ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Drosophila
  • Springer  (24)
  • American Chemical Society (ACS)
  • National Academy of Sciences
  • 1980-1984  (24)
  • 1984  (24)
Collection
Publisher
Years
  • 1980-1984  (24)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 20 (1984), S. 251-264 
    ISSN: 1432-1432
    Keywords: Drosophila ; Genome evolution ; 68C Glue gene cluster ; Drosophila melanogaster species subgroup
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The 68C puff is a highly transcribed region of theDrosophila melanogaster salivary gland polytene chromosomes. Three different classes of messenger RNA originate in a 5000-bp region in the puff; each class is translated to one of the salivary gland glue proteins sgs-3, sgs-7, or sgs-8. These messenger RNA classes are coordinately controlled, with each RNA appearing in the third larval instar and disappearing at the time of puparium formation. Their disappearance is initiated by the action of the steroid hormone ecdysterone. In the work reported here, we studied evolution of this hormone-regulated gene cluster in themelanogaster species subgroup ofDrosophila. Genome blot hybridization experiments showed that five other species of this subgroup have DNA sequences that hybridize toD. melanogaster 68C sequences, and that these sequences are divided into a highly conserved region, which does not contain the glue genes, and an extraordinarily diverged region, which does. Molecular cloning of this DNA fromD. simulans, D. erecta, D. yakuba, andD. teissieri confirmed the division of the region into a slowly and a rapidly evolving protion, and also showed that the rapidly evolving region of each species codes for third instar larval salivary gland RNAs homologous to theD. melanogaster glue mRNAs. The highly conserved region is at least 13,000 bp long, and is not known to code for any RNAs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 193 (1984), S. 267-282 
    ISSN: 1432-041X
    Keywords: Drosophila ; Larval cuticle ; Pattern formation ; Embryonic lethal mutations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a search for embryonic lethal mutants on the second chromosome ofDrosophila melanogaster, 5764 balanced lines isogenic for an ethyl methane sulfonate (EMS)-treatedcn bw sp chromosome were established. Of these lines, 4217 carried one or more newly induced lethal mutations corresponding to a total of 7600 lethal hits. Eggs were collected from lethal-bearing lines and unhatched embryos from the lines in which 25% or more of the embryos did not hatch (2843 lines) were dechorionated, fixed, cleared and scored under the compound microscope for abnormalities of the larval cuticle. A total of 272 mutants were isolated with phenotypes unequivocally distinguishable from wild-type embryos on the basis of the cuticular pattern. In complementation tests performed between mutants with similar phenotype, 48 loci were identified by more than one allele, the average being 5.4 alleles per locus. Complementation of all other mutants was shown by 13 mutants. Members of the complementation groups were mapped by recombination analysis. No clustering of loci with similar phenotypes was apparent. From the distribution of the allele frequencies and the rate of discovery of new loci, it was estimated that the 61 loci represent the majority of embryonic lethal loci on the second chromosome yielding phenotypes recognizable in the larval cuticle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 193 (1984), S. 90-97 
    ISSN: 1432-041X
    Keywords: Drosophila ; Temperature-sensitive ; Neoplasms ; Differentiation ; Imaginal discs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary EMS induced temperature-sensitivelethal (2) giant larva, 1(2)gl, alleles were isolated by screening against a knownl(2)gl allele. Analysis of the lethal phase of thel(2)gl ts-deficiency heterozygotes demonstrated: (1) the majority of thel(2)gl tslarvae survive to late third instar, (2) at 29°C the majority of thel(2)gl tslarvae failed to pupate and only rarely did they differentiate adult cuticular structures, (3) at 15°C the majority of the larvae pupated and frequently differentiated adult cuticular structures. Examination of the imaginal discs ofl(2)gl tslarvae reared at 29°C revealed the presence of morphologically abnormal wing, haltere and leg imaginal discs. No morphologically abnormal discs were found in thel(2)gl tslarvae reared at 15°C. Studies on both the histology and the developmental capacity of the morphologically normal and abnormall(2)gl tsdiscs were performed. The morphologically normal discs are histologically normal and produce a full complement of adult cuticular structures. However, the morphologically abnormal discs contained both regions that maintained the normal monolayer epithelium and regions that had lost the normal tissue architecture. The implants obtained when the morphologically abnormal discs are injected into metamorphosing larvae contained only a limited number of the normal complement of adult structures and usually only structures found in the ventral wing hinge region were recovered. In addition, the “metamorphosed” morphologically abnormal discs contained undifferentiated tissue that gave rise to transplantable neoplasms when cultured in adults. The results of the studies on the pathology of thel(2)gl tslarvae are discussed with respect to the role of thel(2)gl tsfunction during normal development, the autonomy of the neoplastic development of thel(2)gl tstissues, and similarities between neoplastic development inDrosophila and mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-041X
    Keywords: Drosophila ; Pole cell transplantation ; Heterospecific combinations ; Gametogenesis ; Chorion morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We transplanted pole cells betweenDrosophila melanogaster, D. mauritiana andD. ananassae to investigate the ability of germ cells to develop in the gonad of a heterospecific host, and to study the interaction between somatic follicle cells and the cells of the germ line in producing the species-specific chorion. FemaleD. mauritiana germ cells in aD. melanogaster ovary produced functional eggs with normal development potential. The same is true for the reciprocal combination. FemaleD. ananassae pole cells in aD. melanogaster host only developed to a very early stage and degenerated afterwards. None of the interspecific combinations of male pole cells led to functional sperm. We could not determine at what stage the transplanted male pole cells were arrested. The cooperation of follicle cells and the oocyte-nurse cell complex in producing the chorion was studied using the germ-line-dependent mutationfs(1) K10 ofD. melanogaster, which causes fused respiratory appendages and an abnormal chorion morphology. Wild-type femaleD. mauritiana germ cells in a mutantfs(1) K10 D. melanogaster ovary led to the production of wild-type eggs withD. melanogaster-specific, short respiratory appendages. On the other hand,D. melanogaster fs(1) K10 germ cells in aD. mauritiana ovary induced the formation of eggs with mutant fused appendages which were, however, typicallyD. mauritiana in length. When.D. mauritiana pole cells developed in aD. melanogaster ovary, the chorion exhibited a new imprint pattern that differs from both species-specific patterns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 193 (1984), S. 98-107 
    ISSN: 1432-041X
    Keywords: Drosophila ; Neoplasms ; Promotion ; Regeneration ; Temperature-sensitive ; Imaginal discs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In this paper we present an analysis of the behavior ofl(2)gl tsimaginal wing discs during culture in adult hosts. Thel(2)gl tslarvae reared at 29° C contain two types of wing discs, those that are morphologically normal and those that are abnormal. When discs of both types are cultured in adult hosts at 29° C, the restrictive temperature, they give rise to transplantable neoplastic tissue. However, when the 29° C reared discs are cultured at 15° C, the permissive temperature, the morphologically normal discs maintain their morphology, but the morphologically abnormal discs give rise to neoplasms. Thel(2)gl tslarvae reared at 15° C contain only morphologically normal discs. When these discs are cultured in adult hosts at 29° C they give rise to neoplasms, however if the discs are cultured at 15° C they maintain their normal morphology. These results demonstrate: (1) that all wing imaginal discs obtained from 29° C rearedl(2)gl tslarvae are competent to undergo neoplastic development, (2) the morphologically abnormal discs obtained from the 29° C rearedl(2)gl tslarvae are committed to neoplastic development, (3) the neoplastic development of the morphologically normal discs is temperature dependent, (4) once the neoplastic development of thel(2)gl tsdiscs has been initiated the process is not readily reversible. In addition, the ability ofl(2)gl tswing discs to perform epimorphic regulation was tested by amputating morphologically normal permissively rearedl(2)gl tswing discs and culturing both fragiments at the permissive temperature. Fragments of control wild-type discs maintained their morphology during culture at the permissive temperature. However, both fragments of txel(2)gl tsdiscs became neoplastic. This result is discussed with respect to a possible role for thel(2)gl +function in epimorphic regulation and with respect to the phenomena of tumor promotion in vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-041X
    Keywords: Drosophila ; Gap junction ; Imaginal disc ; Pattern formation ; EM Stereology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Developmental changes in the distribution of gap junctions in early, mid and late third larval stage wing discs and in pupariation+6 h and pupariation+24 h stage wing discs fromDrosophila melanogaster were analyzed by quantitative electron microscopy. Gap junctions occur in all 12 intradisc regions examined in each of the five developmental stages. Their distribution is non-random and changes during development which suggests that they are developmentally regulated. The gap junctions are not static structures, rather they grow and regress during development. The changes tend to be gradual ones without sudden increases or decreases. Gap junctions continuously form and grow in size throughout the third larval stage and during the first 6 h following pupariation. Their surface density, number, percent of the lateral plasma membrane area, and absolute area as well as the lateral plasma membrane surface density all increase during this time. Between pupariation+ 6 h and pupariation+24 h all but one of these parameters decrease indicative of gap junctional breakdown. Gap junctions are most numerous and change least during development in the apical cell regions where intercellular contacts are close and stable. They change most in the basal cell regions where intercellular contacts tend to be looser and change during development. The most dramatic change is in the absolute area which increases by a factor of 23 between the early third larval stage and pupariation+24 h. At pupariation the rate of gap junction growth undergoes a transient increase before the phase of disassembly begins. Developmental changes in gap junction surface density are closely coupled with changes in the lateral plasma membrane surface density which suggests that these may be coregulated. Evidence from mutants suggests that when the number and density of gap junctions fail to increase in proportion to lateral plasma membrane growth, wing disc development will be abnormal. Our results support the idea that some minimum gap junction density is required for normal development and that this must increase as development proceeds. The results are consistent with the notion that gap junctions are involved in pattern formation and growth control and are discussed with respect to the acquisition of competence for metamorphosis, disc growth, disc morphogenesis and changes in the hormonal environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 193 (1984), S. 296-307 
    ISSN: 1432-041X
    Keywords: Drosophila ; Larval cuticle ; Pattern formation ; Embryonic lethal mutations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In order to identify X-chromosomal genes required inDrosophila for early patterning and morphogenesis, we examined embryos hemizygous for EMS-induced lethal mutations to determine which of those mutations cause gross morphological defects. Embryos from 2711 lethal lines, corresponding to 3255 lethal point mutations were studied. Only 21% caused death during embryogenesis and of these, only one-sixth, or 3% of the total lethals, were associated with defects visible in the final cuticle pattern. Of the 114 point mutants causing visible cuticle defects, 76 could be assigned to 14 complementation groups. An additional 25 mutations mapping to regions of the X-chromosome not covered by male fertile duplications were assigned to six complementation groups based on similarities of map position and phenotype. Thirteen mutations could not be assigned to complementation groups. All mutations allowed normal development through the cellular blastoderm stage, the first defects associated with the earliest acting loci being observed shortly after the onset of gastrulation. The phenotypes of the various loci range from alterations in segment pattern or early morphogenetic movements to defects in final pigmentation and denticle morphology. Cuticle preparations were also examined for 63 deletions spanning in total 74% of the X-chromosome, as well as for 8 deletions and point mutations derived in saturation mutagenesis screens of the fourth chromosome (Hochman 1976). With the exception of defects in head morphology and defects in cuticle differentiation, none of the hemizygous deletions showed phenotypes other than those predicted by point mutations known to lie in those regions. No deletion caused new or unknown alterations in gastrulation, segmentation or cuticle pattern.These results suggest that the number of genes required zygotically for normal embryonic patterning is small and that most, if not all such loci, are represented by point mutations in our collection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-041X
    Keywords: Drosophila ; Imaginal disc ; Morphogenesis ; Tissue culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The thin region of the peripodial membrane is confined to the area overlying the distal anlagen in thoracic discs. During the early stages of evagination the peripodial membrane is greatly stretched, but does not rupture. The appendage then evaginates through the stalk, probably by means of a contraction of the peripodial membrane. The cells of the peripodial membrane of leg and wing discs persist and differentiate sheets of trichomes characteristic of the ventral and lateral thorax. This is discussed in relation to imaginal disc fate maps.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 193 (1984), S. 263-265 
    ISSN: 1432-041X
    Keywords: Drosophila ; Biothorax complex ; Prothoracic transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary If, early in development, theUbx + gene is removed by mitotic recombination from cells of the meso-and metathoracic leg primordia, theseUbx − cells develop as in the posterior prothoracic leg. We show that this transformation, termedpostprothorax, is a discrete genetic function that is independent of other homeotic transformations such asbx, pbx orbxd, which also result from the inactivation of theUbx gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 193 (1984), S. 283-295 
    ISSN: 1432-041X
    Keywords: Drosophila ; Larval cuticle ; Pattern formation ; Embryonic lethal mutations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The present report describes the recovery and genetic characterization of mutant alleles at zygotic loci on the third chromosome ofDrosophila melanogaster which alter the morphology of the larval cuticle. We derived 12600 single lines from ethyl methane sulfonate (EMS)-treatedst e orrucuca chromosomes and assayed them for embryonic lethal mutations by estimating hatch rates of egg collections. About 7100 of these lines yielded at least a quarter of unhatched eggs and were then scored for embryonic phenotypes. Through microscopic examination of unhatched eggs 1772 lines corresponding to 24% of all lethal hits were classified as embryonic lethal. In 198 lines (2.7% of all lethal hits), mutant embryos showed distinct abnormalities of the larval cuticle. These embryonic visible mutants define 45 loci by complementation analysis. For 32 loci, more than one mutant allele was recovered, with an average of 5.8 alleles per locus. Complementation of all other mutants was shown by 13 mutants. The genes were localized on the genetic map by recombination analysis, as well as cytologically by complementation analysis with deficiencies. They appear to be randomly distributed along the chromosome. Allele frequencies and comparisons with deficiency phenotypes indicate that the 45 loci represent most, if not all, zygotic loci on the third chromosome, where lack of function recognizably affects the morphology of the larval cuticle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...