Skip to main content
Log in

Adjacent chromosomal regions can evolve at very different rates: Evolution of theDrosophila 68C glue gene cluster

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The 68C puff is a highly transcribed region of theDrosophila melanogaster salivary gland polytene chromosomes. Three different classes of messenger RNA originate in a 5000-bp region in the puff; each class is translated to one of the salivary gland glue proteins sgs-3, sgs-7, or sgs-8. These messenger RNA classes are coordinately controlled, with each RNA appearing in the third larval instar and disappearing at the time of puparium formation. Their disappearance is initiated by the action of the steroid hormone ecdysterone. In the work reported here, we studied evolution of this hormone-regulated gene cluster in themelanogaster species subgroup ofDrosophila. Genome blot hybridization experiments showed that five other species of this subgroup have DNA sequences that hybridize toD. melanogaster 68C sequences, and that these sequences are divided into a highly conserved region, which does not contain the glue genes, and an extraordinarily diverged region, which does. Molecular cloning of this DNA fromD. simulans, D. erecta, D. yakuba, andD. teissieri confirmed the division of the region into a slowly and a rapidly evolving protion, and also showed that the rapidly evolving region of each species codes for third instar larval salivary gland RNAs homologous to theD. melanogaster glue mRNAs. The highly conserved region is at least 13,000 bp long, and is not known to code for any RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner M (1967) Patterns of puffing activity in the salivary gland chromosomes ofDrosophila. I. Autosomal puffing patterns in laboratory stock ofDrosophila melanogaster. Chromosoma 21:398–428

    Article  PubMed  Google Scholar 

  • Ashburner M (1973) Sequential gene activation by ecdysone in polytene chromosomes ofDrosophila melanogaster. I. Dependence upon ecdysone concentration. Dev Biol 35:47–61

    Article  PubMed  Google Scholar 

  • Ashburner M (1974) Sequential gene activation by ecdysone in polytene chromosomes ofDrosophila melanogaster. II. The effects of inhibitors of protein synthesis. Dev Biol 39:141–157

    PubMed  Google Scholar 

  • Ashburner M, Berendes HD (1978) Puffing of polytene chromosomes. In: ashburner M, Wright TRF (eds) The genetics and biology ofDrosophila. vol 2b. Academic Press, London pp 315–395

    Google Scholar 

  • Ashburner M, Lemeunier F (1972) Patterns of puffing activity in the salivary gland chromosomes ofDrosophila: VII. Homology of puffing patterns on chromosome arm 3L inD. melanogaster andD. yakuba, with notes on puffing inD. teissieri. Chromosoma 38:283–295

    Article  PubMed  Google Scholar 

  • Ashburner M, Richards G (1976) Sequential gene activation by ecdysone in polytene chromosomes ofDrosophila melanogaster. III. Consequences of ecdysone withdrawal. Dev Biol 54:241–255

    Article  PubMed  Google Scholar 

  • Blattner FR, Williams BG, Blechl AE, Thompson KD, Faber HE, Furlong LA, Grunwald DJ, Kiefer DO, Moore DD, Schumm JW, Sheldon EL, Smithies O (1977) Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science 196:161–169

    PubMed  Google Scholar 

  • Bock IR, Wheeler MR, (1972) TheDrosophila melanogaster species group. University of Texas Publication 7213. University of Texas, Austin

    Google Scholar 

  • Bolivar F (1978) Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRI sites for selection of EcoRI generated recombinant DNA molecules. Gene 4:121–136

    Article  PubMed  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Leyneker HL, Boyer HW, Crossa JH, Falkow S (1977) Construction and characterization of new cloning vechicles. II. A multipurpose cloning system. Gene 2:95–113

    Article  PubMed  Google Scholar 

  • Collins J, Hohn B (1978) Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage λ heads. Proc Natl Acad Sci USA 75:4242–4246

    PubMed  Google Scholar 

  • Crosby MA (1983) Determination of sequences necessary for regulated expression of the Sgs-3 gene In: Caltech Biology Annual Report. California Institute of Technology, Pasadena, pp 58–59

    Google Scholar 

  • Crowley TE, Meyerowitz EM (1984) Steroid regulation of RNAs transcribed from theDrosophila 68C polytene chromosome puff. Dev Biol 102:110–121

    Article  PubMed  Google Scholar 

  • Crowley TE, Bond MW, Meyerowitz EM (1983) The structural genes for threeDrosophila glue proteins reside at a single polytene chromosome puff locus. Mol Cell Biol 3:623–634

    PubMed  Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Denhardt DT (1966) A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646

    Article  PubMed  Google Scholar 

  • Dworniczak B, Kobus S, Schaltmann-Eiteljorge K, Pongs O (1983) Ecdysterone, ecdysterone receptor, and chromosome puffs. In: Roy AK, Clark JH (eds) Gene regulation by steroid hormones II. Springer-Verlag, New York, pp 79–91

    Google Scholar 

  • Engels WR (1981) Estimating genetic divergence and genetic variability with restriction endonucleases. Proc Natl Acad Sci USA 78:6329–6333

    PubMed  Google Scholar 

  • Fraenkel G, Brookes VJ (1953) The process by which the puparia of many species of flies become fixed to a substrate. Biol Bull 105:442–449

    Google Scholar 

  • Garfinkel MD, Pruitt RE, Meyerowitz EM (1983) DNA sequences, gene regulation and modular protein evolution in theDrosophila 68C glue gene cluster. J Mol Biol 168:765–789

    PubMed  Google Scholar 

  • Gronemeyer H, Pongs O (1980) Localization of ecdysterone on polytene chromosomes ofDrosophila melanogaster. Proc Natl Acad Sci USA 77:2108–2112

    PubMed  Google Scholar 

  • Hood L, Steinmetz M, Malissen B (1983) Genes of the major histocompatibility complex of the mouse. Annu Rev Immunol 1:529–568

    Article  PubMed  Google Scholar 

  • Lemeunier F, Ashburner M (1976) Relationships within themelanogaster species subgroup of the genusDrosophila (sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proc R Soc Lond [Biol] 193:275–294

    Google Scholar 

  • Lemeunier F, Dutrillaux B, Ashburner M (1978) Relationships within themelanogaster subgroup species of the genusDrosophila (sophophora). Chromosoma 69:349–361

    Article  Google Scholar 

  • Lewis EB (1960) A new standard food medium. Dros. Inf. Ser. 34:117–118

    Google Scholar 

  • Lis JT, Prestidge L, Hogness DS (1978) A novel arrangement of tandemly repeated genes of a major heat shock site inD. melanogaster. Cell 4:901–919

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65: 499–560

    PubMed  Google Scholar 

  • McDonell MW, Simon MN, Studier FW (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol 110:119–146

    PubMed  Google Scholar 

  • Meyerowitz EM, Hogness DS (1982) Molecular organization of aDrosophila puff site that responds to ecdysone. Cell 28:165–176

    Article  PubMed  Google Scholar 

  • Murray NE, Brammar WJ, Murray K (1977) Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150:53–61

    PubMed  Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    PubMed  Google Scholar 

  • Peacock C, Dingman CW (1968) Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry 7:668–674

    PubMed  Google Scholar 

  • Pelling C (1964) Ribonukleinsäure-Synthese der Riesenchromosomen. Autoradiographische Untersuchungen anChironomus tentans. Chromosoma 15:71–122

    Article  PubMed  Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Sternberg N, Tiemeier D, Enquist L (1977) In vitro packaging of a λ Dam vector containing EcoRI fragments ofEscherichia coli and phage P1. Gene 1:255

    Article  PubMed  Google Scholar 

  • Sturtevant AH (1919) A new species closely resemblingDrosophila melanogaster. Psyche (Stuttg) 26:153–155

    Google Scholar 

  • Zwiebel LJ, Cohn VH, Wright DR, Moore GP (1982) Evolution of single-copy DNA and the ADH gene in seven drosophilids. J Mol Evol 19:62–71

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyerowitz, E.M., Martin, C.H. Adjacent chromosomal regions can evolve at very different rates: Evolution of theDrosophila 68C glue gene cluster. J Mol Evol 20, 251–264 (1984). https://doi.org/10.1007/BF02104731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02104731

Key words

Navigation