ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (70)
  • American Association for the Advancement of Science (AAAS)  (70)
  • Nature Publishing Group
  • 1995-1999  (70)
  • 1996  (70)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (70)
  • Nature Publishing Group
Years
  • 1995-1999  (70)
Year
  • 1
    Publication Date: 1996-07-19
    Description: Signaling molecules are essential for vertebrate embryonic development. Here, two Xenopus homologs of the Drosophila gene fringe, lunatic Fringe (lFng) and radical Fringe (rFng), were identified and the protein product of lFng further characterized. The messenger RNA of lFng is supplied as a maternal message. Its product is a precursor protein consisting of pre-, pro-, and mature regions. The mature lunatic Fringe protein is secreted extracellularly, and it induced mesodermal tissue formation in animal cap assays. These results indicate that secreted lunatic Fringe can induce mesoderm and reveal that the Fringe proteins are a family of vertebrate signaling molecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J Y -- Wen, L -- Zhang, W J -- Rao, Y -- R01 CA114197/CA/NCI NIH HHS/ -- R01 CA114197-01A2/CA/NCI NIH HHS/ -- R01 EY014576/EY/NEI NIH HHS/ -- R01 EY014576-03/EY/NEI NIH HHS/ -- R01 GM070967/GM/NIGMS NIH HHS/ -- R01 GM070967-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 19;273(5273):355-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662522" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blastocyst/metabolism ; Cell Line ; Culture Media, Conditioned ; Culture Techniques ; Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; *Embryonic Induction ; *Glycosyltransferases ; Mesoderm/*metabolism ; Molecular Sequence Data ; *N-Acetylglucosaminyltransferases ; Polymerase Chain Reaction ; Protein Processing, Post-Translational ; Proteins/chemistry/genetics/*physiology/secretion ; RNA, Messenger/genetics/metabolism ; *Signal Transduction ; Xenopus/*embryology/genetics ; *Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-03-01
    Description: Heterosexual transmission by vaginal intercourse accounts for most transmission of human immunodeficiency virus-type 1 (HIV-1) in Africa and Asia but is less important in the HIV-1 epidemics of the United States and Western Europe. Epithelial Langerhans' cells (LCs) represent a possible source of initial cell contact for vaginal infection. Fifteen primary isolates of HIV-1 from U.S. homosexuals and 18 HIV-1 isolates from Thailand heterosexuals were evaluated for growth in LCs of U.S. origin. All the viruses from the Thai heterosexuals, which were subtype E, grew more efficiently in the LCs than any of the viruses from the U.S. homosexuals, which are subtype B. These results suggest that LC tropism is associated with the efficiency of heterosexual transmission of HIV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soto-Ramirez, L E -- Renjifo, B -- McLane, M F -- Marlink, R -- O'Hara, C -- Sutthent, R -- Wasi, C -- Vithayasai, P -- Vithayasai, V -- Apichartpiyakul, C -- Auewarakul, P -- Pena Cruz, V -- Chui, D S -- Osathanondh, R -- Mayer, K -- Lee, T H -- Essex, M -- 5 D43 TW0004/TW/FIC NIH HHS/ -- CA 39805/CA/NCI NIH HHS/ -- HL 33774/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1291-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard AIDS Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638113" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cells, Cultured ; HIV Core Protein p24/analysis ; HIV Infections/*transmission/virology ; HIV-1/classification/*growth & development/isolation & purification ; Homosexuality, Male ; Humans ; Langerhans Cells/*virology ; Macrophages/virology ; Male ; Monocytes/virology ; *Sexual Behavior ; Sexually Transmitted Diseases, Viral/*transmission/virology ; T-Lymphocytes/virology ; Thailand ; United States ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-11-22
    Description: The RAC guanine nucleotide binding proteins regulate multiple biological activities, including actin polymerization, activation of the Jun kinase (JNK) cascade, and cell proliferation. RAC effector loop mutants were identified that separate the ability of RAC to interact with different downstream effectors. One mutant of activated human RAC protein, RACV12H40 (with valine and histidine substituted at position 12 and 40, respectively), was defective in binding to PAK3, a Ste20-related p21-activated kinase (PAK), but bound to POR1, a RAC-binding protein. This mutant failed to stimulate PAK and JNK activity but still induced membrane ruffling and mediated transformation. A second mutant, RACV12L37 (with leucine substituted at position 37), which bound PAK but not POR1, induced JNK activation but was defective in inducing membrane ruffling and transformation. These results indicate that the effects of RAC on the JNK cascade and on actin polymerization and cell proliferation are mediated by distinct effector pathways that diverge at the level of RAC itself.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joneson, T -- McDonough, M -- Bar-Sagi, D -- Van Aelst, L -- CA55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1374-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910277" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Actins/*metabolism ; *Adaptor Proteins, Signal Transducing ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/metabolism ; *Cell Division ; Cell Line ; Cell Line, Transformed ; Cell Membrane/ultrastructure ; Enzyme Activation ; GTP-Binding Proteins/genetics/metabolism/*physiology ; Humans ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Mutagenesis ; Protein-Serine-Threonine Kinases/metabolism ; Rats ; Transfection ; p21-Activated Kinases ; rac GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-06-07
    Description: The myogenic basic helix-loop-helix (bHLH) and MEF2 transcription factors are expressed in the myotome of developing somites and cooperatively activate skeletal muscle gene expression. The bHLH protein Twist is expressed throughout the epithelial somite and is subsequently excluded from the myotome. Ectopically expressed mouse Twist (Mtwist) was shown to inhibit myogenesis by blocking DNA binding by MyoD, by titrating E proteins, and by inhibiting trans-activation by MEF2. For inhibition of MEF2, Mtwist required heterodimerization with E proteins and an intact basic domain and carboxyl-terminus. Thus, Mtwist inhibits both families of myogenic regulators and may regulate myotome formation temporally or spatially.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spicer, D B -- Rhee, J -- Cheung, W L -- Lassar, A B -- 5-F32-AR08214-02/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 7;272(5267):1476-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8633239" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Differentiation ; Cell Line ; Creatine Kinase/genetics ; DNA/metabolism ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Drosophila ; Drosophila Proteins ; Helix-Loop-Helix Motifs/*physiology ; Inhibitor of Differentiation Protein 1 ; MEF2 Transcription Factors ; Mice ; Muscle, Skeletal/*cytology/metabolism ; MyoD Protein/metabolism/physiology ; Myogenic Regulatory Factors ; Nuclear Proteins/chemistry/metabolism/*physiology ; *Repressor Proteins ; TCF Transcription Factors ; Transcription Factor 7-Like 1 Protein ; Transcription Factors/*antagonists & ; inhibitors/chemistry/genetics/metabolism/physiology ; Transcriptional Activation ; Transfection ; Twist Transcription Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-02-09
    Description: The RAS guanine nucleotide binding proteins activate multiple signaling events that regulate cell growth and differentiation. In quiescent fibroblasts, ectopic expression of activated H-RAS (H-RASV12, where V12 indicates valine-12) induces membrane ruffling, mitogen-activated protein (MAP) kinase activation, and stimulation of DNA synthesis. A mutant of activated H-RAS, H-RASV12C40 (where C40 indicates cysteine-40), was identified that was defective for MAP kinase activation and stimulation of DNA synthesis, but retained the ability to induce membrane ruffling. Another mutant of activated H-RAS, H-RASV12S35 (where S35 indicates serine-35), which activates MAP kinase, was defective for stimulation of membrane ruffling and induction of DNA synthesis. Expression of both mutants resulted in a stimulation of DNA synthesis that was comparable to that induced by H-RASV12. These results indicate that membrane ruffling and activation of MAP kinase represent distinct RAS effector pathways and that input from both pathways is required for the mitogenic activity of RAS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joneson, T -- White, M A -- Wigler, M H -- Bar-Sagi, D -- CA 55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):810-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8628998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Division ; Cell Line ; Cell Membrane/*ultrastructure ; DNA/biosynthesis ; Enzyme Activation ; GTP-Binding Proteins/genetics/metabolism ; Microinjections ; Mutation ; Plasmids ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-raf ; Rats ; Signal Transduction ; rac GTP-Binding Proteins ; ras Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-05-10
    Description: Transcription factors of the NFAT family are thought to play a major role in regulating the expression of cytokine genes and other inducible genes during the immune response. The role of NFAT1 was investigated by targeted disruption of the NFAT1 gene. Unexpectedly, cells from NFAT1 -/- mice showed increased primary responses to Leishmania major and mounted increased secondary responses to ovalbumin in vitro. In an in vivo model of allergic inflammation, the accumulation of eosinophils and levels of serum immunoglobulin E were increased in NFAT1 -/- mice. These results suggest that NFAT1 exerts a negative regulatory influence on the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xanthoudakis, S -- Viola, J P -- Shaw, K T -- Luo, C -- Wallace, J D -- Bozza, P T -- Luk, D C -- Curran, T -- Rao, A -- CA42471/CA/NCI NIH HHS/ -- GM46227/GM/NIGMS NIH HHS/ -- P30 CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 May 10;272(5263):892-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurogenetics Program, Department of CNS Research, Hoffmann-LaRoche, Nutley, NJ 07110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629027" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Protozoan/immunology ; Cell Line ; Cytokines/biosynthesis ; DNA-Binding Proteins/genetics/*physiology ; Eosinophils/immunology ; Gene Targeting ; Hypersensitivity/*immunology ; *Immunity ; Immunoglobulin E/biosynthesis ; Immunologic Memory ; Leishmania major/immunology ; *Lymphocyte Activation ; Mice ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Ovalbumin/immunology ; T-Lymphocytes/immunology ; Transcription Factors/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-08-16
    Description: A signaling pathway has been elucidated whereby growth factors activate the transcription factor cyclic adenosine monophosphate response element-binding protein (CREB), a critical regulator of immediate early gene transcription. Growth factor-stimulated CREB phosphorylation at serine-133 is mediated by the RAS-mitogen-activated protein kinase (MAPK) pathway. MAPK activates CREB kinase, which in turn phosphorylates and activates CREB. Purification, sequencing, and biochemical characterization of CREB kinase revealed that it is identical to a member of the pp90(RSK) family, RSK2. RSK2 was shown to mediate growth factor induction of CREB serine-133 phosphorylation both in vitro and in vivo. These findings identify a cellular function for RSK2 and define a mechanism whereby growth factor signals mediated by RAS and MAPK are transmitted to the nucleus to activate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xing, J -- Ginty, D D -- Greenberg, M E -- CA43855/CA/NCI NIH HHS/ -- NS34814-01/NS/NINDS NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1996 Aug 16;273(5277):959-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8688081" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cyclic AMP Response Element-Binding Protein/*metabolism ; Epidermal Growth Factor/pharmacology ; *Gene Expression Regulation ; Growth Substances/*pharmacology ; Humans ; Molecular Sequence Data ; Nerve Growth Factors/pharmacology ; PC12 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-08-09
    Description: STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, X -- Sun, Y L -- Hoey, T -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):794-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8670419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/immunology/*metabolism ; Interferon-gamma/genetics ; Introns ; Molecular Sequence Data ; Mutation ; Oligodeoxyribonucleotides/metabolism ; Promoter Regions, Genetic ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; Sequence Deletion ; Signal Transduction ; Trans-Activators/chemistry/immunology/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-23
    Description: The pleiotropic biological activities of interleukin-1 (IL-1) are mediated by its type I receptor (IL-1RI). When the ligand binds, IL-1RI initiates a signaling cascade that results in the activation of the transcription regulator nuclear factor kappa B (NF-kappa B). A protein kinase designated IRAK (IL-1 receptor-associated kinase) was purified, and its complementary DNA was molecularly cloned. When human embryonic kidney cells (cell line 293) over-expressing IL-1RI or HeLa cells were exposed to IL-1, IRAK rapidly associated with the IL-1RI complex and was phosphorylated. The primary amino acid sequence of IRAK shares similarity with that of Pelle, a protein kinase that is essential for the activation of a NF-kappa B homolog in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Z -- Henzel, W J -- Gao, X -- New York, N.Y. -- Science. 1996 Feb 23;271(5252):1128-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Tularik, Incorporated, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8599092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cloning, Molecular ; DNA, Complementary/genetics ; Drosophila ; *Drosophila Proteins ; HeLa Cells ; Humans ; Interleukin-1/*metabolism/pharmacology ; Interleukin-1 Receptor-Associated Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/chemistry/genetics/isolation & purification/*metabolism ; Protein-Serine-Threonine Kinases/chemistry ; Receptors, Interleukin-1/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-06-21
    Description: ZPR1 is a zinc finger protein that binds to the cytoplasmic tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Deletion analysis demonstrated that this binding interaction is mediated by the zinc fingers of ZPR1 and subdomains X and XI of the EGFR tyrosine kinase. Treatment of mammalian cells with EGF caused decreased binding of ZPR1 to the EGFR and the accumulation of ZPR1 in the nucleus. The effect of EGF to regulate ZPR1 binding is dependent on tyrosine phosphorylation of the EGFR. ZPR1 therefore represents a prototype for a class of molecule that binds to the EGFR and is released from the receptor after activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Konstantinov, K N -- Wu, I H -- Klier, F G -- Barrett, T -- Davis, R J -- R01-CA58396/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 21;272(5269):1797-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/*metabolism/secretion ; Cell Line ; Cell Nucleus/metabolism ; Cloning, Molecular ; Cytoplasm/metabolism ; Epidermal Growth Factor/pharmacology ; Humans ; Immunoblotting ; Male ; Mice ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Secondary ; RNA, Messenger/genetics/metabolism ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Testis/metabolism ; Type C Phospholipases/metabolism ; Vanadates/pharmacology ; *Zinc Fingers ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...