile, high-throughput and unbiased method for large-scale analyses of publically available sequence data repositories and suggests its wide application could greatly extend the range of possibilities to explore microbial ecology.
    Beschreibung: This work was supported by an NSF Collaborative grant to Erik Zettler (OCE-1155379), Tracy J. Mincer (OCE-1155671) and Linda A. Amaral-Zettler (OCE-1155571), NSF TUES grant to Erik Zettler and Linda A. Amaral-Zettler (DUE-1043468). Additional support came from the Woods Hole Center for Oceans and Human Health from the National Institutes of Health and National Science Foundation (NIH/NIEHS 1 P50 ES012742-01 and NSF/OCE 0430724-J: Linda A. Amaral-Zettler and Leslie Murphy) and an NSF/OCE-1128039 award (Linda A. Amaral-Zettler and Leslie Murphy). Victor Schmidt was supported during this work by an NSF IGERT fellowship (DGE 0966060, Dr. David Rand, PI).
    Schlagwort(e): Oligotyping ; Vibrio ecology ; Host-microbe interactions ; Illumina sequencing ; 16S rRNA analysis ; Plastisphere ; Aquaculture pathogens ; Meta-analysis
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/zip
    Format: application/msword
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Plant Science 5 (2015): 793, doi:10.3389/fpls.2014.00793.
    Beschreibung: Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, long-term free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.
    Beschreibung: This research was supported in part by the Sloan Foundation in a fellowship to Robinson W. Fulweiler. The Duke Forest FACE was supported by his study was supported by the US Department of Energy (Grant No. DE-FG02-95ER62083) through the Office of Biological and Environmental Research (BER) and its National Institute for Global Environmental Change (NIGEC), Southeast Regional Center (SERC) at the University of Alabama, and by the US Forest Service through both the Southern Global Climate Change Program and the Southern Research Station. Adrien C. Finzi acknowledges ancillary support from the US NSF (DEB0236356).
    Schlagwort(e): Elevated CO2 ; Silicon ; Forest Si uptake ; Terrestrial Si pump ; Active Si accumulation ; Si cycling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2015-08-11
    Beschreibung: Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg Atmospheric Chemistry and Physics, 15, 8767-8779, 2015 Author(s): J. Zhu, T. Wang, J. Bieser, and V. Matthias The contribution from different emission sources and atmospheric processes to gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), particulate bound mercury (PBM) and mercury deposition in eastern China were quantified using the Community Multi-scale Air Quality (CMAQ-Hg) modeling system run with a nested domain. Natural sources (NAT) and six categories of anthropogenic mercury sources (ANTH) including cement production (CEM), domestic life (DOM), industrial boilers (IND), metal production (MET), coal-fired power plants (PP) and traffic (TRA) were considered for source apportionment. NAT were responsible for 36.6 % of annual averaged GEM concentration, which was regarded as the most important source for GEM in spite of obvious seasonal variation. Among ANTH, the influence of MET and PP on GEM were most evident especially in winter. ANTH dominated the variations of GOM and PBM concentrations with contributions of 86.7 and 79.1 %, respectively. Among ANTH, IND were the largest contributor for GOM (57.5 %) and PBM (34.4 %) so that most mercury deposition came from IND. The effect of mercury emitted from out of China was indicated by a 〉 30 % contribution to GEM concentration and wet deposition. The contributions from nine processes – consisting of emissions (EMIS), gas-phase chemical production/loss (CHEM), horizontal advection (HADV), vertical advection (ZADV), horizontal advection (HDIF), vertical diffusion (VDIF), dry deposition (DDEP), cloud processes (CLDS) and aerosol processes (AERO) – were calculated for process analysis with their comparison in urban and non-urban regions of the Yangtze River delta (YRD). EMIS and VDIF affected surface GEM and PBM concentrations most and tended to compensate each other all the time in both urban and non-urban areas. However, DDEP was the most important removal process for GOM with 7.3 and 2.9 ng m −3 reduced in the surface of urban and non-urban areas, respectively, in 1 day. The diurnal profile variation of processes revealed the transportation of GOM from urban area to non-urban areas and the importance of CHEM/AERO in higher altitudes which partly caused diffusion of GOM downwards to non-urban areas. Most of the anthropogenic mercury was transported and diffused away from urban areas by HADV and VDIF and increased mercury concentrations in non-urban areas by HADV. Natural emissions only influenced CHEM and AERO more significantly than anthropogenic. Local emissions in the YRD contributed 8.5 % more to GEM and ~ 30 % more to GOM and PBM in urban areas compared to non-urban areas.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2015-08-11
    Beschreibung: Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau Atmospheric Chemistry and Physics, 15, 8781-8793, 2015 Author(s): R.-Q. Shen, X. Ding, Q.-F. He, Z.-Y. Cong, Q.-Q. Yu, and X.-M. Wang Secondary organic aerosol (SOA) affects the earth's radiation balance and global climate. High-elevation areas are sensitive to global climate change. However, at present, SOA origins and seasonal variations are understudied in remote high-elevation areas. In this study, particulate samples were collected from July 2012 to July 2013 at the remote Nam Co (NC) site, Central Tibetan Plateau and analyzed for SOA tracers from biogenic (isoprene, monoterpenes and β-caryophyllene) and anthropogenic (aromatics) precursors. Among these compounds, isoprene SOA (SOA I ) tracers represented the majority (26.6 ± 44.2 ng m −3 ), followed by monoterpene SOA (SOA M ) tracers (0.97 ± 0.57 ng m −3 ), aromatic SOA (SOA A ) tracer (2,3-dihydroxy-4-oxopentanoic acid, DHOPA, 0.25 ± 0.18 ng m −3 ) and β-caryophyllene SOA tracer (β-caryophyllenic acid, 0.09 ± 0.10 ng m −3 ). SOA I tracers exhibited high concentrations in the summer and low levels in the winter. The similar temperature dependence of SOA I tracers and isoprene emission suggested that the seasonal variation of SOA I tracers at the NC site was mainly influenced by the isoprene emission. The ratio of high-NO x to low-NO x products of SOA I (2-methylglyceric acid to 2-methyltetrols) was highest in the winter and lowest in the summer, due to the influence of temperature and relative humidity. The seasonal variation of SOA M tracers was impacted by monoterpenes emission and gas-particle partitioning. During the summer to the fall, temperature effect on partitioning was the dominant process influencing SOA M tracers' variation; while the temperature effect on emission was the dominant process influencing SOA M tracers' variation during the winter to the spring. SOA M tracer levels did not elevate with increased temperature in the summer, probably resulting from the counteraction of temperature effects on emission and partitioning. The concentrations of DHOPA were 1–2 orders of magnitude lower than those reported in the urban regions of the world. Due to the transport of air pollutants from the adjacent Bangladesh and northeastern India, DHOPA presented relatively higher levels in the summer. In the winter when air masses mainly came from northwestern India, mass fractions of DHOPA in total tracers increased, although its concentrations declined. The SOA-tracer method was applied to estimate secondary organic carbon (SOC) from these four precursors. The annual average of SOC was 0.22 ± 0.29 μgC m −3 , with the biogenic SOC (sum of isoprene, monoterpenes and β-caryophyllene) accounting for 75 %. In the summer, isoprene was the major precursor with its SOC contributions of 81 %. In the winter when the emission of biogenic precursors largely dropped, the contributions of aromatic SOC increased. Our study implies that anthropogenic pollutants emitted in the Indian subcontinent could be transported to the TP and have an impact on SOC over the remote NC.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2015-08-11
    Beschreibung: Influence of biomass burning on CCN number and hygroscopicity during summertime in the eastern Mediterranean Atmospheric Chemistry and Physics Discussions, 15, 21539-21582, 2015 Author(s): A. Bougiatioti, S. Bezantakos, I. Stavroulas, N. Kalivitis, P. Kokkalis, G. Biskos, N. Mihalopoulos, A. Papayannis, and A. Nenes This study investigates the CCN activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from cloud condensation nuclei (CCN) measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the hygroscopicity parameter, κ, for all particle sizes. The reason, however, for this decrease was not the same for all size modes; smaller particle sizes appeared to be richer in less hygroscopic, less CCN-active components due to coagulation processes while larger particles become less hygroscopic during the biomass burning events due to condensation of less hygroscopic gaseous compounds. In addition, smaller particles exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of aging and retained high levels of CCN activity. These conclusions are further supported by the observed mixing state determined by the HTDMA measurements. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles and a large fraction of the CCN concentrations sampled. Based on Positive Matrix Factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend with the BBOA component, with enhancements of CCN in biomass burning plumes ranging between 65 and 150 %, for supersaturations ranging between 0.2 and 0.7 %. Using multilinear regression, we determine the hygroscopicity of the prime organic aerosol components (BBOA, OOA-BB and OOA); it is found that the total organic hygroscopicity is very close to the inferred hygroscopicity of the oxygenated organic aerosol components. Finally, the transformation of freshly-emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a two-fold increase of the inferred organic hygroscopicity. Almost 10 % of the total aerosol hygroscopicity is related to the two biomass burning components (BBOA and OOA-BB), which in turn contribute almost 35 % to the fine-particle organic water of the aerosol. This is important as organic water can contribute to the atmospheric chemistry and the direct radiative forcing.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2015-08-11
    Beschreibung: Measurement-based direct radiative effect by brown carbon over Indo-Gangetic Plain Atmospheric Chemistry and Physics Discussions, 15, 21583-21606, 2015 Author(s): A. Arola, G. L. Schuster, M. R. A. Pitkänen, O. Dubovik, H. Kokkola, A. V. Lindfors, T. Mielonen, T. Raatikainen, S. Romakkaniemi, S. N. Tripathi, and H. Lihavainen The importance of light absorbing organic aerosols, often called brown carbon (BrC), has become evident in recent years. However, there are relatively few measurement-based estimates for the direct radiative effect of BrC so far. In those earlier studies, the AErosol RObotic NETwork (AERONET) measured Aerosol Absorption Optical Depth (AAOD) and Absorption Angstrom Exponent (AAE) have been exploited. However, these two pieces of information are clearly not sufficient to separate properly carbonaceous aerosols from dust, while imaginary indices of refraction would contain more and better justified information for this purpose. This is first time that the direct radiative effect (DRE) of BrC is estimated by exploiting the AERONET-retrieved imaginary indices. We estimated it for four sites in Indo-Gangetic Plain (IGP), Karachi, Lahore, Kanpur and Gandhi College. We found a distinct seasonality, which was generally similar among all the sites, but with slightly different strengths. The monthly warming effect up to 0.5 W m -2 takes place during spring season. On the other hand, BrC results in overall cooling effect in the winter season, which can reach levels close to −1W m -2 . We then estimated similarly also DRE of black carbon and total aerosol, in order to assess the relative significance of BrC radiative effect in the radiative effects of other components. Even though BrC impact seems minor in this context, we demonstrated that it is not insignificant and moreover that it is crucial to perform spectrally resolved radiative transfer calculations to obtain good estimates for DRE of BrC.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2015-08-11
    Beschreibung: Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images Atmospheric Chemistry and Physics, 15, 8739-8749, 2015 Author(s): M. Vázquez-Navarro, H. Mannstein, and S. Kox The automatic contrail tracking algorithm (ACTA) – developed to automatically follow contrails as they age, drift and spread – enables the study of a large number of contrails and the evolution of contrail properties with time. In this paper we present a year's worth of tracked contrails, from August 2008 to July 2009 in order to derive statistically significant mean values. The tracking is performed using the 5 min rapid-scan mode of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellites. The detection is based on the high spatial resolution of the images provided by the Moderate Resolution Imaging Spectroradiometer on board the Terra satellite (Terra/MODIS), where a contrail detection algorithm (CDA) is applied. The results show the satellite-derived average lifetimes of contrails and contrail-cirrus along with the probability density function (PDF) of other geometric characteristics such as mean coverage, distribution and width. In combination with specifically developed algorithms (RRUMS; Rapid Retrieval of Upwelling irradiance from MSG/SEVIRI and COCS (Cirrus Optical properties derived from CALIOP and SEVIRI), explained below) it is possible to derive the radiative forcing (RF), energy forcing (EF), optical thickness (τ) and altitude of the tracked contrails. Mean values here retrieved are duration, 1 h; length, 130 km; width, 8 km; altitude, 11.7 km; optical thickness, 0.34. Radiative forcing and energy forcing are shown for land/water backgrounds in day/night situations.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2015-08-11
    Beschreibung: Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models Atmospheric Measurement Techniques, 8, 3163-3175, 2015 Author(s): J. Corbett and W. Su The Cloud and the Earth's Radiant Energy System (CERES) instruments on NASA's Terra, Aqua and Soumi NPP satellites are used to provide a long-term measurement of Earth's energy budget. To accomplish this, the radiances measured by the instruments must be inverted to fluxes by the use of a scene-type-dependent angular distribution model (ADM). For permanent snow scenes over Antarctica, shortwave (SW) ADMs are created by compositing radiance measurements over the full viewing zenith and azimuth range. However, the presence of small-scale wind blown roughness features called sastrugi cause the BRDF (bidirectional reflectance distribution function) of the snow to vary significantly based upon the solar azimuth angle and location. This can result in monthly regional biases between −12 and 7.5 Wm −2 in the inverted TOA (top-of-atmosphere) SW flux. The bias is assessed by comparing the CERES shortwave fluxes derived from nadir observations with those from all viewing zenith angles, as the sastrugi affect fluxes inverted from the oblique viewing angles more than for the nadir viewing angles. In this paper we further describe the clear-sky Antarctic ADMs from Su et al. (2015). These ADMs account for the sastrugi effect by using measurements from the Multi-Angle Imaging Spectro-Radiometer (MISR) instrument to derive statistical relationships between radiance from different viewing angles. We show here that these ADMs reduce the bias and artifacts in the CERES SW flux caused by sastrugi, both locally and Antarctic-wide. The regional monthly biases from sastrugi are reduced to between −5 and 7 Wm −2 , and the monthly-mean biases over Antarctica are reduced by up to 0.64 Wm −2 , a decrease of 74 %. These improved ADMs are used as part of the Edition 4 CERES SSF (Single Scanner Footprint) data.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2015-08-11
    Beschreibung: Space-borne observation of methane from atmospheric infrared sounder version 6: validation and implications for data analysis Atmospheric Measurement Techniques Discussions, 8, 8563-8597, 2015 Author(s): X. Xiong, F. Weng, Q. Liu, and E. Olsen Atmospheric Methane (CH 4 ) is generated as a standard product in recent version of the hyperspectral Atmospheric Infrared Sounder (AIRS-V6) aboard NASA's Aqua satellite at the NASA Goddard Earth Sciences Data and Information Services Center (NASA/GES/DISC). Significant improvements in AIRS-V6 was expected but without a thorough validation. This paper first introduced the improvements of CH 4 retrieval in AIRS-V6 and some characterizations, then presented the results of validation using ~ 1000 aircraft profiles from several campaigns spread over a couple of years and in different regions. It was found the mean biases of AIRS CH 4 at layers 343–441 and 441–575 hPa are −0.76 and −0.05 % and the RMS errors are 1.56 and 1.16 %, respectively. Further analysis demonstrates that the errors in the spring and in the high northern latitudes are larger than in other seasons or regions. The error is correlated with Degree of Freedoms (DOFs), particularly in the tropics or in the summer, and cloud amount, suggesting that the "observed" spatiotemporal variation of CH 4 by AIRS is imbedded with some artificial impact from the retrieval sensitivity in addition to its variation in reality, so the variation of information content in the retrievals needs to be taken into account in data analysis of the retrieval products. Some additional filtering (i.e. rejection of profiles with obvious oscillation as well as those deviating greatly from the norm) for quality control is recommended for the users to better utilize AIRS-V6 CH 4 , and their implementation in the future versions of the AIRS retrieval algorithm is under consideration.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2015-08-11
    Beschreibung: Impact of aerosols on the OMI tropospheric NO 2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model? Atmospheric Measurement Techniques Discussions, 8, 8385-8437, 2015 Author(s): J. Chimot, T. Vlemmix, J. P. Veefkind, J. F. de Haan, and P. F. Levelt The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO 2 for more than a decade. Numerous studies have drawn attention to the complexities related to measurements of tropospheric NO 2 in the presence of aerosols. Fine particles affect the OMI spectral measurements and the length of the average light path followed by the photons. However, they are not explicitly taken into account in the current OMI tropospheric NO 2 retrieval chain. Instead, the operational OMI O 2 -O 2 cloud retrieval algorithm is applied both to cloudy scenes and to cloud free scenes with aerosols present. This paper describes in detail the complex interplay between the spectral effects of aerosols, the OMI O 2 -O 2 cloud retrieval algorithm and the impact on the accuracy of the tropospheric NO 2 retrievals through the computed Air Mass Factor (AMF) over cloud-free scenes. Collocated OMI NO 2 and MODIS Aqua aerosol products are analysed over East China, in industrialized area. In addition, aerosol effects on the tropospheric NO 2 AMF and the retrieval of OMI cloud parameters are simulated. Both the observation-based and the simulation-based approach demonstrate that the retrieved cloud fraction linearly increases with increasing Aerosol Optical Thickness (AOT), but the magnitude of this increase depends on the aerosol properties and surface albedo. This increase is induced by the additional scattering effects of aerosols which enhance the scene brightness. The decreasing effective cloud pressure with increasing AOT represents primarily the absorbing effects of aerosols. The study cases show that the actual aerosol correction based on the implemented OMI cloud model results in biases between −20 and −40 % for the DOMINO tropospheric NO 2 product in cases of high aerosol pollution (AOT ≥ 0.6) and elevated particles. On the contrary, when aerosols are relatively close to the surface or mixed with NO 2 , aerosol correction based on the cloud model results in overestimation of the DOMINO tropospheric NO 2 product, between 10 and 20 %. These numbers are in line with comparison studies between ground-based and OMI tropospheric NO 2 measurements under conditions with high aerosol pollution and elevated particles. This highlights the need to implement an improved aerosol correction in the computation of tropospheric NO 2 AMFs.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2015-08-11
    Beschreibung: Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols Atmospheric Measurement Techniques Discussions, 8, 8439-8481, 2015 Author(s): P. Sellitto and B. Legras Monitoring upper tropospheric-lower stratospheric (UTLS) secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm −1 , due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm −1 . The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties, are analyzed and critically discussed.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2015-08-11
    Beschreibung: Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results Atmospheric Measurement Techniques Discussions, 8, 8295-8352, 2015 Author(s): K.-U. Eichmann, L. Lelli, C. von Savigny, H. Sembhi, and J. P. Burrows Cloud top heights (CTH) were retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we tested the sensitivity of the colour index method used in the retrieval code SCODA (SCIAMACHY Cloud Detection Algorithm) and the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN showed that the method is capable of generally detecting cloud tops down to about 5 km and very thin cirrus clouds even up to the tropopause. Volcanic particles can also be detected that occasionally reach the lower stratosphere. Low clouds at 2–3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosols interferes with the cloud retrieval. Upper tropospheric ice clouds are detectable for cloud optical depths down to about τ N = 0.005, which is in the subvisual range. The detection sensitivity decreases towards the surface. An optical thickness of roughly 0.1 was the lower detection limit for water cloud top heights at 5 km. This value is much lower than thresholds reported for the passive cloud detection in nadir viewing direction. Comparisons with SCIAMACHY nadir cloud top heights, calculated with the Semi-Analytical CloUd Retrieval Algorithm (SACURA), showed a good agreement in the global cloud field distribution. But only opaque clouds (τ N 〉 5) are detectable with the nadir passive retrieval technique in the UV-visible and infrared wavelength range. So due to the frequent occurrence of thin and sub-visual cirrus clouds in the tropics, large cloud top height deviations were detected between both viewing geometries. Also the land/sea contrast seen in nadir retrievals was not detected in limb mode. Co-located cloud top height measurements of the limb viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT for the period from January 2008 to March 2012 were compared, showing good agreement to within 1 km, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfered with the cloud retrieval and inhibited detection of tropospheric clouds. Examples of the impact of these events are shown for the volcanoes Kasatochi in August 2008, Sarychev Peak in June 2009, and Nabro in June 2010. Long-lasting aerosol layers were detected after these events in the Northern Hemisphere down to the tropics. Particle top heights up to about 22 km were retrieved in 2009, when the enhanced lower stratospheric aerosol layer persisted for about 7 months. Up to about 82 % of the Northern hemispheric lower stratosphere between 30° and 70° was covered by scattering particles in August 2009 and nearly half in October 2008.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2015-08-11
    Beschreibung: Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures, various operation temperatures and design of a new inlet system Atmospheric Measurement Techniques Discussions, 8, 8483-8508, 2015 Author(s): J. Kangasluoma, A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen, M. Attoui, J. Mikkilä, K. Lehtipalo, J. Vanhanen, M. Kulmala, and T. Petäjä Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subjected to changing ambient conditions. In this study, we advance the current understanding on the operation of Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of a A10 Particle Size Magnifier (PSM) and A20 condensation particle counter (CPC). We explore the effect of the inlet line pressure on the measured particle concentration. We identify two different regions inside the instrument where supersaturation of working fluid can take place. We show the possibility of varying the cut-off of the instrument from 1 to 6 nm, a wider size range than the one usually covered by the PSM. We also present a new inlet system, which allows automated measurements of the background, minimizes the diffusion losses in the sampling line and is equipped with an electrostatic filter to remove ions. Finally, our view of the guidelines for optimal use of the Airmodus nCNC are provided.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2015-08-11
    Beschreibung: Looking beyond stratification: a model-based analysis of the biological drivers of oxygen depletion in the North Sea Biogeosciences Discussions, 12, 12543-12610, 2015 Author(s): F. Große, N. Greenwood, M. Kreus, H. J. Lenhart, D. Machoczek, J. Pätsch, L. A. Salt, and H. Thomas The problem of low oxygen conditions, often referred to as hypoxia, occurs regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen. However, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for hypoxia, but that the complex interaction between hydrodynamics and the biological processes drives its development. In this study we use the ecosystem model HAMSOM-ECOHAM5 to provide a general characteristic of the different North Sea oxygen regimes, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics below the thermocline and in the bottom layer. We show that the North Sea can be subdivided into three different regimes in terms of oxygen dynamics: (1) a highly productive, non-stratified coastal regime, (2) a productive, seasonally stratified regime with a small sub-thermocline volume, and (3) a productive, seasonally stratified regime with a large sub-thermocline volume, with regime 2 being highly susceptible to hypoxic conditions. Our analysis of the different processes driving the oxygen development reveals that inter-annual variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. In addition, we show that benthic bacteria represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50 % of the overall consumption. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the estimation of the impact of anthropogenic drivers on the North Sea oxygen conditions.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2015-08-11
    Beschreibung: Impact of the oceanic geothermal heat flux on a glacial ocean state Climate of the Past Discussions, 11, 3597-3624, 2015 Author(s): M. Ballarotta, F. Roquet, S. Falahat, Q. Zhang, and G. Madec The oceanic geothermal heating (OGH) has a significant impact on the present-day ocean state, but its role during glacial periods, when the ocean circulation and stratification were different from those of today, remains poorly known. In the present study, we analyzed the response of the glacial ocean to OGH, by comparing ocean simulations of the Last Glacial Maximum (LGM, ∼ 21 ka ago) including or not geothermal heating. We found that applying the OGH warmed the Antarctic Bottom Waters (AABW) by ∼ 0.4 °C and increased the abyssal circulation by 15 to 30 % north of 30° S in the deep Pacific and Atlantic basins. The geothermally heated deep waters were then advected toward the Southern Ocean where they upwelled to the surface due to the Ekman transport. The extra heat transport towards Antarctica acted to reduce the amount of sea ice contributing to the freshening of the whole AABW overturning cell. The global amount of salt being conserved, this bottom freshening induced a salinification of the North Atlantic and North Pacific surface and intermediate waters, contributing to the deepening of the North Atlantic Deep Water. This indirect mechanism is responsible for the largest observed warming, found in the North Atlantic deep western boundary current between 2000 and 3000 m (up to 2 °C). The characteristic time scale of the ocean response to the OGH corresponds to an advective time scale (associated with the overturning of the AABW cell) rather than a diffusive time scale. The OGH might facilitate the transition from a glacial to an inter-glacial state but its effect on the deep stratification seems insufficient to drive alone an abrupt climate change.
    Print ISSN: 1814-9340
    Digitale ISSN: 1814-9359
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2015-08-11
    Beschreibung: Woodland Survey of Great Britain 1971–2001 Earth System Science Data, 7, 203-214, 2015 Author(s): C. M. Wood, S. M. Smart, and R. G. H. Bunce The Woodland Survey of Great Britain is a unique data set, consisting of a detailed range of ecological measurements at a national scale, covering a time span of 30 years. A set of 103 woods spread across Britain were first surveyed in 1971, which were again surveyed in 2000–2003 (for convenience referred to subsequently as the "2001 survey"). Standardised methods of describing the trees, shrubs, ground flora, soils and general habitats present were used for both sets of surveys. The sample of 1648 plots spread through 103 woodland sites located across Britain makes it probably the most extensive quantitative ecological woodland survey undertaken in Britain; it is also notable for the range of sites that have been revisited after such a long interval. The data set provides a unique opportunity to explore the effects of a range of potential drivers of woodland change that operated between 1971 and 2001. The data set is available in four discrete parts, which have been assigned the following DOIs: doi:10.5285/4d93f9ac-68e3-49cf-8a41-4d02a7ead81a (Kirby et al., 2013b), doi:10.5285/d6409d40-58fe-4fa7-b7c8-71a105b965b4 (Kirby et al., 2013d), doi:10.5285/fb1e474d-456b-42a9-9a10-a02c35af10d2 (Kirby et al., 2013c), doi:10.5285/2d023ce9-6dbe-4b4f-a0cd-34768e1455ae (Kirby et al., 2013a).
    Print ISSN: 1866-3508
    Digitale ISSN: 1866-3516
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2015-08-11
    Beschreibung: Estimating greenhouse gas emissions from travel – a GIS-based study Geographica Helvetica, 70, 185-192, 2015 Author(s): S. Kuonen Conferences, meetings and congresses are an important part of today's economic and scientific world. But the environmental impact, especially from greenhouse gas emissions associated with travel, can be extensive. Anthropogenic greenhouse gas (GHG) emissions account for the warming of the atmosphere and oceans. This study draws on the need to quantify and reduce greenhouse gas emissions associated with travel activities and aims to give suggestions for organizers and participants on possible ways to reduce greenhouse gas emissions, demonstrated on the example of the European Geography Association (EGEA) Annual Congress 2013 in Wasilkow, Poland. The lack of a comprehensive methodology for the estimation of greenhouse gas emissions from travel led to an outline of a methodology that uses geographic information systems (GIS) to calculate travel distances. The calculation of travel distances in GIS is adapted from actual transportation infrastructure, derived from the open-source platform OpenStreetMap. The methodology also aims to assess the possibilities to reduce GHG emissions by choosing different means of transportation and a more central conference location. The results of the participants of the EGEA congress, who shared their travel data for this study, show that the total travel distance adds up to 238 000 km, with average travel distance of 2429 km per participant. The travel activities of the participants in the study result in total GHG emissions of 39 300 kg CO 2 -eq including both outward and return trip. On average a participant caused GHG emissions of 401 kg CO 2 -eq. In addition, the analysis of the travel data showed differences in travel behaviour depending on the distance between conference site and point of origin. The findings on travel behaviour have then been used to give an estimation of total greenhouse gas emissions from travel for all participants of the conference, which result in a total amount of 79 711 kg CO 2 -eq. The potential for reducing greenhouse gas emissions by substituting short flights with train rides and car rides with bus and train rides is limited. Only 6 % of greenhouse gas emissions could be saved by applying these measures. Further considerable savings could only be made by substituting longer flights (32.6 %) or choosing a more central conference location (26.3 %).
    Print ISSN: 0016-7312
    Digitale ISSN: 2194-8798
    Thema: Ethnologie , Geographie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2015-08-11
    Beschreibung: Singular vector based targeted observations of chemical constituents: description and first application of the EURAD-IM-SVA Geoscientific Model Development Discussions, 8, 6267-6307, 2015 Author(s): N. Goris and H. Elbern Measurements of the large dimensional chemical state of the atmosphere provide only sparse snapshots of the state of the system due to their typically insufficient temporal and spatial density. In order to optimize the measurement configurations despite those limitations, the present work describes the identification of sensitive states of the chemical system as optimal target areas for adaptive observations. For this purpose, the technique of singular vector analysis (SVA), which has been proved effective for targeted observations in numerical weather predication, is implemented into the chemical transport model EURAD-IM (EURopean Air pollution and Dispersion – Inverse Model) yielding the EURAD-IM-SVA. Besides initial values, emissions are investigated as critical simulation controlling targeting variables. For both variants, singular vectors are applied to determine the optimal placement for observations and moreover to quantify which chemical compounds have to be observed with preference. Based on measurements of the airship based ZEPTER-2 campaign, the EURAD-IM-SVA has been evaluated by conducting a comprehensive set of model runs involving different initial states and simulation lengths. Since the considered cases are restricted in terms of considered chemical compounds and selected areas, they allow for a retracing of the results and a confirmation of their correctness. Our analysis shows that the optimal placement for observations of chemical species is not entirely determined by mere transport and mixing processes. Rather, a combination of initial chemical concentrations, chemical conversions, and meteorological processes determine the influence of chemical compounds and regions. We furthermore demonstrate that the optimal placement of observations of emission strengths is highly dependent on the location of emission sources and that the benefit of including emissions as target variables outperforms the value of initial value optimisation with growing simulation length. The obtained results confirm the benefit of considering both initial values and emission strengths as target variables and of applying the EURAD-IM-SVA for measurement decision guidance with respect to chemical compounds.
    Print ISSN: 1991-9611
    Digitale ISSN: 1991-962X
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2015-08-11
    Beschreibung: A global scale mechanistic model of the photosynthetic capacity Geoscientific Model Development Discussions, 8, 6217-6266, 2015 Author(s): A. A. Ali, C. Xu, A. Rogers, R. A. Fisher, S. D. Wullschleger, N. G. McDowell, E. C. Massoud, J. A. Vrugt, J. D. Muss, J. B. Fisher, P. B. Reich, and C. J. Wilson Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., V c, max25 ) and the maximum electron transport rate (i.e., J max25 ) at a reference temperature (generally 25 °C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed V c, max25 and 65 % of the variation in observed J max25 across the globe. Our model simulations under current and future climate conditions indicated that V c, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed V c, max25 or J max25 by plant functional types were likely to substantially overestimate future global photosynthesis.
    Print ISSN: 1991-9611
    Digitale ISSN: 1991-962X
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2015-08-11
    Beschreibung: Uncertainties in calculating precipitation climatology in East Asia Hydrology and Earth System Sciences Discussions, 12, 7765-7783, 2015 Author(s): J. Kim and S. K. Park This study examines the uncertainty in calculating the fundamental climatological characteristics of precipitation in the East Asia region from multiple fine-resolution gridded analysis datasets based on in-situ rain gauge observations. Five observation-based gridded precipitation datasets are used to derive the long-term means, standard deviations in lieu of interannual variability and linear trends over the 28-year period from 1980 to 2007. Both the annual and summer (June–July–August) mean precipitation is examined. The agreement amongst these precipitation datasets are examined using multiple metrics including the signal-to-noise ratio (SNR) defined as the ratio between long-term means and the corresponding standard deviations, and Taylor diagrams which allows examinations of the pattern correlation, the standard deviation, and the centered root mean square error. It is found that the five gauge-based precipitation analysis datasets agree well in the long-term mean and interannual variability in most of the East Asia region including eastern China, Manchuria, South Korea, and Japan, which are densely populated and have fairly high density observation networks. The regions of large inter-dataset variations include Tibetan Plateau, Mongolia, northern Indo-China, and North Korea. The regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or extreme high elevations. Unlike the long-term mean and interannual variability, agreements between datasets in the linear trend is weak, both for the annual and summer mean values. In most of the East Asia region, the SNR for the linear trend is below 0.5, i.e., the inter-dataset variability exceeds the multi-data ensemble mean. The uncertainty in the spatial distribution of long-term means among these datasets occurs both in the spatial pattern and variability, but the uncertainty for the interannual variability and time trend is much larger in the variability than in the pattern correlation. Thus, care must be taken in using long-term trends calculated from gridded precipitation analysis data for climate studies over the East Asia region.
    Print ISSN: 1812-2108
    Digitale ISSN: 1812-2116
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2015-08-11
    Beschreibung: Qualitative soil moisture assessment in semi-arid Africa – the role of experience and training on inter-rater reliability Hydrology and Earth System Sciences, 19, 3505-3516, 2015 Author(s): M. Rinderer, H. C. Komakech, D. Müller, G. L. B. Wiesenberg, and J. Seibert Soil and water management is particularly relevant in semi-arid regions to enhance agricultural productivity. During periods of water scarcity, soil moisture differences are important indicators of the soil water deficit and are traditionally used for allocating water resources among farmers of a village community. Here we present a simple, inexpensive soil wetness classification scheme based on qualitative indicators which one can see or touch on the soil surface. It incorporates the local farmers' knowledge on the best soil moisture conditions for seeding and brick making in the semi-arid environment of the study site near Arusha, Tanzania. The scheme was tested twice in 2014 with farmers, students and experts (April: 40 persons, June: 25 persons) for inter-rater reliability, bias of individuals and functional relation between qualitative and quantitative soil moisture values. During the test in April farmers assigned the same wetness class in 46 % of all cases, while students and experts agreed on about 60 % of all cases. Students who had been trained in how to apply the method gained higher inter-rater reliability than their colleagues with only a basic introduction. When repeating the test in June, participants were given improved instructions, organized in small subgroups, which resulted in a higher inter-rater reliability among farmers. In 66 % of all classifications, farmers assigned the same wetness class and the spread of class assignments was smaller. This study demonstrates that a wetness classification scheme based on qualitative indicators is a robust tool and can be applied successfully regardless of experience in crop growing and education level when an in-depth introduction and training is provided. The use of a simple and clear layout of the assessment form is important for reliable wetness class assignments.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2015-08-11
    Beschreibung: Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream–aquifer exchanges Hydrology and Earth System Sciences Discussions, 12, 7727-7764, 2015 Author(s): J. Zhu, C. L. Winter, and Z. Wang Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River Basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream–aquifer exchanges, and (H3) the biases result from slow-paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream–aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW simulation environment, and the PEST tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop log-normally distributed conductivity ( K ) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow-paths in groundwater fluxes that in turn reduce aquifer–stream exchanges. Since surface water–groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.
    Print ISSN: 1812-2108
    Digitale ISSN: 1812-2116
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2015-08-11
    Beschreibung: Near–surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data Hydrology and Earth System Sciences Discussions, 12, 7665-7687, 2015 Author(s): C. L. Pérez Díaz, T. Lakhankar, P. Romanov, J. Muñoz, R. Khanbilvardi, and Y. Yu Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature ( T -air) and snow skin temperature ( T -skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T -skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T -air and T -skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.
    Print ISSN: 1812-2108
    Digitale ISSN: 1812-2116
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2015-08-11
    Beschreibung: Does drought alter hydrological functions in forest soils? An infiltration experiment Hydrology and Earth System Sciences Discussions, 12, 7689-7725, 2015 Author(s): K. F. Gimbel, H. Puhlmann, and M. Weiler The water cycle is expected to change in future and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey, loamy and sandy textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by WDPT tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the "drought-history" or generally the climatic conditions in the past of a soil are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; and also, that drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.
    Print ISSN: 1812-2108
    Digitale ISSN: 1812-2116
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2015-08-11
    Beschreibung: State determination of catalytic converters based on an ultra-wideband communication system Journal of Sensors and Sensor Systems, 4, 255-262, 2015 Author(s): I. Motroniuk, R. Stöber, and G. Fischerauer A novel microwave-based approach for monitoring the state of aftertreatment systems such as diesel particulate filters (DPFs), three-way catalytic converters (TWCs), and selective catalytic reduction (SCR) catalysts is proposed. The volume inside the metallic housing of the DPF, TWC, or SCR is considered as a wireless communication channel between two terminals of a communication system. It is shown that, depending on the transmission channel characteristics, the properties of the catalyst, such as the catalyst state, can be inferred. This is done by means of an ultra-wideband (UWB) measurement and the subsequent evaluation and processing of the waveform in the time and frequency domains.
    Print ISSN: 2194-8771
    Digitale ISSN: 2194-878X
    Thema: Elektrotechnik, Elektronik, Nachrichtentechnik
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2015-08-11
    Beschreibung: A comparison of chemical mechanisms using tagged ozone production potential (TOPP) analysis Atmospheric Chemistry and Physics, 15, 8795-8808, 2015 Author(s): J. Coates and T. M. Butler Ground-level ozone is a secondary pollutant produced photochemically from reactions of NO x with peroxy radicals produced during volatile organic compound (VOC) degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O 3 levels and inform emission control strategies. Accurate representation of O 3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM) using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP) for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O 3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O 3 produced on subsequent days due to secondary chemistry.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2015-08-11
    Beschreibung: Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean Atmospheric Chemistry and Physics Discussions, 15, 21607-21669, 2015 Author(s): C. Denjean, F. Cassola, A. Mazzino, S. Triquet, S. Chevaillier, N. Grand, T. Bourrianne, G. Momboisse, K. Sellegri, A. Schwarzenbock, E. Freney, M. Mallet, and P. Formenti This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1–5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1–3 km) than at elevated altitude (〉 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and satellite retrievals over the Mediterranean. Measurements also showed that the coarse mode of mineral dust was conserved even after 5 days of transport in the Mediterranean, which contrasts with the gravitational depletion of large particles observed during the transport of dust plumes over the Atlantic. Simulations with the WRF mesoscale meteorological model highlighted a strong vertical turbulence within the dust layers that could prevent deposition of large particles during their atmospheric transport. This has important implications for the dust radiative effects due to surface dimming, atmospheric heating and cloud formation. The results presented here add to the observational dataset necessary for evaluating the role of mineral dust on the regional climate and rainfall patterns in the western Mediterranean basin.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2015-08-11
    Beschreibung: Identification of particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River Atmospheric Chemistry and Physics Discussions, 15, 21415-21448, 2015 Author(s): X. K. Wang, S. Rossignol, Y. Ma, L. Yao, M. Y. Wang, J. M. Chen, C. George, and L. Wang PM 2.5 filter samples have been collected in three megacities i.e., Wuhan (WH), Nanjing (NJ), and Shanghai (SH) at the middle and lower reaches of the Yangtze River, respectively. Analysis of those samples using an ultra-high performance liquid chromatography (UHPLC) coupled to an orbitrap mass spectrometer (MS) allowed detection of about two hundred particulate organosulfates (OSs), including dozens of nitrooxy-organosulfates, at each location. While aliphatic OSs represented more than 78 % of the detected OSs at the three locations, aromatic OSs were much less abundant. OSs with two to four isomers accounted for about 50 % of the total OSs on average in these megacities, and the percentage of OSs with six and more isomers in WH was more significant than those in SH and NJ. The average molecular weight, and the degrees of oxidation and saturation of OSs in the WH summer samples were greater than those in WH winter samples. In SH, the average molecular weight and the degree of oxidation of OSs in summer samples were greater than those in winter samples, but the degree of saturation was similar between the two seasons. In summer, the average molecular weight, and the degrees of oxidation and unsaturation of OSs were smallest in WH among the three cities. Between NJ and SH, the average molecular weight and the degree of saturation of OSs were close and the degree of oxidation of OSs in NJ was smaller. Kendrick mass defect diagrams and Van Krevelen diagrams indicated that the characteristics of identified OSs between in NJ and in SH shared better similarity. In addition, the identity and abundance of OSs in SH showed clear seasonal and diurnal variations. OSs in summer were more abundant than they were in winter due to stronger photochemical reactions in summer. The relative abundance of OSs at night was greater than that in the daytime and more nitrooxy-OSs existed at night, probably because of active NO 3 radical chemistry at night. In SH summer samples, OSs with 5 and 10 carbons (C 5 and C 10 ) were the most abundant, indicating the importance of isoprene and monoterpenes as precursors of OSs, whereas the relative abundances of OSs with 8, 9, and more than 14 carbons (C 8 , C 9 , and C 14+ ) were also high in SH winter samples, urging the need to further understand the precursors of OSs.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2015-08-11
    Beschreibung: Trace metal characterization of aerosol particles and cloud water during HCCT 2010 Atmospheric Chemistry and Physics, 15, 8751-8765, 2015 Author(s): K. W. Fomba, D. van Pinxteren, K. Müller, Y. Iinuma, T. Lee, J. L. Collett Jr., and H. Herrmann Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2–111.6 and 1.1–32.1 ng m −3 , respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L −1 , respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L −1 . In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol–cloud interaction did not lead to a marked increase in soluble trace metal concentrations; rather it led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2015-08-11
    Beschreibung: Known and unknown unknowns: the application of ensemble techniques to uncertainty estimation in satellite remote sensing data Atmospheric Measurement Techniques Discussions, 8, 8509-8562, 2015 Author(s): A. C. Povey and R. G. Grainger This paper discusses a best-practice representation of uncertainty in satellite remote sensing data. An estimate of uncertainty is necessary to make appropriate use of the information conveyed by a measurement. Traditional error propagation quantifies the uncertainty in a measurement due to well-understood perturbations in a measurement and auxiliary data – known, quantified "unknowns". The underconstrained nature of most satellite remote sensing observations requires the use of various approximations and assumptions that produce non-linear systematic errors that are not readily assessed – known, unquantifiable "unknowns". Additional errors result from the inability to resolve all scales of variation in the measured quantity – unknown "unknowns". The latter two categories of error are dominant in underconstrained remote sensing retrievals and the difficulty of their quantification limits the utility of existing uncertainty estimates, degrading confidence in such data. This paper proposes the use of ensemble techniques to present multiple self-consistent realisations of a data set as a means of depicting unquantified uncertainties. These are generated using various systems (different algorithms or forward models) believed to be appropriate to the conditions observed. Benefiting from the experience of the climate modelling community, an ensemble provides a user with a more complete representation of the uncertainty as understood by the data producer and greater freedom to consider different realisations of the data.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2015-08-11
    Beschreibung: Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results Atmospheric Measurement Techniques Discussions, 8, 8353-8383, 2015 Author(s): C. von Savigny, F. Ernst, A. Rozanov, R. Hommel, K.-U. Eichmann, V. Rozanov, J. P. Burrows, and L. W. Thomason Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements with the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results indicate that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about 28 km altitude volcanic eruptions are found to have negligible impact in the period 2002 to 2012.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2015-08-11
    Beschreibung: The tropopause inversion layer in baroclinic life cycles experiments: the role of diabatic and mixing processes Atmospheric Chemistry and Physics Discussions, 15, 21495-21537, 2015 Author(s): D. Kunkel, P. Hoor, and V. Wirth Recent studies on the formation of a quasi-permanent layer of enhanced static stability above the thermal tropopause revealed the contributions of dynamical and radiative processes. Dry dynamics lead to the evolution of a tropopause inversion layer (TIL) which is, however, too weak compared to observations and thus diabatic contributions are required. In this study we aim to assess the importance of diabatic as well as mixing processes in the understanding of TIL formation at midlatitudes. The non-hydrostatic model COSMO is applied in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. The effect of individual diabatic, i.e. related to humidity and radiation, and turbulent processes is studied first to estimate the additional contribution of these processes to dry dynamics. In a second step these processes are stepwise included in the model to increase the complexity and finally estimate the relative importance of each process. The results suggest that including turbulence leads to a weaker TIL than in a dry reference simulation. In contrast, the TIL evolves stronger when radiation is included but the temporal occurrence is still comparable to the reference. Using various cloud schemes in the model shows that latent heat release and consecutive increased vertical motions foster an earlier and stronger appearance of the TIL than in all other life cycles. Furthermore, updrafts moisten the upper troposphere and as such increase the radiative effect from water vapor. Particularly, this process becomes more relevant for maintaining the TIL during later stages of the life cycles. Increased convergence of the vertical wind induced by updrafts and by propagating and potentially dissipating inertia-gravity waves further contributes to the enhanced stability of the lower stratosphere. Furthermore, radiative feedback of ice clouds reaching up to the tropopause is identified to potentially further affect the strength of the TIL in the region of the cloud.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2015-08-08
    Beschreibung: Impact of model developments on present and future simulations of permafrost in a global land-surface model The Cryosphere, 9, 1505-1521, 2015 Author(s): S. E. Chadburn, E. J. Burke, R. L. H. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon–climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth system models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land-surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock and a modification to the snow scheme; the sensitivity of permafrost to these new developments is investigated in this study. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. A comparison with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated; by contrast, with a poorly resolved soil at least 50 % of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14 and 19 million km 2 . Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost loss per degree of warming reduced from 1.5 million km 2 °C −1 in the standard version of JULES to between 1.1 and 1.2 million km 2 °C −1 in the new model version. However, the near-surface permafrost area is still projected to approximately half by the end of the 21st century under the RCP8.5 scenario.
    Print ISSN: 1994-0416
    Digitale ISSN: 1994-0424
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2015-08-08
    Beschreibung: Numerical simulations of the Cordilleran ice sheet through the last glacial cycle The Cryosphere Discussions, 9, 4147-4203, 2015 Author(s): J. Seguinot, I. Rogozhina, A. P. Stroeven, M. Margold, and J. Kleman Despite more than a century of geological observations, the Cordilleran ice sheet of North America remains poorly understood in terms of its former extent, volume and dynamics. Although geomorphological evidence is abundant, its complexity is such that whole ice-sheet reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (61.9–56.5 ka) and 2 (23.2–16.8 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.6–6.2 ka).
    Print ISSN: 1994-0432
    Digitale ISSN: 1994-0440
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2015-08-12
    Beschreibung: Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT Annales Geophysicae, 33, 983-990, 2015 Author(s): H. Y. Fu, W. A. Scales, P. A. Bernhardt, S. J. Briczinski, M. J. Kosch, A. Senior, M. T. Rietveld, T. K. Yeoman, and J. M. Ruohoniemi Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2015-08-12
    Beschreibung: Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling Biogeosciences Discussions, 12, 12823-12850, 2015 Author(s): A. Sattar, C. Arslan, C. Ji, S. Sattar, K. Yousaf, and S. Hashim The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under mesophilic temperature condition. Most of the production was observed during 48 h of incubation that continued till 72 h of incubation, and a decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS −1 , 131.38 mL COD −1 , and 44.90 mL glucose −1 were obtained from mesophilic food waste, thermophilic noodle waste and mesophilic rice waste respectively. The production of volatile fatty acids increased with an increase in time and temperature from food waste and noodle waste reactors whereas it decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination ( R 2 ) for each waste type when it was opted for the study of cumulative hydrogen production, glucose consumption and volatile fatty acid production. The 3-D response surface plots developed by the statistical models helped a lot in developing better understanding of the impact of temperature and incubation time.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2015-08-12
    Beschreibung: Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry Atmospheric Measurement Techniques Discussions, 8, 8599-8644, 2015 Author(s): K. R. Daellenbach, C. Bozzetti, A. Křepelová, F. Canonaco, R. Wolf, P. Zotter, P. Fermo, M. Crippa, J. G. Slowik, Y. Sosedova, Y. Zhang, R.-J. Huang, L. Poulain, S. Szidat, U. Baltensperger, A. S. H. Prévôt, and I. El Haddad Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM 1 , PM 2.5 , PM 10 ) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60–91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2015-08-12
    Beschreibung: Statistical detection and modeling of the over-dispersion of winter storm occurrence Natural Hazards and Earth System Science, 15, 1757-1761, 2015 Author(s): M. Raschke In this communication, I improve the detection and modeling of the over-dispersion of winter storm occurrence. For this purpose, the generalized Poisson distribution and the Bayesian information criterion are introduced; the latter is used for statistical model selection. Moreover, I replace the frequently used dispersion statistics by an over-dispersion parameter which does not depend on the considered return period of storm events. These models and methods are applied in order to properly detect the over-dispersion in winter storm data for Germany, carrying out a joint estimation of the distribution models for different samples.
    Print ISSN: 1561-8633
    Digitale ISSN: 1684-9981
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2015-08-12
    Beschreibung: Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream Hydrology and Earth System Sciences, 19, 3541-3556, 2015 Author(s): M. Majerova, B. T. Neilson, N. M. Schmadel, J. M. Wheaton, and C. J. Snow Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater–surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2015-08-12
    Beschreibung: Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis Hydrology and Earth System Sciences Discussions, 12, 7821-7842, 2015 Author(s): M. Westhoff, E. Zehe, P. Archambeau, and B. Dewals Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in such a way that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the Budyko curve. Subsequently we derived gradients that, under constant forcing, resulted in a Budyko curve following the asymptotes closely. With these gradients we explored the sensitivity of dry spells and dynamics in actual evaporation. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves derived with dynamics in rainfall and evaporation. This indicates that the maximum power principle may be used (i) to derive the Budyko curve and (ii) to move away from the empiricism in free parameters present in many Budyko functions. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
    Print ISSN: 1812-2108
    Digitale ISSN: 1812-2116
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2015-08-12
    Beschreibung: Impacts of land use change and climate variations on annual inflow into Miyun Reservoir, Beijing, China Hydrology and Earth System Sciences Discussions, 12, 7785-7819, 2015 Author(s): J. K. Zheng, G. Sun, W. H. Li, X. X. Yu, C. Zhang, Y. B. Gong, and L. H. Tu Miyun reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contributes the changes of water supply in this critical watershed. However, the specific causes of the decline in Miyun reservoir are debatable in a non-stationary climate in the past four decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into Miyun reservoir during 1961–2008. Different from previous studies, this work objectively identified breakpoints by analyzing the long-term historical hydrometeorology and land cover records. To effectively study the different impacts of the climate variation and land cover change during different sub-periods, annual water balance model (AWB), climate elasticity model (CEM), and rainfall–runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant decrease in annual streamflow ( p 〈 0.01), a significant positive trend in annual potential evapotranspiration ( p 〈 0.01), and an insignificant negative trend in annual precipitation ( p 〉 0.1) during 1961–2008. Combined with historical records, we identified two breakpoints as in 1983 and 1999 for the period 1961–2008 by the sequential Mann–Kendall Test and Double Mass Curve. Climate variability alone did not explain the decrease in inflow to Miyun reservoir. Reduction of water yield was closely related to increase in evapotranspiration rates due to the expansion of forestlands and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. Our study found that the contribution to the observed streamflow decline from land use change fell from 64–92 % during 1984–1999 to 36–58 % during 2000–2008, whereas the contribution from climate variation climbed from 8–36 % during the 1984–1999 to 42–64 % during 2000–2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the 2000s. We conclude that future climate change and variability will further challenge the goal of water supply of Miyun reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management.
    Print ISSN: 1812-2108
    Digitale ISSN: 1812-2116
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2015-08-13
    Beschreibung: Strange VLF bursts in northern Scandinavia: case study of the afternoon "mushroom-like" hiss on 8 December 2013 Annales Geophysicae, 33, 991-995, 2015 Author(s): J. Manninen, N. G. Kleimenova, A. Kozlovsky, I. A. Kornilov, L. I. Gromova, Y. V. Fedorenko, and T. Turunen We investigate a non-typical very low frequency (VLF) 1–4 kHz hiss representing a sequence of separated noise bursts with a strange "mushroom-like" shape in the frequency–time domain, each one lasting several minutes. These strange afternoon VLF emissions were recorded at Kannuslehto (KAN, ϕ = 67.74° N, λ = 26.27° E; L ∼ 5.5) in northern Finland during the late recovery phase of the small magnetic storm on 8 December 2013. The left-hand (LH) polarized 2–3 kHz "mushroom caps" were clearly separated from the right-hand (RH) polarized "mushroom stems" at the frequency of about 1.8–1.9 kHz, which could match the lower ionosphere waveguide cutoff (the first transverse resonance of the Earth–ionosphere cavity). We hypothesize that this VLF burst sequence could be a result of the modulation of the VLF hiss electron–cyclotron instability from the strong Pc5 geomagnetic pulsations observed simultaneously at ground-based stations as well as in the inner magnetosphere by the Time History of Events and Macroscale Interactions during Substorms mission probe (THEMIS-E; ThE). This assumption is confirmed by a similar modulation of the intensity of the energetic (1–10 keV) electrons simultaneously observed by the same ThE spacecraft. In addition, the data of the European Incoherent Scatter Scientific Association (EISCAT) radar at Tromsø show a similar quasi-periodicity in the ratio of the Hall-to-Pedersen conductance, which may be used as a proxy for the energetic particle precipitation enhancement. Our findings suggest that this strange mushroom-like shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF–VLF (ultra low frequency–very low frequency) wave interaction and the ionosphere waveguide propagation.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2015-08-13
    Beschreibung: Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering Atmospheric Chemistry and Physics Discussions, 15, 21837-21881, 2015 Author(s): A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an earth system model to study the radiative and climate impacts of an erupting volcano during solar radiation management (SRM). According to our simulations, the radiative impacts of an eruption and SRM are not additive: in the simulated case of concurrent eruption and SRM, the peak increase in global forcing is about 40 % lower compared to a corresponding eruption into a clean background atmosphere. In addition, the recovery of the stratospheric sulfate burden and forcing was significantly faster in the concurrent case since the sulfate particles grew larger and thus sedimented faster from the stratosphere. In our simulation where we assumed that SRM would be stopped immediately after a volcano eruption, stopping SRM decreased the overall stratospheric aerosol load. For the same reasons, a volcanic eruption during SRM lead to only about 1/3 of the peak global ensemble-mean cooling compared to an eruption under unperturbed atmospheric conditions. Furthermore, the global cooling signal was seen only for 12 months after the eruption in the former scenario compared to over 40 months in the latter. In terms of the global precipitation rate, we obtain a 36 % smaller decrease in the first year after the eruption and again a clearly faster recovery in the concurrent eruption and SRM scenario. We also found that an explosive eruption could lead to significantly different regional climate responses depending on whether it takes place during geoengineering or into an unperturbed background atmosphere. Our results imply that observations from previous large eruptions, such as Mt Pinatubo in 1991, are not directly applicable when estimating the potential consequences of a volcanic eruption during stratospheric geoengineering.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2015-08-13
    Beschreibung: New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations Atmospheric Chemistry and Physics, 15, 8831-8846, 2015 Author(s): N. Andela, J. W. Kaiser, G. R. van der Werf, and M. J. Wooster Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimates are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers using data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we sampled data from the SEVIRI instrument at MODIS detection opportunities to develop two approaches to estimate hourly FRE based on MODIS active fire detections. The first approach ignored the fire diurnal cycle, assuming persistent fire activity between two MODIS observations, while the second approach combined knowledge on the climatology of the fire diurnal cycle with active fire detections to estimate hourly FRE. The full SEVIRI time series, providing full coverage of the fire diurnal cycle, were used to evaluate the results. Our study period comprised of 3 years (2010–2012), and we focused on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle generally resulted in an overestimation of FRE, while including information on the climatology of the fire diurnal cycle improved FRE estimates. The approach based on knowledge of the climatology of the fire diurnal cycle also improved distribution of FRE over the day, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference data set. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2015-08-13
    Beschreibung: Validation of farm-scale methane emissions using nocturnal boundary layer budgets Atmospheric Chemistry and Physics Discussions, 15, 21765-21802, 2015 Author(s): J. Stieger, I. Bamberger, N. Buchmann, and W. Eugster This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH 4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1) quantify the source strength of livestock methane emissions using a tethered balloon system, and (2) to validate inventory emission estimates via nocturnal boundary layer (NBL) budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH 4 concentration, wind speed and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time–space kriging approach. Main uncertainties of NBL budget flux estimates were associated with instationary atmospheric conditions and the estimate of the inversion height z i (top of volume integration). The mean NBL budget fluxes of 1.60 ± 0.31 μg CH 4 m -2 s -1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH 4 m -2 s -1 in 2011 and 2012, respectively) were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH 4 m -2 s -1 for 2011 and 2012, respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2015-08-13
    Beschreibung: New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12) Atmospheric Measurement Techniques, 8, 3197-3207, 2015 Author(s): J. J. Harrison Despite its widespread commercial use throughout the twentieth century, primarily in the refrigeration industry, dichlorodifluoromethane (CFC-12) is now known to have the undesirable effect of depleting stratospheric ozone. As this long-lived molecule slowly degrades in the atmosphere, monitoring its vertical concentration profile using infrared sounders on satellite platforms crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of dichlorodifluoromethane over the spectral range 800–1270 cm −1 , determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of dichlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm −1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.5–761 Torr and 190–294 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2015-08-13
    Beschreibung: Seasonality of ultrafine and sub-micron aerosols and the inferences on particle formation processes Atmospheric Chemistry and Physics Discussions, 15, 21803-21835, 2015 Author(s): H. C. Cheung, C. C.-K. Chou, M.-J. Chen, W.-R. Huang, S.-H. Huang, C.-Y. Tsai, and C. S.-L. Lee The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultrafine particles (UFPs, d ≤ 100nm) and submicron particles (PM 1 , d ≤ 1 μm) in an East-Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at the TARO, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM 1 , as well as the particle number concentration (PNC) and size distribution (PSD) with size range of 4–736 nm. The results indicate that the mass concentration of PM 1 was elevated during cold seasons with peak level of 18.5 μg m -3 in spring, whereas the highest UFPs concentration was measured in summertime with a seasonal mean of 1.62 μg m -3 . Moreover, chemical analysis revealed that the UFPs and PM 1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents in PM 1 . The seasonal median of total PNCs ranged from 13.9 × 10 3 cm -3 in autumn to 19.4 × 10 3 cm -3 in spring. The PSD information retrieved from the corresponding PNC measurements indicates that the nucleation mode PNC ( N 4–25 ) peaked at 11.6 × 10 3 cm -3 in winter, whereas the Aitken mode ( N 25–100 ) and accumulation mode ( N 100–736 ) exhibited summer maxima at 6.0 × 10 3 and 3.1 × 10 3 cm -3 , respectively. The shift in PSD during summertime is attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributes to the growth of aerosol particles in the atmosphere. In addition, remarkable photochemical production of particles was observed in spring and summer seasons, which was characterized with averaged particle growth and formation rates of 4.3 ± 0.8 nm h -1 and 1.6 ± 0.8 cm -3 s -1 , respectively. The prevalence of new particle formation (NPF) in summer is suggested as a result of seasonally enhanced photochemical oxidation of SO 2 , which contributes to the production of H 2 SO 4 , and low level of PM 10 ( d ≤ 10 μm) that serves as the condensation sink. Regarding the sources of aerosol particles, correlation analysis upon the PNCs against NO x revealed that the local vehicular exhaust was the dominant contributor of the UFPs throughout a year. On the contrary, the Asian pollution outbreaks can have significant influence in the PNC of accumulation mode particles during the seasons of winter monsoons. The results of this study underline the significance of secondary organic aerosols in the seasonal variations of UFPs and the influences of continental pollution outbreaks in the downwind areas of Asian outflows.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2015-08-13
    Beschreibung: The anthropogenic contribution to atmospheric black carbon concentrations in southern Africa: a WRF-Chem modeling study Atmospheric Chemistry and Physics, 15, 8809-8830, 2015 Author(s): F. Kuik, A. Lauer, J. P. Beukes, P. G. Van Zyl, M. Josipovic, V. Vakkari, L. Laakso, and G. T. Feig South Africa has one of the largest industrialized economies in Africa. Emissions of air pollutants are particularly high in the Johannesburg-Pretoria metropolitan area, the Mpumalanga Highveld and the Vaal Triangle, resulting in local air pollution. This study presents and evaluates a setup for conducting modeling experiments over southern Africa with the Weather Research and Forecasting model including chemistry and aerosols (WRF-Chem), and analyzes the contribution of anthropogenic emissions to the total black carbon (BC) concentrations from September to December 2010. The modeled BC concentrations are compared with measurements obtained at the Welgegund station situated ca. 100 km southwest of Johannesburg. An evaluation of WRF-Chem with observational data from ground-based measurement stations, radiosondes, and satellites shows that the meteorology is modeled mostly reasonably well, but precipitation amounts are widely overestimated and the onset of the wet season is modeled approximately 1 month too early in 2010. Modeled daily mean BC concentrations show a temporal correlation of 0.66 with measurements, but the total BC concentration is underestimated in the model by up to 50 %. Sensitivity studies with anthropogenic emissions of BC and co-emitted species turned off show that anthropogenic sources can contribute up to 100 % to BC concentrations in the industrialized and urban areas, and anthropogenic BC and co-emitted species together can contribute up to 60 % to PM 1 levels. Particularly the co-emitted species contribute significantly to the aerosol optical depth (AOD). Furthermore, in areas of large-scale biomass-burning atmospheric heating rates are increased through absorption by BC up to an altitude of about 600hPa.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2015-08-13
    Beschreibung: Calibration of 3-D wind measurements on a single-engine research aircraft Atmospheric Measurement Techniques, 8, 3177-3196, 2015 Author(s): C. Mallaun, A. Giez, and R. Baumann An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s −1 for the horizontal and 0.2 m s −1 for the vertical wind components.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2015-08-13
    Beschreibung: Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from temperate fuels common in the United States Atmospheric Chemistry and Physics Discussions, 15, 21713-21763, 2015 Author(s): J. B. Gilman, B. M. Lerner, W. C. Kuster, P. D. Goldan, C. Warneke, P. R. Veres, J. M. Roberts, J. A. de Gouw, I. R. Burling, and R. J. Yokelson A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. A gas chromatograph-mass spectrometer (GC-MS) provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectrometer (OP-FTIR) and 3 different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the U.S. Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana. The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the 3 geographic fuel regions being simulated. Emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 ± 0.12 % of emissions by mole and less than 0.95 ± 0.07 % of emissions by mass (on average) due to the predominance of CO 2 , CO, CH 4 , and NO x emissions; however, VOCs contributed 70–90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57–68 % of the VOC mass emitted, 42–57 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde were the dominant potential SOA precursors. In addition, ambient air measurements of emissions from the Fourmile Canyon Fire that affected Boulder, Colorado in September 2010 allowed us to investigate biomass burning (BB) emissions in the presence of other VOC sources (i.e., urban and biogenic emissions) and identify several promising BB markers including benzofuran, 2-furaldehyde, 2-methylfuran, furan, and benzonitrile.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2015-08-13
    Beschreibung: Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus Biogeosciences Discussions, 12, 12899-12921, 2015 Author(s): L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann Chondrichthyan teeth (sharks, rays and chimaeras) are mineralised in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ 18 O p ) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are consistent with marine conditions, unusually low δ 18 O p values were measured for the hybodont shark Asteracanthus . These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low- 18 O isotopic compositions for Asteracanthus . The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered as a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the primitive shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2015-08-13
    Beschreibung: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models Biogeosciences Discussions, 12, 12851-12897, 2015 Author(s): W. Fu, J. Randerson, and J. K. Moore We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth System Models (ESMs) performed in the framework of the fifth Coupled Model Inter-comparison Project (CMIP5). Global NPP and EP are reduced considerably by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, global NPP in the 2090s is reduced by 2.3–16 % and EP by 7–18 %. The models with the largest increases in stratification (and largest relative reductions in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting some potential overestimation of climate impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface ocean warming and freshening that is accompanied by decreases in NPP, EP, and surface macronutrient concentrations. There is considerable variability across models in the absolute magnitude of these fluxes, surface nutrient concentrations, and their perturbations by climate change, indicating large model uncertainties. The negative response of NPP and EP to stratification increases reflects a bottom-up control, as nutrient flux to the euphotic zone declines. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This is driven by phytoplankton community composition shifts, with a reduced percentage of NPP by large phytoplankton under RCP 8.5, as smaller phytoplankton are favored under the increasing nutrient stress. Thus, projections of the NPP response to climate change in the CMIP5 models are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump, and the resulting (highly variable) levels of regenerated production. Community composition is represented relatively simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and the changes in export efficiency that are necessary for predicting climate impacts on NPP.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2015-08-14
    Beschreibung: Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site Atmospheric Chemistry and Physics, 15, 8871-8888, 2015 Author(s): S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM 2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated ( r 2 〉 0.7) with 2-methyltetrols, C 5 -alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black carbon (BC ~ 0.2 μg m −3 ). Particle-phase sulfate is fairly correlated ( r 2 ~ 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-α-lactone (HMML)- (henceforth called methacrolein (MACR)-derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated ( r 2 ~ 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NO y ; r 2 = 0.38) and nitrate ( r 2 = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy ( r 2 ~ 0.5 and ~ 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    Publikationsdatum: 2015-08-14
    Beschreibung: Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area Atmospheric Chemistry and Physics Discussions, 15, 21907-21958, 2015 Author(s): A. M. Ortega, P. L. Hayes, Z. Peng, B. B. Palm, W. Hu, D. A. Day, R. Li, M. J. Cubison, W. H. Brune, M. Graus, C. Warneke, J. B. Gilman, W. C. Kuster, J. A. de Gouw, and J. L. Jimenez Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An Oxidation Flow Reactor (OFR) was deployed to study SOA formation in real-time during the CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging from hours up to several weeks in 3 min of processing. OH radical concentration was continuously stepped, obtaining measurements of real-time SOA formation and oxidation at multiple equivalent ages from 0.8 days–6.4 weeks. Enhancement of OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry, and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and O x , which along with the short-lived VOC correlation, indicates the importance of relatively reactive (τ OH ∼ 0.3 day) SOA precursors in the LA-Basin. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ∼ -0.65). Oxidation state of carbon (OS C ) in reactor SOA increased steeply with age and remained elevated (OS C ∼ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low-to-intermediate ages is due primarily to condensation of oxidized species, not heterogeneous oxidation. The OA decrease at high photochemical ages is dominated by heterogeneous oxidation followed by fragmentation/evaporation. A comparison of urban SOA formation in this study with a similar study of vehicle SOA in a tunnel supports the dominance of vehicle emissions in urban SOA. Pre-2007 SOA models underpredict SOA formation by an order of magnitude, while a more recent model performs better but overpredicts at higher ages. These results demonstrate the value of the reactor as a tool for in situ evaluation of the SOA formation potential and OA evolution from ambient air.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Publikationsdatum: 2015-08-14
    Beschreibung: On the consistency of 2-D video disdrometers in measuring microphysical parameters of solid precipitation Atmospheric Measurement Techniques, 8, 3251-3261, 2015 Author(s): F. Bernauer, K. Hürkamp, W. Rühm, and J. Tschiersch Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D video disdrometer devices are well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify these devices especially for detailed characterization of nonsymmetric solid hydrometeors. However, in case of solid precipitation, problems related to the matching algorithm have to be considered and the user must be aware of the limited spatial resolution when size and shape descriptors are analyzed. Clarifying the potential of 2-D video disdrometers in deriving size, velocity and shape parameters from single recorded pictures is the aim of this work. The need of implementing a matching algorithm suitable for mixed- and solid-phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped Styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 38 cases of real snowfall. As a result, it was found that reliable size and shape characterization with a relative standard deviation of less than 5 % is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22 % for the volume, 17 % for size parameters and 14 % for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with Styrofoam particles, a mismatch probability of less than 3 % was found. For shape parameter measurements in case of real solid-phase precipitation, the 2-DVD shows self-consistent behavior.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2015-08-14
    Beschreibung: Schneefernerhaus as a mountain research station for clouds and turbulence Atmospheric Measurement Techniques, 8, 3209-3218, 2015 Author(s): S. Risius, H. Xu, F. Di Lorenzo, H. Xi, H. Siebert, R. A. Shaw, and E. Bodenschatz Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground-based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for cloud–turbulence research. The wind at UFS is dominantly in the east–west direction and nearly horizontal. During the summertime (July and August) the UFS is immersed in warm clouds about 25 % of the time. The clouds are either from convection originating in the valley in the east, or associated with synoptic-scale weather systems typically advected from the west. Air turbulence, as measured from the second- and third-order velocity structure functions that exhibit well-developed inertial ranges, possesses Taylor microscale Reynolds numbers up to 10 4 , with the most probable value at ~ 3000. In spite of the complex topography, the turbulence appears to be nearly as isotropic as many laboratory flows when evaluated on the "Lumley triangle".
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2015-08-14
    Beschreibung: Technical Note: A simple calculation algorithm to separate high-resolution CH 4 flux measurements into ebullition and diffusion-derived components Biogeosciences Discussions, 12, 12923-12945, 2015 Author(s): M. Hoffmann, M. Schulz-Hanke, J. Garcia Alba, N. Jurisch, U. Hagemann, T. Sachs, M. Sommer, and J. Augustin Processes driving the production, transformation and transport of methane (CH 4 ) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH 4 emission estimates. We present a simple calculation algorithm to separate open-water CH 4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH 4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH 4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2015-08-14
    Beschreibung: Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters Atmospheric Measurement Techniques, 8, 3263-3275, 2015 Author(s): J. M. Wang, C.-H. Jeong, N. Zimmerman, R. M. Healy, D. K. Wang, F. Ke, and G. J. Evans An automated identification and integration method has been developed for in-use vehicle emissions under real-world conditions. This technique was applied to high-time-resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada, during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number; black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline-dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg fuel −1 and 7.5 × 10 14 # kg fuel −1 , respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet ( 〈 25 %) contributed significantly to total fleet emissions: 100, 100, 81, and 77 % for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter; however, regulatory strategies to more efficiently target multi-pollutant mixtures may be better developed by considering the co-emitted pollutants as well.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    Publikationsdatum: 2015-08-14
    Beschreibung: High-resolution measurement of cloud microphysics and turbulence at a mountaintop station Atmospheric Measurement Techniques, 8, 3219-3228, 2015 Author(s): H. Siebert, R. A. Shaw, J. Ditas, T. Schmeissner, S. P. Malinowski, E. Bodenschatz, and H. Xu Mountain research stations are advantageous not only for long-term sampling of cloud properties but also for measurements that are prohibitively difficult to perform on airborne platforms due to the large true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud–turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds. The observed turbulence shared all features known for high-Reynolds-number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second- and third-order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents on the order of 1 g m −3 and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud–turbulence interactions, the Stokes number and settling parameter are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2015-08-14
    Beschreibung: An adsorption theory of heterogeneous nucleation of water vapour on nanoparticles Atmospheric Chemistry and Physics Discussions, 15, 21883-21906, 2015 Author(s): A. Laaksonen and J. Malila Heterogeneous nucleation of water vapour on insoluble nuclei is a phenomenon that can induce atmospheric water and ice cloud formation. However, modelling of the phenomenon is hampered by the fact that the predictive capability of the classical heterogeneous nucleation theory is rather poor. A reliable theoretical description of the influence of different types of water-insoluble nuclei in triggering the water condensation or ice deposition would help to decrease uncertainty in large scale model simulations. In this paper we extend a recently formulated adsorption theory of heterogeneous nucleation to be applicable to highly curved surfaces, and test the theory against laboratory data for water vapour nucleation on silica, titanium dioxide and silver oxide nanoparticles. We show that unlike the classical heterogeneous nucleation theory, the new theory is able to quantitatively predict the experimental results.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2015-08-13
    Beschreibung: High-resolution daily gridded datasets of air temperature and wind speed for Europe Earth System Science Data Discussions, 8, 649-702, 2015 Author(s): S. Brinckmann, S. Krähenmann, and P. Bissolli New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001–2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset ( http://www.ecad.eu ). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1–2 °C and 1–1.5 m s −1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1 .
    Digitale ISSN: 1866-3591
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    Publikationsdatum: 2015-08-13
    Beschreibung: Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity Earth Surface Dynamics Discussions, 3, 631-688, 2015 Author(s): K. E. Clark, A. J. West, R. G. Hilton, G. P. Asner, C. A. Quesada, M. R. Silman, S. S. Saatchi, W. Farfan-Rios, R. E. Martin, A. B. Horwath, K. Halladay, M. New, and Y. Malhi In this study, we assess the geomorphic role of a rare, large-magnitude landslide event and consider the effect of this event on mountain forest ecosystems and the erosion of organic carbon in an Andean river catchment. Proximal triggers such as large rain storms are known to cause large numbers of landslides, but the relative effects of such low-frequency, high-magnitude events are not well known in the context of more regular, smaller events. We develop a 25 year duration, annual-resolution landslide inventory by mapping landslide occurrence in the Kosñipata Valley, Peru, from 1988 to 2012 using Landsat, Quickbird and Worldview satellite images. Catchment-wide landslide rates were high, at 0.076 % yr −1 by area, indicating landslides may completely turn over hillslopes every ~ 1320 years and strip 28 tC km −2 yr −1 of soil (73 %) and vegetation (27 %). A single rain storm in March 2010 accounted for 27 % of all landslide area observed during the 25 year study and removed 26 % of the organic carbon that was stripped from hillslopes by all landslides during the study. An approximately linear magnitude–frequency relationship for annual landslide areas suggests that large storms contribute an equivalent landslide failure area to the sum of smaller frequency landslides events occurring over the same period. However, the spatial distribution of landslides associated with the 2010 storm is distinct. On the basis of precipitation statistics and landscape morphology, we hypothesize that spatial focusing of storm-triggered landslide erosion at lower elevations in the Kosñipata catchment may be characteristic of longer-term patterns. These patterns may have implications for the source and composition of sediments and organic material supplied to river systems of the Amazon basin, and, through focusing of regular ecological disturbance, for the species composition of forested ecosystems in the region.
    Digitale ISSN: 2196-6338
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2015-08-14
    Beschreibung: A Late Pleistocene sea level stack Climate of the Past Discussions, 11, 3699-3728, 2015 Author(s): R. M. Spratt and L. E. Lisiecki Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0–430 ka and five records from 0–798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ 18 O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ 18 O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ 18 O of seawater.
    Print ISSN: 1814-9340
    Digitale ISSN: 1814-9359
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2015-08-15
    Beschreibung: Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber Atmospheric Chemistry and Physics, 15, 9049-9062, 2015 Author(s): T. Liu, X. Wang, W. Deng, Q. Hu, X. Ding, Y. Zhang, Q. He, Z. Zhang, S. Lü, X. Bi, J. Chen, and J. Yu In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m 3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with relative humidity at around 50 %. After aging at an OH exposure of 5 × 10 6 molecules cm −3 h, the formed SOA was 12–259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001–0.044 g kg −1 fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2–4). Traditional single-ring aromatic precursors and naphthalene could explain 51–90 % of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f 43 (ratio of m/z 43, mostly C 2 H 3 O + , to the total signal in mass spectrum) and f 44 (mostly CO 2 + ) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C / ΔO : C ranged from −0.59 to −0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2015-08-04
    Beschreibung: Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms Biogeosciences Discussions, 12, 12061-12089, 2015 Author(s): J. Schelker, R. Sponseller, E. Ring, L. Högbom, S. Löfgren, and H. Laudon Boreal streams are under pressure from large scale disturbance by forestry. Recent scenarios predict an increase in forest production in Scandinavia to meet market demands and to mitigate higher anthropogenic CO 2 emissions. Increased fertilization and shorter forest rotations are anticipated which will likely enhance the pressure on boreal streams in the near future. Among the major environmental impacts of forest harvesting is the increased mobilization of inorganic nitrogen (N), primarily as nitrate (NO 3 - ) into surface waters. But whereas NO 3 - inputs to first-order streams have been previously described, their downstream fate and impact is not well understood. We evaluated the downstream fate of N inputs in a boreal landscape that has been altered by forest harvests over a 10 year period to estimate the effects of multiple clear-cuts on aquatic N export in a boreal stream network. Small streams showed substantial leaching of NO 3 - in response to harvests with concentrations increasing by ~ 15 fold. NO 3 - concentrations at two sampling stations further downstream in the network were strongly seasonal and increased significantly in response to harvesting at the medium size, but not at the larger stream. Nitrate removal efficiency, E r , calculated as the percentage of "forestry derived" NO 3 - that was retained within the landscape using a mass balance model was highest during the snow melt season followed by the growing season, but declined continuously throughout the dormant season. In contrast, export of organic N from the landscape indicated little removal and was essentially conservative. Overall, net removal of NO 3 - between 2008 and 2011 accounted for ~ 70 % of the total NO 3 - mass exported from harvested patches distributed across the landscape. These results highlight the capacity and limitation of N-limited terrestrial and aquatic ecosystems to buffer inorganic N mobilization that arises from multiple clear-cuts within meso-scale boreal watersheds.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    Publikationsdatum: 2015-08-04
    Beschreibung: Uncertainties in global aerosols and climate effects due to biofuel emissions Atmospheric Chemistry and Physics, 15, 8577-8596, 2015 Author(s): J. K. Kodros, C. E. Scott, S. C. Farina, Y. H. Lee, C. L'Orange, J. Volckens, and J. R. Pierce Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from −0.02 to +0.06 W m −2 across all simulation/mixing-state combinations with regional effects in source regions ranging from −0.2 to +0.8 W m −2 . The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to −0.02 W m −2 with regional effects in source regions ranging from −1.0 to −0.05 W m −2 . The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties in model inputs. This uncertainty limits our ability to introduce mitigation strategies aimed at reducing biofuel black carbon emissions in order to counter warming effects from greenhouse gases. To better understand the climate impact of particle emissions from biofuel combustion, we recommend field/laboratory measurements to narrow constraints on (1) emissions mass, (2) emission size distribution, (3) mixing state, and (4) ratio of black carbon to organic aerosol.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    Publikationsdatum: 2015-08-04
    Beschreibung: The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds Atmospheric Measurement Techniques, 8, 3087-3106, 2015 Author(s): P. Kupiszewski, E. Weingartner, P. Vochezer, M. Schnaiter, A. Bigi, M. Gysel, B. Rosati, E. Toprak, S. Mertes, and U. Baltensperger Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol–cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE) 2013 and 2014 – two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important opportunity for a proof of concept of the inlet design. In this work we present the setup of the ISI, including the modelling and laboratory characterization of its components, as well as field measurements demonstrating the ISI performance and validating the working principle of the inlet. Finally, measurements of biological aerosol during a Saharan dust event (SDE) are presented, showing a first indication of enrichment of bio-material in sub-2 μm ice residuals.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2015-08-04
    Beschreibung: Impacts on wave-driven harbour agitation due to climate change in Catalan ports Natural Hazards and Earth System Science, 15, 1695-1709, 2015 Author(s): J. P. Sierra, M. Casas-Prat, M. Virgili, C. Mösso, and A. Sánchez-Arcilla The objective of the present work is to analyse how changes in wave patterns due to the effect of climate change can affect harbour agitation (oscillations within the port due to wind waves). The study focuses on 13 harbours located on the Catalan coast (NW Mediterranean) using a methodology with general applicability. To obtain the patterns of agitation, a Boussinesq-type model is used, which is forced at the boundaries by present/future offshore wave conditions extracted from recently developed high-resolution wave projections in the NW Mediterranean. These wave projections were obtained with the SWAN model forced by present/future surface wind fields projected, respectively, by five different combinations of global and regional circulation models (GCMs and RCMs) for the A1B scenario. The results show a general slight reduction in the annual average agitation for most of the ports, except for the northernmost and southernmost areas of the region, where a slight increase is obtained. A seasonal analysis reveals that the tendency to decrease is accentuated in winter. However, the inter-model variability is large for both the winter and the annual analysis. Conversely, a general increase with a larger agreement among models is found during summer, which is the period with greater activity in most of the studied ports (marinas). A qualitative assessment of the factors of variability seems to indicate that the choice of GCM tends to affect the spatial pattern, whereas the choice of RCM induces a more homogeneous bias over the regional domain.
    Print ISSN: 1561-8633
    Digitale ISSN: 1684-9981
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    facet.materialart.
    Unbekannt
    Copernicus
    Publikationsdatum: 2015-08-04
    Beschreibung: Utilisation of CryoSat-2 SAR altimeter in operational ice charting The Cryosphere Discussions, 9, 4117-4145, 2015 Author(s): E. Rinne and M. Similä We present methods to utilise Cryosat-2 (CS-2) Synthetic Aperture (SAR) mode data in operational ice charting. We compare CS-2 data qualitatively to Synthetic Aperture Radar (SAR) mosaics over Barents and Kara seas. Furthermore, we compare the CS-2 to archived operational ice charts. We present distributions of four CS-2 waveform parameters for different ice types as presented in the ice charts. We go on to present an automatic classification method for CS-2 data which, after training with operational ice charts, is capable of determining open water from ice with a hit rate of 〉 90 %. The training data is dynamically updated every five days using the most recent 15 days CS-2 data and operative ice charts. This helps the adaption of the classifier to the evolving ice/snow conditions throughout winter. The classifier is also capable of detecting three different ice classes (thin and thick first year ice as well as old ice) with success rates good enough for the output to be usable to support operational ice charting. Finally, we present a near real time CS-2 product just plotting the waveform characteristics and conclude that even such a simple product is usable for some of the needs of ice charting.
    Print ISSN: 1994-0432
    Digitale ISSN: 1994-0440
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Publikationsdatum: 2015-08-05
    Beschreibung: Inverse modeling of black carbon emissions over China using ensemble data assimilation Atmospheric Chemistry and Physics Discussions, 15, 20851-20879, 2015 Author(s): P. Wang, H. Wang, Y. Q. Wang, X. Y. Zhang, S. L. Gong, M. Xue, C. H. Zhou, H. L. Liu, X. Q. An, T. Niu, and Y. L. Chen Emissions inventories of black carbon (BC), which are traditionally constructed using a "bottom-up" approach based on activity data and emissions factors, are considered to contain a large level of uncertainty. In this paper, an ensemble optimal interpolation (EnOI) data assimilation technique is used to investigate the possibility of optimally recovering the spatially resolved emissions bias of BC. An inverse modeling system for emissions is established for an atmospheric chemistry aerosol model and two key problems related to ensemble data assimilation in the top-down emissions estimation are discussed: (1) how to obtain reasonable ensembles of prior emissions; and (2) establishing a scheme to localize the background-error matrix. An experiment involving a one month simulation cycle with EnOI inversion of BC emissions is performed for January 2008. The bias of the BC emissions intensity in China at each grid point is corrected by this inverse system. The inversed emission over China in January is 240.1 Gg, and annual emission is about 2750 Gg, which is over 1.8 times of bottom-up emission inventory. The results show that, even though only monthly mean BC measurements are employed to inverse the emissions, the accuracy of the daily model simulation improves. Using top-down emissions, the average root-mean-square error of simulated daily BC is decreased by nearly 30 %. These results are valuable and promising for a better understanding of aerosol emissions and distributions, as well as aerosol forecasting.
    Print ISSN: 1680-7367
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    Publikationsdatum: 2015-08-05
    Beschreibung: Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons Atmospheric Measurement Techniques Discussions, 8, 8023-8082, 2015 Author(s): T. Verhoelst, J. Granville, F. Hendrick, U. Köhler, C. Lerot, J.-P. Pommereau, A. Redondas, M. Van Roozendael, and J.-C. Lambert Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement uncertainties but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs), named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC) comparisons between on the one hand GOME-type direct fitting (GODFITv3) satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and on the other hand direct-sun and zenith-sky reference measurements such as from Dobsons, Brewers, and zenith scattered light (ZSL-)DOAS instruments respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only play a role in the comparisons with ZSL-DOAS instruments at high latitudes, especially in the presence of a polar vortex. At tropical latitudes, where TOC variability is lower, both types of errors remain below about 1 % and consequently do not contribute significantly to the comparison error budget. The detailed analysis of the comparison results, including now the metrological errors, suggests that the published random measurement uncertainties for GODFITv3 reprocessed satellite data are potentially overestimated, and adjustments are proposed here. This successful application of the OSSSMOSE sytem to close for the first time the error budget of TOC comparisons, bodes well for potential future applications, which are briefly touched upon.
    Digitale ISSN: 1867-8610
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    Publikationsdatum: 2015-08-04
    Beschreibung: Relating seasonal dynamics of enhanced vegetation index to the recycling of water in two endorheic river basins in north-west China Hydrology and Earth System Sciences, 19, 3387-3403, 2015 Author(s): M. A. Matin and C. P.-A. Bourque This study associates the dynamics of enhanced vegetation index in lowland desert oases to the recycling of water in two endorheic (hydrologically closed) river basins in Gansu Province, north-west China, along a gradient of elevation zones and land cover types. Each river basin was subdivided into four elevation zones representative of (i) oasis plains and foothills, and (ii) low-, (iii) mid-, and (iv) high-mountain elevations. Comparison of monthly vegetation phenology with precipitation and snowmelt dynamics within the same basins over a 10-year period (2000–2009) suggested that the onset of the precipitation season (cumulative % precipitation 〉 7–8 %) in the mountains, typically in late April to early May, was triggered by the greening of vegetation and increased production of water vapour at the base of the mountains. Seasonal evolution of in-mountain precipitation correlated fairly well with the temporal variation in oasis-vegetation coverage and phenology characterised by monthly enhanced vegetation index, yielding coefficients of determination of 0.65 and 0.85 for the two basins. Convergent cross-mapping of related time series indicated bi-directional causality (feedback) between the two variables. Comparisons between same-zone monthly precipitation amounts and enhanced vegetation index provided weaker correlations. Start of the growing season in the oases was shown to coincide with favourable spring warming and discharge of meltwater from low- to mid-elevations of the Qilian Mountains (zones 1 and 2) in mid-to-late March. In terms of plant requirement for water, mid-seasonal development of oasis vegetation was seen to be controlled to a greater extent by the production of rain in the mountains. Comparison of water volumes associated with in-basin production of rainfall and snowmelt with that associated with evaporation seemed to suggest that about 90 % of the available liquid water (i.e. mostly in the form of direct rainfall and snowmelt in the mountains) was recycled locally.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    Publikationsdatum: 2015-08-04
    Beschreibung: Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring Hydrology and Earth System Sciences, 19, 3349-3363, 2015 Author(s): S. C. Sherriff, J. S. Rowan, A. R. Melland, P. Jordan, O. Fenton, and D. Ó hUallacháin Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required, but can be expensive and technically challenging. Here, the performance of in situ turbidity sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). The in situ and ex situ installations gave comparable results when calibrated against storm-period, depth-integrated SS data, with total loads at Grassland B estimated at 12 800 and 15 400 t, and 22 600 and 24 900 t at Arable B, respectively. The absence of spurious turbidity readings relating to bankside debris around the in situ sensor and its greater security make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (78/659/EEC) guideline of 25 mg L −1 , and the continuous hourly record demonstrated that exceedance occurred less than 12 % of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils. Well drained soils were less sensitive to erosion even on arable land; however, under extreme rainfall conditions, all bare soils remain a high sediment loss risk. Analysis of storm-period and seasonal dynamics (over the long term) using high-resolution monitoring would be beneficial to further explore the impact of landscape, climate and land use characteristics on SS export.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    Publikationsdatum: 2015-08-04
    Beschreibung: Landscape heterogeneity drives contrasting concentration–discharge relationships in shale headwater catchments Hydrology and Earth System Sciences, 19, 3333-3347, 2015 Author(s): E. M. Herndon, A. L. Dere, P. L. Sullivan, D. Norris, B. Reynolds, and S. L. Brantley Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration–discharge ( C – Q ) behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Furthermore, concentration–discharge relationships of non-chemostatic solutes changed following tree harvest in the Upper Hore catchment in Plynlimon, while no changes were observed for chemostatic solutes, underscoring the role of vegetation in regulating the concentrations of certain elements in the stream. These results indicate that differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where SOM is dominantly in lowlands (e.g., Shale Hills), we infer that non-chemostatic elements associated with organic matter are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), these non-chemostatic elements are released later during rainfall events. The distribution of SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.
    Print ISSN: 1027-5606
    Digitale ISSN: 1607-7938
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2015-08-04
    Beschreibung: Future changes in flash flood frequency and intensity of the Tha Di River (Thailand) based on rainfall–runoff modeling and advanced delta change scaling Hydrology and Earth System Sciences Discussions, 12, 7327-7352, 2015 Author(s): S. Hilgert, A. Wagner, and S. Fuchs As a consequence of climate change, extreme and flood-causing precipitation events are expected to increase in magnitude and frequency, especially in today's high-precipitation areas. During the north-east monsoon seasons, Nakhon Si Thammarat in southern Thailand is flash-flooded every 2.22 years on average. This study investigates frequency and intensity of harmful discharges of the Tha Di River regarding the IPCC emission scenarios A2 and B2. The regional climate model (RCM) PRECIS was transformed using the advanced delta change (ADC) method. The hydrologic response model HBV-Light was calibrated to the catchment and supplied with ADC-scaled daily precipitation and temperature data for 2010–2089. Under the A2 (B2) scenario, the flood threshold exceedance frequency on average increases by 133 % (decreases by 10 %), average flood intensity increases by 3 % (decreases by 2 %) and the annual top five discharge peaks intensities increase by 46 % (decrease by 5 %). Yearly precipitation sums increase by 30 % (10 %) towards the end of the century. The A2 scenario predicts a precipitation increase during the rainy season, which intensifies flood events; while increases projected exclusively for the dry season are not expected to cause floods. Retention volume demand of past events was calculated to be up to 12 × 10 6 m 3 . Flood risks are staying at high levels under the B2 scenario or increase dramatically under the A2 scenario. Results show that the RCM scaling process is inflicted with systematic biases but is crucial to investigate small, mountainous catchments. Improvement of scaling techniques should therefore accompany the development towards high-resolution climate models.
    Print ISSN: 1812-2108
    Digitale ISSN: 1812-2116
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von The European Geosciences Union (EGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...