ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA
  • 1995-1999  (1,092)
  • 1980-1984  (133)
  • 1960-1964
  • 1925-1929
  • 1995  (1,092)
  • 1980  (133)
Collection
Keywords
Years
  • 1995-1999  (1,092)
  • 1980-1984  (133)
  • 1960-1964
  • 1925-1929
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2021-05-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2021-05-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Joint Institute for Marine and Atmospheric Research, University of Hawaii & National Oceanographic Data Center., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2016-02-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Dniversität Kiel. 76, Bremerhaven, PANGAEA, 150 p.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2014-08-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-08-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/jpeg
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2016-06-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3International Workshop on Carbon cycling and coral reef metabolism, Miyakojima, Japan, Bremerhaven, PANGAEA, pp. 76-81
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3IDRONAUT S.r.l, www.idronaut.it, Bremerhaven, PANGAEA, 1 p.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE International Project Office,., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Master Thesis, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven & Fachbereich Geowissenschaften, Westfälische Wilhelms-Universität zu Münster (http://store.pangaea.de/Publications/archive/DiplMueller.zip), Bremerhaven, PANGAEA, 84 p.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3IDRONAUT S.r.l, www.idronaut.it, Bremerhaven, PANGAEA, 1 p.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Spektrum der Wissenschaft, Bremerhaven, PANGAEA, 2, pp. 10-20
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3IDRONAUT S.r.l, www.idronaut.it, Bremerhaven, PANGAEA, 1 p.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen, Bremerhaven, PANGAEA, 39, pp. 185-261
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3WOCE., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Geolines (Praha), Bremerhaven, PANGAEA, 2, 10 p.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Diplomarbeit, Universität Leipzig Fakultät für Biowissenschaften, Pharmazie und Psychologie., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Nauka Publishers, Sankt-Petersburg., Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Farley, Kenneth A; Patterson, D B (1995): A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor. Nature, 378(6557), 521-644, https://doi.org/10.1038/378600a0
    Publication Date: 2023-07-10
    Description: Most of the helium-3 in oceanic sediments conies from interplanetary dust particles (IDPs), and can therefore be used to infer the accretion rate of dust to the Earth through time (Ozima et al., 1984, doi:10.1038/311448a0; Takayanagi and Ozima, 1987, doi:10.1029/JB092iB12p12531; Farley, 1995, doi:10.1038/376153a0). 3He records from slowly accumulating pelagic clays indicate that the accretion rate varies considerably over millions of years, probably owing to cometary and asteroidal break-up events3. Muller and MacDonald have proposed (Muller and MacDonald, 1995, doi:10.1038/377107b0) that periodic changes in this accretion rate due to a previously unrecognized 100-kyr periodicity in the Earth's orbital inclination might account for the prominence of this frequency in climate records of the past million years (Imbrie et al., 1993, doi:10.1029/93PA02751). Here we report variations in the 3He flux to the sea floor that support this idea. We find that the flux recorded in rapidly accumulating Quaternary sediments from the Mid-Atlantic Ridge oscillates with a period of about 100 kyr. We cannot yet say, however, whether the 100-kyr climate cycle is a consequence of, a cause of, or an effect independent of these periodic changes in the rate of delivery of interplanetary dust to the sea floor.
    Keywords: 94-607; Accumulation rate, mass; AGE; Age, maximum/old; Age, minimum/young; Calculated; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Helium-3; Helium-3, extraterrestrial; Helium-3, flux; Helium-3, flux, standard deviation; Helium-3, standard deviation; Helium-3/Helium-4; Helium-3/Helium-4, standard deviation; Leg94; North Atlantic/FLANK; Number of cycles; Sample amount; Sample code/label; Sample code/label 2
    Type: Dataset
    Format: text/tab-separated-values, 148 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-07-09
    Keywords: 20; Counting; DEPTH, water; Dermocystidium sp.; Fungi; Labyrinthula sp.; Labyrinthuloides sp.; North Sea; Number of species; Salinity; Sample code/label; Schizochytrium aggregatum; Schizochytrium sp.; Temperature, water; Thraustochytrium aggregatum; Thraustochytrium aureum; Thraustochytrium multirudimentale; Thraustochytrium pachydermum; Thraustochytrium sp.; Ulkenia minuta; Ulkenia visurgensis; VH_06_76_482-1; VH0676; Victor Hensen; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-07-09
    Keywords: 23; Counting; DEPTH, water; Dermocystidium sp.; Fungi; Labyrinthula sp.; Labyrinthuloides sp.; North Sea; Number of species; Salinity; Sample code/label; Schizochytrium aggregatum; Schizochytrium sp.; Temperature, water; Thraustochytrium aggregatum; Thraustochytrium aureum; Thraustochytrium multirudimentale; Thraustochytrium pachydermum; Thraustochytrium sp.; Ulkenia minuta; Ulkenia visurgensis; VH_06_76_479-1; VH0676; Victor Hensen; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-07-09
    Keywords: 14; CO2BaseSleipner; Counting; DEPTH, water; Dermocystidium sp.; Fungi; Labyrinthula sp.; Labyrinthuloides sp.; North Sea; Number of species; Salinity; Sample code/label; Schizochytrium aggregatum; Schizochytrium sp.; Temperature, water; Thraustochytrium aggregatum; Thraustochytrium aureum; Thraustochytrium multirudimentale; Thraustochytrium pachydermum; Thraustochytrium sp.; Ulkenia minuta; Ulkenia visurgensis; VH_06_76_488-1; VH0676; Victor Hensen; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-07-09
    Keywords: AGE; Allomorphina pacifica; Ammodiscus sp.; Anomalinoides globulosus; Arabian Sea; Astrononion novozealandicum; Bolivina seminuda; Cancris oblongus; Cassidulina laevigata; Cassidulina minuta; CD17; CD17-30; Charles Darwin; Chilostomella oolina; Cibicides lobatulus; Cibicidoides bradyi; Cibicidoides robertsonianus; Cibicidoides wuellerstorfi; Counting 〉125 µm fraction; Cribrostomoides subglobosum; Dentalina spp.; DEPTH, sediment/rock; Eggerella bradyi; Eoeponidella sp.; Epistominella exigua; Fissurina spp.; Foraminifera, benthic indeterminata; Francesita advena; Fursenkoina sp.; Globobulimina spp.; Globocassidulina subglobosa; Gyroidina altiformis; Gyroidina neosoldanii; Gyroidinoides orbicularis; Hoeglundina elegans; Karreriella bradyi; Lagena spp.; Laticarinina halophora; Lenticulina iota; Martinottiella communis; Melonis barleeanus; Melonis pompilioides; Nodosaria spp.; Nummoloculina irregularis; Oolina spp.; Oridorsalis umbonatus; Osangularia culter; PC; Piston corer; Pleurostomella subnodosa; Pullenia bulloides; Pullenia sp.; Pullenia subcarinata; Pyrgo spp.; Quadrimorphina glabra; Quinqueloculina lamarckiana; Quinqueloculina sp.; Quinqueloculina venusta; Reophax bilocularis; Reophax dentaliniformis; Rutherfordoides bradyi; Saracenaria sp.; Sigmoilina edwardsi; Sigmoilopsis schlumbergeri; Siphotextularia catenata; Sphaeroidina bulloides; Triloculina tricarinata; Uvigerina auberiana; Uvigerina peregrina; Uvigerina spinicostata; Virgulinella pertusa
    Type: Dataset
    Format: text/tab-separated-values, 4914 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2023-07-09
    Keywords: 55-433; 55-433A; Abundance; Actinocyclus curvatulus; Actinocyclus divisus; Actinocyclus ehrenbergii; Actinocyclus ehrenbergii var. tenella; Actinocyclus ellipticus; Actinocyclus ellipticus elongatus; Actinocyclus ellipticus forma lanceolata; Actinocyclus ingens; Actinocyclus ochotensis; Actinocyclus oculatus; Actinocyclus tsugaruensis; Actinoptychus undulatus; Asterolampra acutiloba; Asterolampra grevillei; Asterolampra marylandica; Asteromphalus darwinii; Asteromphalus flabellatus; Asteromphalus hookeri; Asteromphalus hungaricus; Asteromphalus robustus; Cocconeis costata; Coscinodiscus curvatulus; Coscinodiscus endoi; Coscinodiscus lewisianus; Coscinodiscus marginatus; Coscinodiscus nodulifer; Coscinodiscus oculus-iridis; Coscinodiscus stellaris; Coscinodiscus symbolophorus; Coscinodiscus tabularis; Cosmiodiscus insignis; Counting, diatoms; Deep Sea Drilling Project; Denticula hyalina; Denticula kamtschatica; Denticula lauta; Denticula punctata; Denticula seminae; Denticula seminae fossilis; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatom preservation; Diatom zone; Diploneis bombus; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epoch; Event label; Glomar Challenger; Hemidiscus cuneiformis; Leg55; Mediaria splendida; Nitzschia cf. oceanica; Nitzschia fossilis; Nitzschia jouseae; Nitzschia marina; Nitzschia miocenica; Nitzschia reinholdii; Nitzschia rolandii; Nitzschia suikoensis; North Pacific/SEAMOUNT; Planktoniella sol; Pseudoeunotia doliolus; Rhabdonema japonicum; Rhizosolenia barboi; Rhizosolenia bergonii; Rhizosolenia curvirostris; Rhizosolenia hebetata forma hiemalis; Rhizosolenia sp.; Rhizosolenia styliformis; Rouxia californica; Rouxia naviculoides; Rouxia yabei; Sample code/label; Stephanopyxis turris; Synedra jouseana; Thalassionema nitzschioides; Thalassiosira aff. borealis; Thalassiosira antiqua; Thalassiosira borealis; Thalassiosira convexa; Thalassiosira decipiens; Thalassiosira eccentrica; Thalassiosira eccentrica var. fasiculatus; Thalassiosira eccentrica var. jouseae; Thalassiosira eccentrica var. leasareolatus; Thalassiosira gravida; Thalassiosira gravida fossilis; Thalassiosira hyalina; Thalassiosira jacksonii; Thalassiosira leptopus; Thalassiosira lineata; Thalassiosira miocenica; Thalassiosira oestrupii; Thalassiosira opposita; Thalassiosira plicata; Thalassiosira praeconvexa; Thalassiothrix longissima
    Type: Dataset
    Format: text/tab-separated-values, 4226 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-07-09
    Keywords: 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 7; 8; 9; Aplanochytrium sp.; CO2BaseSleipner; Counting; Date/Time of event; DEPTH, water; Dermocystidium sp.; Event label; Fungi; Hyalochlorella; Labyrinthuloides sp.; Latitude of event; Limfjorden; Longitude of event; North Sea; Number of species; Oder Estuary; Salinity; Sample code/label; Schizochytrium aggregatum; Schizochytrium sp.; Temperature, water; Thraustochytrium aggregatum; Thraustochytrium kinnei; Thraustochytrium multirudimentale; Thraustochytrium pachydermum; Thraustochytrium roseum; Thraustochytrium sp.; Thraustochytrium striatum; Ulkenia minuta; Ulkenia visurgensis; VH_03_76_244-1; VH_03_76_245-1; VH_03_76_246-1; VH_03_76_247-1; VH_03_76_251-1; VH_03_76_252-1; VH_03_76_253-1; VH_03_76_254-1; VH_03_76_255-1; VH_03_76_256-1; VH_03_76_257-1; VH_03_76_258-1; VH_03_76_259-1; VH_03_76_260-1; VH_03_76_261-1; VH_03_76_262-1; VH_03_76_263-1; VH_03_76_264-1; VH_03_76_265-1; VH_03_76_266-1; VH_03_76_267-1; VH_03_76_268-1; VH_03_76_269-1; VH_03_76_270-1; VH_03_76_271-1; VH_03_76_272-1; VH_03_76_273-1; VH_03_76_274-1; VH_06_76_447-1; VH_06_76_448-1; VH_06_76_452-1; VH_06_76_453-1; VH_06_76_473-1; VH_06_76_474-1; VH_06_76_475-1; VH_06_76_476-1; VH_06_76_477-1; VH_06_76_478-1; VH_06_76_479-1; VH_06_76_480-1; VH_06_76_481-1; VH_06_76_482-1; VH_06_76_483-1; VH_06_76_484-1; VH_06_76_485-1; VH_06_76_486-1; VH_06_76_487-1; VH_06_76_488-1; VH_06_76_489-1; VH_06_76_490-1; VH_06_76_491-1; VH_06_76_492-1; VH_09_76_831-1; VH_09_76_832-1; VH_09_76_834-1; VH_09_76_835-1; VH_09_76_837-1; VH_09_76_838-1; VH_09_76_839-1; VH_09_76_840-1; VH_09_76_841-1; VH_09_76_842-1; VH_09_76_843-1; VH_09_76_844-1; VH_09_76_845-1; VH_09_76_846-1; VH_09_76_847-1; VH_09_76_848-1; VH_09_76_849-1; VH_09_76_850-1; VH_09_76_851-1; VH_09_76_852-1; VH_09_76_853-1; VH_09_76_854-1; VH_09_76_855-1; VH_09_76_856-1; VH_09_76_858-1; VH_10_75_376-1; VH_10_75_377-1; VH_10_75_378-1; VH_10_75_379-1; VH_10_75_380-1; VH_10_75_381-1; VH_10_75_382-1; VH_10_75_383-1; VH_10_75_384-1; VH_10_75_385-1; VH_10_75_386-1; VH_10_75_387-1; VH_10_75_388-1; VH_10_75_389-1; VH_10_75_390-1; VH_10_75_391-1; VH_10_75_392-1; VH_10_75_393-1; VH_10_75_394-1; VH_10_75_395-1; VH_10_75_396-1; VH_10_75_397-1; VH_10_75_398-1; VH_10_75_399-1; VH_10_75_400-1; VH_12_75_521-1; VH_12_75_522-1; VH_12_75_523-1; VH_12_75_524-1; VH_12_75_525-1; VH_12_75_526-1; VH_12_75_527-1; VH_12_75_528-1; VH_12_75_529-1; VH_12_75_530-1; VH_12_75_531-1; VH_12_75_532-1; VH0376; VH0676; VH0976; VH1075; VH1275; Victor Hensen; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 3178 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-07-09
    Keywords: 17; CO2BaseSleipner; Counting; DEPTH, water; Dermocystidium sp.; Fungi; Labyrinthula sp.; Labyrinthuloides sp.; North Sea; Number of species; Salinity; Sample code/label; Schizochytrium aggregatum; Schizochytrium sp.; Temperature, water; Thraustochytrium aggregatum; Thraustochytrium aureum; Thraustochytrium multirudimentale; Thraustochytrium pachydermum; Thraustochytrium sp.; Ulkenia minuta; Ulkenia visurgensis; VH_06_76_485-1; VH0676; Victor Hensen; Water sample; WS
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-07-09
    Keywords: 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 7; 8; 9; Aplanochytrium sp.; CO2BaseSleipner; Counting; Date/Time of event; DEPTH, sediment/rock; Dermocystidium sp.; Elevation of event; Event label; Fungi; Labyrinthuloides sp.; Latitude of event; Longitude of event; North Sea; Number of species; Sample code/label; Schizochytrium sp.; Thraustochytrium aggregatum; Thraustochytrium kinnei; Thraustochytrium multirudimentale; Thraustochytrium pachydermum; Thraustochytrium sp.; Ulkenia minuta; Ulkenia visurgensis; van Veen Grab; VGRAB; VH_03_76_244-2; VH_03_76_245-2; VH_03_76_246-2; VH_03_76_247-2; VH_03_76_251-2; VH_03_76_252-2; VH_03_76_253-2; VH_03_76_254-2; VH_03_76_255-2; VH_03_76_256-2; VH_03_76_257-2; VH_03_76_258-2; VH_03_76_259-2; VH_03_76_260-2; VH_03_76_261-2; VH_03_76_262-2; VH_03_76_263-2; VH_03_76_264-2; VH_03_76_265-2; VH_03_76_266-2; VH_03_76_268-2; VH_03_76_269-2; VH_03_76_270-2; VH_03_76_271-2; VH_03_76_272-2; VH_03_76_273-2; VH_03_76_274-2; VH_06_76_447-2; VH_06_76_448-2; VH_06_76_449-2; VH_06_76_452-2; VH_06_76_453-2; VH_06_76_473-2; VH_06_76_474-2; VH_06_76_475-2; VH_06_76_476-2; VH_06_76_477-2; VH_06_76_478-2; VH_06_76_479-2; VH_06_76_480-2; VH_06_76_481-2; VH_06_76_482-2; VH_06_76_483-2; VH_06_76_484-2; VH_06_76_485-2; VH_06_76_486-2; VH_06_76_487-2; VH_06_76_488-2; VH_06_76_489-2; VH_06_76_490-2; VH_06_76_491-2; VH_06_76_492-2; VH_09_76_831-2; VH_09_76_832-2; VH_09_76_834-2; VH_09_76_835-2; VH_09_76_837-2; VH_09_76_838-2; VH_09_76_839-2; VH_09_76_840-2; VH_09_76_841-2; VH_09_76_842-2; VH_09_76_843-2; VH_09_76_844-2; VH_09_76_845-2; VH_09_76_846-2; VH_09_76_847-2; VH_09_76_848-2; VH_09_76_849-2; VH_09_76_850-2; VH_09_76_851-2; VH_09_76_852-2; VH_09_76_853-2; VH_09_76_854-2; VH_09_76_855-2; VH_09_76_856-2; VH_09_76_858-2; VH_10_75_376-2; VH_10_75_377-2; VH_10_75_378-2; VH_10_75_380-2; VH_10_75_381-2; VH_10_75_382-2; VH_10_75_383-2; VH_10_75_384-2; VH_10_75_385-2; VH_10_75_386-2; VH_10_75_387-2; VH_10_75_388-2; VH_10_75_389-2; VH_10_75_390-2; VH_10_75_391-2; VH_10_75_392-2; VH_10_75_393-2; VH_10_75_394-2; VH_10_75_395-2; VH_10_75_396-2; VH_10_75_397-2; VH_10_75_399-2; VH_10_75_400-2; VH_12_75_521-2; VH_12_75_522-2; VH_12_75_523-2; VH_12_75_524-2; VH_12_75_525-2; VH_12_75_526-2; VH_12_75_527-2; VH_12_75_528-2; VH_12_75_529-2; VH_12_75_530-2; VH_12_75_531-2; VH_12_75_532-2; VH0376; VH0676; VH0976; VH1075; VH1275; Victor Hensen
    Type: Dataset
    Format: text/tab-separated-values, 2373 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Murdmaa, Ivar O; Avdeiko, G P (1980): Volcaniclastic constituents in the Leg 55 sediments. In: Jackson, ED; Koisumi, I; et al., (eds.), Initial Reports of the Deep Sea Drilling Project (U.S. Govt. Printing Office), 55, 503-505, https://doi.org/10.2973/dsdp.proc.55.119.1980
    Publication Date: 2023-07-07
    Description: This chapter was previously intended to trace volcanic episodes through the Neogene and Pleistocene geological history recorded in the sedimentary sections drilled on the Emperor seamounts. Drilling disturbance, poor core recovery, and incomplete stratigraphic sections recovered from the seamounts have frustrated that plan, however. Moreover, the Leg 55 sedimentologists found in their smear-slide studies that transported island-arc tephra is scarce in the sediments, if present at all. So we have restricted our objective to description of the volcaniclastic admixture in sediments, as determined by mineralogical and geochemical data. We studied geochemistry of bulk samples (see Murdmaa et al., 1980), coarse-fraction mineralogy, and additional smear slides. The results obtained, however, do not tell much more about the volcaniclastic matter than did shipboard core descriptions.
    Keywords: 55-430; 55-432; 55-433A; 55-433B; Apatite; Barite; Carbonates; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Epidote; Event label; Feldspar; Garnet; Glomar Challenger; Heavy minerals; Hornblende; Iron oxide; Latitude of event; Leg55; Light minerals; Longitude of event; North Pacific/SEAMOUNT; North Pacific/SEDIMENT POND; North Pacific/TERRACE; Opal, biogenic silica; Opaque minerals; Orthopyroxene; Plagioclase; Pyrite, FeS2; Quartz; Sample code/label; Smear slide analysis; Sphene; Volcanic glass; Zeolite; Zircon
    Type: Dataset
    Format: text/tab-separated-values, 286 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-07-07
    Keywords: 57-439; Biotite; Calcite; Chert; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Grain size, maximum; Hornblende; Leg57; Limestone; North Pacific/TRENCH; Sample code/label; Sandstone; Smear slide analysis; Volcanic fragments
    Type: Dataset
    Format: text/tab-separated-values, 88 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-07-07
    Keywords: 56-434; 56-434A; 56-434B; 56-435; 56-435A; 56-436; 57-438; 57-438A; 57-439; 57-440; 57-440A; 57-440B; Actinolite; Anatase; Apatite; Barite; Biotite; Carbonates; Chalcedony; Chlorite; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Epidote; Event label; Feldspar; Garnet; Glauconite; Glomar Challenger; Heavy minerals; Hornblende; Iron oxide; Latitude of event; Leg56; Leg57; Leucoxene; Longitude of event; Minerals; North Pacific/BASIN; North Pacific/RIDGE; North Pacific/TRENCH; Olivine; Opal, biogenic silica; Opaque minerals; Orthopyroxene; Phosphate; Plagioclase; Pyrite, FeS2; Quartz; Quartz/Feldspar ratio; Ratio; Rhodochrosite (2.84 Å); Rutile; Sample code/label; Sphene; Volcanic glass; Volcanic glass, acidic; X-ray diffraction (XRD); Zeolite; Zircon
    Type: Dataset
    Format: text/tab-separated-values, 2437 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-07-07
    Keywords: 55-432A; Apatite; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg55; North Pacific/TERRACE; Olivine; Opaque minerals; Plagioclase; Sample code/label; Volcanic glass
    Type: Dataset
    Format: text/tab-separated-values, 49 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Aaris-Sørensen, Kim (1995): Palaeoecology of a late Weichselian vertebrate fauna from Nörre Lyngby, Denmark. Boreas, 24(4), 355-365, https://doi.org/10.1111/j.1502-3885.1995.tb00785.x
    Publication Date: 2023-07-10
    Description: Investigations at a Late Weichselian freshwater basin in northwestern Jutland, Denmark, yielded a fairly rich assemblage of vertebrate remains, mostly bones and teeth of small mammals. The remains are primarily allochthonous and the bones have been subjected to different taphonomic pathways and agents. AMS 14C-dates on terrestrial organic remains provided ages of Middle to Late Allerød time. Identifications revealed the first fossil record in Scandinavia of Rana arvalis, Sorex minutus, Ochotona cf. pusilla, Microtus gregalis, Microtus oeconomus, and Sicista cf. betulinu. Spermophilus cf. major and Desmana moschata, previously found only once and twice respectively, were retrieved, and Sorex araneus and Arvicola terrestris were recovered for the first time beyond the Atlantic chronozone. Ecologically, the Nørre Lyngby small mammal fauna can be characterized by its very high and almost equal proportions of boreal forest and steppe elements followed by a relatively high proportion of tundra elements. The fossil species share a modern area of sympatry north of the Caspian Sea from the river Volga in the west to the southern and western slopes of the Urals. If, however, the large Allerød mammals are added, the fauna is without modern analogues. The Nørre Lyngby fauna can be seen as a last expansion of the North European glacial fauna. Provided that an absolute chronology and a differentiated sea-level curve for the area can be established, the Nørre Lyngby fauna could become important for studies in mammalian dispersal and migration rates.
    Keywords: Age, 14C AMS; Age, comment; Age, maximum/old; Age, minimum/young; Amphibia; Arvicola terrestris; Aves; Bölling; Counting, mammalia; Desmana moschata; EUQUAM; European Quaternary Mammalia Database; Facies name/code; Geologic age name; Late Pleistocene; Limfjorden; Microtus gregalis; Microtus oeconomus; Microtus sp.; Nörre_Lyngby; Nr._Lyngby; Ochotona pusilla; ORDINAL NUMBER; Pisces; Pleistocene; Quarternary; Rangifer tarandus; Sample comment; Sicista subtilis-betulina; Sorex araneus-alpinus; Sorex minutus; Spermophilus major; Stratigraphy; Weichselian
    Type: Dataset
    Format: text/tab-separated-values, 21 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-07-10
    Keywords: Aluminium oxide; Archive of Ocean Data; ARCOD; Barium; Boron; Calcium oxide; Carbon dioxide; Chromium; Cobalt; Copper; DM1402-D2; DM17; Dmitry Mendeleev; Dredge; DRG; Fluorine; Hafnium; Iron oxide, Fe2O3; Iron oxide, FeO; Lithium; Magnesium oxide; Manganese oxide; Nickel; Niobium; Philippine Sea; Phosphorus pentoxide; Potassium oxide; Rubidium; Sample code/label; Sample type; Scandium; Silicon dioxide; Sodium oxide; Strontium; Sum; Tantalum; Thorium; Titanium dioxide; Uranium; Vanadium; Water in rock; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 477 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2023-07-10
    Keywords: 55-431; 55-431A; Abundance; Actinocyclus curvatulus; Coscinodiscus marginatus; Coscinodiscus nodulifer; Coscinodiscus tabularis; Counting, diatoms; Deep Sea Drilling Project; Denticula seminae; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatom preservation; Diatoms; Diatom zone; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epoch; Event label; Glomar Challenger; Leg55; North Pacific/TERRACE; Pseudoeunotia doliolus; Sample code/label; Thalassionema nitzschioides; Thalassiosira leptopus; Thalassiosira lineata; Thalassiosira oestrupii; Thalassiothrix longissima
    Type: Dataset
    Format: text/tab-separated-values, 95 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-07-10
    Keywords: 55-433C; Cerium; Cerium, standard deviation; Chromium; Chromium, standard deviation; Cobalt; Cobalt, standard deviation; Comment; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Europium; Europium, standard deviation; Glomar Challenger; Hafnium; Hafnium, standard deviation; Holmium; Holmium, standard deviation; Instrumental neutron activation analysis (INAA); Lanthanum; Lanthanum, standard deviation; Leg55; Lutetium; Lutetium, standard deviation; Neodymium; Neodymium, standard deviation; North Pacific/SEAMOUNT; Samarium; Samarium, standard deviation; Sample code/label; Scandium; Scandium, standard deviation; Tantalum; Tantalum, standard deviation; Terbium; Terbium, standard deviation; Thorium; Thorium, standard deviation; Unit; Ytterbium; Ytterbium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 335 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-07-10
    Keywords: 55-430A; 55-432A; 55-433A; 55-433B; 55-433C; Aluminium; Aluminium oxide; Calculated based on oxygen number; Chromium; Chromium(III) oxide; Deep Sea Drilling Project; Description; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Electron microprobe (EMP); Elevation of event; Event label; Glomar Challenger; Identification; Iron 2+; Iron 3+; Iron oxide, Fe2O3; Iron oxide, FeO; Latitude of event; Leg55; Longitude of event; Magnesium; Magnesium oxide; Magnetite; Manganese; Manganese oxide; North Pacific/SEAMOUNT; North Pacific/SEDIMENT POND; North Pacific/TERRACE; Number of oxygens; Rock type; Sample code/label; Titanium; Titanium dioxide; Total; Ulvöspinel; Unit
    Type: Dataset
    Format: text/tab-separated-values, 552 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-07-10
    Keywords: Aluminium oxide; Archive of Ocean Data; ARCOD; Barium; Boron; Calcium oxide; Carbon dioxide; Chromium; Cobalt; Comment; Copper; DM1403-D; DM1431-D; DM17; Dmitry Mendeleev; Dredge; DRG; Elevation of event; Elevation of event 2; Event label; Fluorine; Hafnium; Iron oxide, Fe2O3; Iron oxide, FeO; Latitude of event; Latitude of event 2; Lithium; Longitude of event; Longitude of event 2; Magnesium oxide; Manganese oxide; Nickel; Niobium; Philippine Sea; Phosphorus pentoxide; Potassium oxide; Rubidium; Sample code/label; Sample type; Scandium; Silicon dioxide; Sodium oxide; Strontium; Sum; Tantalum; Thorium; Titanium dioxide; Uranium; Vanadium; Water in rock; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 205 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-07-10
    Keywords: Aluminium oxide; Archive of Ocean Data; ARCOD; Barium; Boron; Calcium oxide; Carbon dioxide; Chromium; Cobalt; Copper; DM1404-D; DM17; Dmitry Mendeleev; Dredge; DRG; Fluorine; Hafnium; Iron oxide, Fe2O3; Iron oxide, FeO; Lithium; Loss on ignition; Magnesium oxide; Manganese oxide; Nickel; Niobium; Philippine Sea; Phosphorus pentoxide; Potassium oxide; Rubidium; Sample code/label; Sample type; Scandium; Silicon dioxide; Sodium oxide; Strontium; Sum; Tantalum; Thorium; Titanium dioxide; Uranium; Vanadium; Water in rock; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 485 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-07-10
    Keywords: Aluminium oxide; Archive of Ocean Data; ARCOD; Barium; Boron; Calcium oxide; Carbon dioxide; Chromium; Cobalt; Copper; DM1398-D; DM17; Dmitry Mendeleev; Dredge; DRG; Fluorine; Hafnium; Iron oxide, Fe2O3; Iron oxide, FeO; Lithium; Loss on ignition; Magnesium oxide; Manganese oxide; Nickel; Niobium; Philippine Sea; Phosphorus pentoxide; Potassium oxide; Rubidium; Sample code/label; Sample type; Scandium; Silicon dioxide; Sodium oxide; Strontium; Sum; Tantalum; Thorium; Titanium dioxide; Uranium; Vanadium; Water in rock; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 257 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    PANGAEA
    In:  P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow
    Publication Date: 2023-07-10
    Keywords: 42-379A; 42-380; 42-380A; 42-381; Achnanthes brevipes; Actinocyclus divisus; Actinocyclus ehrenbergii; Actinocyclus normannii; Actinocyclus ochotensis; Actinoptychus undulatus; Amphiprora gigantea; Amphora variabilis; Black Sea; Chaetoceros danicus; Chaetoceros peruvianus; Coscinodiscus hungaricus; Coscinodiscus stockesianus; Cyclotella caspia; Cyclotella corona; Cyclotella kutzingiana; Cyclotella praekutzingiana; Cyclotella proshkinae; Cyclotella servant-vildary; Cyclotella servant-vildary elegans; Deep Sea Drilling Project; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Epoch; Event label; Glomar Challenger; Gyrosigma acuminatum; Hemiaulus hauckii; Latitude of event; Leg42; Lithologic unit/sequence; Longitude of event; Melosira bellicosa; Melosira elegans; Melosira hibschii; Melosira papilio; Melosira praegranulata; Melosira praeislandica; Microscopy; Period; Rhaphoneis maeotica; Rhizosolenia alata; Rhizosolenia bezrukovii; Rhizosolenia calcar-avis; Rhizosolenia setigera; Sample code/label; Stephanodiscus astraea; Stephanodiscus carconensis; Stephanodiscus dubius; Stephanodiscus hantzschii; Stephanodiscus marginatus; Stephanodiscus pontica; Stephanodiscus prohantzschii; Surirella striatula; Thalassionema nitzschioides; Thalassiosira maeotica; Thalassiosira makarovae; Thalassiosira oestrupii; Thalassiosira subsalina
    Type: Dataset
    Format: text/tab-separated-values, 1566 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2023-07-10
    Keywords: 55-430; 55-430A; Abundance; Asteromphalus robustus; Coscinodiscus marginatus; Counting, diatoms; Deep Sea Drilling Project; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatom preservation; Diatoms; Diatom zone; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epoch; Event label; Glomar Challenger; Leg55; North Pacific/SEDIMENT POND; Pseudoeunotia doliolus; Sample code/label; Thalassionema nitzschioides; Thalassiosira eccentrica; Thalassiosira oestrupii; Thalassiosira tabularis; Thalassiothrix longissima
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2023-07-10
    Keywords: 55-432; Abundance; Actinocyclus curvatulus; Actinoptychus undulatus; Coscinodiscus marginatus; Coscinodiscus nodulifer; Coscinodiscus radiatus; Coscinodiscus stellaris; Coscinodiscus tabularis; Counting, diatoms; Cyclotella striata; Deep Sea Drilling Project; Denticula seminae; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatom preservation; Diatoms; Diatom zone; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epoch; Glomar Challenger; Hemidiscus cuneiformis; Leg55; Nitzschia kolaczeckii; Nitzschia marina; Nitzschia sicula; North Pacific/TERRACE; Pseudoeunotia doliolus; Rhizosolenia barboi; Rhizosolenia hebetata forma hiemalis; Roperia tesselata; Sample code/label; Thalassionema nitzschioides; Thalassiosira eccentrica; Thalassiosira eccentrica var. fasiculatus; Thalassiosira lineata; Thalassiosira oestrupii; Thalassiosira pacifica; Thalassiothrix longissima
    Type: Dataset
    Format: text/tab-separated-values, 132 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-07-07
    Keywords: Apatite; Archive of Ocean Data; ARCOD; Black ore; Chrome-spinellid; Clinopyroxene; Corundum; Counting, Stereo Microscope; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DM1397-1; DM1397-2; DM1397-4; DM1398-2; DM1398-3b; DM1399-2; DM1401; DM1402-1; DM1403; DM1405; DM1412-1; DM1412-2; DM1416; DM1424; DM1428; DM1429; DM1430; DM1431; DM1437; DM17; Dmitry Mendeleev; Elevation of event; Epidote; Event label; Garnet; GC; Grab; GRAB; Gravity corer; Hornblende; Latitude of event; Longitude of event; Nonidentified, altered, heavy; Olivine; Orthopyroxene; Oxides/hydroxides; Philippine Sea; Pyrite, FeS2; Sphene; Tremolite/Actinolite; Zircon
    Type: Dataset
    Format: text/tab-separated-values, 342 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-07-07
    Keywords: 58-445; Augite; Calcite; Chert; Clinopyroxene; Comment; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Foraminifera; Fragments; Glomar Challenger; Leg58; Limestone; Minerals; North Pacific/BASIN; Olivine; Plagioclase; Rock fragments; Sample code/label; Smectite; Volcanic glass; X-ray diffraction (XRD)
    Type: Dataset
    Format: text/tab-separated-values, 411 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-07-07
    Keywords: 58-443; 58-445; 58-446A; Clinopyroxene; Comment; Comment 2 (continued); Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Event label; Glasses; Glomar Challenger; Ilmenite; Latitude of event; Leg58; Longitude of event; North Pacific/BASIN; North Pacific/Philippine Sea/BASIN; Olivine; Plagioclase; Rock type; Sample code/label; Texture; Titanomagnetite
    Type: Dataset
    Format: text/tab-separated-values, 114 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-07-07
    Keywords: 55-433C; Alteration; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elements; Glomar Challenger; Leg55; Magnesium number; North Pacific/SEAMOUNT; Olivine; Plagioclase; Sample code/label; Texture; Unit; Water in rock
    Type: Dataset
    Format: text/tab-separated-values, 250 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-07-07
    Keywords: 54-421; 54-422; 54-424; 54-424B; 54-425; 54-427; 54-428; 54-428A; 54-429A; Alteration; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Event label; Glomar Challenger; Latitude of event; Leg54; Longitude of event; Mesostasis; North Pacific/CONT RISE; North Pacific/MOUND; North Pacific/RIDGE; North Pacific/SEDIMENT POND; North Pacific/TROUGH; Olivine; Opaque minerals; Phyllosilicate; Piece; Plagioclase; Sample code/label; see reference(s); Vesicle; Volcanic glass
    Type: Dataset
    Format: text/tab-separated-values, 196 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-07-07
    Keywords: 57-439; Biogenic particles; Biotite; Carbonates; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epidote; Feldspar; Garnet; Glauconite; Glomar Challenger; Heavy minerals; Hornblende; Leg57; Lithic grains; Minerals; North Pacific/TRENCH; Opaque minerals; Orthopyroxene; Quartz; Sample code/label; Sand; Silt; Size fraction 〈 0.002 mm, clay; Smear slide analysis; Volcanic glass; Zircon
    Type: Dataset
    Format: text/tab-separated-values, 880 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-07-07
    Keywords: 55-430A; 55-432A; 55-433A; 55-433B; 55-433C; Alteration; Clinopyroxene; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Event label; Glomar Challenger; Latitude of event; Leg55; Longitude of event; Magnesium number; Mass spectrometry; North Pacific/SEAMOUNT; North Pacific/SEDIMENT POND; North Pacific/TERRACE; Olivine; Plagioclase; Rock type; Sample code/label; Texture; Unit
    Type: Dataset
    Format: text/tab-separated-values, 359 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-07-11
    Keywords: 56-436; Aluminium oxide; Calcium oxide; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Iron oxide, Fe2O3; Iron oxide, FeO; Leg56; Loss on ignition; Magnesium oxide; Manganese oxide; North Pacific/RIDGE; Potassium oxide; Sample code/label; Silicon dioxide; Size fraction; Sodium oxide; Titanium dioxide; Total; Wet chemistry
    Type: Dataset
    Format: text/tab-separated-values, 84 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lonsdale, Peter; Burns, Virginia Mee; Fisk, Mary B (1980): Nodules of Hydrothermal Birnessite in the Caldera of a Young Seamount on JSTOR. The Journal of Geology, 88(5), 611-618, http://www.jstor.org/stable/30066087
    Publication Date: 2023-08-28
    Description: Manganese nodules made of radiating rods of well crystallized birnessite were sampled at 8 degree 481.2'N, 103 degree 53.8W, 1875 m below sea level by a dredge that also collected hyaloclastite and basaltic talus. The nodule field is on the floor of a caldera within a young tholeiitic seamount and was discovered and photographed during a deep-two survey. It is interpreted as a brecciated hydrothermal deposit, crystallized from an amorphous manganese oxide precipitate that formed when seawater-based hydrothermal fluids mixed with oxidized seawater. The nodules and surrounding igneous rocks have subsequently been encrusted with hydrogenous ferromanganese oxides.
    Keywords: DEEPSONDE; DPSN02-D3; DPSN02-D4; DPSN02-D5; Dredge; DRG; East Pacific Ocean; Indomed_leg_1; INMD-1D; Melville; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; SIQR-4D; SIQUEIROS; Thomas Washington
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Humphris, Susan E; Thompson, Robert N; Marriner, Giselle F (1980): The mineralogy and geochemistry of basalt weathering, holes 417A and 418A. In: Donnelly, T.; Francheteau, J.; Bryan, W.; Robinson, P.; Flower, M.; Salisbury, M.; et al., Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, LI, LII, LIII, 1201-1217, https://doi.org/10.2973/dsdp.proc.515253.147.1980
    Publication Date: 2023-08-28
    Description: The successful drilling on Legs 51, 52, and 53 created a rare opportunity to investigate the long-term effects of seawater-rock interactions on the mineralogy and chemistry of basalts erupted on the sea floor. The purpose of this paper is to describe the weathering of the basalts in terms of the changes in their mineralogy and chemistry, and to compare the weathering observed in Hole 418A with that in the upper parts of Hole 417A.
    Keywords: 51-417A; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg51; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Atlantic/CONT RISE
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hekinian, Roger; Rosendahl, Bruce R; Natland, James H (1980): Ocean Crust Geothermal Processes: A Perspective from the Vantage of Leg 54 Drilling. In: Rosendahl, B.R.; Hekinian, R.; et al., Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, VIV, 267-294, https://doi.org/10.2973/dsdp.proc.54.115.1980
    Publication Date: 2023-08-28
    Description: Two distinct sedimentary facies produced by sea-floor hydrothermal activity were cored during Deep Sea Drilling Project Leg 54. The first is equivalent to the typical basal iron- and manganese-rich, clayey mud recovered at many DSDP sites. It was sampled as a dispersed component throughout the cores taken in small sediment ponds in several sites within 120 km of the East Pacific Rise at 9°N. We infer that this component was originally deposited as iron hydroxides dispersed from high-temperature vents over the axial magma chamber of the East Pacific Rise. In the sediments, the iron hydroxides have reacted diagenetically with siliceous microfossil tests and detrital clays to form K- and Fe-rich clays with variable SiO2/Fe2O3 and Fe2O3/Al2O3, ratios.
    Keywords: 54-419; 54-420; 54-421; 54-424; 54-424A; 54-424B; 54-424C; 54-425; 54-427; 54-428; 54-428A; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg54; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Pacific/CONT RISE; North Pacific/MOUND; North Pacific/RIDGE; North Pacific/SEDIMENT POND; North Pacific/TROUGH
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: MNHN (1980): ANTIPROD II Cruise - MD21, R/V Marion Dufresne, Core list. Muséum National d'Histoire Naturelle, Paris, unpublished, https://geocores.mnhn.fr/index.php?catid=7&blogid=1
    Publication Date: 2023-08-28
    Description: The cores and dredges described at this site were taken on the ANTIPROD II cruise from 21 February to 9 April 1980 by the Muséum National d'Histoire Naturelle from the R/V Marion Dufresne. A total of 10 cores were recovered and are available at MNHN for sampling and study.
    Keywords: ANTIPROD2; Comment; Date/Time of event; Deposit type; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Description; Device type; Elevation of event; Event label; Indian Ocean; Latitude of event; Longitude of event; Marion Dufresne (1972); MD 21-11-GS; MD 21-19-GS; MD-GS800306; MD-GS800309; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; PC; Piston corer; Position; Quantity of deposit; Sample ID; Sediment type; Size
    Type: Dataset
    Format: text/tab-separated-values, 121 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoffert, Michel (1980): Les "argiles rouges des grands fonds" dans le Pacifique centre-est: authigenèse, transport, diagenèse (PhD Dissertation). Université Louis Pasteur, Strasbourg, France, 231 pp
    Publication Date: 2023-08-28
    Description: The text studies the deep-sea red clays in the East-Central Pacific ocean (Tahiti-Touamotou Archipelago), their authigenic formation, transport and diagenetic character in particular through their composition in REE.
    Keywords: Aluminium; Boron; Calcium; Chromium; Cobalt; Date/Time of event; Deposit type; DEPTH, sediment/rock; Elevation of event; Gallium; Iron; Latitude of event; Lead; Le Noroit; Longitude of event; Magnesium; Manganese; Molybdenum; NIXO; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; PC; Piston corer; Potassium; Quantum emission spectrography; Sample ID; Scandium; Sediment type; Shape; Silicon; Sodium; Strontium; Titanium; TKS16; TRANSPAC; TRSPC1-KS16; Vanadium; Zinc
    Type: Dataset
    Format: text/tab-separated-values, 23 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Piepgras, Donald J; Wasserburg, Gerald J (1980): Neodymium isotopic variations in seawater. Earth and Planetary Science Letters, 50(1), 128-138, https://doi.org/10.1016/0012-821X(80)90124-7
    Publication Date: 2023-08-28
    Description: New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average eNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean, eNd(0) = -12 ± 2; Indian Ocean, eNd(0) = -8 ± 2; Pacific Ocean, eNd(0) = -3 ± 2. These values are considerably less than eNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of 143Nd between the Pacific and Atlantic Oceans corresponds to ab. 10**6 atoms 143Nd per gram of seawater. The correspondence between the 143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography. Distinctive differences in eNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition. The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.
    Keywords: Calculated; Deposit type; DEPTH, sediment/rock; Description; DISTANCE; Distance, maximum; Distance, minimum; Dredge; DRG; Identification; L-10-76-HW; L1076HW-9A; Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, standard deviation; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; Sample code/label; Samuel P. Lee; ε-Neodymium; ε-Neodymium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Donnelly, Thomas W; Francheteau, Jean; Bryan, Wilfred B; Robinson, Paul T; Flower, Martin F J; Salisbury, Matthew H (1980): Initial Reports of the Deep Sea Drilling Project. Deep Sea Drilling Project, U.S. Government Printing Office, LI, LII, LIII, 1597 pp, https://doi.org/10.2973/dsdp.proc.515253.1980
    Publication Date: 2023-08-28
    Description: The JOIDES Paleoenvironment Panel had noted that the Neogene section had only been spot-cored on previous legs in the Western Atlantic (Legs 1, 2, 4, 11, and 43). The Panel accordingly requested that the complete section be recovered on Legs 51 through 53 in order to examine the transition from siliceous, Pacific-type Eocene sedimentation to non-siliceous sedimentation resulting from the gradual emergence of the Central American isthmus. It was also detremined to examine in detail the thick Cretaceous-Tertiary section overlying the basement.
    Keywords: 51-417A; 51-417D; 52-418A; 53-418B; Comment; Deep Sea Drilling Project; Deposit type; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; DSDP; Event label; Glomar Challenger; Identification; Leg51; Leg52; Leg53; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Atlantic/CONT RISE; Position; Quantity of deposit; Sample code/label; Sediment type; Substrate type; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 208 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schrader, Ed L; Furbish, William J; Mattey, David P; May, J A (1980): Geochemistry and Carbonate Petrology of Selected Sediment Samples from Deep Sea Drilling Project Leg 54, Eastern Pacific. In: Rosendahl, B.R.; Hekinian, R.; et al., Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, LIV, 319-328, https://doi.org/10.2973/dsdp.proc.54.110.1980
    Publication Date: 2023-08-28
    Description: Thirty selected samples of pelagic and hydrothermal sediments retrieved on DSDP Leg 54 were chemically analyzed for major and minor oxide concentrations. Additionally, 11 samples of lithified carbonate sediments were petrologically studied. The pelagic sediments, which are described as foraminiferal biomicrite, were found to be generally higher in Fe and Zn, similar in Co content, and lower in Cu content, than the average Pacific pelagic sediments. Mineralogically, these samples are composed principally of calcite with minor amounts of quartz and clays. Hydrothermal sediments from Site 424 are divisible into three classes: (1) silica-rich, iron-poor smectites; (2) silica-poor, iron-rich mixtures of smectites and oxides; and (3) silica-poor, iron-rich materials, comprising mainly amorphous manganese oxides. Thus, two chemically distinct hydrothermal phases are recognizable: Class 1, iron-rich smectites, and Class 3, Mn-rich oxides and oxyhydroxides. Dolomite and pyrite were identified in X-ray diffraction studies of samples from Site 427.
    Keywords: 54-419; 54-420; 54-424; 54-424A; 54-427; Atomic absorption spectrometry (AAS); Cobalt; Copper; Deep Sea Drilling Project; Deposit type; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; Event label; Glomar Challenger; Identification; Iron; Leg54; Manganese; Molybdenum; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Pacific/MOUND; North Pacific/SEDIMENT POND; North Pacific/TROUGH; Sediment type; X-ray fluorescence (XRF); Zinc
    Type: Dataset
    Format: text/tab-separated-values, 99 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lonsdale, Peter; Spiess, Fred N (1980): Deep-Tow Observations at the East Pacific Rise, 8°45'N, and Some Interpretations. In: Rosendahl, B.R.; Hekinian, R.; et al., Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, LIV, 43-62, https://doi.org/10.2973/dsdp.proc.54.104.1980
    Publication Date: 2023-08-28
    Description: A near-bottom survey of a 24-km length of the East Pacific Rise (EPR) crest near the Leg 54 drill sites has established that the axial ridge is a 12- to 15-km-wide lava plateau, bounded by steep 300-meter-high slopes that in places are large outward-facing fault scarps. The plateau is bisected asymmetrically by a 1- to 2-km-wide crestal rift zone, with summit grabens, pillow walls, and axial peaks, which is the locus of dike injection and fissure eruption. About 900 sets of bottom photos of this rift zone and adjacent parts of the plateau show that the upper oceanic crust is composed of several different types of pillow and sheet lava. Sheet lava is more abundant at this rise crest than on slow-spreading ridges or on some other fastspreading rises. Beyond 2 km from the axis, most of the plateau has a patchy veneer of sediment, and its surface is increasingly broken by extensional faults and fissures. At the plateau's margins, secondary volcanism builds subcircular peaks and partly buries the fault scarps formed on the plateau and at its boundaries. Another deep-tow survey of a patch of young abyssal hills 20 to 30 km east of the spreading axis mapped a highly lineated terrain of inactive horsts and grabens. They were created by extension on inward- and outwardfacing normal faults, in a zone 12 to 20 km from the axis. Sediments sampled on the rise crest and flanks are mixtures of calcareous ooze and metalliferous precipitates, and they have been redistributed by southerly currents with average velocities of 9 cm/s.
    Keywords: Deposit type; DEPTH, sediment/rock; Description; East Pacific Ocean; Event label; File name; Identification; Indomed_leg_1; INMD-3-2C; INMD-3-7C; INMD-4-1C; INMD-4-3C; Melville; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Photo/Video; Position; PV; Quantity of deposit; Sediment type; Size; Uniform resource locator/link to image; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 35 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lonsdale, Peter; Bischoff, James L; Burns, Virginia Mee; Kastner, Miriam; Sweeney, Colm (1980): A high-temperature hydrothermal deposit on the seabed at a gulf of California spreading center. Earth and Planetary Science Letters, 49(1), 8-20, https://doi.org/10.1016/0012-821X(80)90144-2
    Publication Date: 2023-08-28
    Description: A submersible dive on a turbidite-covered spreading axis in Guaymas Basin photographed and sampled extensive terraces and ledges of talc. The rock contains siliceous microfossils, smectite, and euhedral pyrrhotite as well as rather pure iron-rich talc. Sulfur and oxygen isotopes indicate precipitation around a hydrothermal vent, at about 280°C.
    Keywords: CDRILL; Core drilling; Deposit type; DEPTH, sediment/rock; Description; Dive 308; DSV477; DSV477-308-1; DSV477-308-3; DSV-4 Seacliff; Event label; File name; Guaymas Basin, Gulf of California; Identification; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Photo/Video; Position; PV; Quantity of deposit; Sediment type; Substrate type; Uniform resource locator/link to image; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-08-28
    Description: Leg 55 was conceived as part of the decade-long experiment to test the kinematic hot-spot hypothesis and several of its more imporant corollaries for the origin of the Hawaiian-Emperor chain. Also of particular importance was the question of whether the Hawaiian hot spot has remained fixed in the mantle. The specific primary objectives of Leg 55, were to determine (1) whether the known increase in the age of the volcanoes on the Hawaiian chain with distance from Kilauea continues northward along the Emperor Seamounts; (2) whether the lavas of the Emperor volcanoes are of the same chemical composition and were erupted in the same sequence as those of Hawaiian volcanoes; (3) the latitude of formation of Suiko Seamount as a test of hot-spot fixity; and (4) whether the Emperor Seamounts were once islands and, if so, to determine their post-volcanic and subsidence history.
    Keywords: 55-430; 55-431; 55-431A; 55-432; Comment; Deep Sea Drilling Project; Deposit type; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; DSDP; Event label; File name; Glomar Challenger; Identification; Leg55; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Pacific/SEDIMENT POND; North Pacific/TERRACE; Position; Quantity of deposit; Sample code/label; Sediment type; Size; Substrate type; Uniform resource locator/link to image; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 196 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bonatti, Enrico; Lawrence, James R; Hamlyn, P R; Breger, Dee (1980): Aragonite from deep sea ultramafic rocks. Geochimica et Cosmochimica Acta, 44(8), 1207-1214, https://doi.org/10.1016/0016-7037(80)90074-5
    Publication Date: 2023-08-28
    Description: Aragonite mineralization was observed in serpentinized peridotites from the Romanche and Vema Fracture Zones in the Atlantic and the Owen Fracture Zone in the Indian Ocean, either in veins or as radial aggregates in cavities within the serpentinites. Evidence of incipient dissolution of the aragonite crystals was observed in one case. The aragonites tend to have lower Mg content (〈 0.03%) and higher Sr content (〉 0.95%) relative to other marine aragonites. Their 18O16O, 13C12C and 87Sr86Sr isotopic ratios suggest the aragonite was deposited at ocean floor temperatures from solutions derived from sea water circulating in fissures and fractures within the ultramafic rocks. The 18O16O ratios of the serpentines indicate serpentinization occurred at higher temperatures, probably deeper in the crust. Low-T reactions between circulating seawater and Mg-silicates (primarily serpentine and pyroxenes) caused high pH and enrichment of Mg and Ca in the solution, conditions favoring carbonate precipitation. Aragonite was formed rather than calcite presumably because the high Mg2+ concentration in the solution inhibited calcite precipitation. The high Sr content of the aragonites is probably related, at least in part, to their low temperature of formation. Opaque mineral grains containing over 8% NiO and over 40% MnO were observed concentrated along the margins of some of the aragonite veins, suggesting that Ni is one of the elements mobilized during reactions between ultramafic rocks and circulating seawater.
    Keywords: Aluminium oxide; Calcium oxide; Deposit type; DEPTH, sediment/rock; Description; Dredge; DRG; Electron microprobe (EMP); G-7309; G-7309-81; Gerda; Identification; Iron oxide, FeO; Magnesium oxide; Manganese oxide; Nickel oxide; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Potassium oxide; Romanche Fracture Zone, Atlantic Ocean; Sample code/label; Silicon dioxide; Sodium oxide; Substrate type
    Type: Dataset
    Format: text/tab-separated-values, 14 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: deVries Klein, George; Kobayashi, Kazuo; White, Stan (1980): Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, LVIII, 1013 pp, https://doi.org/10.2973/dsdp.proc.58.1980
    Publication Date: 2023-08-28
    Description: The JOIDES Active Margin Panel for Leg 58 decided that the drilling would occur in the north Philippine Sea, namely, the Shikoku Basin, the Daito Ridge and Basin province. The Shikoku Basin sites were selected to solve several problems concerning back-arc basins formed by ocean-floor spreading. The main objectives were: (1) to determine the age of the oldest sediment, so as to calibrate magnetic-anomaly ages and to provide a test for various spreading models suggested for the basin; (2) to investigate the mineralogy, petrology, and chemistry of basalt samples recovered by drilling, and to compare there basalts with those of midocean ridges, so as to understand the nature and source of magmatic materials in these basins; (3) to determine the distribution of sediment types in time, and to relate that distribution to the tectonic history of the basin.
    Keywords: 58-442A; 58-442B; 58-443; 58-444; 58-445; 58-446; 58-446A; Comment; Deep Sea Drilling Project; Deposit type; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; DSDP; Event label; Glomar Challenger; Identification; Leg58; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Pacific/BASIN; North Pacific/Philippine Sea/BASIN; Position; Quantity of deposit; Sample code/label; Sediment type; Size; Substrate type; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 301 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wories, Henk; Whelan, Jean K; Thompson, Peter R; Sakai, Toyusaburo; Robinson, Paul T; Pisciotto, Kenneth A; Murdmaa, Ivar O; Müller, German; Kurnosov, Victor B; Harper, Howard E; Bruns, T; Adelseck, C; Langseth, Marcus G; Okada, Hakuyu (1980): Initial Reports of the Deep Sea Drilling Project. U. S. Government Printing Office, LVI, 436 pp, https://doi.org/10.2973/dsdp.proc.5657.1980
    Publication Date: 2023-08-28
    Description: The Japan Trench area was identified a favorable place for studying convergent margins during the initial deliberations of the IPOD Active Margins Panel. The Leg 56-57 DSDP drill sampling along the Japan Trench transect has indicated that material tectonically accreted during the present convergent episode is limited to a surprisingly small zone. The limits seem well established by the seaward extent of crust with continental thickness and lithologies and by the age and thickness of a terrigenous slope apron covering the presumed but probably unsampled accreted oceanic material.
    Keywords: 56-434B; 56-436; Comment; Deep Sea Drilling Project; Deposit type; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; DSDP; Event label; File name; Glomar Challenger; Identification; Leg56; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Pacific/RIDGE; North Pacific/TRENCH; Position; Quantity of deposit; Sample code/label; Sediment type; Substrate type; Uniform resource locator/link to image; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 77 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dalrymple, G Brent; Garcia, M O (1980): Age and Chemistry of Volcanic Rocks Dredged from JingƄ Seamount, Emperor Seamount Chain. In: Jackson, E.D.; Koisumi, I.; et al., Initial Reports of the Deep Sea Drilling Project, U.S. Government Printing Office, LV, 685-693, https://doi.org/10.2973/dsdp.proc.55.130.1980
    Publication Date: 2023-08-28
    Description: 40Ar/39Ar incremental heating experiments on three samples dredged from Jingu Seamount indicate that Jingu is 55.4 ± 0.9 m.y. old — older than the Hawaiian-Emperor bend and younger than the two dated Emperor Seamounts to the north. Major-oxide chemistry and petrography show that the samples are similar to hawaiites and mugearites from the Hawaiian Islands. By analogy with Hawaiian alkalic volcanic rocks, groundmass plagioclase compositions (An40-47) indicate that the three Jingu samples are probably mugearites. These results suggest that Jingu is a Hawaiian-type volcano and that the Emperor volcanoes become progressively older from south to north, as predicted by the hot-spot hypothesis.
    Keywords: Deep Sea Drilling Project; Deposit type; DEPTH, sediment/rock; Description; Dredge; DRG; DSDP; Identification; Kana Keoki; KK760806; KK760806-01,KK760806-02,KK76; KK760806-2 STA24 RD10; KK760806-RD10; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; Position; Quantity of deposit; Sediment type; Size; Substrate type; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Juteau, Thierry; Eissen, Jean-Philippe; Francheteau, Jean; Needham, David; Choukroune, P; Rangin, Claude; Séguret, Marie J M; Ballard, R D; Fox, P J; Normark, William R; Carranza, A; Cordoba, D; Guerrero, J (1980): Homogeneous basalts from the East Pacific Rise at 21° N: seady state magma reservoirs at moderately fast spreading centers. Oceanologica Acta, 3(4), 487-503, https://archimer.ifremer.fr/doc/00323/43430/
    Publication Date: 2023-08-28
    Description: Forty basaltic rocks collected by submersible during the Cyamex expedition (1978) on the East PacifIc Rise at 21°N, a moderately fast spreading segment (6 cm/year opening rate) of the mid-ocean ridge, consist of angular pillow fragments and glass buds, sheet-flow slabs and samples of columnar pillars standing in collapsed fossillava pools. Most of the rocks are from the crestal are a of the Rise. The collection shows a striking petrographic homogeneity wh en compared with the range of basalts found on other segments of midocean ridges: olivine-phyric, or highly plagioclase-phyric rocks, so common in the slowspreading Famous are a in the Atlantic, are absent. All samples are typical lowpotassium oceanic tholeiites with a limited fractionation trend. Pillow-lavas, thin and thick sheet-flows cannot be distinguished by their major element compositions, as in the Galapagos rift which has the same spreading rate as the EPR at 21°N. Further, ferrobasalts have been described from the Galapagos rift, but do not appear in the Cyamex rocks. In the Cyamex area, olivine and plagioclase are the main silicate phases, and clinopyroxene is absent. In the pillows and sheet-flow samples, four generations of olivine and plagioclase crystals are distinguished. Samples from the fossillava pools are aphyric. The corresponding magma batches are presumed to have migrated rapidly through the magma chamber, and to have been extruded in large volumes, possibly during episodes ofhigh instantaneous opening rate. Fe-Ni and Fe-Cu-rich sulphide phases are common in an lava types as massive globules scatterred through the glass, or as microglobules decorating the walls of empty vesicles. Palagonite and Fe-Mn oxide thicknesses across the strike of the Rise indicate relative ages compatible with successive extrusions at the Rise axis.
    Keywords: CY-78-07-12D; CY-78-10-17D; CY-78-10-18D; CY-78-11-26D; CY-78-12-35D; CY-78-13-42D; CY-78-13-43D; CY-78-13-44D; CY-78-15-55D; CY-78-15-56D; CY-78-16-57D; CY-78-16-58D; CY-78-17-60D; CY-78-17-61D; CY-78-18-63D; CY-78-18-65D; CY-78-18-66D; CY-78-19-69D; CY-78-20-76D; CYAMEX; Cyana (Submersible); Deposit type; DEPTH, sediment/rock; Description; East Pacific Rise; Elevation of event; Event label; Identification; Latitude of event; Longitude of event; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Percentage; Position; ROBA; Robotic arm; Sediment type; Substrate type; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 108 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-08-28
    Description: Methods of estimating manganese nodule grade and concentration were investigated using bottom photographs from a well-explored east-central Pacific manganese nodule deposit.
    Keywords: Automated image processing; Coverage; DATE/TIME; Deposit type; DEPTH, sediment/rock; Description; DOMES Site C, Pacific Ocean; ELEVATION; LATITUDE; LONGITUDE; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Nodules, mass abundance; Oceanographer; Photo/Video; PV; RP8OC76; RP-8-OC-76; RP8OC76-3-1C; Sample ID; Statistical inference
    Type: Dataset
    Format: text/tab-separated-values, 1230 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cochran, J Kirk; Krishnaswami, Seth (1980): Radium, thorium, uranium, and 210 Pb in deep-sea sediments and sediment pore waters from the North Equatorial Pacific. American Journal of Science, 280(9), 849-889, https://doi.org/10.2475/ajs.280.9.849
    Publication Date: 2023-08-28
    Description: Determination of radium, thorium, uranium isotopes, and 210Pb in sediments and sediment pore waters from North Equatorial Pacific deep-sea clay-silicous oozes shows that the radium and uranium isotopes are mobile in the pore water. The concentration-depth profiles of radium can be understood in terms of a diagenetic model which takes into account mixing of sediment particles by bioturbation, molecular diffusion in the pore water, adsorption onto particle surfaces, as well as radioactive production and decay. The 234U/238U activity ratios in several samples are higher than the seawater value, indicating some enrichment of 234U in the pore water. However, the absolute concentrations of 238U and 234U are 25% lower than those in seawater, suggesting that the sediments form a sink for uranium isotopes. 210Pb is present in the pore water at concentrations approx. 20% that of 226Ra. The origin of 210Pb in the pore water is uncertain and could be due either to its in situ mobilization in the sediments or subsequent production in the laboratory from the decay of 222Rn. 230Th is present in measurable concentrations in the pore waters, but its distribution does not show any systematic trend with depth or other parameters. The most likely source of 230/Th appears to be minute amounts of sediment particles collected in the pore waters during the squeezing operation.
    Keywords: BC; Box corer; Date/Time of event; DEPTH, sediment/rock; DISTANCE; Distance, maximum; Distance, minimum; DOMES-A47-16; DOMES Site B, Pacific Ocean; DOMES Site C, Pacific Ocean; Elevation of event; Event label; Latitude of event; Lead-210; Lead-210, standard deviation; Lead-210 excess; Lead-210 excess, standard deviation; Longitude of event; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Oceanographer; Pacific Ocean; Radium-226; Radium-226, standard deviation; RP8OC75; RP-8-OC-75; RP8OC7503; RP8OC75-47-16; RP8OC75-52-39; RP8OC75-57-58; Sample ID; Sample type; Thorium-228/Thorium-232 activity ratio; Thorium-228/Thorium-232 activity ratio, standard deviation; Thorium-230; Thorium-230, standard deviation; Thorium-230/Thorium-227 activity ratio; Thorium-230/Thorium-227 activity ratio, standard deviation; Thorium-230/Thorium-232 activity ratio; Thorium-230/Thorium-232 activity ratio, standard deviation; Thorium-232; Thorium-232, standard deviation; Uranium-234/Uranium-238 activity ratio; Uranium-234/Uranium-238 activity ratio, standard deviation; Uranium-238; Uranium-238, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 462 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kadko, David; Burckle, Lloyd H (1980): Manganese nodule growth rates determined by fossil diatom dating. Nature, 287(5784), 725-726, https://doi.org/10.1038/287725a0
    Publication Date: 2023-08-28
    Description: We report here that a manganese nodule from the Central Pacific manganese nodule province has been dated by fossil diatoms found in mud scraped from near the nodule's centre. The nodule was taken at DOMES Site B from Core B55-56 at 11°50.3'N and 137°28.2'W in a water depth of 4,892 m. It was resting on the sediment surface, with about 1.5 cm of the nodule bottom (of a total nodule height of 4.2 cm) buried in the mud. The top surface of the nodule was covered with a smooth manganese coating, but the bottom had a very rough, crusty texture. It was found that recent mud had leaked in through cracks in the nodule bottom, but that there were no pre-Pleistocene diatoms in this material. The date obtained was compared with the growth rate determined by the 230Th excess method and found to be in reasonable agreement. This study adds to the work of Harada1,2 on the biostratigraphy (mainly coccoliths) of manganese nodules.
    Keywords: Alpha counting; BC; Box corer; Deposit type; DEPTH, sediment/rock; Description; DISTANCE; DOMES Site B, Pacific Ocean; Identification; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Oceanographer; RP-8-OC-75; RP8OC7503; RP8OC75-55-56; Thorium-230 excess; Thorium-230 excess, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 33 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-08-28
    Keywords: 51-417A; Comment; Deep Sea Drilling Project; Deposit type; DEPTH, sediment/rock; Description; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Identification; Leg51; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Atlantic/CONT RISE; Position; Quantity of deposit; Sample code/label; Sediment type; Substrate type; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-08-28
    Keywords: Age, comment; Aluminium oxide; Atomic emission spectroscopy (AES); Barium; Beal Traversier, Hautes-Alpes, France; Bois Durat, Hautes-Alpes, France; BRB-B; BRB-BD; BRB-BT; BRB-C; BRB-CBO; BRB-CBR; BRB-CC; BRB-CF; BRB-COU; BRB-CQ; BRB-CR; BRB-CV; BRB-E; BRB-Ey; BRB-FS; BRB-GB; BRB-GE; BRB-L; BRB-LAU; BRB-LBL; BRB-M; BRB-MMA; BRB-MN; BRB-MO; BRB-MS; BRB-O; BRB-OB; BRB-P; BRB-PEY; BRB-Pl; BRB-RA; BRB-RAS; BRB-RCV; BRB-RG; BRB-RSR; BRB-RSRW; BRB-SA; BRB-SCN; BRB-SOU; BRB-STC; BRB-TN; BRB-VAL; BRB-VC; Calcium oxide; Carbon dioxide; Cariiere de la Lame, Hautes-Alpes, France; Chromium; Clot de la Cime, Hautes-Alpes, France; Clot des Fonds, Hautes-Alpes, France; Cobalt; Col de la Pisse, Hautes-Alpes, France; Col du Lauzon, Hautes-Alpes, France; Colonel Bonnet, Hautes-Alpes, France; Combe Bremond, Hautes-Alpes, France; Condamine, Hautes-Alpes, France; Copper; Coste Rousse, Hautes-Alpes, France; Couloir du Queyrellin, Hautes-Alpes, France; Crete de la Plate, Hautes-Alpes, France; Crete des Couniets, Hautes-Alpes, France; Crete de Vars, Hautes-Alpes, France; Deposit type; DEPTH, sediment/rock; Elevation of event; Event label; Eychauda, Hautes-Alpes, France; Eygliers, Hautes-Alpes, France; Fluorine; Font Sancte, Hautes-Alpes, France; Fort de l'Olive, Hautes-Alpes, France; HAM; Hammer; Identification; Iron oxide, Fe2O3; Lac Blanc, Hautes-Alpes, France; Lac de l'Ascencion, Hautes-Alpes, France; Lac du Vallonnet, Hautes-Alpes, France; Latitude of event; La Vachette, Hautes-Alpes, France; Lead; Longitude of event; Loss on ignition; Magnesium oxide; Manganese oxide; Montbrison Nord, Hautes-Alpes, France; Montbrison Sud, Hautes-Alpes, France; Monte Maniglia, Hautes-Alpes, France; Mouliere, Hautes-Alpes, France; Nickel; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Ombilic, Hautes-Alpes, France; Peyron, Hautes-Alpes, France; Phosphorus pentoxide; Pic Balart, Hautes-Alpes, France; Pointe de Rasis, Hautes-Alpes, France; Potassium oxide; Ratier, Hautes-Alpes, France; Replat des Genisses, Hautes-Alpes, France; Roche Chevalire, Hautes-Alpes, France; Roche Gauthier, Hautes-Alpes, France; Rocher du Roux, Hautes-Alpes, France; Rocher du Roux Ouest, Hautes-Alpes, France; Sablier, Hautes-Alpes, France; Sample code/label; Serre Chevalier, Hautes-Alpes, France; Silicon dioxide; Sodium oxide; Souliers, Hautes-Alpes, France; St Crepin, Hautes-Alpes, France; Strontium; Sulfur, total; Tete Noire, Hautes-Alpes, France; Titanium dioxide; Torrent du Grand Bois, Hautes Alpes; Vanadium; Wet chemistry; Yttrium; Zinc
    Type: Dataset
    Format: text/tab-separated-values, 2863 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-09-01
    Keywords: AGE; Biogeochemical Ocean Flux Study; BOFS; BOFS28/3K; BOFS28#3; CD53; Charles Darwin; Cibicidoides wuellerstorfi, δ13C; Cibicidoides wuellerstorfi, δ18O; DEPTH, sediment/rock; KAL; Kasten corer; Mass spectrometer VG Isogas Prism; Northeast Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-09-01
    Keywords: AGE; Biogeochemical Ocean Flux Study; BOFS; BOFS29/1K; BOFS29#1; CD53; Charles Darwin; Cibicidoides wuellerstorfi, δ13C; Cibicidoides wuellerstorfi, δ18O; DEPTH, sediment/rock; KAL; Kasten corer; Mass spectrometer VG Isogas Prism; Northeast Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 52 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-09-01
    Keywords: AGE; Biogeochemical Ocean Flux Study; BOFS; BOFS31/1K; BOFS31#1; CD53; Charles Darwin; Cibicidoides wuellerstorfi, δ13C; Cibicidoides wuellerstorfi, δ18O; DEPTH, sediment/rock; KAL; Kasten corer; Mass spectrometer VG Isogas Prism; Northeast Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 52 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-09-01
    Keywords: AGE; Biogeochemical Ocean Flux Study; BOFS; BOFS30/3K; BOFS30#3; CD53; Charles Darwin; Cibicidoides wuellerstorfi, δ13C; Cibicidoides wuellerstorfi, δ18O; DEPTH, sediment/rock; KAL; Kasten corer; Mass spectrometer VG Isogas Prism; Northeast Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 60 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-09-01
    Keywords: AGE; Biogeochemical Ocean Flux Study; BOFS; BOFS26/6K; BOFS26#6; CD53; Charles Darwin; Cibicidoides wuellerstorfi, δ13C; Cibicidoides wuellerstorfi, δ18O; DEPTH, sediment/rock; KAL; Kasten corer; Mass spectrometer VG Isogas Prism; Northeast Atlantic
    Type: Dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Carlson, Liisa (1995): Aluminum substitution in goethite in lake ore. Bulletin of the Geological Society of Finland, 67(1), 19-28, https://doi.org/10.17741/bgsf/67.1.002
    Publication Date: 2023-08-28
    Description: The extent of substitution of Fe by Al in goethite in 32 lake ore samples collected from 11 lakes in Finland varied between 0 and 23 mol-%. The data indicated a negative relationship between Al-substitution and the particle size of lake ore. Differences in the Al-substitution were apparent between sampling sites, suggesting that kinetic and environmental variation in lake ore formation influences the substitution. Non-substituted goethite is formed in coarse-grained sediments with locally high concentrations of Fe due to iron-rich springs. Unit cell edge lengths and volumes of goethite varied as function of Al-subsitution but deviated from the Vegard relationship towards higher values.
    Keywords: NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Manheim, Frank T; Pratt, Richard M; McFarlin, P F (1980): Composition and origin of phosphorite deposits of the Blake Plateau. In: Bentor, Y.K. (Ed.), Marine Phosphorites - Geochemistry, Occurrence, Genesis, Society of Economic Paleontologists and Mineralogists, Special Publication, 29, 117-137, https://download.pangaea.de/reference/80812/attachments/Manheim-etal_1980.pdf
    Publication Date: 2023-08-28
    Description: An area of about 22,000 km² on the northern Blake Plateau, off the coast of South Carolina, contains an estimated 2 billion metric tons of phosphorite concretions, and about 1.2 billion metric tons of mixed ferromanganese-phosphorite pavement. Other offshore phosphorites occur between the Blake Plateau and known continental deposits, buried under variable thicknesses of sediments. The phosphorite resembles other marine phosphorites in composition, consisting primarily of carbonate-fluorapatite, some calcite, minor quartz and other minerals. The apatite is optically pseudo-isotropic and contains about 6% [CO3]**2- replacing [PO4]**3- in its structure. JOIDES drillings and other evidence show that the phosphorite is a lag deposit derived from Miocene strata correlatable with phosphatic Middle Tertiary sediments on the continent. It has undergone variable cycles of erosion, reworking, partial dissolution and reprecipitation. Its present form varies from phosphatized carbonate debris, loose pellets, and pebbles, to continuous pavements, plates, and conglomeratic boulders weighing hundreds of kilograms. No primary phosphatization is currently taking place on the Blake Plateau. The primary phosphate-depositing environment involved reducing conditions and required at least temporary absence of the powerful Gulf Stream current that now sweeps the bottom of the Blake Plateau and has eroded away the bulk of the Hawthorne-equivalent sediments with which the phosphorites were once associated.
    Keywords: NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fewkes, Ronald H; McFarland, William Douglas; Reinhart, W R (1980): Evaluation of metal resources at and near proposed deep sea mine sites. United States Bureau of Mines, Open File Report, 108-80, 242 pp
    Publication Date: 2023-08-28
    Description: Methods of estimating manganese nodule grade and concentration were investigated using data from a well-explored east-central Pacific manganese nodule deposit. Bulk chemical analyses of 159 nodules recovered from 21 box cores show that the range in metal values between nodules from a single box core is commonly small but may be greater than the range in mean metal content of nodules from widely separated box cores. The metal exhibiting the greatest variability in the 21 box cores is Zn, followed in decreasing order by Cu, Mn, Co, Ni, and Fe. Approximately half of the box cores required analysis of 11 nodules or more to predict metal content within plus or minus 10 percent of the mean value.
    Keywords: NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kadko, David (1980): 230Th, 226Ra and 222Rn in abyssal sediments. Earth and Planetary Science Letters, 49(2), 360-380, https://doi.org/10.1016/0012-821X(80)90079-5
    Publication Date: 2023-08-28
    Description: A model that predicts the flux of 222Rn out of deep-sea sediment is presented. The radon is ultimately generated by 230Th which is stripped from the overlying water into the sediment. It is shown that the continental contribution of ionium is not significant, and that at low sedimentation rates, biological mixing and erosional processes strongly affect the surface concentration of the ionium. Two cores from areas of slow sediment accumulation, one from a manganese nodule region of the central Pacific and one from the Rio Grande Rise in the Atlantic were analyzed at closely spaced intervals for 230Th, 226Ra, and 210Pb. The Pacific core displayed evidence of biological mixing down to 12 cm and had a sedimentation rate of only 0.04 cm/kyr. The Atlantic core seemed to be mixed to 8 cm and had a sedimentation rate of 0.07 cm/kyr. Both cores had less total excess 230Th than predicted. Radium sediment profiles are generated from the 230Th model. Adsorbed, dissolved, and solid-phase radium is considered. According to the model, diffusional losses of radium are especially important at low sedimentation rates. Any particulate, or excess radium input is ignored in this model. The model fits the two analyzed cores if the fraction of total radium available for adsorption-desorption is about 0.5-0.7, and if K, the distribution coefficient, is about 1000. The flux of radon out of the sediments is derived from the model-generated radium profiles. It is shown that the resulting standing crop of SUP-222 Rn in the overlying water may be considered as an added constraint in budgeting 230Th and 226Ra in deep-sea sediments.
    Keywords: NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rossi, P L; Bocchi, G; Adams, F (1980): A manganese deposit from the South Tyrrhenian region. Oceanologica Acta, 3(1), 107-114, hdl:10013/epic.46892.d001
    Publication Date: 2023-08-28
    Description: Specimens dredged from within the summit of a volcanic seamount during an oceanographic cruise in the Eolian Island Arc (South Tyrrhenian Sea) where examined. Mineralization, which forms veins and pockets within a silty-clayey material, consists mainly of todorokite with scarce birnessite. The chemistry (Mn 48%, Fe 0.26 %, Ni 249 ppm, Co 223 ppm) and the mineralogy of the deposit are discussed; the findings, compared with data from some of the literature, suggest a hydrothermal genesis with extreme fractionations of Mn from Fe. A process explaining the anomalous Cu content (8 200 ppm) of the deposit is also suggested.
    Keywords: Aluminium; Bannock; BAN-T78L; Barium; Calcium; Cobalt; Copper; Deposit type; DEPTH, sediment/rock; Description; Dredge; DRG; Gravimetric analysis; Identification; Iron; Lametino 1 Seamount; Loss on ignition; Magnesium; Manganese; Molybdenum; Nickel; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Potassium; Rubidium; Silicon; Size; Sodium; Spectrophotometry; Strontium; Substrate type; T78; Titanium; Vanadium; X-ray fluorescence (XRF); Zinc
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lei, G; Boström, Kurt (1995): Mineralogical control on transition metal distributions in marine manganese nodules. Marine Geology, 123(3-4), 253-261, https://doi.org/10.1016/0025-3227(95)00022-Q
    Publication Date: 2023-08-28
    Description: Electron microprobe and X-ray diffraction data for north Pacific manganese nodules reveal that the transition metal distributions are controlled by the mineralogy. Microlayers rich in 10Å-manganates generally have high Mn/Fe ratios and positive correlations between Ni, Cu and Mn, and between Co and Fe. Microlayers rich in vernadite, on the other hand, show low Mn/Fe ratios, and Co, Ni and Cu all show positive correlations with Mn. The 10Å-manganates form mainly in porewaters with high Mn/Fe ratios. The Ni2+ and Cu2+ ions are post-depositionally incorporated into the interlayers of the manganates, whereas Co3+ is substituted for Fe3+ in ferric oxyhydroxides. In seawater with a low Mn/Fe ratio, on the other hand, the adsorption of positively charged ferric oxyhydroxides on negatively charged [MnO6] octahedral layers suppresses the growth of 10Å-manganates, enhancing the formation of vernadite. Positively charged hydroxides of Co3+, Ni2+ and Cu2+ are also adsorbed on the [MnO6] layers. These mechanisms of mineral formation and metal uptake are corroborated by data for other oceanic non-hydrothermal manganese nodules and crusts.
    Keywords: Comment; Deposit type; DEPTH, sediment/rock; Dredge; DRG; Event label; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; Position; Quantity of deposit; Sediment type; Visual description; Xiang Yang Hong; XYH16-83; XYH16-83-M10; XYH16-83-M12; XYH16-83-M15; XYH16-83-M20; XYH16-83-M6
    Type: Dataset
    Format: text/tab-separated-values, 25 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kaharoeddin, F A; Eggers, M; Goldstein, E H; Graves, R S; Watkins, David K; Bergen, James A (1980): ARA Islas Orcadas Cruise 1578 sediment descriptions. Sedimentology Research Laboratory Contributions, Antarctic Research Facility, Department of Geology, Florida State University, Tallahassee, Contribution No 48, 168 pp, https://www.ngdc.noaa.gov/mgg/curator/data/islas_orcadas/io1578/io1578_descriptions.pdf
    Publication Date: 2023-08-28
    Description: The purpose of this volume, the tenth in a series of similar publications (Goodell, 1964, 1965, 1968; Frakes 1971, 1973 ; Cassidy et al., 1977), is to continue a presentation to the research community of sediment core descriptions and attendant data of cored and otherwise obtained sediments retrieved in waters of the Southern Ocean aboard the research vessel, ARA Islas Orcadas (formerly, USNS Eltanin), as a part of the circumpolar survey begun by Eltanin in 1962 (see issue of Antarctic Journal of the United States, Vol. 8, No. 3, 1973). The data presented herein are concerned with the results of coring activities aboard cruise 1578 of Islas Orcadas, the fourth marine geology coring cruise of this vessel under the terms of the present United States-Argentine agreement. The core descriptions are organised as follows: 1) a brief summary of the coring objectives of the cruise, together with a discussion of core recovery; 2) a table and map of station location data for materials retrieved; 3) a table of tentative age-dates for each piston core; 4) an explanation of the laboratory procedures and descriptive criteria used in the description of the sediments, and 5) lithologic descriptions of the piston and trigger cores, and the piston and trigger core bag samples.
    Keywords: Color description; Deposit type; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Description; Elevation of event; Event label; Identification; IO1578; IO1578.005-PC; IO1578.006-PC; IO1578.008-PC; IO1578.012-PC; IO1578.014-PC; IO1578.024-PC; IO1578.025-PC; IO1578.027-PC; IO1578.037-PC; IO1578.040-PC; IO1578.041-PC; IO1578.045-PC; IO1578.047-PC; IO1578.048-PC; IO1578.049-PC; IO1578.050-PC; IO1578.052-PC; IO1578.055-PC; IO1578.056-PC; IO1578.061-PC; IO1578.064-PC; Islas Orcadas; Latitude of event; Longitude of event; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; PC; Piston corer; Position; Quantity of deposit; Sediment type; Size; Substrate type; Visual description
    Type: Dataset
    Format: text/tab-separated-values, 701 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...