ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cloning, Molecular  (60)
  • American Association for the Advancement of Science (AAAS)  (60)
  • Annual Reviews
  • Periodicals Archive Online (PAO)
  • 1990-1994  (60)
  • 1990  (60)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (60)
  • Annual Reviews
  • Periodicals Archive Online (PAO)
Years
  • 1990-1994  (60)
Year
  • 1
    Publication Date: 1990-06-01
    Description: Better understanding of the pathogenesis of acquired immunodeficiency syndrome (AIDS) would be greatly facilitated by a relevant animal model that uses molecularly cloned virus of defined sequence to induce the disease. Such a system would also be of great value for AIDS vaccine research. An infectious molecular clone of simian immunodeficiency virus (SIV) was identified that induces AIDS in common rhesus monkeys in a time frame suitable for laboratory investigation. These results provide another strong link in the chain of evidence for the viral etiology of AIDS. More importantly, they define a system for molecular dissection of the determinants of AIDS pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kestler, H -- Kodama, T -- Ringler, D -- Marthas, M -- Pedersen, N -- Lackner, A -- Regier, D -- Sehgal, P -- Daniel, M -- King, N -- AI25328/AI/NIAID NIH HHS/ -- RR00168/RR/NCRR NIH HHS/ -- RR00169/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1109-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160735" target="_blank"〉PubMed〈/a〉
    Keywords: *Acquired Immunodeficiency Syndrome ; Animals ; Antibodies, Viral/biosynthesis ; Cloning, Molecular ; *Disease Models, Animal ; Leukocytes, Mononuclear/microbiology ; Macaca mulatta ; Macrophages/microbiology ; Opportunistic Infections/etiology ; *Retroviridae Infections/complications/immunology ; *Simian Immunodeficiency Virus/genetics/immunology/isolation & ; purification/pathogenicity ; Transfection ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-27
    Description: Light-dependent expression of rbcS, the gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase, which is the key enzyme involved in carbon fixation in higher plants, is regulated at the transcriptional level. Sequence analysis of the gene has uncovered a conserved GT motif in the -150 to -100 region of many rbcS promoters. This motif serves as the binding site of a nuclear factor, designated GT-1. Analysis of site-specific mutants of pea rbcS-3A promoter demonstrated that GT-1 binding in vitro is correlated with light-responsive expression of the rbcS promoter in transgenic plants. However, it is not known whether factors other than GT-1 might also be required for activation of transcription by light. A synthetic tetramer of box II (TGTGTGGTTAATATG), the GT-1 binding site located between -152 to -138 of the rbcS-3A promoter, inserted upstream of a truncated cauliflower mosaic virus 35S promoter is sufficient to confer expression in leaves of transgenic tobacco. This expression occurs principally in chloroplast-containing cells, is induced by light, and is correlated with the ability of box II to bind GT-1 in vitro. The data show that the binding site for GT-1 is likely to be a part of the molecular light switch for rbcS activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, E -- Chua, N H -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):471-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2330508" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Chloramphenicol O-Acetyltransferase/genetics ; Cloning, Molecular ; DNA-Binding Proteins/*metabolism ; Gene Expression Regulation/*physiology ; Genetic Vectors ; *Light ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/*metabolism ; Plant Proteins/*metabolism ; *Plants, Toxic ; Promoter Regions, Genetic/genetics ; Ribulose-Bisphosphate Carboxylase/*genetics ; Tobacco/enzymology/*genetics ; Transcription, Genetic/radiation effects ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-06-29
    Description: The human immunodeficiency virus (HIV) tat protein (Tat) is a positive regulator of virus gene expression and replication. Biotinylated Tat was used as a probe to screen a lambda gt11 fusion protein library, and a complementary DNA encoding a protein that interacts with Tat was cloned. Expression of this protein, designated TBP-1 (for Tat binding protein-1), was observed in a variety of cell lines, with expression being highest in human cells. TBP-1 was localized predominantly in the nucleus, which is consistent with the nuclear localization of Tat. In cotransfection experiments, expression of TBP-1 was able to specifically suppress Tat-mediated transactivation. The strategy described may be useful for direct identification and cloning of genes encoding proteins that associate with other proteins to modulate their activity in a positive or negative fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelbock, P -- Dillon, P J -- Perkins, A -- Rosen, C A -- New York, N.Y. -- Science. 1990 Jun 29;248(4963):1650-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Hoffmann-La Roche Inc., Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2194290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cloning, Molecular ; DNA, Neoplasm/genetics ; DNA-Binding Proteins/*genetics/metabolism ; Escherichia coli/genetics ; Gene Expression ; Gene Library ; Gene Products, tat/*metabolism ; HIV/genetics ; Humans ; Molecular Sequence Data ; Plasmids ; Polymerase Chain Reaction ; *Proteasome Endopeptidase Complex ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/*metabolism ; Transcriptional Activation ; Transfection ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-07-13
    Description: The heterotrimeric guanine nucleotide-binding regulatory proteins act at the inner surface of the plasma membrane to relay information from cell surface receptors to effectors inside the cell. These G proteins are not integral membrane proteins, yet are membrane associated. The processing and function of the gamma subunit of the yeast G protein involved in mating-pheromone signal transduction was found to be affected by the same mutations that block ras processing. The nature of these mutations implied that the gamma subunit was polyisoprenylated and that this modification was necessary for membrane association and biological activity. A microbial screen was developed for pharmacological agents that inhibit polyisoprenylation and that have potential application in cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finegold, A A -- Schafer, W R -- Rine, J -- Whiteway, M -- Tamanoi, F -- CA 41996/CA/NCI NIH HHS/ -- GM 07183/GM/NIGMS NIH HHS/ -- GM 35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):165-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/metabolism ; Cloning, Molecular ; Epitopes/genetics ; GTP-Binding Proteins/genetics/*metabolism ; Hemagglutinins, Viral/immunology ; Lovastatin/pharmacology ; Mevalonic Acid/pharmacology ; Molecular Sequence Data ; Mutation ; Oncogene Protein p21(ras)/genetics/*metabolism ; Orthomyxoviridae/immunology ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae/*genetics/metabolism ; Signal Transduction ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-09
    Description: Transcription of a typical eukaryotic gene by RNA polymerase II is activated by proteins bound to sites found near the beginning of the gene as well as to sites, called enhancers, located a great distance from the gene. According to one view, the primary difference between an activator that can work at a large distance and one that cannot is that the former bears a particularly strong activating region; the stronger the activating region, the more readily the activator interacts with its target bound near the transcriptional start site, with the intervening DNA looping out to accommodate the reaction. One alternative view is that the effect of proteins bound to enhancers might require some special aspect of cellular or chromosome structure. Consistent with the first view, an activator bearing an unusually potent activating region can stimulate transcription of a mammalian gene in a HeLa nuclear extract when bound as far as 1.3 kilobase pairs upstream or 320 base pairs downstream of the transcriptional start site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carey, M -- Leatherwood, J -- Ptashne, M -- New York, N.Y. -- Science. 1990 Feb 9;247(4943):710-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2405489" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factors ; Binding Sites ; Blood Proteins/pharmacology ; Cloning, Molecular ; DNA/metabolism ; DNA-Binding Proteins ; Fungal Proteins/metabolism/*pharmacology ; HeLa Cells ; Phosphoproteins/pharmacology ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; Recombinant Fusion Proteins/pharmacology ; *Saccharomyces cerevisiae Proteins ; Templates, Genetic ; Trans-Activators/pharmacology ; Transcription Factors/pharmacology ; Transcription, Genetic/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-07-27
    Description: The major autophosphorylation sites of the rat beta II isozyme of protein kinase C were identified. The modified threonine and serine residues were found in the amino-terminal peptide, the carboxyl-terminal tail, and the hinge region between the regulatory lipid-binding domain and the catalytic kinase domain. Because this autophosphorylation follows an intrapeptide mechanism, extraordinary flexibility of the protein is necessary to phosphorylate the three regions. Comparison of the sequences surrounding the modified residues showed no obvious recognition motif nor any similarity to substrate phosphorylation sites, suggesting that proximity to the active site may be the primary criterion for their phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flint, A J -- Paladini, R D -- Koshland, D E Jr -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377895" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Cloning, Molecular ; Isoenzymes/genetics/*metabolism ; Molecular Sequence Data ; Peptide Fragments/isolation & purification/metabolism ; Phosphorylation ; Protein Conformation ; Protein Kinase C/genetics/*metabolism ; Rats ; Recombinant Proteins/metabolism ; Signal Transduction ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-05-11
    Description: Chronic granulomatous diseases (CGDs) are characterized by recurrent infections resulting from impaired superoxide production by a phagocytic cell, nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) oxidase. Complementary DNAs were cloned that encode the 67-kilodalton (kD) cytosolic oxidase factor (p67), which is deficient in 5% of CGD patients. Recombinant p67 (r-p67) partially restored NADPH oxidase activity to p67-deficient neutrophil cytosol from these patients. The p67 cDNA encodes a 526-amino acid protein with acidic middle and carboxyl-terminal domains that are similar to a sequence motif found in the noncatalytic domain of src-related tyrosine kinases. This motif was recently noted in phospholipase C-gamma, nonerythroid alpha-spectrin (fodrin), p21ras-guanosine triphophatase-activating protein (GAP), myosin-1 isoforms, yeast proteins cdc-25 and fus-1, and the 47-kD phagocyte oxidase factor (p47), which suggests the possibility of common regulatory features.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leto, T L -- Lomax, K J -- Volpp, B D -- Nunoi, H -- Sechler, J M -- Nauseef, W M -- Clark, R A -- Gallin, J I -- Malech, H L -- I01 BX000513/BX/BLRD VA/ -- New York, N.Y. -- Science. 1990 May 11;248(4956):727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1692159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; Granulomatous Disease, Chronic/blood/enzymology/genetics ; Humans ; Molecular Sequence Data ; NADH, NADPH Oxidoreductases/blood/*genetics ; NADPH Oxidase ; Neutrophils/*enzymology ; Protein-Tyrosine Kinases/genetics ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins pp60(c-src) ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-21
    Description: Transcription of the mouse alpha-fetoprotein gene is activated in the developing fetal liver and gut and repressed in both tissues shortly after birth. With germline transformation in mice, a cis-acting element was identified upstream of the transcription initiation site of the alpha-fetoprotein gene that was responsible for repression of the gene in adult liver. This negative element acts as a repressor in a position-dependent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vacher, J -- Tilghman, S M -- CA44976/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1732-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Princeton University, NJ 08544.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1702902" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Animals, Newborn ; Chromosome Deletion ; Cloning, Molecular ; DNA-Binding Proteins/metabolism ; Enhancer Elements, Genetic ; Fetus ; *Gene Expression Regulation ; Hepatocyte Nuclear Factor 1 ; Hepatocyte Nuclear Factor 1-alpha ; Hepatocyte Nuclear Factor 1-beta ; Liver/growth & development/*metabolism ; Mice ; *Nuclear Proteins ; Transcription Factors/metabolism ; Transcription, Genetic ; alpha-Fetoproteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-01-05
    Description: Cosmid clones containing human DNA inserts have been mapped on chromosome 11 by fluorescence in situ hybridization under conditions that suppress signal from repetitive DNA sequences. Thirteen known genes, one chromosome 11-specific DNA repeat, and 36 random clones were analyzed. High-resolution mapping was facilitated by using digital imaging microscopy and by analyzing extended (prometaphase) chromosomes. The map coordinates established by in situ hybridization showed a one to one correspondence with those determined by Southern (DNA) blot analysis of hybrid cell lines containing fragments of chromosome 11. Furthermore, by hybridizing three or more cosmids simultaneously, gene order on the chromosome could be established unequivocally. These results demonstrate the feasibility of rapidly producing high-resolution maps of human chromosomes by in situ hybridization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lichter, P -- Tang, C J -- Call, K -- Hermanson, G -- Evans, G A -- Housman, D -- Ward, D C -- GM-27882/GM/NIGMS NIH HHS/ -- GM-33868/GM/NIGMS NIH HHS/ -- HD-18012/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jan 5;247(4938):64-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294592" target="_blank"〉PubMed〈/a〉
    Keywords: Blotting, Southern ; Cell Line ; *Chromosome Mapping ; *Chromosomes, Human, Pair 11 ; Cloning, Molecular ; Cosmids/*genetics ; DNA/*genetics ; DNA Probes ; Fluorescent Dyes ; Humans ; Hybrid Cells ; Microscopy, Fluorescence ; *Nucleic Acid Hybridization ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-06-22
    Description: Homologous or agonist-specific desensitization of beta-adrenergic receptors is thought to be mediated by a specific kinase, the beta-adrenergic receptor kinase (beta ARK). However, recent data suggest that a cofactor is required for this kinase to inhibit receptor function. The complementary DNA for such a cofactor was cloned and found to encode a 418-amino acid protein homologous to the retinal protein arrestin. The protein, termed beta-arrestin, was expressed and partially purified. It inhibited the signaling function of beta ARK-phosphorylated beta-adrenergic receptors by more than 75 percent, but not that of rhodopsin. It is proposed that beta-arrestin in concert with beta ARK effects homologous desensitization of beta-adrenergic receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohse, M J -- Benovic, J L -- Codina, J -- Caron, M G -- Lefkowitz, R J -- DK19318/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 22;248(4962):1547-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Biochemistry and Cell Biology, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2163110" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/*genetics/isolation & purification/pharmacology ; Arrestin ; Blotting, Northern ; Chromatography, Ion Exchange ; Cloning, Molecular ; *Cyclic AMP-Dependent Protein Kinases ; DNA/genetics ; Eye Proteins/*genetics/isolation & purification/pharmacology ; Gene Expression Regulation ; Molecular Sequence Data ; Phosphodiesterase Inhibitors/*pharmacology ; Phosphorylation ; Protein Kinases/*pharmacology ; RNA, Messenger/analysis ; Receptors, Adrenergic, beta/*drug effects/physiology ; Transfection ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1990-05-25
    Description: A subline of U937 cells (U937D) was obtained in which creatine kinase B (CK-B) messenger RNA was present and bound to ribosomes, but CK activity was undetectable. Transformation of U937D cells with retrovirus vectors that contain the 3' untranslated region (3' UTR) of CK-B messenger RNA exhibited CK activity with no change in abundance of CK-B mRNA. The 3' UTR formed a complex in vitro with a component of S100 extracts from wild-type cells. This binding activity was not detectable in S100 extracts from cells that expressed CK activity after transformation with the 3' UTR-containing vector. These results suggest that translation of CK-B is repressed by binding of a soluble factor or factors to the 3' UTR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ch'ng, J L -- Shoemaker, D L -- Schimmel, P -- Holmes, E W -- GM34366/GM/NIGMS NIH HHS/ -- R01-CA 47631-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):1003-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2343304" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cloning, Molecular ; Creatine Kinase/*genetics ; *Gene Expression Regulation ; Humans ; Hypoxanthine Phosphoribosyltransferase/genetics ; Polyribosomes/metabolism ; *Protein Biosynthesis ; RNA, Messenger/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1990-08-17
    Description: Primary and secondary hypertriglyceridemia is common in the general population, but the biochemical basis for this disease is largely unknown. With the use of transgenic technology, two lines of mice were created that express the human apolipoprotein CIII gene. One of these mouse lines with 100 copies of the gene was found to express large amounts of the protein and to be severely hypertriglyceridemic. The other mouse line with one to two copies of the gene expressed low amounts of the protein, but nevertheless manifested mild hypertriglyceridemia. Thus, overexpression of apolipoprotein CIII can be a primary cause of hypertriglyceridemia in vivo and may provide one possible etiology for this common disorder in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Y -- Azrolan, N -- O'Connell, A -- Walsh, A -- Breslow, J L -- HL 36461/HL/NHLBI NIH HHS/ -- HL33435/HL/NHLBI NIH HHS/ -- HL33714/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):790-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2167514" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoprotein C-III ; Apolipoproteins C/blood/*genetics ; Chylomicrons/blood ; Cloning, Molecular ; DNA Restriction Enzymes/metabolism ; DNA, Recombinant/metabolism ; *Gene Expression ; Humans ; Hypertriglyceridemia/blood/*genetics ; Lipoproteins, VLDL/blood ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Mice, Transgenic ; Nucleic Acid Hybridization ; RNA, Messenger/genetics ; Triglycerides/blood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-01
    Description: A heat shock protein gene, HSP104, was isolated from Saccharomyces cerevisiae and a deletion mutation was introduced into yeast cells. Mutant cells grew at the same rate as wild-type cells and died at the same rate when exposed directly to high temperatures. However, when given a mild pre-heat treatment, the mutant cells did not acquire tolerance to heat, as did wild-type cells. Transformation with the wild-type gene rescued the defect of mutant cells. The results demonstrate that a particular heat shock protein plays a critical role in cell survival at extreme temperatures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Lindquist, S L -- GM 35483/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 1;248(4959):1112-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2188365" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Fungal Proteins/biosynthesis/*genetics ; Genes, Fungal ; Heat-Shock Proteins/biosynthesis/genetics/*physiology ; *Hot Temperature ; Mutation ; Restriction Mapping ; Saccharomyces cerevisiae/genetics/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-07
    Description: The mammalian olfactory system may transduce odorant information via a G protein-mediated adenosine 3',5'-monophosphate (cAMP) cascade. A newly discovered adenylyl cyclase, termed type III, has been cloned, and its expression was localized to olfactory neurons. The type III protein resides in the sensory neuronal cilia, which project into the nasal lumen and are accessible to airborne odorants. The enzymatic activity of the type III adenylyl cyclase appears to differ from nonsensory cyclases. The large difference seen between basal and stimulated activity for the type III enzyme could allow considerable modulation of the intracellular cAMP concentration. This property may represent one mechanism of achieving sensitivity in odorant perception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakalyar, H A -- Reed, R R -- 5T32CA09339/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1403-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2255909" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/*physiology ; Amino Acid Sequence ; Animals ; Brain/enzymology/physiology ; Cell Line ; Clone Cells ; Cloning, Molecular ; Gene Library ; Glycosylation ; Isoenzymes/genetics/*physiology ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Neurons, Afferent/enzymology/physiology ; Nose/enzymology/physiology ; *Odors ; Protein Conformation ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1990-06-08
    Description: X-linked Alport syndrome is a hereditary glomerulonephritis in which progressive loss of kidney function is often accompanied by progressive loss of hearing. Ultrastructural defects in glomerular basement membranes (GBM) of Alport syndrome patients implicate an altered structural protein as the cause of nephritis. The product of COL4A5, the alpha 5(IV) collagen chain, is a specific component of GBM within the kidney, and the gene maps to the same X chromosomal region as does Alport syndrome. Three structural aberrations were found in COL4A5, in intragenic deletion, a Pst I site variant, and an uncharacterized abnormality, which appear to cause nephritis and deafness, with allele-specific severity, in three Alport syndrome kindreds in Utah.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, D F -- Hostikka, S L -- Zhou, J -- Chow, L T -- Oliphant, A R -- Gerken, S C -- Gregory, M C -- Skolnick, M H -- Atkin, C L -- Tryggvason, K -- DK 36200/DK/NIDDK NIH HHS/ -- DK 39497/DK/NIDDK NIH HHS/ -- M01 RR 00064/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 8;248(4960):1224-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Informatics, University of Utah School of Medicine, Salt Lake City 84132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2349482" target="_blank"〉PubMed〈/a〉
    Keywords: Blotting, Southern ; Cloning, Molecular ; Collagen/*genetics ; DNA/genetics/isolation & purification ; Exons ; Female ; *Genes ; Humans ; Male ; Molecular Weight ; *Mutation ; Nephritis, Hereditary/*genetics ; Pedigree ; Restriction Mapping ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1990-04-27
    Description: The beta-amyloid protein (beta/A4), derived from a larger amyloid precursor protein (APP), is the principal component of senile plaques in Alzheimer's disease. APP is an integral membrane glycoprotein and is secreted as a carboxyl-terminal truncated molecule. APP cleavage, which is a membrane-associated event, occurred at a site located within the beta/A4 region. This suggests that an intact amyloidogenic beta/A4 fragment is not generated during normal APP catabolism. Therefore, an early event in amyloid formation may involve altered APP processing that results in the release and subsequent deposition of intact beta/A4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sisodia, S S -- Koo, E H -- Beyreuther, K -- Unterbeck, A -- Price, D L -- AG 03359/AG/NIA NIH HHS/ -- AG 05146/AG/NIA NIH HHS/ -- AG 07914/AG/NIA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):492-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2181.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1691865" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Alzheimer Disease/*metabolism ; Amyloid/genetics/*metabolism ; Amyloid beta-Peptides ; Amyloid beta-Protein Precursor ; Animals ; Cell Membrane ; Cells, Cultured ; Cloning, Molecular ; DNA, Recombinant ; Glycosylation ; Half-Life ; Humans ; Immunoblotting ; Molecular Weight ; Plasmids ; Protein Precursors/genetics/*metabolism ; *Protein Processing, Post-Translational ; Recombinant Fusion Proteins/metabolism ; Substance P/genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-14
    Description: Introns have been found in the genomes of all major groups of organisms except eubacteria. The presence of introns in chloroplasts and mitochondria, both of which are of eubacterial origin, has been interpreted as evidence either for the recent acquisition of introns by organelles or for the loss of introns from their eubacterial progenitors. The gene for the leucine transfer RNA with a UAA anticodon [tRNALeu (UAA)] from five diverse cyanobacteria and several major groups of chloroplasts contains a single group I intron. The intron is conserved in secondary structure and primary sequence, and occupies the same position, within the UAA anticodon. The homology of the intron across chloroplasts and cyanobacteria implies that it was present in their common ancestor and that it has been maintained in their genomes for at least 1 billion years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhsel, M G -- Strickland, R -- Palmer, J D -- 35087/PHS HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1570-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2125748" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/genetics ; Base Sequence ; Biological Evolution ; Chloroplasts/*metabolism ; Cloning, Molecular ; Cyanobacteria/genetics ; Eubacterium/*genetics ; Eukaryota/genetics ; Introns/*genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Plants/genetics ; Polymerase Chain Reaction ; RNA, Transfer, Leu/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-05
    Description: In its wild-type form, the protein p53 can interfere with neoplastic processes. Tumor-derived cells often express mutant p53. Full-length mutant forms of p53 isolated so far from transformed mouse cells exhibit three common properties in vitro: loss of transformation-suppressing activity, gain of pronounced transforming potential, and ability to bind the heat shock protein cognate hsc70. A tumor-derived mouse p53 variant is now described, whose site of mutation corresponds to a hot spot for p53 in human tumors. While absolutely nonsuppressing, it is only weakly transforming and exhibits no detectable hsc70 binding. The data suggest that the ability of a p53 mutant to bind endogenous p53 is not the sole determinant of its oncogenic potential. The data also support the existence of gain-of-function p53 mutants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halevy, O -- Michalovitz, D -- Oren, M -- R01 CA40099/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 5;250(4977):113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218501" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Transformation, Neoplastic ; Cloning, Molecular ; Humans ; Mice ; *Mutation ; Nuclear Proteins/*genetics ; Plasmids ; Polymerase Chain Reaction ; RNA, Messenger/genetics ; Rats ; Transfection ; Tumor Suppressor Protein p53/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1990-01-05
    Description: Allelic deletions involving chromosome 18q occur in more than 70 percent of colorectal cancers. Such deletions are thought to signal the existence of a tumor suppressor gene in the affected region, but until now a candidate suppressor gene on this chromosomal arm had not been identified. A contiguous stretch of DNA comprising 370 kilobase pairs (kb) has now been cloned from a region of chromosome 18q suspected to reside near this gene. Potential exons in the 370-kb region were defined by human-rodent sequence identities, and the expression of potential exons was assessed by an "exon-connection" strategy based on the polymerase chain reaction. Expressed exons were used as probes for cDNA screening to obtain clones that encoded a portion of a gene termed DCC; this cDNA was encoded by at least eight exons within the 370-kb genomic region. The predicted amino acid sequence of the cDNA specified a protein with sequence similarity to neural cell adhesion molecules and other related cell surface glycoproteins. While the DCC gene was expressed in most normal tissues, including colonic mucosa, its expression was greatly reduced or absent in most colorectal carcinomas tested. Somatic mutations within the DCC gene observed in colorectal cancers included a homozygous deletion of the 5' end of the gene, a point mutation within one of the introns, and ten examples of DNA insertions within a 0.17-kb fragment immediately downstream of one of the exons. The DCC gene may play a role in the pathogenesis of human colorectal neoplasia, perhaps through alteration of the normal cell-cell interactions controlling growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fearon, E R -- Cho, K R -- Nigro, J M -- Kern, S E -- Simons, J W -- Ruppert, J M -- Hamilton, S R -- Preisinger, A C -- Thomas, G -- Kinzler, K W -- CA 09243/CA/NCI NIH HHS/ -- GM07184/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jan 5;247(4938):49-56.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oncology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294591" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Blotting, Southern ; Cell Adhesion Molecules, Neuronal/genetics ; *Chromosome Deletion ; *Chromosomes, Human, Pair 18 ; Cloning, Molecular ; Colorectal Neoplasms/*genetics ; Cross Reactions ; DNA Probes ; DNA, Neoplasm/*genetics ; Exons ; Gene Expression Regulation, Neoplastic ; Humans ; Molecular Sequence Data ; Polymerase Chain Reaction ; RNA, Neoplasm/genetics ; Sequence Homology, Nucleic Acid ; *Suppression, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-23
    Description: Substance P is a member of the tachykinin peptide family and participates in the regulation of diverse biological processes. The polymerase chain reaction and conventional library screening were used to isolate a complementary DNA (cDNA) encoding the rat substance P receptor from brain and submandibular gland. By homology analysis, this receptor belongs to the G protein-coupled receptor superfamily. The receptor cDNA was expressed in a mammalian cell line and the ligand binding properties of the encoded receptor were pharmacologically defined by Scatchard analysis and tachykinin peptide displacement as those of a substance P receptor. The distribution of the messenger RNA for this receptor is highest in urinary bladder, submandibular gland, striatum, and spinal cord, which is consistent with the known distribution of substance P receptor binding sites. Thus, this receptor appears to mediate the primary actions of substance P in various brain regions and peripheral tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hershey, A D -- Krause, J E -- NS21937/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):958-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2154852" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain Chemistry ; Cloning, Molecular ; DNA/*genetics/isolation & purification ; GTP-Binding Proteins/metabolism ; Gene Expression ; Intestine, Small/analysis ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Polymerase Chain Reaction ; RNA, Messenger/analysis ; Rats ; Receptors, Neurokinin-1 ; Receptors, Neurotransmitter/*genetics ; Sequence Homology, Nucleic Acid ; Submandibular Gland/analysis ; Tissue Distribution ; Urinary Bladder/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, L -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1310-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2356467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Base Sequence ; Caenorhabditis/*genetics/growth & development ; *Chromosome Mapping ; Cloning, Molecular ; DNA/genetics ; Genomic Library ; Human Genome Project ; Nucleotide Mapping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 1990 Dec 21;250(4988):1749.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2125369" target="_blank"〉PubMed〈/a〉
    Keywords: Blotting, Southern ; Chromosomes, Human, Pair 17 ; Chromosomes, Human, Pair 22 ; Cloning, Molecular ; DNA/genetics ; Humans ; Neurofibromatosis 1/*genetics ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1990-11-09
    Description: Expression of the human T cell receptor (TCR) alpha gene is regulated by a T cell-specific transcriptional enhancer that is located 4.5 kilobases (kb) 3' to the C alpha gene segment. The core enhancer contains two nuclear protein binding sites, T alpha 1 and T alpha 2, which are essential for full enhancer activity. T alpha 1 contains a consensus cyclic adenosine monophosphate (cAMP) response element (CRE) and binds a set of ubiquitously expressed CRE binding proteins. In contrast, the transcription factors that interact with the T alpha 2 site have not been defined. In this report, a lambda gt11 expression protocol was used to isolate a complementary DNA (cDNA) that programs the expression of a T alpha 2 binding protein. DNA sequence analysis demonstrated that this clone encodes the human ets-1 proto-oncogene. Lysogen extracts produced with this cDNA clone contained a beta-galactosidase-Ets-1 fusion protein that bound specifically to a synthetic T alpha 2 oligonucleotide. The Ets-1 binding site was localized to a 17-base pair (bp) region from the 3' end of T alpha 2. Mutation of five nucleotides within this sequence abolished both Ets-1 binding and the activity of the TCR alpha enhancer in T cells. These results demonstrate that Ets-1 binds in a sequence-specific fashion to the human TCR alpha enhancer and suggest that this developmentally regulated proto-oncogene functions in regulating TCR alpha gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, I C -- Bhat, N K -- Gottschalk, L R -- Lindsten, T -- Thompson, C B -- Papas, T S -- Leiden, J M -- AI-29673/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):814-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Ann Arbor, MI.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237431" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding, Competitive ; Cloning, Molecular ; DNA/genetics ; DNA Mutational Analysis ; *Enhancer Elements, Genetic ; Gene Expression Regulation ; Gene Rearrangement, T-Lymphocyte ; Humans ; Immunoblotting ; Molecular Sequence Data ; Proto-Oncogene Protein c-ets-1 ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-ets ; *Proto-Oncogenes ; Receptors, Antigen, T-Cell/genetics/*metabolism ; Transcription Factors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1990-12-21
    Description: A heparin binding mitogenic protein isolated from bovine uterus shares NH2-terminal amino acid sequence with a protein isolated from newborn rat brain. The cDNA's of the bovine, human, and rat genes have been isolated and encode extraordinarily conserved proteins unrelated to known growth or neurotrophic factors, although identity of nearly 50 percent has been found with the predicted sequence of a retinoic acid induced transcript in differentiating mouse embryonal carcinoma cells. Lysates of COS-7 cells transiently expressing this protein were mitogenic for NRK cells and initiated neurite outgrowth from mixed cultures of embryonic rat brain cells. RNA transcripts encoding this protein were widely distributed in tissues and were developmentally regulated. This protein, previously designated as heparin binding growth factor (HBGF)-8, is now renamed pleiotrophin (PTN) to reflect its diverse activities. PTN may be the first member of a family of developmentally regulated cytokines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Y S -- Milner, P G -- Chauhan, A K -- Watson, M A -- Hoffman, R M -- Kodner, C M -- Milbrandt, J -- Deuel, T F -- CA49712/CA/NCI NIH HHS/ -- HL14147/HL/NHLBI NIH HHS/ -- HL31102/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1690-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270483" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology/ultrastructure ; Base Sequence ; Brain/*metabolism ; *Carrier Proteins ; Cattle ; Cell Division ; Cell Line ; Cloning, Molecular ; Cytokines/*genetics ; Humans ; Mitogens/*genetics ; Molecular Sequence Data ; Organ Specificity ; Rats ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-14
    Description: Mutations of the gene encoding p53, a 53-kilodalton cellular protein, are found frequently in human tumor cells, suggesting a crucial role for this gene in human oncogenesis. To model the stepwise mutation or loss of both p53 alleles during tumorigenesis, a human osteosarcoma cell line, Saos-2, was used that completely lacked endogenous p53. Single copies of exogenous p53 genes were then introduced by infecting cells with recombinant retroviruses containing either point-mutated or wild-type versions of the p53 cDNA sequence. Expression of wild-type p53 suppressed the neoplastic phenotype of Saos-2 cells, whereas expression of mutated p53 conferred a limited growth advantage to cells in the absence of wild-type p53. Wild-type p53 was phenotypically dominant to mutated p53 in a two-allele configuration. These results suggest that, as with the retinoblastoma gene, mutation of both alleles of the p53 gene is essential for its role in oncogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, P L -- Chen, Y M -- Bookstein, R -- Lee, W H -- CA51495/CA/NCI NIH HHS/ -- EY00278/EY/NEI NIH HHS/ -- EY05758/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1576-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, University of California, San Diego, La Jolla 92093-0612.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2274789" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; *Cinnamates ; Cloning, Molecular ; DNA/genetics ; Drug Resistance/genetics ; Genes, p53/*genetics ; Genetic Vectors ; Humans ; Hygromycin B/analogs & derivatives ; Molecular Sequence Data ; Moloney murine leukemia virus/genetics ; Mutation ; Neomycin ; Osteosarcoma/*genetics ; Plasmids ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1990-06-29
    Description: Transcription factor IID (TFIID) binds to the TATA box promoter element and regulates the expression of most eukaryotic genes transcribed by RNA polymerase II. Complementary DNA (cDNA) encoding a human TFIID protein has been cloned. The human TFIID polypeptide has 339 amino acids and a molecular size of 37,745 daltons. The carboxyl-terminal 181 amino acids of the human TFIID protein shares 80% identity with the TFIID protein from Saccharomyces cerevisiae. The amino terminus contains an unusual repeat of 38 consecutive glutamine residues and an X-Thr-Pro repeat. Expression of DNA in reticulocyte lysates or in Escherichia coli yielded a protein that was competent for both DNA binding and transcription activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kao, C C -- Lieberman, P M -- Schmidt, M C -- Zhou, Q -- Pei, R -- Berk, A J -- CA25235/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 29;248(4963):1646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Molecular Biology Institute, University of California, Los Angeles 90024-1570.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2194289" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Escherichia coli/genetics ; Gene Expression ; HeLa Cells/metabolism ; Humans ; Molecular Sequence Data ; *Promoter Regions, Genetic ; Recombinant Proteins/metabolism ; Reticulocytes/metabolism ; Saccharomyces cerevisiae/*genetics ; Sequence Homology, Nucleic Acid ; Transcription Factor TFIID ; Transcription Factors/*genetics/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1990-03-16
    Description: Prothoracicotropic hormone (PTTH), a brain secretory polypeptide of insects, stimulates the prothoracic glands to produce and release ecdysone, the steroid essential to insect development. The complementary DNAs encoding PTTH of the silkmoth Bombyx mori were cloned and characterized, and the complete amino acid sequence was deduced. The data indicated that PTTH is first synthesized as a 224-amino acid polypeptide precursor containing three proteolytic cleavage signals. The carboxyl-terminal component (109 amino acids) that follows the last cleavage signal represents one PTTH subunit. Two PTTH subunits are linked together by disulfide bonds, before or after cleavage from prepro-PTTH, to form a homodimeric PTTH. When introduced into Escherichia coli cells, the complementary DNA directed the expression of an active substance that was functionally indistinguishable from natural PTTH. In situ hybridization showed the localization of the prepro-PTTH mRNA to two dorsolateral neurosecretory cells of the Bombyx brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawakami, A -- Kataoka, H -- Oka, T -- Mizoguchi, A -- Kimura-Kawakami, M -- Adachi, T -- Iwami, M -- Nagasawa, H -- Suzuki, A -- Ishizaki, H -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1333-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, School of Science, Nagoya University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315701" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Bombyx/*genetics/physiology ; Cloning, Molecular ; DNA/genetics ; Gene Expression ; Insect Hormones/*genetics ; Molecular Sequence Data ; Neurosecretory Systems/physiology ; Nucleic Acid Hybridization ; Protein Precursors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1990-03-09
    Description: Certain RNA molecules, called ribozymes, possess enzymatic, self-cleaving activity. The cleavage reaction is catalytic and no energy source is required. Ribozymes of the "hammerhead" motif were identified in plant RNA pathogens. These ribozymes possess unique secondary (and possibly tertiary) structures critical for their cleavage ability. The present study shows precise cleavage of human immunodeficiency virus type 1 (HIV-1) sequences in a cell-free system by hammerhead ribozymes. In addition to the cell-free studies, human cells stably expressing a hammerhead ribozyme targeted to HIV-1 gag transcripts have been constructed. When these cells were challenged with HIV-1, a substantial reduction in the level of HIV-1 gag RNA relative to that in nonribozyme-expressing cells, was observed. The reduction in gag RNA was reflected in a reduction in antigen p24 levels. These results suggest the feasibility of developing ribozymes as therapeutic agents against human pathogens such as HIV-1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarver, N -- Cantin, E M -- Chang, P S -- Zaia, J A -- Ladne, P A -- Stephens, D A -- Rossi, J J -- AI25959/AI/NIAID NIH HHS/ -- CA34991/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1222-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Research and Development Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2107573" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*drug therapy ; Base Sequence ; Catalysis ; Cloning, Molecular ; Gene Expression ; Gene Products, gag/metabolism ; Genes, gag/*drug effects ; HIV Core Protein p24 ; HIV-1/*drug effects/genetics ; HeLa Cells ; Humans ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Polymerase Chain Reaction ; RNA, Catalytic ; RNA, Ribosomal/*pharmacology/therapeutic use ; RNA, Viral/*drug effects ; Transfection ; Viral Core Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-21
    Description: T lymphocyte activation requires recognition by the T cell of peptide fragments of foreign antigen bound to a self major histocompatibility complex (MHC) molecule. Genetic evidence suggests that part of the class II region of the MHC influences the expression, in trans, of MHC class I antigens on the cell surface, by regulating the availability of peptides that bind to and stabilize the class I molecule. Two closely related genes in this region, HAM1 and HAM2, were cloned and had sequence similarities to a superfamily of genes involved in the ATP-dependent transport of a variety of substrates across cell membranes. Thus, these MHC-linked transport protein genes may be involved in transporting antigen, or peptide fragments thereof, from the cytoplasm into a membrane-bounded compartment containing newly synthesized MHC molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monaco, J J -- Cho, S -- Attaya, M -- GM38774/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1723-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298-0678.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270487" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/*genetics ; Cell Line ; Cloning, Molecular ; *Major Histocompatibility Complex ; Mice ; Molecular Sequence Data ; *Multigene Family ; Protein Conformation ; Sequence Homology, Nucleic Acid ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1990-10-26
    Description: Lyme borreliosis is a tick-borne illness caused by Borrelia burgdorferi. The gene for outer surface protein A (OspA) from B. burgdorferi strain N40 was cloned into an expression vector and expressed in Escherichia coli. C3H/HeJ mice actively immunized with live transformed E. coli or purified recombinant OspA protein produced antibodies to OspA and were protected from challenge with several strains of B. burgdorferi. Recombinant OspA is a candidate for a vaccine for Lyme borreliosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fikrig, E -- Barthold, S W -- Kantor, F S -- Flavell, R A -- AI 26815/AI/NIAID NIH HHS/ -- DK-07476/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 26;250(4980):553-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Bacterial/immunology ; Bacterial Outer Membrane Proteins/genetics/*immunology ; Borrelia burgdorferi Group/*immunology ; Cloning, Molecular ; Escherichia coli/genetics/immunology ; Glutathione Transferase ; *Immunization ; Lyme Disease/*prevention & control ; Mice ; Mice, Inbred C3H ; Recombinant Fusion Proteins/immunology ; Recombinant Proteins/immunology ; Transformation, Bacterial ; *Vaccines, Synthetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1990-04-13
    Description: A genomic clone encoding the Purkinje cell-specific L7 protein has been isolated and utilized to drive the expression of beta-galactosidase in mice. Three independent transgenic lines, germ line transformed with an L7-beta-galactosidase fusion gene, exhibit beta-galactosidase expression in both cerebellar Purkinje cells and retinal bipolar neurons. This distribution is the same as that previously determined for the L7 protein by immunohistochemistry. The transgenic murine lines can be used to obtain populations of marked Purkinje and bipolar neurons. Similar L7 promoter constructs can be used to express other foreign genes specifically in these two classes of neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oberdick, J -- Smeyne, R J -- Mann, J R -- Zackson, S -- Morgan, J I -- 1 F32 NS 08680-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 13;248(4952):223-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Roche Research Center, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2109351" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebellum/metabolism ; Cloning, Molecular ; Crosses, Genetic ; Galactosidases/*genetics ; *Gene Expression ; Gene Library ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins/analysis/*genetics ; *Promoter Regions, Genetic ; Purkinje Cells/*metabolism ; Recombinant Fusion Proteins/analysis ; Restriction Mapping ; Retina/*metabolism ; Retinal Ganglion Cells/*metabolism ; beta-Galactosidase/analysis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1990-11-30
    Description: Borna disease virus (BDV) causes a rare neurological disease in horses and sheep. The virus has not been classified because neither an infectious particle nor a specific nucleic acid had been identified. To identify the genome of BDV, a subtractive complementary DNA expression library was constructed with polyadenylate-selected RNA from a BDV-infected MDCK cell line. A clone (B8) was isolated that specifically hybridized to RNA isolated from BDV-infected brain tissue and BDV-infected cell lines. This clone hybridized to four BDV-specific positive strand RNAs (10.5, 3.6, 2.1, and 0.85 kilobases) and one negative strand RNA (10.5 kilobases) in BDV-infected rat brain. Nucleotide sequence analysis of the clone suggested that it represented a full-length messenger RNA which contained several open reading frames. In vitro transcription and translation of the clone resulted in the synthesis of the 14- and 24-kilodalton BDV-specific proteins. The 24-kilodalton protein, when translated in vitro from the clone, was recognized by antibodies in the sera of patients (three of seven) with behavioral disorders. This BDV-specific clone will provide the means to isolate the other BDV-specific nucleic acids and to identify the virus responsible for Borna disease. In addition, the significance of BDV or a BDV-related virus as a human pathogen can now be more directly examined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉VandeWoude, S -- Richt, J A -- Zink, M C -- Rott, R -- Narayan, O -- Clements, J E -- RR00130/RR/NCRR NIH HHS/ -- RR07002/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1278-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Colorado State University, Lab Animal Resources, Fort Collins 80532.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2244211" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Viral/*blood ; Borna Disease/*microbiology ; Borna disease virus/*genetics/immunology ; Brain/microbiology ; Cloning, Molecular ; DNA/*genetics ; Fluorescent Antibody Technique ; Humans ; Immunoblotting ; Mental Disorders/*microbiology ; Molecular Sequence Data ; Molecular Weight ; Nucleic Acid Hybridization ; RNA, Messenger/analysis/genetics ; RNA, Viral/analysis/genetics ; Rats ; Transcription, Genetic ; Viral Proteins/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1990-07-13
    Description: Von Recklinghausen neurofibromatosis (NF1) is a common autosomal dominant disorder characterized by abnormalities in multiple tissues derived from the neural crest. No reliable cellular phenotypic marker has been identified, which has hampered direct efforts to identify the gene. The chromosome location of the NF1 gene has been previously mapped genetically to 17q11.2, and data from two NF1 patients with balanced translocations in this region have further narrowed the candidate interval. The use of chromosome jumping and yeast artificial chromosome technology has now led to the identification of a large (approximately 13 kilobases) ubiquitously expressed transcript (denoted NF1LT) from this region that is definitely interrupted by one and most likely by both translocations. Previously identified candidate genes, which failed to show abnormalities in NF1 patients, are apparently located within introns of NF1LT, on the antisense strand. A new mutation patient with NF1 has been identified with a de novo 0.5-kilobase insertion in the NF1LT gene. These observations, together with the high spontaneous mutation rate of NF1 (which is consistent with a large locus), suggest that NF1LT represents the elusive NF1 gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wallace, M R -- Marchuk, D A -- Andersen, L B -- Letcher, R -- Odeh, H M -- Saulino, A M -- Fountain, J W -- Brereton, A -- Nicholson, J -- Mitchell, A L -- NS23410/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):181-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Ann Arbor, MI.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2134734" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Blotting, Southern ; Cell Line ; Cloning, Molecular ; DNA, Neoplasm/genetics ; Gene Expression Regulation, Neoplastic ; Humans ; Hybrid Cells ; Male ; Mice ; Molecular Sequence Data ; Mutation ; Neurofibromatosis 1/*genetics ; Protein Biosynthesis ; RNA, Neoplasm/*genetics ; Transcription, Genetic ; *Translocation, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1990-09-14
    Description: Natural killer (NK) cells are a subpopulation of large granular lymphocytes characterized by densely staining azurophilic granules. NK cells are able to recognize and lyse various virally infected or neoplastic target cells without previous sensitization or major histocompatibility complex restriction. A 60-kD disulfide-linked dimer, highly expressed on NK cells, was found capable of mediating transmembrane signaling. The gene encoding this signal transduction molecule was cloned and its nucleotide sequence determined. The encoded protein showed significant homology with a number of lectin-related membrane proteins that share receptor characteristics. This protein may function as a receptor able to selectively trigger NK cell activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giorda, R -- Rudert, W A -- Vavassori, C -- Chambers, W H -- Hiserodt, J C -- Trucco, M -- AI 23963/AI/NIAID NIH HHS/ -- AI 26364/AI/NIAID NIH HHS/ -- CA 44977/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1298-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pittsburgh Cancer Institute, PA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2399464" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Antigens, Surface/*genetics ; Base Sequence ; Blotting, Southern ; Cloning, Molecular ; Gene Library ; Glycosylation ; Interleukin-2/physiology ; Killer Cells, Natural/immunology/*metabolism ; Molecular Sequence Data ; Rats ; Signal Transduction/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1990-06-25
    Description: Lipoprotein-associated coagulation inhibitor (LACI) appears to inhibit tissue factor (TF)-induced blood coagulation by forming a quaternary inhibitory complex containing factor Xa, LACI, factor VIIa, and TF. A genetically engineered hybrid protein consisting of the light chain of factor Xa and the first Kunitz-type inhibitor domain of LACI is shown to directly inhibit the activity of the factor VIIa-TF catalytic complex. Unlike inhibition of factor VIIa-TF activity by native LACI, inhibition by the hybrid protein is not dependent on factor Xa. In an assay of TF-induced coagulation, 50% TF inhibition occurs with hybrid protein at 35 nanograms per milliliter, whereas LACI at 2.5 micrograms per milliliter is required for an equivalent effect. gamma-Carboxylation of glutamic acid residues in the factor Xa light chain portion of the hybrid protein is required for inhibitory activity, indicating that the first Kunitz-type domain of LACI alone is not sufficient for inhibition of factor VIIa-TF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Girard, T J -- MacPhail, L A -- Likert, K M -- Novotny, W F -- Miletich, J P -- Broze, G J Jr -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1421-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Jewish Hospital, Washington University Medical Center, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1972598" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Carboxyglutamic Acid/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Calcium/metabolism ; Cell Line ; Cloning, Molecular ; Factor VII/antagonists & inhibitors/metabolism/*pharmacology ; Factor VIIa/*antagonists & inhibitors/metabolism ; Factor Xa/metabolism/*pharmacology ; Fibroblasts/metabolism ; Glutamates/metabolism ; Glutamic Acid ; Lipoproteins/metabolism/*pharmacology ; Mice ; Molecular Sequence Data ; Papillomaviridae ; Protease Inhibitors/*pharmacology ; Protein Sorting Signals ; Recombinant Fusion Proteins/*pharmacology ; Thromboplastin/antagonists & inhibitors/metabolism/*pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1990-12-10
    Description: Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malkin, D -- Li, F P -- Strong, L C -- Fraumeni, J F Jr -- Nelson, C E -- Kim, D H -- Kassel, J -- Gryka, M A -- Bischoff, F Z -- Tainsky, M A -- 34936/PHS HHS/ -- 5-T32-CA09299/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1233-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetics, Massachusetts General Hospital Cancer Center, Charlestown 02129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1978757" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Breast Neoplasms/*genetics ; Chromosomes, Human, Pair 17 ; Cloning, Molecular ; Codon ; DNA/genetics ; Deoxyribonucleases, Type II Site-Specific ; *Genes, p53 ; Genetic Testing ; Germ Cells ; Humans ; Molecular Sequence Data ; *Mutation ; Neoplastic Syndromes, Hereditary/*genetics ; Pedigree ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length ; Repetitive Sequences, Nucleic Acid ; Sarcoma/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-07-27
    Description: Tens of millions of short peptides can be easily surveyed for tight binding to an antibody, receptor or other binding protein using an "epitope library." The library is a vast mixture of filamentous phage clones, each displaying one peptide sequence on the virion surface. The survey is accomplished by using the binding protein to affinity-purify phage that display tight-binding peptides and propagating the purified phage in Escherichia coli. The amino acid sequences of the peptides displayed on the phage are then determined by sequencing the corresponding coding region in the viral DNA's. Potential applications of the epitope library include investigation of the specificity of antibodies and discovery of mimetic drug candidates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, J K -- Smith, G P -- GM41478/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):386-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Missouri, Columbia 65211.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696028" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies/immunology ; Antibodies, Monoclonal/immunology ; Bacteriophages/genetics/immunology/isolation & purification ; Base Sequence ; Cloning, Molecular ; Epitopes/*genetics ; Escherichia coli/genetics ; *Gene Library ; Genetic Vectors ; Hemerythrin/analogs & derivatives/immunology ; Ligands ; Molecular Sequence Data ; Peptides/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-06
    Description: Human papillomavirus type 16 (HPV-16) is a DNA tumor virus that is associated with human anogenital cancers and encodes two transforming proteins, E6 and E7. The E7 protein has been shown to bind to the retinoblastoma tumor suppressor gene product, pRB. This study shows that the E6 protein of HPV-16 is capable of binding to the cellular p53 protein. The ability of the E6 proteins from different human papillomaviruses to form complexes with p53 was assayed and found to correlate with the in vivo clinical behavior and the in vitro transforming activity of these different papillomaviruses. The wild-type p53 protein has tumor suppressor properties and has also been found in association with large T antigen and the E1B 55-kilodalton protein in cells transformed by SV40 and by adenovirus type 5, respectively, providing further evidence that the human papillomaviruses, the adenoviruses, and SV40 may effect similar cellular pathways in transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werness, B A -- Levine, A J -- Howley, P M -- New York, N.Y. -- Science. 1990 Apr 6;248(4951):76-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Tumor Virus Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2157286" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus Early Proteins ; Amino Acid Sequence ; Antigens, Polyomavirus Transforming/metabolism ; Base Sequence ; Cell Transformation, Neoplastic ; Cell Transformation, Viral ; Cloning, Molecular ; *DNA-Binding Proteins ; Humans ; Immunosorbent Techniques ; Molecular Sequence Data ; Mutation ; Oncogene Proteins/genetics/*metabolism ; Oncogene Proteins, Viral/genetics/*metabolism ; Papillomaviridae/*analysis ; Phosphoproteins/genetics/*metabolism ; Polymerase Chain Reaction ; Protein Binding ; Simian virus 40/immunology ; Tumor Suppressor Protein p53
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1503-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218492" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Gene Expression Regulation ; Humans ; Neoplasms/etiology/*genetics ; Proto-Oncogene Proteins c-myc/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1376-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2169647" target="_blank"〉PubMed〈/a〉
    Keywords: Bombesin/metabolism ; Cell Division ; Clinical Trials as Topic ; Cloning, Molecular ; Growth Substances/genetics/physiology ; Humans ; Neoplasms/genetics/*therapy ; *Oncogenes ; Receptors, Bombesin ; Receptors, Neurotransmitter/genetics ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):624-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2166339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Cloning, Molecular ; Dronabinol/*metabolism ; Rats ; Receptors, Cannabinoid ; Receptors, Drug/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1990-09-14
    Description: A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter gamma-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated [3H]GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium-and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guastella, J -- Nelson, N -- Nelson, H -- Czyzyk, L -- Keynan, S -- Miedel, M C -- Davidson, N -- Lester, H A -- Kanner, B I -- GM 10991/GM/NIGMS NIH HHS/ -- GM 29836/GM/NIGMS NIH HHS/ -- NS 16708/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1303-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1975955" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/metabolism ; Carrier Proteins/antagonists & inhibitors/*genetics/metabolism ; Chlorine/physiology ; Cloning, Molecular ; GABA Plasma Membrane Transport Proteins ; Gene Expression ; Membrane Proteins/antagonists & inhibitors/*genetics/metabolism ; *Membrane Transport Proteins ; Microinjections ; Molecular Sequence Data ; Nerve Tissue Proteins/antagonists & inhibitors/*genetics/metabolism ; Oocytes/metabolism ; *Organic Anion Transporters ; Poly A/analysis ; RNA, Messenger/analysis ; Rats ; Sodium/physiology ; Structure-Activity Relationship ; Xenopus ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-03-23
    Description: A strategy of iterative site-directed mutagenesis and binding analysis was used to incorporate the receptor-binding determinants from human growth hormone (hGH) into the nonbinding homolog, human prolactin (hPRL). The complementary DNA for hPRL was cloned, expressed in Escherichia coli, and mutated to introduce sequentially those substitutions from hGH that were predicted by alanine-scanning mutagenesis and other studies to be most critical for binding to the hGH receptor from human liver. After seven rounds of site-specific mutagenesis, a variant of hPRL was obtained containing eight mutations with an association constant for the hGH receptor that was increased more than 10,000-fold. This hPRL variant binds one-sixth as strongly as wild-type hGH, but shares only 26 percent overall sequence identity with hGH. These studies show the feasibility of recruiting receptor-binding properties from distantly related and functionally divergent hormones and show that a detailed functional database can be used to guide the design of a protein-protein interface in the absence of direct structural information.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Henner, D J -- Wells, J A -- New York, N.Y. -- Science. 1990 Mar 23;247(4949 Pt 1):1461-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc. South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2321008" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Growth Hormone/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Plasmids ; Prolactin/genetics/*metabolism ; Protein Conformation ; Receptors, Somatotropin/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-23
    Description: A founder transgenic mouse harbored two different integration patterns of a transgene at the same locus, each of which gave rise to a similar autosomal recessive mutation. Mice of the mutant phenotype were of small stature but had normal levels of growth hormone. The disrupted locus was cloned, and a genetic and molecular analysis showed that the insertional mutants were allelic to a spontaneous mutant, pygmy. The mice should be a useful model for the growth hormone-resistant human dwarf syndromes and could lead to a greater understanding of the pathways involved in growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xiang, X -- Benson, K F -- Chada, K -- GM38731/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):967-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305264" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cloning, Molecular ; DNA/genetics ; Disease Models, Animal ; Dwarfism/*genetics ; Female ; Growth Hormone/blood ; Male ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Mutation ; Nucleic Acid Hybridization ; Pedigree ; Restriction Mapping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1990-05-25
    Description: Tumor necrosis factor alpha and beta (TNF-alpha and TNF-beta) bind surface receptors on a variety of cell types to mediate a wide range of immunological responses, inflammatory reactions, and anti-tumor effects. A cDNA clone encoding an integral membrane protein of 461 amino acids was isolated from a human lung fibroblast library by direct expression screening with radiolabeled TNF-alpha. The encoded receptor was also able to bind TNF-beta. The predicted cysteine-rich extracellular domain has extensive sequence similarity with five proteins, including nerve growth factor receptor and a transcriptionally active open reading frame from Shope fibroma virus, and thus defines a family of receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, C A -- Davis, T -- Anderson, D -- Solam, L -- Beckmann, M P -- Jerzy, R -- Dower, S K -- Cosman, D -- Goodwin, R G -- New York, N.Y. -- Science. 1990 May 25;248(4958):1019-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Corporation, Seattle, WA 98101.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blotting, Northern ; Cloning, Molecular ; DNA/genetics ; Humans ; Membrane Proteins/genetics ; Molecular Sequence Data ; Multigene Family ; Receptors, Cell Surface/*genetics ; Receptors, Tumor Necrosis Factor ; Tumor Necrosis Factor-alpha/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1990-04-27
    Description: The gene encoding the 49-kilodalton protein that undergoes light-induced phosphorylation in the Drosophila photoreceptor has been isolated and characterized. The encoded protein has 401 amino acid residues and a molecular mass of 44,972 daltons, and it shares approximately 42 percent amino acid sequence identity with arrestin (S-antigen), which has been proposed to quench the light-induced cascade of guanosine 3',5'-monophosphate hydrolysis in vertebrate photoreceptors. Unlike the 49-kilodalton protein, however, arrestin, which appears to bind to phosphorylated rhodopsin, has not itself been reported to undergo phosphorylation. In vitro, Ca2+ was the only agent found that would stimulate the phosphorylation of the 49-kilodalton protein. The phosphorylation of this arrestin-like protein in vivo may therefore be triggered by a Ca2+ signal that is likely to be regulated by light-activated phosphoinositide-specific phospholipase C.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamada, T -- Takeuchi, Y -- Komori, N -- Kobayashi, H -- Sakai, Y -- Hotta, Y -- Matsumoto, H -- EY06595/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):483-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2158671" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Antigens ; Arrestin ; Binding Sites ; Calcium/pharmacology ; Cloning, Molecular ; Cyclic GMP/metabolism ; DNA/genetics ; Drosophila melanogaster/*genetics ; Enzyme Activation/drug effects ; *Eye Proteins ; Isoelectric Point ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Phosphatidylinositol Diacylglycerol-Lyase ; *Phosphoproteins/genetics/metabolism ; Phosphoric Diester Hydrolases/metabolism ; Phosphorylation ; Photoreceptor Cells/*analysis ; Protein Biosynthesis ; Restriction Mapping ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1990-03-09
    Description: The gene encoding the yeast mitochondrial outer membrane channel VDAC was subjected to site-directed mutagenesis to change amino acids at 29 positions to residues differing in charge from the wild-type sequence. The mutant genes were then expressed in yeast, and the physiological consequences of single and multiple amino acid changes were assessed after isolation and insertion of mutant channels into phospholipid bilayers. Selectivity changes were observed at 14 sites distributed throughout the length of the molecule. These sites are likely to define the position of the protein walls lining the aqueous pore and hence, the transmembrane segments. These results have been used to develop a model of the open state of the channel in which each polypeptide contributes 12 beta strands and one alpha helix to form the aqueous transmembrane pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blachly-Dyson, E -- Peng, S -- Colombini, M -- Forte, M -- GM35759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1233-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1690454" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Intracellular Membranes/physiology ; *Ion Channels ; Lipid Bilayers/metabolism ; Membrane Potentials ; Membrane Proteins/*genetics/physiology ; Mitochondria/ultrastructure ; Molecular Sequence Data ; *Mutation ; *Porins ; Protein Conformation ; Saccharomyces cerevisiae/*genetics/ultrastructure ; Structure-Activity Relationship ; Voltage-Dependent Anion Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-07
    Description: The regulatory photoreceptor, phytochrome, controls the expression of numerous genes, including its own phyA genes, which are transcriptionally repressed in response to light. Functional analysis of a rice phyA gene promoter, by means of microprojectile-mediated gene transfer, indicates that a GT motif, GCGGTAATT, closely related to elements in the promoters of a number of other light-regulated genes, is critical for expression. Partial complementary DNA clones have been obtained for a rice nuclear protein, designated GT-2, that binds in a highly sequence-specific fashion to this motif. Mutational analysis shows that the paired G's are most crucial to binding. GT-2 has domains related to certain other transcription factors. Northern blot analysis shows that GT-2 messenger RNA levels decline in white light although red and far red light pulses are ineffective.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehesh, K -- Bruce, W B -- Quail, P H -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1397-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, Berkeley/U.S. Department of Agriculture, Plant Gene Expression Center, Albany 94710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2255908" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Deoxyribonuclease I ; *Genes, Plant ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Nucleotide Mapping ; Oligonucleotide Probes ; Oryza/genetics/metabolism ; Phytochrome/*genetics ; *Promoter Regions, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-04-27
    Description: A reversible block to RNA polymerase II transcriptional elongation has been created with a lac operator sequence in the intron of the SV40 large T-antigen gene. When this transcription unit is injected into rabbit kidney cells expressing Escherichia coli lac repressor, T-antigen expression is reduced. This effect is not observed in cells lacking repressor or in the absence of the operator, and it is reversed by an inducer of the lac operon, namely isopropyl thiogalactoside (IPTG). In an extract of HeLa nuclei supplemented with lac repressor, this and similar constructs give rise to shortened transcripts that map to the 5' boundary of the repressor-operator complex. These shorter RNAs are also sensitive to IPTG induction. This model system shows that a protein-DNA complex can block the passage of RNA polymerase II, and offers some insight into the control of eukaryotic gene expression during transcription elongation, a phenomenon observed in a variety of systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deuschle, U -- Hipskind, R A -- Bujard, H -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):480-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zentrum fur Molekulare Biologie, Universitat Heidelberg, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2158670" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Polyomavirus Transforming/*genetics ; Cell Line ; Cloning, Molecular ; DNA/metabolism ; Enhancer Elements, Genetic ; Escherichia coli/*genetics ; *Gene Expression Regulation, Enzymologic/drug effects ; Introns ; Isopropyl Thiogalactoside/pharmacology ; Lac Operon/genetics ; Promoter Regions, Genetic/genetics ; RNA Polymerase II/*metabolism ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/*metabolism ; Simian virus 40/genetics/immunology ; Templates, Genetic ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1990-06-08
    Description: Complementary DNA clones encoding mouse cytokine synthesis inhibitory factor (CSIF; interleukin-10), which inhibits cytokine synthesis by TH1 helper T cells, were isolated and expressed. The predicted protein sequence shows extensive homology with an uncharacterized open reading frame, BCRFI, in the Epstein-Barr virus genome, suggesting the possibility that this herpes virus exploits the biological activity of a captured cytokine gene to enhance its survival in the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, K W -- Vieira, P -- Fiorentino, D F -- Trounstine, M L -- Khan, T A -- Mosmann, T R -- New York, N.Y. -- Science. 1990 Jun 8;248(4960):1230-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, DNAX Research Institute, Palo Alto, CA 94304.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2161559" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cloning, Molecular ; Codon/genetics ; *Genes, Viral ; Herpesvirus 4, Human/*genetics ; Interleukin-10 ; Interleukins/*genetics ; Mice ; Molecular Sequence Data ; Nucleic Acid Hybridization ; RNA, Messenger/genetics ; Restriction Mapping ; Sequence Homology, Nucleic Acid ; T-Lymphocytes, Helper-Inducer/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-07-27
    Description: Libraries of random peptide sequences were constructed and screened to identify peptides that specifically bind to proteins. In one of these about 2 X 10(7) different 15-residue peptide sequences were expressed on the surface of the coliphage M13. Each phage encoded a single random sequence and expressed it as a fusion complex with pIII, a minor coat protein present at five molecules per phage. Phage encoding nine different streptavidin-binding peptide sequences were isolated from this library. The core consensus sequence was His-Pro-Gln and binding of these phage to streptavidin was inhibited by biotin. This type of library makes it possible to identify peptides that bind to proteins (or other macromolecules) that have no previously known affinity for peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Devlin, J J -- Panganiban, L C -- Devlin, P E -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):404-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Cetus Corporation, Emeryville, CA 94608.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2143033" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Amino Acid Sequence ; Bacterial Proteins/metabolism ; Bacteriophage lambda/genetics/metabolism ; Bacteriophages/genetics/isolation & purification/metabolism ; Base Sequence ; Cloning, Molecular ; DNA/genetics ; Escherichia coli/genetics ; Gene Expression ; Genetic Vectors ; Molecular Sequence Data ; Peptides/genetics/*metabolism ; Polymerase Chain Reaction ; Protein Binding ; *Proteins/*metabolism ; Recombinant Fusion Proteins ; Streptavidin ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1990-03-16
    Description: Major epidemic outbreaks of viral hepatitis in underdeveloped countries result from a type of non-A, non-B hepatitis distinct from the parenterally transmitted form. The viral agent responsible for this form of epidemic, or enterically transmitted non-A, non-B hepatitis (ET-NANBH), has been serially transmitted in cynomolgus macaques (cynos) and has resulted in typical elevation in liver enzymes and the detection of characteristic virus-like particles (VLPs) in both feces and bile. Infectious bile was used for the construction of recombinant complementary DNA libraries. One clone, ET1.1, was exogenous to uninfected human and cyno genomic liver DNA, as well as to genomic DNA from infected cyno liver. ET1.1 did however, hybridize to an approximately 7.6-kilobase RNA species present only in infected cyno liver. The translated nucleic acid sequence of a portion of ET1.1 had a consensus amino acid motif consistent with an RNA-directed RNA polymerase; this enzyme is present in all positive strand RNA viruses. Furthermore, ET1.1 specifically identified similar sequences in complementary DNA prepared from infected human fecal samples collected from five geographically distinct ET-NANBH outbreaks. Therefore, ET1.1 represents a portion of the genome of the principal viral agent, to be named hepatitis E virus, which is responsible for epidemic outbreaks of ET-NANBH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, G R -- Purdy, M A -- Kim, J P -- Luk, K C -- Young, L M -- Fry, K E -- Bradley, D W -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1335-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Virology Department, Genelabs Incorporated, Redwood City, CA 94063.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2107574" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; DNA/genetics ; Hepatitis E/*microbiology ; Hepatitis Viruses/*genetics ; Hepatitis, Viral, Human/*microbiology ; Humans ; Macaca fascicularis ; Molecular Sequence Data ; Polymerase Chain Reaction ; RNA Viruses/genetics ; RNA, Viral/genetics ; Restriction Mapping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1990-09-14
    Description: POU proteins have been shown to transcriptionally active cell-specific genes and to participate in the determination of cell fate. It is therefore thought that these proteins function in development through the stable activation of genes that define specific developmental pathways. Evidence is provided here for an alternative mode of action. The primary structure of SCIP, a POU protein expressed by developing Schwann cells of the peripheral nervous system, was deduced and SCIP activity was studied. Both in normal development and in response to nerve transection, SCIP expression was transiently activated only during the period of rapid cell division that separates the premyelinating and myelinating phases of Schwann cell differentiation. In cotransfection assays, SCIP acted as a transcriptional repressor of myelin-specific genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monuki, E S -- Kuhn, R -- Weinmaster, G -- Trapp, B D -- Lemke, G -- NS 23896/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1975954" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Differentiation/genetics ; Cloning, Molecular ; Cyclic AMP/physiology ; Gene Expression Regulation ; Gene Library ; Genes, Homeobox/genetics/*physiology ; Molecular Sequence Data ; Myelin Sheath/metabolism ; Nerve Tissue Proteins/genetics/*physiology ; Octamer Transcription Factor-6 ; Rats ; Repressor Proteins/genetics/*physiology ; Schwann Cells/*cytology/metabolism ; Transcription Factors/genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1990-08-31
    Description: Three closely related genes, GluR1, GluR2, and GluR3, encode receptor subunits for the excitatory neurotransmitter glutamate. The proteins encoded by the individual genes form homomeric ion channels in Xenopus oocytes that are sensitive to glutamatergic agonists such as kainate and quisqualate but not to N-methyl-D-aspartate, indicating that binding sites for kainate and quisqualate exist on single receptor polypeptides. In addition, kainate-evoked conductances are potentiated in oocytes expressing two or more of the cloned receptor subunits. Electrophysiological responses obtained with certain subunit combinations show agonist profiles and current-voltage relations that are similar to those obtained in vivo. Finally, in situ hybridization histochemistry reveals that these genes are transcribed in shared neuroanatomical loci. Thus, as with gamma-aminobutyric acid, glycine, and nicotinic acetylcholine receptors, native kainate-quisqualate-sensitive glutamate receptors form a family of heteromeric proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boulter, J -- Hollmann, M -- O'Shea-Greenfield, A -- Hartley, M -- Deneris, E -- Maron, C -- Heinemann, S -- NS11549/NS/NINDS NIH HHS/ -- NS28709/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1033-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, San Diego, CA 92138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2168579" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; Gene Expression ; Glutamates/metabolism ; Hippocampus/metabolism ; Kinetics ; Macromolecular Substances ; Membrane Potentials ; Molecular Sequence Data ; *Multigene Family ; Oocytes/physiology ; Rats ; Receptors, Glutamate ; Receptors, Neurotransmitter/*genetics/physiology ; Sequence Homology, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1990-01-26
    Description: Activity of the immunoglobulin heavy and kappa light chain gene enhancers depends on a complex interplay of ubiquitous and developmentally regulated proteins. Two complementary DNAs were isolated that encode proteins, denoted ITF-1 and ITF-2, that are expressed in a variety of cell types and bind the microE5/kappa 2 motif found in both heavy and kappa light chain enhancers. The complementary DNAs are the products of distinct genes, yet both ITF-1 and ITF-2 are structurally and functionally similar. The two proteins interact with one another through their putative helix-loop-helix motifs and each possesses a distinct domain that dictates transcription activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henthorn, P -- Kiledjian, M -- Kadesch, T -- New York, N.Y. -- Science. 1990 Jan 26;247(4941):467-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Philadelphia, PA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2105528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; Base Sequence ; Binding Sites ; Cell Line ; Cloning, Molecular ; DNA/genetics/*metabolism ; *Enhancer Elements, Genetic ; *Genes, Immunoglobulin ; Humans ; Immunoglobulin kappa-Chains/genetics ; Immunoglobulin mu-Chains/genetics ; Macromolecular Substances ; Mice ; Molecular Sequence Data ; Plasmids ; Protein Conformation ; Saccharomyces cerevisiae/genetics ; Transcription Factors/*metabolism ; Transcription, Genetic ; Transfection ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-15
    Description: The bacterial photosynthetic reaction center (RC) is a pigmented intrinsic membrane protein that performs the primary charge separation event of photosynthesis, thereby converting light to chemical energy. The RC pigments are bound primarily by two homologous peptides, the L and M subunits, each containing five transmembrane helices. These alpha helices and pigments are arranged in an approximate C2 symmetry and form two possible electron transfer pathways. Only one of these pathways is actually used. In an attempt to identify nonhomologous residues that are responsible for functional differences between the two branches, homologous helical regions that interact extensively with the pigments were genetically symmetrized (that is, exchanged). For example, replacement of the fourth transmembrane helix (D helix) in the M subunit with the homologous helix from the L subunit yields photosynthetically inactive RCs lacking a critical photoactive pigment. Photosynthetic revertants have been isolated in which single amino acid substitutions (intragenic suppressors) compensate for this partial symmetrization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robles, S J -- Breton, J -- Youvan, D C -- RIGM42645A/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1402-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2192455" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Bacterial Proteins/genetics ; Cloning, Molecular ; Electron Transport ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Mutation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins ; Protein Conformation ; Rhodopseudomonas/analysis/genetics/growth & development ; Spectrophotometry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1990-05-18
    Description: The immunosuppressive agents cyclosporin A and FK506 inhibit the transcription of early T cell activation genes. The binding proteins for cyclosporin A and FK506, cyclophilin and FKBP, respectively, are peptidyl-prolyl-cis-trans isomerases, or rotamases. One proposed mechanism for rotamase catalysis by cyclophilin involves a tetrahedral adduct of an amide carbonyl and an enzyme-bound nucleophile. The potent FKBP rotamase inhibitor FK506 has a highly electrophilic carbonyl that is adjacent to an acyl-pipicolinyl (homoprolyl) amide bond. Such a functional group would be expected to form a stabilized, enzyme-bound tetrahedral adduct. Spectroscopic and chemical evidence reveals that the drug interacts noncovalently with its receptor, suggesting that the alpha-keto amid of FK506 serves as a surrogate for the twisted amide of a bound peptide substrate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosen, M K -- Standaert, R F -- Galat, A -- Nakatsuka, M -- Schreiber, S L -- GM-38627/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 18;248(4957):863-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1693013" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/*antagonists & inhibitors ; Anti-Bacterial Agents/metabolism/*pharmacology ; Binding Sites ; Carrier Proteins/antagonists & inhibitors/metabolism ; Chemical Phenomena ; Chemistry ; Cloning, Molecular ; Cyclosporins/metabolism/pharmacology ; Escherichia coli/genetics ; Gene Expression ; *Immunosuppressive Agents ; Lymphocyte Activation ; Magnetic Resonance Spectroscopy ; Molecular Structure ; Peptidylprolyl Isomerase ; Recombinant Proteins ; T-Lymphocytes/immunology ; Tacrolimus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1990-08-17
    Description: A partial complementary DNA was isolated for a gene (rrg) that is normally expressed in mouse NIH 3T3 cells, but is down-regulated after cellular transformation by long terminal repeat (LTR)-activated c-H-ras (LTR-c-H-ras). This gene was reexpressed in a nontumorigenic persistent revertant cell line created by prolonged treatment of the transformed cells with mouse interferon alpha/beta. Persistent revertants stably transfected with rrg complementary DNA antisense expression vectors appeared transformed, had decreased amounts of rrg messenger RNA, and were tumorigenic in nude mice. Stable transfection with sense constructs did not alter the normal morphology, message level, or nontumorigenicity of the persistent revertant cell line.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Contente, S -- Kenyon, K -- Rimoldi, D -- Friedman, R M -- R01 CA 37351-04A1/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):796-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1697103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Transformed ; Cloning, Molecular ; DNA/genetics ; *Gene Expression ; *Genes, ras ; Humans ; Interferon Type I/pharmacology ; Mice ; Mice, Nude ; Neoplasms, Experimental/etiology ; Nucleic Acid Hybridization ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins p21(ras) ; RNA/analysis/genetics ; RNA, Antisense ; RNA, Messenger/genetics ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1990-03-23
    Description: The development and maintenance of the nervous system depends on proteins known as neurotrophic factors. Although the prototypical neurotrophic factor, nerve growth factor (NGF), has been intensively studied for decades, the discovery and characterization of additional such factors has been impeded by their low abundance. Sequence homologies between NGF and the recently cloned brain-derived neurotrophic factor (BDNF) were used to design a strategy that has now resulted in the cloning of a gene encoding a novel neurotrophic factor, termed neurotrophin-3 (NT-3). The distribution of NT-3 messenger RNA and its biological activity on a variety of neuronal populations clearly distinguish NT-3 from NGF and BDNF, and provide compelling evidence that NT-3 is an authentic neurotrophic factor that has its own characteristic role in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Belluscio, L -- Squinto, S -- Ip, N Y -- Furth, M E -- Lindsay, R M -- Yancopoulos, G D -- New York, N.Y. -- Science. 1990 Mar 23;247(4949 Pt 1):1446-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2321006" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain-Derived Neurotrophic Factor ; Cells, Cultured ; Cloning, Molecular ; DNA/genetics ; Mice ; Molecular Sequence Data ; Nerve Growth Factors/biosynthesis/*genetics/physiology ; Nerve Tissue Proteins/biosynthesis/*genetics/physiology ; Neurons/physiology ; Polymerase Chain Reaction ; Rats ; Restriction Mapping ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1990-09-14
    Description: C-myb, the normal cellular homolog of the retroviral transforming gene v-myb, encodes a nuclear, transcriptional regulatory protein (p75c-myb). C-myb is involved in regulating normal human hematopoiesis, and inhibits dimethyl sulfoxide-induced differentiation of Friend murine erythroleukemia (F-MEL) cells. An alternately spliced c-myb mRNA encodes a truncated version of p75c-myb (mbm2) that includes the DNA binding region and nuclear localization signal present in the c-myb protein, but does not contain the transcriptional regulatory regions. Constitutive expression of mbm2, in contrast to c-myb, here resulted in enhanced differentiation of F-MEL cells. These data suggest that the c-myb protooncogene encodes alternately spliced mRNA species with opposing effects on differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, B L -- Westin, E H -- Clarke, M F -- CA 46657/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1291-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2205003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects/genetics ; Cloning, Molecular ; Dimethyl Sulfoxide/pharmacology ; Erythrocytes/*cytology ; Gene Library ; Leukemia, Erythroblastic, Acute ; Leukemia, Lymphoid ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-myb ; RNA Splicing ; RNA, Messenger ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...