ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (34)
  • Elsevier  (34)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (34)
  • 1990-1994
  • 2008  (28)
  • 2005  (6)
Collection
Years
  • 2005-2009  (34)
  • 1990-1994
Year
  • 1
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-16
    Description: The MAGFLOW cellular automata model was able to fairly accurately reproduce the time of the lava flow advance during the 2006 Etna eruption leading to very plausible flow predictions. MAGFLOW is intended for use in emergency response situations during an eruption to quickly forecast the lava flow path over some time interval from the immediate future to a long-time forecast. Major discrepancies between the observed and simulated paths occurred in the early phase of the 2006 eruption due to an underestimation of the initial flow rate, and at the time of the overlapping with the 2004-2005 lava flow. Very good representations of the areas likely to be inundated by lava flows were obtained when we adopt a time-varying effusion rate and include the 2004-2005 lava flow field in the Digital Elevation Model (DEM) of topography.
    Description: Published
    Description: 1050-1060
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Lava Flow ; Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Determining consistent sets of vent conditions for next expected eruptions at Vesuvius is crucial for the simulation of the sub-aerial processes originating the volcanic hazard and the eruption impact. Herewerefer to the expected eruptive scales and conditions defined in the frame of the EC Exploris project, and simulate the dynamics of magma ascent along the volcanic conduit for sub-steady phases of next eruptions characterized by intensities of the Violent Strombolian (VS), Sub-Plinian 2 (SP2), and Sub-Plinian 1 (SP1) scale. Sets of conditions for the simulations are determined on the basis of the bulk of knowledge on the past history of Vesuvius [Cioni, R., Bertagnini, A., Santacroce, R., Andronico, D., Explosive activity and eruption scenarios at Somma–Vesuvius (Italy): towards a new classification scheme. Journal of Volcanology and Geothermal Research, this issue.]. Volatile contents (H2O and CO2) are parameterized in order to account for the uncertainty in their expected amounts for a next eruption. In all cases the flow in the conduit is found to be choked, with velocities at the conduit exit or vent corresponding to the sonic velocity in the two-phase non-equilibrium magmatic mixture. Conduit diameters and vent mixture densities are found to display minimum overlapping between the different eruptive scales, while exit gas and particle velocities, as well as vent pressures, largely overlap. Vent diameters vary from as low as about 5 m for VS eruptions, to 35–55 m for the most violent SP1 eruption scale. Vent pressures can be as low as less than 1 MPa for the lowest volatile content employed of 2 wt.% H2O and no CO2, to 7–8 MPa for highest volatile contents of 5 wt.% H2O and 2 wt.% CO2 and large eruptive scales. Gas and particle velocities at the vent range from 100–250 m/s, with a tendency to decrease, and to increase the mechanical decoupling between the phases, with increasing eruptive scale. Except for velocities, all relevant vent quantities are more sensitive to the volatile content of the discharged magma for the highest eruptive scales considered.
    Description: Published
    Description: 359-365
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; Numerical simulations ; Vent conditions ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Disasters from explosive volcanic eruptions are infrequent and experience in emergency planning and mitigation for such events remains limited. The need for urgently developing more robust methods for risk assessment and decision making in volcanic crises has become increasingly apparent as world populations continue to expand in areas of active explosive volcanism. Nowhere is this more challenging than at Vesuvius, Italy, with hundreds of thousands of people living on the flanks of one of the most dangerous volcanoes in the world. We describe how a new paradigm, evidence-based volcanology, has been applied in EXPLORIS to contribute to crisis planning and management for when the volcano enters its next state of unrest, as well as in long-term land-use planning. The analytical approach we adopted enumerates and quantifies all the processes and effects of the eruptive hazards of the volcano known to influence risk, a scientific challenge that combines field data on the vulnerability of the built environment and humans in past volcanic disasters with theoretical research on the state of the volcano, and including evidence from the field on previous eruptions as well as numerical simulation modelling of eruptive processes. Formal probabilistic reasoning under uncertainty and a decision analysis approach have provided the basis for the development of an event tree for a future range of eruption types with probability paths and hypothetical casualty outcomes for risk assessment. The most likely future eruption scenarios for emergency planning were derived from the event tree and elaborated upon from the geological and historical record. Modelling the impacts in these scenarios and quantifying the consequences for the circumvesuvian area provide realistic assessments for disaster planning and for showing the potential risk–benefit of mitigation measures, the main one being timely evacuation, but include for consideration protecting buildings against dilute, low dynamic pressure surges, and temporary roof supports in the most vulnerable buildings, as well as hardening infrastructure and lifelines. This innovative work suggests that risk-based methods could have an important role in crisis management at cities on volcanoes and small volcanic islands.
    Description: Published
    Description: 454-473
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: planning ; emergency ; volcano ; eruption ; mitigation ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Historical sources have recorded earthquake shocks, their effects and difficulties that local inhabitants experienced before the AD 79 Pompeii eruption. Archaeological studies pointed out the effects of such seismicity, and have also evidenced that several water crises were occurring at Pompeii in that period. Indeed numerous sources show that, at the time of eruption, and probably some time before, the civic aqueduct, having ceased to be supplied by the regional one, was out of order and that a new one was being built. Since Roman aqueducts were usually built with a recommended minimum mean slope of 20 cm/km and Pompeii's aqueduct sloped from the nearby Apennines toward the town, this slope could have been easily cancelled by uplift that occurred in the area even if this was only moderate. For the crustal deformations a volcanic origin is proposed and a point source model is used to explain the observations. Simple analysis of the available data suggests that the ground deformations were caused by a b2 km3 volumetric change at a depth of ∼8 km that happened over the course of several decades.
    Description: Published
    Description: 959–970
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; ground deformation ; seismicity ; stress changes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present here a new hypothesis to explain the high mobility of same rapid mass movements of rock fragments. We suggest that oscillations of flows with a quasi-rigid plug can result in reduction of their apparent coefficient of friction. This coefficient is computed as the ratio between drop in elevation and horizontal distance of travel. In our model, the effective friction during a downhill journey is a combination of the friction forces acting on the plug during the ascending and descending parts of its slope-normal oscillations. As a consequence of oscillations, the decreased contact with ground surface reduces the apparent coefficient of friction. Channel lateral surfaces can also support a portion of plug weight giving another contribution in the reduction of this coefficient. The support of lateral surfaces requires a relatively narrow channel such as a gully or the presence of levees whereas the reduced basal contact can be important also in larger channels that do not provide lateral support. We suggest that slope-normal oscillations are generated by ground asperities. The true coefficients of friction are larger than the apparent one because they account energetically for the oscillations that reduce basal contact. Thus we can say that our model is able to explain long runout distances as long as the energy dissipated by oscillations is accounted for by the true coefficients of friction that enter the calculations. Field and experimental investigation of the several ideas discussed in this paper constitutes important aspects of future research that will improve the understanding of granular flows mobility.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pyroclastic flows ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: On 27 February 2007, two NE–SW and NNW–SSE dike-fed effusive vents opened to the North (at 650 and 400 m above sea level, asl) of the summit craters at Stromboli, forming a fissure parallel to the inner walls of the Sciara del Fuoco (SdF) sector collapse depression. The formation of these vents was soon followed by rapid subsidence of the summit crater area. This partly obstructed the central conduit, temporarily choking the fissure and increasing the deformation of the upper part of SdF. The reactivation of the NNW–SSE vent and the opening of a new vent located at 500 m asl, fed by a second dike, released the internal pressure and surface deformation ceased. The eruption then continued again from the 400 m vent, after a summit explosion on 15 March, until ending in early April after a progressive decrease of magma output. Repeated NE–SW dike intrusions have occurred in recent years, close to the upper SE limit of the SdF. In that zone, named Bastimento, the eruptive fractures traced the discontinuities that borders the SdF, increasing the risk of triggering new sector collapse. Whereas the NE–SW trending structures lie along the regional volcanostructural trend of the Aeolian arc through Stromboli, the NNW–SSE vents are oblique to this trend and may be controlled by the anomalous stress field within the unstable flank of the SdF. Another fundamental aspect of the 2007 eruption is the collapse of the central conduit, due to the rapid and deep magma drainage linked to the opening of the 400 m vent. The intrusion of dikes and development of flank vents during the 2007 eruption could possibly have triggered catastrophic landslides and related tsunami or eruptive paroxysms, but the opening of new effusive vents released the internal pressures, diminishing the hazard.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: 2007 Stromboli eruption ; Dike-fed vent ; Volcano-Tectonics ; Conduit collapse ; Flank instability ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: During an eruption at the Bocca Nuova, one of the summit craters of Mt. Etna, in October-November 1999 a part of the crater floor near its WNW rim was uplifted to form a dome-shaped feature that consisted of older lava and pyroclastics filling the crater. This endogenous dome grew rapidly over the crater rim, thus being perched precariously over the steep outer slope of the Bocca Nuova, and near-continuous collapse of its steep flanks generated swiftly moving pyroclastic avalanches over a period of several hours. These avalanches advanced at speeds of 10-20 m s-1 and extended up to 0.7 km from their source on top of lavas emplaced immediately before. Their deposits were subsequently covered by lava flows that issued from vents below the front of the dome and from the Bocca Nuova itself. Growth of the dome was caused by the vertical intrusion of magma in the marginal W part of the crater, which deformed and uplifted previously emplaced, still hot and plastically deformable eruptive products filling the crater. The resulting avalanches had all characteristics of pyroclastic flows spawned by collapse of unstable flanks of lava domes, but in this case the magma involved was of mafic (hawaiitic) composition and would have, under normal circumstances, produced fluid lava flows. The formation of the dome and the generation of the pyroclastic avalanches owe their occurrence to the rheological properties of the eruptive products filling the crater, which were transformed into the dome, and to the morphological configuration of the Bocca Nuova and its surroundings. The density contrast between successive erupted products may also have played a role. Although events of this type are to be considered exceptional at Etna, their recurrence might represent a serious hazard to visitors to the summit area.
    Description: Published
    Description: 115-128
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Bocca Nuova ; endogenous lava dome ; pyroclastic avalanches ; magma ascent ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Published
    Description: 393-416
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: hydrothermal fluids ; unrest ; modeling ; caldera ; monitoring ; volcanic hazard ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: No Abstract
    Description: Published
    Description: V-IX
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Rischio Vulcanico ; Exploris ; Vulcani esplosivi ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Intrusive degassing and recycling of degassed and dense magma at depth have been proposed for a long time at Stromboli. The brief explosive event that occurred at the summit craters on 9 January 2005 threw out bombs and lapilli that could be good candidates to illustrate recycling of shallow degassed magma at depth. We present an extensive data set on both the textures and the mineral, bulk rock and glassy matrix chemistry of the “9 Jan” products. The latter have the common shoshonitic–basaltic bulk composition of lavas and scoriae issued from typical strombolian activity. In contrast they differ by the heterogeneous chemistry of their matrix glasses and their crystal textures that testify to crystal dissolution event(s) just prior magma crystallization upon ascent and eruption. Comparison between mineral paragenesis of the natural products and experimental phase equilibria suggest water-induced magma re-equilibration. We propose that mineral dissolution is related to water enrichment of the recycled degassed magma, via differential gas bubble transfer and to some extents its physical mixing with volatile-rich magma blobs. However, all these features illustrate transient processes. Even though evidence of mineral dissolution is ubiquitous at Stromboli, its effect on the bulk magma chemistry is minor because of the subtle interplay between mineral dissolution and crystallization in magmas having comparable bulk chemistry.
    Description: Published
    Description: 325-336
    Description: JCR Journal
    Description: reserved
    Keywords: mineral dissolution ; magma chemistry ; volatiles ; trace elements ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Eruptions are often fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection–diffusion–sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection–diffusion–sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.
    Description: Published
    Description: 366–377
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic ash fallout ; volcanic hazard ; computer model ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; basaltic explosive activity ; ash-rich jet and plume ; tachylite ; sideromelane ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: More than 600000 people are exposed to volcanic risk in the urban areas near the volcano,Vesuvius, and may need to be evacuated if there is renewed volcanic activity. The success of a future evacuation will strongly depend on the level of risk perception and preparedness of the at-risk communities during the current period of quiescence. The volcanic risk perception and preparedness of young people is of particular importance because hazard education programs in schools have been shown to increase the clarity of risk perception and students often share their knowledge with their parents. In order to evaluate young people's risk perception and preparedness for a volcanic crisis, a multiple choice questionnaire was distributed to 400 high-school students in three municipalities located close to the volcano. The overall results suggest that despite a 60-year period of quiescence at Vesuvius, the interviewed students have an accurate perception of the level of volcanic risk. On the other hand, the respondents demonstrate a clear lack of understanding of volcanic processes and their related hazards.Also, the interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). The latter result suggests that in comparisonwith volcanic crises in other regions, during a future eruption ofVesuvius, theremay not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to improve the accuracy of risk perception of youth in local communities.
    Description: Published
    Description: 229-243
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: risk perception ; disasters ; evacuation plan ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: The 2D Cellular Automata model, MAGFLOW, simulates lava flows and an algorithm based on the Monte Carlo approach solves the anisotropic flow direction problem. The model was applied to reproduce a lava flow formed during the 2001 Etna eruption. This eruption provided the opportunity to verify the ability of MAGFLOW to simulate the path of lava flows. made possible due to the availability of the necessary data for both modeling and subsequent validation. MAGFLOW reproduced quite accurately the spread of flow. A good agreement was highlighted between the simulated and observed length on steep slopes, whereas the area covered by the lava flow tends to be overestimated. The major inconsistencies found in the comparison between simulated and observed lava flow due to neglecting the effects of ephemeral vent formation.
    Description: Published
    Description: 1465-1471
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava Flow Simulation ; Etna Volcano ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Tephra fallout constitutes a serious threat to communities around active volcanoes. Reliable short-term 13 forecasts represent a valuable aid for scientists and civil authorities to mitigate the effects of fallout on the 14 surrounding areas during an episode of crisis. We present a platform-independent automatic procedure with Q1 15 the aim to daily forecast transport and deposition of volcanic particles. The procedure builds on a series of 16 programs and interfaces that automate the data flow and the execution and subsequent postprocess of fallout 17 models. Firstly, the procedure downloads regional meteorological forecasts for the area and time interval of 18 interest, filters and converts data from its native format, and runs the CALMET diagnostic model to obtain the 19 wind field and other micro-meteorological variables on a finer local-scale 3-D grid defined by the user. 20 Secondly, it assesses the distribution of mass along the eruptive column, commonly by means of the radial 21 averaged buoyant plume equations depending on the prognostic wind field and on the conditions at the vent 22 (granulometry, mass flow rate, etc). All these data serve as input for the fallout models. The initial version of 23 the procedure includes only two Eulerian models, HAZMAP and FALL3D, the latter available as serial and 24 parallel implementations. However, the procedure is designed to incorporate easily other models in a near 25 future with minor modifications on the model source code. The last step is to postprocess the outcomes of 26 models to obtain maps written in standard file formats. These maps contain plots of relevant quantities such 27 as predicted ground load, expected deposit thickness and, for the case of or 3-D models, concentration on air 28 or flight safety concentration thresholds
    Description: Published
    Description: 767-777
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Tephra fallout ; volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: A new proposal for the classification of Somma-Vesuvius (SV) explosive activity is presented, based on a critical revision of a large set of published and unpublished stratigraphic, compositional, and physical volcanology data on the products of the past 20,000 years of activity. The new database is used to discuss the general behaviour of the volcano in terms of frequency, magnitude and intensity of the events, as well as of the length of the repose time which preceded each eruption. Several different types of eruption are recognized, each characterised by specific physical eruptive parameters: plinian, subplinian (further subdivided in subplinian I and subplinian II), violent strombolian, ash emission events. For each eruption type, a complex scenario is described, with phases of different style, duration, magnitude and intensity occurring during the course of the eruption itself. The name given to each eruption type is derived from the style of the most representative part of the eruption (in terms of duration or volume). On the whole, the magnitude (expressed as the volume of erupted magma) of the past SV eruptions has been roughly decreasing with time while, starting from 3900 years BP, their frequency has been increasing. The eruption intensity, expressed as the estimated magma discharge rate (MDR) continuously increases with increasing magnitude from strombolian to plinian eruptions, the most voluminous plinian events being, however, characterised by a lower MDR than the smaller ones. The length of the “apparent” repose preceding an eruption (the difference in age between one deposit and that immediately on top of it) appears clearly correlated with magnitude for the most intense eruptions (plinian and subplinian I), while this correlation is poorer for eruptions of intermediate size (from violent strombolian to subplinian II). These exhibit a large variability in magnitude, intensity and eruption style for a range of repose time varying from dozens to hundreds of years, then including the current duration of Vesuvius quiescence. By reckoning with the whole range of possibilities that a next unrest at Vesuvius implies, the set of presented eruption scenarios can be useful both for developing a probabilistic approach to hazard assessment and depicting a range of impact scenarios. The scenario for high-intensity events had been already well defined since 1995, in order to redact the emergency plan of the National Department of Civil Defence. Conversely, it is now clear that the impact on the territory of long-lasting, although low-intensity, eruptions (subplinian II, violent strombolian, ash emission activity) can be relevant especially in terms of economic costs. A larger consideration of this type of activity at Vesuvius can be important especially for the aspects of emergency planning and risk reduction.
    Description: Published
    Description: 331-346
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Explosive eruption ; Eruption scenario ; Volcanic history ; Somma-Vesuvius ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: A volcanic risk perception study of the population residing near Vesuvius was carried out between May and July, 2006. A total of 3600 questionnaires with 45 items were distributed to students, their parents and the general population. The largest number of surveys (2812) were distributed in the 18 towns of the Red Zone, the area nearest to the volcano that is exposed to pyroclastic flow hazards and whose 550,000 residents, according to the civil protection emergency plan (in operation since 1995), should be evacuated in case of an eruption crisis. The remaining 788 questionnaires were distributed in 3 additional towns and 3 neighborhoods of Naples, all within the Yellow Zone, which is an area exposed to pyroclastic fallout hazards. A total of 2655 surveys were returned, resulting in a response rate of 73.7%. Results indicated that people have a realistic view of the risk: they think that an eruption is likely, that it will have serious consequences for their towns and for themselves and their families and they are quite worried about the threat. However, several other social, economic, and security-related issues were listed as a problem more often than Vesuvius. The study also demonstrated a widespread lack of knowledge about the emergency plan, a lack of confidence in the plan's success and in public officials and low feelings of self-efficacy. People want to be more deeply involved in public discussions with scientists and civil protection officials on emergency planning and individual preparedness measures. It is clear from the results that a major education-information effort is still needed to improve the public's knowledge, confidence and self-efficacy, thereby improving their collective and individual capability to positively face a future volcanic emergency.
    Description: Published
    Description: 244–258
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic risk perception ; Vesuvius ; confidence on emergency plan and public officials ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Probabilistic characterizations of possible future eruptive scenarios at Vesuvius volcano are elaborated and organized within a risk-based framework. In the EXPLORIS project, a wide variety of topics relating to this basic problem have been pursued: updates of historical data, reinterpretation of previous geological field data and the collection of new fieldwork results, the development of novel numerical modelling codes and of risk assessment techniques have all been completed. To achieve coherence, many diverse strands of evidence had to be unified within a formalised structure, and linked together by expert knowledge. For this purpose, a Vesuvius ‘Event Tree’ (ET) was created to summarise in a numerical-graphical form, at different levels of detail, all the relative likelihoods relating to the genesis and style of eruption, development and nature of volcanic hazards, and the probabilities of occurrence of different volcanic risks in the next eruption crisis. The Event Tree formulation provides a logical pathway connecting generic probabilistic hazard assessment to quantitative risk evaluation. In order to achieve a complete parameterization for this all-inclusive approach, exhaustive hazard and risk models were needed, quantified with comprehensive uncertainty distributions for all factors involved, rather than simple ‘best-estimate’ or nominal values. Thus, a structured expert elicitation procedure was implemented to complement more traditional data analysis and interpretative approaches. The structure of the Vesuvius Event Tree is presented, and some of the data analysis findings and elicitation outcomes that have provided initial indicative probability distributions to be associated with each of its branches are summarized. The Event Tree extends from initiating volcanic eruption events and hazards right through to human impact and infrastructure consequences, with the complete tree and its parameterisation forming a quantitative synoptic framework for comprehensive hazard evaluation and mapping of risk impacts. The organization of the Event Tree allows easy updating, as and when new information becomes available
    Description: Published
    Description: 397-415
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; volcanic hazard ; volcanic risk ; probabilistic risk assessment ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-03
    Description: Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.
    Description: In press
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Pyroclastic density currents ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-03-19
    Description: FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of 8 volcanic ash. The model solves the advection-diffusion-sedimentation (ADS) equa- 9 tion on a structured terrain-following grid using a second-order Finite Differences 10 (FD) explicit scheme. Different parameterizations for the eddy diffusivity tensor 11 and for the particle terminal settling velocities can be used. The code, written 12 in FORTRAN 90, is available in both serial and parallel versions for Windows and 13 Unix/Linux/Mac X Operating Systems (OS). A series of pre- and post-process util- 14 ity programs and OS-dependent scripts to launch them are also included in the 15 FALL3D distribution package. Although the model has been designed to forecast 16 volcanic ash concentration in the atmosphere and ash loading at ground, it can also 17 be used to model the transport of any kind of airborne solid particles. The model 18 inputs are meteorological data, topography, grain-size distribution, shape and den- 19 sity of particles, and mass rate of particle injected into the atmosphere. Optionally, 20 FALL3D can be coupled with the output of the meteorological processor CALMET, a 21 diagnostic model which generates 3-D time-dependent zero-divergence wind fields 22 from mesoscale forecasts incorporating local terrain effects. The FALL3D model can 23 be a tool for short-term ash deposition forecasting and for volcanic fallout hazard 24 assessment. As an example, an application to the 22 July 1998 Etna eruption is also 25 presented.
    Description: Published
    Description: 1334–1342
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; fallout ; computational model ; FORTRAN code ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-24
    Description: Tephra layers from archaeological sites in southern Italy and eastern Europe stratigraphically associated with cultural levels containing Early Upper Palaeolithic industry were analysed. The results confirm the occurrence of the Campanian Ignimbrite tephra (CI; ca. 40 cal ka BP) at Castelcivita Cave (southern Italy), Temnata Cave (Bulgaria) and in the Kostenki–Borshchevo area of the Russian Plain. This tephra, originated from the largest eruption of the Phlegrean Field caldera, represents the widest volcanic deposit and one of the most important temporal/stratigraphic markers of western Eurasia. At Paglicci Cave and lesser sites in the Apulia region we recognise a chemically and texturally different tephra, which lithologically, chronologically and chemically matches the physical and chemical characteristics of the Plinian eruption of Codola; a poorly known Late Pleistocene explosive event from the Neapolitan volcanoes, likely Somma–Vesuvius. For this latter, we propose a preliminary age estimate of ca. 33 cal ka BP and a correlation to the widespread C-10 marine tephra of the central Mediterranean. The stratigraphic position of both CI and Codola tephra layers at Castelcivita and Paglicci help date the first and the last documented appearance of Early Upper Palaeolithic industries of southern Italy to ca. 41–40 and 33 cal ka BP, respectively, or between two interstadial oscillations of the Monticchio pollen record – to which the CI and Codola tephras are physically correlated – corresponding to the Greenland interstadials 10–9 and 5. In eastern Europe, the stratigraphic and chronometric data seem to indicate an earlier appearance of the Early Upper Palaeolithic industries, which would predate of two millennia at least the overlying CI tephra. The tephrostratigraphic correlation indicates that in both regions the innovations connected with the so-called Early Upper Palaeolithic – encompassing subsistence strategy and stone tool technology – appeared and evolved during one of the most unstable climatic phases of the Last Glacial period. On this basis, the marked environmental unpredictability characterising this time-span is seen as a potential ecological factor involved in the cultural changes observed.
    Description: Published
    Description: 208–226
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Campanian Ignimbrite ; Early Upper Palaeolithic ; Codola Plinian eruption ; south-eastern Europe ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-09-20
    Description: Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the complex dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial radial propagation of the PDCs since it ignores azimuthal flows produced by real topographies that therefore need to be simulated in fully 3D conditions.
    Description: Published
    Description: 378-396
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; pyroclastic density current ; column collapse ; numerical simulation ; 3D modelling ; hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: The structure and shape of collapses and resurgences is often controlled by pre-existing discontinuities, such as normal faults in rift zones. In order to study the role of extensional structures on collapse and resurgence, we used analogue models. Dry sand simulated the brittle crust; silicone, located at the base of the sand-pack, simulated magma. In the experiments, regional extension pre-dated collapse or resurgence, forming normal faults in a grabenlike structure; the graben was filled with additional sand, simulating post-rift deposits. A piston then moved the silicone downward or upward, inducing collapse or resurgence within the previously deformed sand. The collapses showed an ellipticity (length of minor axis/length of major axis) between 0.8 and 0.9, with the major axis parallel to the extension direction. The partial reactivation of the pre-existing normal faults was observed during the development of the caldera reverse faults, which, conversely to what was expected (from experiments without preexisting extension), became partly inward dipping. Resurgence showed an elongation of the uplifted part, with the main axis perpendicular to the extension direction. At depth, pre-existing normal faults were partly reactivated by the reverse faults formed during resurgence; these locally became outward dipping normal faults. A total reactivation of pre-existing faults was also observed during resurgence. The experiments suggest that the observed elongation of calderas and resurgences is the result of the reactivation of pre-existing structures during differential uplift. Such a reactivation is mainly related to the loss in the coefficient of friction of the sand. The results suggest that elliptic calderas and resurgences in nature may develop even from circular magma chambers.
    Description: Published
    Description: 199-217
    Description: partially_open
    Keywords: Extensional structures ; Caldera ; Resurgence ; Analogue models ; Reactivation ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 487 bytes
    Format: 1345163 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high CO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol) with an appreciable content of H2S (0.8). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February-March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8/25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.
    Description: - GNV funded research project Gas Hazard of Colli Albani
    Description: Published
    Description: 81^94
    Description: partially_open
    Keywords: Colli Albani ; CO2 flux ; H2S ; gas hazard ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 660932 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: This survey proposes a new approach to identify buried caldera boundaries of a volcanic cone, combining (1) a systematic elliptic Fourier functions (EFF) analysis on the contour lines based on the external shape of the edifice with (2) self-potential (SP) measurements on volcano flanks. The methodology of this approach is to investigate the relationships between (1) vertical morphological changes inferred from EFF analysis and (2) lateral lithological transition inside the edifice inferred from SP/elevation gradients. The application of these methods on Misti volcano in southern Peru displays a very good correlation. The three main boundaries evidenced by hierarchical cluster analysis on the contour lines coincide with the two main boundaries characterised by SP signal and with a secondary SP signature related with a summit caldera. In order to explain these results showing a very good correlation between morphologic and lithologic changes as function of elevation, caldera boundaries have been suggested. The latter would be located at an average elevation of (1) 4350–4400 m, (2) 4950–5000 m, and (3) 5500– 5550 m. For the lowest boundary in elevation, the coincidence with the lateral extension of the hydrothermal system inferred from SP measurements suggests that caldera walls act as a barrier for lateral extension of hydrothermal systems. In the summit area, the highest boundary has been related with the summit caldera, inferred by a secondary SP minimum and geological evidence.
    Description: - Institut de Recherche pour le Développement (IRD) - Instituto Geofisico del Peru´ (IGP).
    Description: Published
    Description: 283– 297
    Description: partially_open
    Keywords: caldera ; elliptic Fourier functions ; geomorphology ; self-potential ; Misti volcano ; Peru ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 756700 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: The role of sector collapse in the generation of catastrophic volcanigenic tsunami has become well understood only recently, in part because of the problems in the preservation and recognition of tsunami deposits. Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128] modeled a tsunami produced by the c. 5,000 years BP collapse of the Sciara del Fuoco on the island volcano Stromboli. Although deposits associated with this event are generally lacking on the island, volcaniclastic breccias on the SE side of the island extending to an elevation above 120 m a.s.l. may have been generated by this tsunami. Deposits above 100 m are dominated by coarse breccias comprising disorganized, poorly sorted, nonbedded, angular to subangular lava blocks in a matrix of finer pyroclastic debris. These breccias are interpreted as a water-induced mass flow, possibly a noncohesive debris flow, generated as colluvial material on steep slopes was remobilized by the return flow of the tsunami wave, the run-up of which reached an elevation exceeding 120 m a.s.l. Finer breccias of subrounded to rounded lava blocks cropping out at 15 m a.s.l. are similar to modern high-energy beach deposits and are interpreted as beach material redeposited by the advancing tsunami wave. The location of these deposits matches the predicted location of the maximum tsunami wave amplitude as calculated by modeling studies of Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128]. Whereas the identification and modeling of paleo-tsunami events is typically based on the observation of the sedimentary deposits of the tsunami run-up, return flow may be equally or more important in controlling patterns of sedimentation.
    Description: Published
    Description: 329-340
    Description: partially_open
    Keywords: tsunami ; flank collapse ; landslide ; run-up ; return flow ; debris flow ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 626245 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Mount Etna produced two significant eruptions in 2001 and 2002–2003, which we have analysed using geological, seismic and deformation data. These eruptions showed some similarities, such as the activating of two magmatic plumbing systems (central–lateral and eccentric), but they differed in their triggering mechanisms. While the 2001 eruption was largely the result of the emplacement of a N–S eccentric dike (independent from the central conduits) consistent with E–W regional extension, the 2002–2003 eruption occurred in response to a major flank slip on the eastern and southeastern sides of the volcano. This is demonstrated by the spatial and temporal distribution of seismicity and deformation preceding and accompanying the two eruptions. During the months prior to the 2001 eruption, most epicenters were concentrated on the southern flank, at depths of 5–15 km below sea level. During the 4 days before the eruption, earthquake hypocenters migrated to shallower levels (from 5 km bsl. upward) indicating the emplacement of the eccentric dike. This is confirmed by the patterns of ground fracturing observed in the field and deformation documented by electronic distance measurements (EDM). In contrast, the months before the 2002–2003 eruption were characterised by shallower seismicity, mainly concentrated along the active faults bordering the slipping flank sector. Flank slip accelerated in September 2002 and a second, more vigorous acceleration of flank slip occurred on 26–27 October 2002, accompanying the opening of eruptive vents. The very short (2 h) seismic crisis preceding the onset of eruptive activity stands in neat contrast with the 4 days of intense seismicity before the 2001 eruption. Subsequently, flank slip-deformation extended all over the eastern and southeastern flanks of the volcano, causing serious damage in this sector. The events of 2001–2003 can be seen as a continuous chain of intimately interacting processes including regional tectonics, magma accumulation and eruption, and flank instability. In this scenario the 2001 eruption led to increased flank instability that subsequently accelerated and culminated with the massive flank slip, which in turn facilitated the 2002–2003 eruption. This sequence of events points to a long-term feedback mechanism between magmatism and flank instability at Etna.
    Description: Published
    Description: 235-255
    Description: partially_open
    Keywords: eruption triggering ; central–lateral vs. eccentric eruptions ; flank instability and slip ; volcano-tectonics ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 4829142 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.
    Description: Published
    Description: 1^18
    Description: partially_open
    Keywords: Stromboli ; hydrothermal system ; self-potential ; soil gas ; carbon dioxide ; Aeolian islands ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1106054 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...