ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (161)
  • American Association for the Advancement of Science (AAAS)  (161)
  • American Institute of Physics (AIP)
  • 2000-2004  (161)
  • 2004  (161)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (161)
  • American Institute of Physics (AIP)
Years
  • 2000-2004  (161)
Year
  • 1
    Publication Date: 2004-11-20
    Description: An autoregulatory transcription-translation feedback loop is thought to be essential in generating circadian rhythms in any model organism. In the cyanobacterium Synechococcus elongatus, the essential clock protein KaiC is proposed to form this type of transcriptional negative feedback. Nevertheless, we demonstrate here temperature-compensated, robust circadian cycling of KaiC phosphorylation even without kaiBC messenger RNA accumulation under continuous dark conditions. This rhythm persisted in the presence of a transcription or translation inhibitor. Moreover, kinetic profiles in the ratio of KaiC autophosphorylation-dephosphorylation were also temperature compensated in vitro. Thus, the cyanobacterial clock can keep time independent of de novo transcription and translation processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomita, Jun -- Nakajima, Masato -- Kondo, Takao -- Iwasaki, Hideo -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):251-4. Epub 2004 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550625" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/biosynthesis/*metabolism ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins ; Darkness ; Feedback, Physiological ; Light ; Mutation ; Operon ; Phosphorylation ; Protein Biosynthesis ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Synechococcus/*genetics/*metabolism ; Temperature ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beckman, Mary -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1888-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218114" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Bedding and Linens ; *Behavior, Animal ; Female ; Male ; *Maternal Deprivation ; Mice ; *Mothers ; Mutation ; *Object Attachment ; Odors ; Receptors, Opioid, mu/genetics/*physiology ; Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-08-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bedalov, Antonio -- Simon, Julian A -- New York, N.Y. -- Science. 2004 Aug 13;305(5686):954-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clinical Research Division and J. A. Simon is in the Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. abedalov@fhcrc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15310883" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Nucleus/metabolism ; Cell Survival ; Cells, Cultured ; Ganglia, Spinal/cytology ; Mice ; Mutation ; NAD/biosynthesis/*metabolism ; Nerve Tissue Proteins/genetics/*metabolism ; Neurodegenerative Diseases/drug therapy/physiopathology ; Neuroprotective Agents/therapeutic use ; Nicotinamide-Nucleotide Adenylyltransferase/metabolism ; RNA, Small Interfering ; Sirtuin 1 ; Sirtuins/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Wallerian Degeneration/metabolism/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-05-08
    Description: There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bejerano, Gill -- Pheasant, Michael -- Makunin, Igor -- Stephen, Stuart -- Kent, W James -- Mattick, John S -- Haussler, David -- 1P41HG02371/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 May 28;304(5675):1321-5. Epub 2004 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA. jill@soe.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131266" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Base Sequence ; Chickens/genetics ; Computational Biology ; *Conserved Sequence ; DNA, Intergenic ; Dogs/genetics ; Evolution, Molecular ; Exons ; Gene Expression Regulation ; Genes ; Genome ; *Genome, Human ; Humans ; Introns ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA/chemistry/genetics/metabolism ; Rats/genetics ; Takifugu/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-01-06
    Description: Pairing, synapsis, and recombination are prerequisites for accurate chromosome segregation in meiosis. The phs1 gene in maize is required for pairing to occur between homologous chromosomes. In the phs1 mutant, homologous chromosome synapsis is completely replaced by synapsis between nonhomologous partners. The phs1 gene is also required for installation of the meiotic recombination machinery on chromosomes, as the mutant almost completely lacks chromosomal foci of the recombination protein RAD51. Thus, in the phs1 mutant, synapsis is uncoupled from recombination and pairing. The protein encoded by the phs1 gene likely acts in a multistep process to coordinate pairing, recombination, and synapsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pawlowski, Wojciech P -- Golubovskaya, Inna N -- Timofejeva, Ljudmilla -- Meeley, Robert B -- Sheridan, William F -- Cande, W Zacheus -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. wpawlows@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704428" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Nucleus/metabolism ; *Chromosome Pairing ; Chromosomes, Plant/*physiology ; Cloning, Molecular ; Conserved Sequence ; DNA, Plant/metabolism ; DNA-Binding Proteins ; Genes, Plant ; In Situ Hybridization, Fluorescence ; In Situ Nick-End Labeling/methods ; *Meiosis ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Proteins/chemistry/genetics/*physiology ; RNA, Ribosomal, 5S/genetics ; Rad51 Recombinase ; *Recombination, Genetic ; Sequence Alignment ; Synaptonemal Complex/metabolism/ultrastructure ; Telomere/physiology ; Zea mays/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-01-06
    Description: RNA interference (RNAi) is a widespread silencing mechanism that acts at both the posttranscriptional and transcriptional levels. Here, we describe the purification of an RNAi effector complex termed RITS (RNA-induced initiation of transcriptional gene silencing) that is required for heterochromatin assembly in fission yeast. The RITS complex contains Ago1 (the fission yeast Argonaute homolog), Chp1 (a heterochromatin-associated chromodomain protein), and Tas3 (a novel protein). In addition, the complex contains small RNAs that require the Dicer ribonuclease for their production. These small RNAs are homologous to centromeric repeats and are required for the localization of RITS to heterochromatic domains. The results suggest a mechanism for the role of the RNAi machinery and small RNAs in targeting of heterochromatin complexes and epigenetic gene silencing at specific chromosomal loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244756/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244756/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verdel, Andre -- Jia, Songtao -- Gerber, Scott -- Sugiyama, Tomoyasu -- Gygi, Steven -- Grewal, Shiv I S -- Moazed, Danesh -- R01 GM072805/GM/NIGMS NIH HHS/ -- R01 GM072805-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):672-6. Epub 2004 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Argonaute Proteins ; Cell Cycle Proteins/chemistry/genetics/isolation & purification/*metabolism ; Centromere/metabolism ; Chromosomes, Fungal/metabolism ; Endoribonucleases/chemistry/genetics/isolation & purification/metabolism ; Genes, Reporter ; Heterochromatin/*metabolism ; Mass Spectrometry ; Models, Genetic ; Molecular Sequence Data ; Mutation ; Precipitin Tests ; Protein Binding ; *RNA Interference ; RNA, Fungal/metabolism ; RNA, Small Interfering/metabolism ; RNA-Binding Proteins ; Ribonuclease III/metabolism ; Schizosaccharomyces/*genetics/metabolism ; Schizosaccharomyces pombe Proteins/chemistry/genetics/isolation & ; purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-02-21
    Description: We have engineered a pathway for the formation of disulfide bonds. By imposing evolutionary pressure, we isolated mutations that changed thioredoxin, which is a monomeric disulfide reductase, into a [2Fe-2S] bridged dimer capable of catalyzing O2-dependent sulfhydryl oxidation in vitro. Expression of the mutant protein in Escherichia coli with oxidizing cytoplasm and secretion via the Tat pathway restored disulfide bond formation in strains that lacked the complete periplasmic oxidative machinery (DsbA and DsbB). The evolution of [2Fe-2S] thioredoxin illustrates how mutations within an existing scaffold can add a cofactor and markedly change protein function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masip, Lluis -- Pan, Jonathan L -- Haldar, Suranjana -- Penner-Hahn, James E -- DeLisa, Matthew P -- Georgiou, George -- Bardwell, James C A -- Collet, Jean-Francois -- GM-38047/GM/NIGMS NIH HHS/ -- GM-55090/GM/NIGMS NIH HHS/ -- GM-57039/GM/NIGMS NIH HHS/ -- GM-64662/GM/NIGMS NIH HHS/ -- P41-RR01633/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1185-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering and Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976313" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/genetics/metabolism ; Cell Membrane/metabolism ; Cysteine/analysis ; Cytoplasm/metabolism ; Dimerization ; Directed Molecular Evolution ; Disulfides/chemistry/*metabolism ; Escherichia coli/genetics/*metabolism/physiology ; Hirudins/chemistry/metabolism ; Iron/analysis ; Membrane Proteins/genetics/metabolism ; Movement ; Mutation ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Disulfide-Isomerases/genetics/metabolism ; *Protein Engineering ; Protein Folding ; Proteins/chemistry/*metabolism ; Sulfides/analysis ; Thioredoxins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berger, Frederic -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):483-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecole Normale Superieure de Lyon, Laboratoire RDP UMR 5667, F-69364 Lyon Cedex 07, France. frederic.berger@ens-lyon.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739448" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/*genetics/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; DNA Methylation ; *Gene Expression Regulation, Plant ; Gene Silencing ; *Genomic Imprinting ; Homeodomain Proteins/*genetics/metabolism ; Mutation ; N-Glycosyl Hydrolases/genetics/metabolism ; Repetitive Sequences, Nucleic Acid ; Seeds/*genetics/metabolism ; Trans-Activators/genetics/metabolism ; Transcription Factors/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-10-30
    Description: Polar transport-dependent local accumulation of auxin provides positional cues for multiple plant patterning processes. This directional auxin flow depends on the polar subcellular localization of the PIN auxin efflux regulators. Overexpression of the PINOID protein kinase induces a basal-to-apical shift in PIN localization, resulting in the loss of auxin gradients and strong defects in embryo and seedling roots. Conversely, pid loss of function induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence apex, accompanied by defective organogenesis. Our results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friml, Jiri -- Yang, Xiong -- Michniewicz, Marta -- Weijers, Dolf -- Quint, Ab -- Tietz, Olaf -- Benjamins, Rene -- Ouwerkerk, Pieter B F -- Ljung, Karin -- Sandberg, Goran -- Hooykaas, Paul J J -- Palme, Klaus -- Offringa, Remko -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):862-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Genetics, Center for Molecular Biology of Plants, University Tubingen, Auf der Morgenstelle 3, D-72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514156" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport ; Gene Expression Regulation, Plant ; Indoleacetic Acids/*metabolism ; Membrane Transport Proteins/genetics/*metabolism ; Meristem/metabolism ; Mutation ; Plant Epidermis/cytology/metabolism ; Plant Roots/metabolism ; Plant Shoots/metabolism ; Plants, Genetically Modified ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Seeds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beutler, Ernest -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2051-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA. beutler@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604397" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimicrobial Cationic Peptides/*metabolism ; Biological Transport ; Cation Transport Proteins/genetics/*metabolism ; Enterocytes/metabolism ; Erythropoiesis ; Erythropoietin/genetics/metabolism ; Gene Expression Regulation ; Hemochromatosis/genetics ; Hepatocytes/metabolism ; Hepcidins ; Histocompatibility Antigens Class I/genetics ; Homeostasis ; Iron/*metabolism ; Iron Regulatory Protein 1/*metabolism ; Iron Regulatory Protein 2/*metabolism ; Membrane Proteins/genetics ; Mice ; Models, Biological ; Mutation ; Nitric Oxide/metabolism ; Oxygen/physiology ; Response Elements ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...