

A01W, AR05, AR13 18HU95011_1

WHP Cruise Summary Information

WOCE section designation Expedition designation (EXPOCODE) Chief Scientist(s) and their affiliation Dates Ship Ports of call	A01W, AR05, AR13 18HU95011_1 John Lazier, BIO 1995.06.07 — 1995.07.05 HUDSON Nova Scotia, Canada to Newfoundland, Canada
Number of stations	88 60°30.93 N
Geographic boundaries of the stations	59°25.40 W 30°58.70 W 41°46.02 N
Floats and drifters deployed Moorings deployed or recovered	6 Floats see below
Contributing Authors (In order of appearance)	A. Isenor M. Scotney P. Clement B. Gershey F. Zemlyak M. Hingston J. Lazier R. Watts

WHP Cruise and Data Information

Instructions: Click on items below to locate primary reference(s) or use navigation tools above.

Cruise Summary Information	Hydrographic Measurements
Description of scientific program	CTD - general
	CTD - pressure
Geographic boundaries of the survey	CTD - temperature
Cruise track (figure)	CTD - conductivity/salinity
Description of stations	CTD - oxygen calibration
Description of parameters sampled	
	Salinity
Floats and drifters deployed	Oxygen
Moorings deployed or recovered	Nutrients
	CFCs
Principal Investigators for all measurements	Helium
Cruise Participants	Tritium
	Dissolved Inorganic Carbon
Problems and goals not achieved	CO2 system parameters
Other incidents of note	Other parameters
Underway Data Information	
Navigation	References
Bathymetry	
Acoustic Doppler Current Profiler (ADCP)	
Thermosalinograph and related measurements	
XBT and/or XCTD	
Meteorological observations	
Atmospheric chemistry data	
	Data Processing History

Station locations for A01W : LAZIER

A. CRUISE NARRATIVE

1. Highlights

a. WOCE Designation: Line: A01W Expocode: 18HU95011_1

b. Expedition Designation: Hudson 95011

c. Chief Scientist:	John R. N. Lazier Ocean Circulation Division Physical and Chemical Sciences Branch Department of Fisheries and Oceans Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, Canada B2Y 2A4			
	FAX Internet	902 426 7827 LazierJ@mar.dfo-mpo.gc.ca		
d. Ship:	CSS Hudson	n		
e. Ports of Call:	June 8 July 4	BIO, Dartmouth, NS, Canada St. John's, Newfoundland, Canada		
f. Cruise Dates:	June 8, 1995 to July 4, 1995			

2. Cruise Summary Information

a. Cruise Track

A cruise track is shown in Figure 1. Ship position at midnight on each day of the cruise is indicated with an asterisk.

The station positions are shown in Figures 2 and 3. Figure 2 shows the stations occupied along A1W while Figure 3 shows stations along the southerly line from Greenland that approximately follows AR5. Some station numbers are indicated for clarity. The various types of stations are also indicated.

Figure 1. Cruise Track for 95011. Asterisks indicate a time of 0000 Z on the day indicated.

Figure 2. The type and location of stations occupied along A1W.

Figure 3. Stations along the southerly line from Greenland that approximately follows AR5.

b. Total Number of Stations Occupied

- 61 Full depth WHP small volume CTD stations with up to 23 rosette bottles. Depending on the station, water samples were analyzed for CFC's, carbon tetrachloride, methyl chloroform, total carbonate, alkalinity, oxygen, salinity, nutrients, tritium, helium, and oxygen isotopes.
- 3 CTD casts with no water samples
- 8 MVCTD casts, with an additional cast with MVCTD attached to CTD rosette frame
- 59 Full depth velocity profiles using a lowered ADCP attached to the CTD/rosette
- 6 Float deployments
- 4 IES Mooring Recoveries (2 unsuccessful attempts)
- 4 Sound source mooring recoveries
- 1 IES mooring deployed
- 2 Current meter moorings deployed
- 3 Current meter moorings recovered (2 through dragging)

c. Floats and Drifters Deployed

A total of six floats were launched during the cruise, all on the A1W line. Of the six, three were ALACE (Autonomous Lagrangian Circulation Explorer) floats launched for Ray Schmitt of WHOI (1 float) and Russ Davis of SIO (2 floats). The remaining three were deep lagrangian floats launched for Eric d'Asaro of APL/UW.

d. Moorings Deployed or Recovered

The multi-instrument mooring deployed during the BIO cruise to AR7W in 1994 (WOCE Expocode 18HU94008, mooring number 1168) was recovered and a duplicate mooring was deployed (mooring number 1194) in the same location. The deployed mooring consisted of 6 Seacat temperature/conductivity recorders, 6 Aanderaa current meters, 1 Acoustic Doppler Current Profiler (ADCP), 1 WOTAN (weather observations through ambient noise) and 1 CTD with a device for measuring the total partial pressure of dissolved gas in the water.

A current meter mooring consisting of one current meter positioned 15 m off the bottom was deployed along the 1000 m isobath on the Labrador side of A1W (mooring number 1200). This mooring was deployed for Peter Rhines of the University of Washington.

A total of four RAFOS Sound Source moorings were recovered. The R/V Oceanus deployed these moorings in August 1993. The Sound Sources were used in a RAFOS float program lead by Tom Rossby of the University of Rhode Island. Over the past 2 years, floats have been set in and near the North Atlantic Current in order to map the lagrangian velocity fields on isopycnal surfaces in the upper pycnocline throughout the Newfoundland Basin. The Sound Sources are used to spatially locate the floats during the program.

Four of a total of six Inverted Echo Sounders (IES) were recovered from the area of the ACM6 mooring line. The Echo Sounders measured the travel time of an acoustic signal between the instrument and the surface. The data can be used to

determine the vertical density field and dynamic height. Randy Watts of the University of Rhode Island led this program.

During the Clarke 95003 cruise (WOCE Expocode 18HU95003), two planned recoveries of moorings could not be completed due to release problems. During this cruise, Hudson dragged the area hoping to recover these 2 moorings. The operation was successful, as all current meters on mooring 1124 on the 3900 m isobath and 3 of the 4 current meters on mooring 1122 on the 2500 m isobath were recovered.

3. List of Principal Investigators

Name	Affiliation	Responsibility
John R. N. Lazier LazierJ@mar.dfo-mpo.gc.ca	BIO	CTD data, shipboard ADCP data, moored instrument data, salinity
Robert Houghton houghton@ldeo.columbia.edu	LDEO	oxygen ratio
Peter Jones JonesP@mar.dfo-mpo.gc.ca	BIO	oxygen, alkalinity, carbonate, CFC s
Robert Pickart pickart@rsp.whoi.edu	WHOI	lowered ADCP
Peter Rhines rhines@killer.ocean.washington.edu	UW	moored instrument data
Peter Schlosser peters@ldeo.columbia.edu	LDEO	tritium, helium data
Peter Strain StrainP@mar.dfo-mpo.gc.ca	BIO	nutrients
Randy Watts randy@drw.gso.uri.edu	URI	IES, sound sources, current meter data

See Section 7 for addresses.

4. Scientific Programme and Methods

a. Narrative

One of the aims of the annual occupation of the WOCE AR7W (or A1W) line across the Labrador Sea is to monitor the water mass properties in the region especially the Labrador Sea Water (LSW) which is renewed by deep convection in winter to as much as 2300 m. The temperature and salinity of this water mass changes by varying amounts each winter depending on the severity of the winter and the temperature and salinity of the waters that are mixed up by the convection. Estimates of its average temperature and salinity for the years 1990-1995, except 1991, are shown in Figure 4.

Between 1990 and 1993 the temperature decreased by =0.1 °C while the salinity increased by =0.009 resulting in an increase in density (= σ +1000 kg m⁻³) of =0.02 kg m⁻³. The temperature decrease is due to large heat losses to the atmosphere in the two abnormally severe winters. The increase in salinity results from the convection penetrating deeper than in previous years into layers of higher salinity. Some of the higher salinity water becomes incorporated in the convecting layer and raises its salinity.

Between 1993 and 1994 the estimates in Figure 4 show the average temperature and salinity decreased and between 1994 and 1995 the averages increased. Over both winters these changes where such that no significant change in σ resulted.

The temperature vs salinity curves in Figure 5 and 6 give a more detailed view of the LSW properties in 1994 and 1995. In the core of the water mass, where $34.682 < \sigma < 34.687$ kg m⁻³, the temperature and salinity variation along σ surfaces is significantly greater in 1994. In 1995 the temperature and salinity gradients along σ surfaces over 7 of the 9 stations is less than half the range in 1994. This difference seems to be an effect of the convection process and possibly an important clue to how convection works but as of now the connection is not understood.

The 2nd objective of the Labrador Sea part of the program was to replace the NOAA/ACCP funded mooring in the centre of the central gyre. The purpose of the mooring is to obtain data throughout the year to better understand the formation of the LSW and the variability in its properties induced by interannual variations in the heat and salt fluxes. The mooring placed in May 1994 was recovered intact yielding 6 complete Seacat records and almost 6 complete current meter records.

In the Labrador Sea we also successfully launched three "Deep Lagrangian Floats" for Eric d'Asaro of the Applied Physics Laboratory, University of Washington, Seattle; one ALACE float for Ray Schmitt of the Woods Hole Oceanographic Institution and two ALACE floats for Russ Davis of the Scripps Institution of Oceanography.

On the original plan was the requirement to recover 4 sound source moorings for Tom Rossby of the University of Rhode Island and 6 inverted echo sounders for Randy Watts also of the University of Rhode Island. But following the failure to recover 2 moorings in the Newfoundland Basin on cruise 95003 the plan was altered to include dragging for these. All the sound sources were recovered intact, however, only 4 of the IES s. The dragging was successful in recovering all the current meters on mooring 1124 on the 3900 m isobath and 3 of the 4 current meters on mooring 1122. Two attempts were made to get mooring 1124. The first on June 30 recovered 4 current meters and the second on July 2 recovered the rest of the mooring including two current meters and the release.

On the way between the sound source moorings and between Cape Farewell and the northern most sound source mooring we obtained CTD and chemistry data at roughly 40 mile spacings. The motivation for these stations was to observe the characteristics of the LSW across the entrance to the Irminger Sea and between 48 and 52°N west of the Mid Atlantic Ridge along roughly 37°W. The latter section crosses the path of the LSW that flows from the western into the eastern basin of the North Atlantic.

Figure 7 shows one comparison from these two sections constructed from the CTD data. Shown are estimates of the layer thickness between σ surfaces 0.002 kg m⁻³ apart. Since LSW is formed by convection the water mass is nearly homogeneous in the Labrador Sea. As it flows away from the Labrador Sea the thickness of the layer is an indicator of its presence. The higher thick curve in Figure 7 is from four of the stations southeast of Cape Farewell at the entrance to the Irminger Sea. The other thick curve is the average from the stations south of the Charlie Gibbs Fracture Zone representing the water flowing into the eastern basin. The layer thickness across the entrance to the Irminger Sea is about 4 times that of the other curve and is centred on a σ of =34.687. The peak in the other curve is centred at σ = 34.665 kg m^{-3} . The peak at the higher σ value represents Labrador Sea Water formed in 1993, 94 or 95 as it closely matches the σ for those years shown in Figure 4 for the Labrador Sea. The lower σ peak for the water passing through to the eastern basin suggests a source that is of a lower density than any of the values plotted on Figure 4. In 1990, for example, the Labrador Sea Water was at σ = 34.672 kg m⁻³ that is slightly higher than the peak in Figure 6. This suggests the water passing through to the eastern basin was probably formed before 1990.

Figure 4. The average temperature and salinity of the Labrador Sea Water in 1990, 1992, 1993, 1994 and 1995. The dotted curves are lines of constant
•1.5 (= density referenced to 1500 db minus 1000 kg m-3.

Figure 5. Temperature vs. salinity curves for stations 32 to 42 (sites 13 to 21) obtained in May 1994. Dotted curves as in Figure 4.

Figure 7. Estimates of layer thickness in decibars (db) every 0.002 kg m-3 in •1.5 and their averages at two sets of stations. The higher peak centred at 34.687 kg m-3 is from stations 45 to 48 southeast of Cape Farewell. The peak at 34.665 is from stations 59 to 79.

5. Major Problems and Goals Not Achieved

Unfortunately, ice prevented the occupation of four CTD stations on the Cape Farewell Shelf at the northern extension of the AR5 line. Therefore the first station on AR5 was in about 3000 m of water.

Also, two inverted echo sounders were not recovered due to release problems.

6. Other Incidents of Note

The MVCTD is a profiling CTD system that can be deployed when a ship is steaming at 10 knots. The system has been tested on a previous cruise to the Newfoundland Basin (Clarke, WOCE Expocode 18HU94030) and further testing was conducted during this cruise. A total of eight casts were completed using the MVCTD and winch gear (one cast was performed with the MVCTD attached to the CTD rosette frame) during this cruise. Sadly, however, at Station 56 the instrument was lost during recovery.

A rack containing three digital thermometers was lost on Station 41, cast 2. A setscrew holds the rack to the SIO bottle, but allows the rack to rotate about the attachment to the bottle. Speculation is that the setscrew became loose and when the bottle was fired, the rack fell off the bottle.

On Station 65 the CTD was brought back onboard with a kink in the winch/conducting wire. The kink was located about 5 m from the CTD. A splice and retermination was carried out. The probable cause of the kink was a lowering of the CTD on the upcast at about 3500 m that resulted in slack wire.

The heave compensation winch was also tested on this cruise. This system was designed to modulate the speed of the winch to compensate for the heaving motion of the ship. It was first tested on the Clarke 95003 (WOCE Expocode 18HU95003) cruise and found to make the motion of the CTD worse. The electronics were then adjusted to reduce to zero the component of acceleration fed to the control amplifier. The controller was tried on two stations during this cruise with major reduction of the variations of the CTD speed. Unfortunately (!!) the weather was always good and the heave motion was less than -1 m/s. We cannot say what the performance will be in rough seas.

On station 37 the watchkeepers noted that a group of sample ID numbers ranging from 155601 to 155700 were missing. To keep the ID numbers consecutive for each cast, the watchkeepers decided to skip ID numbers 155590 to 155700. Thus, station 35 ends with ID number 155589 and station 37 starts with ID number 155701.

7. List of Cruise Participants

Name	Responsibility	Affiliation	
Larry Bellefontaine	Salinometer/Watchkeeper	BIO	
Brian Beanlands	MVCTD	BIO	
Gerry Boudreau	Computers/Watchkeeper	BIO	
Pierre Clement	Nutrients/Oxygens	BIO	
Jean-Guy Dessureault	MVCTD	BIO	
Bob Gershey	CFC/Alkalinity/Carbonate	BDR Research	
Mike Hingston	CFC/Alkalinity/Carbonate	BDR Research	
Anthony Isenor	Data Quality/Watchkeeper	BIO	
Peter Jones	Assistant Scientist	BIO	
John Lazier	Chief Scientist	BIO	
Jonathon Lilly	Watchkeeper	UW	
Christopher Meinen	Sound Sources/IES/Watchkeeper	URI	
Mike Mulroney	Sound Sources/IES/Watchkeeper	URI	
Maureen Noonan	Helium/Tritium Sampling	LDEO	
Patrick Roussel	Watchkeeper	Dal	
Murray Scotney	Moorings/CTD/Watchkeeper	BIO	
Randy Watts	Sound Sources/IES	URI	
Frank Zemlyak	CFC/Alkalinity/Carbonate	BIO	

- BIO Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, CANADA B2Y 2A4
- BDR BDR Research Ltd. Box 652, Station 'M' Halifax, N.S., Canada, B3J 2T3
- Dal Dalhousie University Halifax, Nova Scotia
- LDEO Lamont-Doherty Earth Observatory of Columbia University Palisades, NY, 10964, USA
- URI University of Rhode Island Narraganset Marine Lab South Ferry Road, Narragansett Rhode Island 02882
- UW University of Washington Seattle, WA, USA
- WHOI Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA

B. UNDERWAY MEASUREMENTS

1. Navigation and Bathymetry (Anthony W. Isenor)

The navigation system onboard CSS Hudson consisted of a Trimble Navigation Loran-GPS 10X decoder and AGCNAV. The decoder received the satellite fixes and decoded the signals to obtain latitude, longitude and time. The decoder signals were about 1 Hz. The navigation data were logged at one minute intervals on a PC. This PC was running the AGCNAV software package; a PC based display, and waypoint setting software package developed at the Atlantic Geoscience Centre at BIO. This software graphically displayed ship position, waypoints, course, speed, etc. to the various science working areas.

The echo sounder system used for collecting bathymetric data consisted of a Raytheon Line Scan Recorder, Model LSR°1811-1 (serial number A105) connected to a hull mounted 12kHz transducer. The transducer beam width was 15 degrees. The sweep rate of the record was adjusted throughout the course of data collection to aid in identifying the bottom signal. The recorder was also linked to a clock, and thus could indicate 5 minute intervals on the sounder paper. The system was used to collect bathymetric soundings at 5 minute intervals while underway between stations on A1W and AR5.

Sounding data collection started on June 11, 1995 13:55 Z at the southwest end of line A1W. In total there were 1448 soundings collected, 442 soundings along A1W and 1006 along AR5. No soundings were collected while steaming between A1W and AR5. The sounding data collection stopped on June 26, 1995 at 11:25 Z, position 45.0006 N and 30.9984 W.

2. Acoustic Doppler Current Profiler

(Murray Scotney)

The CSS Hudson was equipped with a hull mounted RDI acoustic doppler current profiler. The transducer (serial number 177) had SC ADCP electronics (serial number 607) converted for shipboard use. Logging, using Transect software on a 386 PC, was started on June 8, 1995 at 1908Z along the Scotian Shelf. The configuration of the equipment resulted in a bin length of 8 metres and a total of 50 bins. The raw data were stored to disk and backed up every few days. The data were also averaged in real-time over 10 minute intervals. ADCP logging was stopped on July 3, 1995 on the Grand Banks.

3. Thermosalinograph

(Anthony W. Isenor)

An experimental alongtrack measuring system developed by the Biological Sciences Branch at BIO was used for the first time on this cruise. The system consisted of a Seabird Model 25 CTD equipped with a Syphalitic Nepelometer (fluorometer) and a ship board mounted irradiance meter.

The Seabird was placed in a 200 litre container and seawater was pumped into the container from the ships seawater lines collected at a depth of about 5 m below the surface. The container had a discharge line positioned such that the volume in the container was approximately 140 litres. The flow rate into the container was about 45 litres per minute.

A total of three computers were used to produce the final data file. One computer received navigation data from the Bridge navigation computer. The navigation data was logged and then rebroadcast to a Seabird deckunit, where it was merged with the CTD signal. The merged signal was then sent to a second computer where a real-time display of position, time, temperature, salinity, chlorophyll and irradiance was shown. This computer rebroadcasted a one second ASCII representation of the merged signal to a third computer where the data were stored to hard disk. The logging computer's Seabird processing coefficients are given in Appendix 1.

4. XBT and XCTD

No probes were used

5. Meteorological observations

The ship s crew carried out routine reporting of meteorological variables.

6. Atmospheric Chemistry

There was no atmospheric chemistry programme.

7. Moving Vessel CTD

(Anthony W. Isenor)

The MVCTD (described in Clarke et al., 1995) was an instrument development project lead by Jean-Guy Dessureault. This device consisted of a special winch, power block, launch and recovery chute, a heavy brass body containing a Falmouth Scientific Instruments CTD, Onset Tattletail 8 computer and radio modem. The system was capable of obtaining profiles at a depth greater than 1000 m while steaming at 10 knots. A profile was obtained by turning on the CTD by sending a signal to the fish via the radio modem. The operator then entered the target depth and the ships speed into the PC computer that controlled the winch and power block and initiated the profile. The entire operation of deploying and recovering the fish was completely under computer control. The radio modem was then used to download the data from the fish when recovery was complete.

The MVCTD was used successfully on seven casts. At Station 1, The MVCTD was attached to the rosette frame carrying the Seabird CTD. This will allow a comparison of the MVCTD and Seabird CTD datasets.

C. HYDROGRAPHIC MEASUREMENTS - DESCRIPTIONS, TECHNIQUES AND CALIBRATIONS

1. CTD Measurements

(Anthony W. Isenor)

a. Description of the Equipment and technique

The CTD measurements were made with a standard SEABIRD model 9Plus CTD (S/N 09P 7356-0299, BIO System #4, deck unit S/N 11P9984-0353). This unit was equipped with a model 3-02/F temperature sensor (S/N 031422), a model 4-02/0 conductivity sensor (S/N 041124), a paroscientific digiquartz model 410K-105 pressure sensor (S/N 53355) and a model 13-02 dissolved oxygen sensor (S/N 130284). All but the pressure sensor were mounted in a duct through which a pump pulls sea water. Hence the water flow past the actual sensors was independent of the lowering rate; this simplified the data processing considerably.

The Seabird CTD was mounted vertically within a custom designed and built CTD/Rosette frame. This frame was square rather than round to better accommodate the restricted space of Hudson's winch room and winch room door. All the pressure cases as well as the sample bottles were mounted vertically to improve the package's stability as in descended through the water column. In the centre of the frame was a 10 inch diameter aluminum tube that contained at its upper end a General Oceanics Model 1015-24 bottle rosette unit (BIO rosette #3, S/N 1185). The bottom of this tube was designed to hold an RDI 150 khz Broadband ADCP in a shortened pressure case. On this cruise, the short pressure case RDI was not available; instead a full length RDI pressure case was clamped vertically down one side of the central tube. On another side was clamped the pressure case for the Seabird CTD. The CTD sensors and pump were mounted on the third side and on the fourth was clamped a rechargeable battery pack for the RDI and below it a General Oceanics model 6000 12 kHz pinger unit.

The rosette bottles were made by the Physical and Chemical Oceanographic Data Facility of the Scripps Institution of Oceanography. The bottles were mounted six to each side of the rosette frame. Each bottle collected 10 litres of water.

b. Sampling Procedure and data processing techniques

The CTD was deployed with a lowering rate of 60 metres/min (40 metres/min in the upper 200 metres or deeper if the conditions were rough). It was recovered at a rate of 75 metres/min (60 metres/min when deeper than 4000 metres or when conditions were rough).

The CTD data was recorded onto disk by a 486 computer using SEABIRD SEASOFT Version 4.205 software. A screen display of temperature, oxygen and salinity profiles vs pressure were used to decide the depths at which bottles were to be tripped on the up cast. The bottles were tripped using the enable and fire buttons on the SEABIRD deck unit.

At the end of each station, the SEASAVE software was used to create 1 and 2 dbar processed data files, an IGOSS TESAC message and a processed rosette trip file. All the raw and processed data files associated with the station were then transferred to the ship's MicroVAX computer for archive and subsequent access and distribution to various users on the vessel.

The data processing used the following steps:

- DATCNV Converted the raw data to physical parameters.
- SPLIT Split the data into DOWN and UP cast.
- WILDEDIT For every block of 12 scans, flagged all scans whose pressure, temperature, conductivity and oxygen values differed from the mean by more than 2 standard deviations. Recomputed the mean and standard deviation from unflagged data then marked as bad all scans exceeding 4 standard deviations from these new values.
- FILTER Low pass filtered pressure and conductivity channels. Time constant used for conductivity was 0.045 seconds, for pressure 0.150 seconds.
- LOOPEDIT Marked as bad, all cycles on the down trace for which the vertical velocity of the CTD unit was less than 0.1 metres/sec.
- ALIGNCTD Aligned the temperature, conductivity and oxygen values relative to the pressure values accounting for the time delays in the system. Time offsets of 0.010 secs for conductivity, 0.000 secs for temperature and 3.000 secs for oxygen were used.
- CELLTM A recursive filter used to remove the thermal mass effects from the conductivity data. Thermal anomaly amplitude and time constants of 0.0300 and 9.0000 were used.
- DERIVE Computed oxygen values.
- BINAVG Averaged the down cast into 1 and 2 dbar pressure bins. (Note: The procedure to produce the 2 dbar averages takes about 5% of the total processing time).
- DERIVE Computed salinity, potential temperature and sigma_{theta.}
- ROSSUM Averaged 3 seconds of CTD data after every bottle trip. Used in comparison with water sample data.

c. Calibration data

The CTD calibrations used during this cruise were supplied by Seabird Electronics. The slope and offset applied to the conductivity sensor was based on data from the BIO Cruise 95003 (WOCE Expocode 18HU95003, see below). The applied calibrations were as follows:

BIO SEABIRD CTD System #4

Temperature Sensor (#031422)

where In indicates a natural logarithm,

f is the frequency a = 3.68096068 E-03b = 5.98528033 E-04c = 1.47933699 E-05d = 2.18572143 E-06f_o = 6142.890slope = 1, offset = 0(Seabird calibration dated July 6, 1994)

Pressure Sensor (#53355)

Pressure = c
$$(1 - T_o^2/T^2) (1 - d[1 - T_o^2/T^2])$$

where T is the pressure period (μ sec)

 $c = c_1 + c_2 U + c_3 U^2$ $d = d_1 + d_2 U$ $T_0 = T_1 + T_2 U + T_3 U^2 + T_4 U^3 + T_5 U^4$ U is the temperature (°C) c₁ = -4.290243 E+04 psia c₂ = 5.137240 E-01 psia/°C $c_3 = 1.334070 \text{ E}-02 \text{ psia}/^{\circ}\text{C}^2$ d₁ = 4.039500 E-02 $d_2 = 0$ $T_1 = 2.993058 E+01 \mu sec$ T₂ = -8.855370 E-05 μsec/°C $T_3 = 3.597730 \text{ E-06 } \mu \text{sec}/^{\circ}\text{C}^2$ $T_4 = 5.583850 \text{ E-09 } \mu \text{sec}/^{\circ}\text{C}^3$ $T_5 = 0$ AD590M = 1.146000 E-02 AD590B = -8.11354 E+00 slope = 1, offset = 0(Seabird calibration, February 2, 1993)

Conductivity =
$$(af^m + bf^2 + c + dt)/[10(1-9.57(10^{-8})p)]$$

where f is the frequency
p is pressure (dbars)
t is the temperature (°C)
m = 4.2
a = 1.35924955 E-05
b = 4.87959496 E-01
c = -4.19483432 E+00
d = -1.04684736 E-04
Slope = 1.00039254 E+00
Offset = -5.400 E-04
Oxygen = Soc x (oc + tau x $\frac{doc}{dt}$) + Boc] x OXSAT(T,S) x e $(tcor x (T + wt x (T0 - T)) + pcor x P)$
where Soc = 2.5328
oc is the oxygen sensor current (µamps)
oc = mV + b
m = 2.4528 E-07
V is the oxygen temperature sensor voltage signal
b = -3.9245 E-09
tau = 2.0
 $\frac{doc}{dc}$ is the time derivative of oc
 $Boc = -0.0322$
OXSAT is the oxygen saturation value dependent on T and S
T is the water temperature (°C)
S is salinity (psu)
e is natural log base
tcor = -0.033
wt = 0.670
T_o oxygen sensor internal temperature (°C)
T_o = kV + c
k = 8.9625
c = -6.9161
pcor = 1.5 E-04
P is the pressure (psia)

A previous cruise in April/May 1995 (see Clarke, WOCE Expocode 18HU95003) to the Newfoundland Basin used the same CTD and sensors as this cruise. Fortunately, preliminary analyses of the 95003 dataset were complete on our departure. Clarke and Yashayeav determined that no temperature calibration of the CTD was necessary. However, a conductivity calibration was necessary. Based on the work of Clarke and Yashayeav, the conductivity calibration applied to the CTD data during collection of this dataset was as follows: Conductivity_{CTD} = -0.00054 + 1.00039254 * Conductivity_{CTD}

Subsequent analysis of the CTD salinities as compared to the water samples salinities was carried out using a total of 1102 comparison data points. The median salinity difference was found to be:

Salinity_{Water Sample} - SalinityCTD = 0.0005

The duplicate water sample salinity analysis (see Salinity Replicate Analysis section) indicated that the median difference between water sample salinities was also 0.0005. This indicated no significant difference between our ability to compare duplicate water sample salinities and our ability to compare the water sample salinities with the CTD. Thus, no pressure independent offset in salinity will be applied.

However, the CTD salinities were found to have a pressure dependent offset relative to the water sample salinities. To remove this offset, we first defined the interquartile range (IQR) in 3 layers in the water column, 0 to <1500 dbars, 1500 to <3000 dbars and =>3000 dbars. The IQR is defined using the difference between values at the 25 and 75 percentile, Q_1 and Q_3 respectively (note that Q_2 would be the 50 percentile, or the median). In each layer, we neglect all differences outside of the range

difference $< Q_2 - 1.5 * (Q_3 - Q_1)$ and difference $> Q_3 + 1.5 * (Q_3 - Q_1)$

where difference = Salinity_{Water sample} - Salinity_{CTD}

Using the valid points from all layers (a total of 931 points), we fit a 3rd order polynomial to the differences. The fitted equation is:

difference = $0.00122 + 3.47869 \times 10^{-7} \times P - 4.96435 \times 10^{-10} \times P^2 + 6.48289 \times 10^{-14} \times P^3$

This equation produces an offset of about 0.0012 in the surface and -0.0012 at 4000 dbar.

Considering the CTD temperature measurements as compared to the digital thermometers (see Reversing Thermometer Replicate Analysis section) we note that the interthermometer comparison indicated differences of 0.002_C. The difference between the thermometers and the CTD were also about 0.002_C. Thus, we will not apply any temperature calibration to the CTD.

The CTD oxygen data was calibrated using a combination of upcast water sample data and downcast CTD profile data. No CTD data were obtained for the following stations: 9, 15, 17, 18, 20, 21, 22, 25, 26, 27, 31, 36, 38, 45, 49, 51, 54, 56, 62, 64, 68, 75, 80, 81, 84, 87 and 88. The details of the calibration procedure and results are given in Appendix 2. Note that the WOCE SEA file column CTDOXY contains the down cast CTD oxygen data used in the calibration as opposed to the discrete CTD oxygen data obtained at the time of bottle trip.

2. Salinity

(Anthony W. Isenor)

a. Description of Equipment and Technique

Salinity samples were analyzed on a Guildline Autosal model 8400 salinometer, Ocean Circ Unit B. Samples were drawn into medicine bottles. New caps, equipped with plastic liners, were placed on the sample bottles for each use.

The salinometer cell was filled and rinsed three times with sample water before readings were recorded. Three readings of the salinometer were recorded for every sample and standardization. The last two readings were averaged and entered into the water sample database as the conductivity of the water sample.

b. Sampling Procedure and Data Processing Technique

Salinity samples were drawn into medicine bottles after three rinses. The bottles were filled up to the shoulders and then capped with new caps with plastic liners.

One conductivity file for the entire cruise was prepared. The file consisted of a sequential record number, the bath temperature, sample ID number, average conductivity ratio and a quality flag. A PC based program running under a commercial DBMS computed the salinity using the average conductivity ratio and the standard IAPSO formula. Any changes in the salinometer readings between successive standardizations were assumed to have occurred as a linear drift of the instrument. Thus, the program applied a correction to the ratios, which varied linearly with the samples analyzed. The salinity data was then placed in the water sample database.

c. Laboratory and Sample Temperatures

Full cases of samples were taken from the winch room to the GP lab where they were left for a period of at least 10 hours to equilibrate to laboratory temperature before being analyzed.

The baths in the salinometer were kept at 21°C for the first 79 stations and thereafter at 24°C. The change in operating temperature was due to our inability to hold the laboratory at about 21°C in the southern, warmer region of operation.

d. Replicate Analysis

A duplicate salinity sample was drawn from one of the rosette bottles on every cast.

A total of 58 duplicate salinity samples were drawn and statistically analyzed. Statistics of the duplicate differences follow. All replicate values and their quality flags are shown in Table C.1 below.

Statistic	Value
Number of Duplicate Differences	58
Minimum	0
Maximum	0.0059
Mean	0.0009
Median	0.0004
Standard Deviation	0.0011

e. Standards Used

The salinometer was standardized on June 12, 1995 using IAPSO standard water, Batch P126, prepared on November 24, 1994. A check on the standardization using a new ampoule was carried out at the beginning and end of every 32 bottle case and at intermediate points during a case if instrument drift was suspected. A restandardization was conducted on June 20, 1995.

Sample ID Number	Salinity	WOCE QF
155204	32.4623	2
155204	32.4618	2
155227	31.7400	2
155227	31.7384	2
155228	34.1117	2
155228	34.1118	2
155237	32.8259	2
155237	32.8263	2
155243	31.7877	2
155243	31.7862	2
155247	33.2100	2
155247	33.2092	2
155254	32.7362	2
155254	32.7389	2
155256	34.6949	2
155256	34.6951	2
155267	34.8148	2
155267	34.8175	2
155279	34.8650	2
155279	34.8642	2
155298	34.8797	2
155298	34.8795	2
155316	34.8800	2
155316	34.8797	2
155339	34.9005	2
155339	34.9007	2
155356	34.8762	2
155356	34.8794	2
155378	34.8701	2
155378	34.8693	2
155418	34.8358	2
155418	34.8356	2
155442	34.8340	2
155442	34.8340	2
155457	34.9102	2
155457	34.9098	2
155487	34.8336	2
155487	34.8344	2
155503	34.9078	2
155503	34.9068	2
155537	34.8415	2
155537	34.8411	2

Sample ID		WOCE	
Number	Salinity	QF	
155500	21 21 51 51		
100000	34.3134	2	
100000	34.3134	2	
155714	34.8011	2	
155714	34.0017	2	
100731	34.8905	2	
155731	34.8911	2	
155759	34.8952	<u> </u>	
155759	34.8244	4	
155776	34.7804	2	
155776	34.7806	2	
155778	34.5600	2	
155778	34.5604	2	
155782	34.3570	2	
155782	34.3576	2	
155808	34.7382	2	
155808	34.7358	2	
155821	34.8450	2	
155821	34.8454	2	
155838	34.9286	2	
155838	34.9290	2	
155866	34.8528	2	
155866	34.8524	2	
155882	34.9389	2	
155882	34.9380	2	
155920	34.8129	2	
155920	34.8121	2	
155940	34.9044	2	
155940	34.9050	2	
155954	34.8654	2	
155954	34.8705	2	
155975	34.8797	2	
155975	34.8805	2	
155994	34.8943	2	
155994	34.8964	2	
156009	34.9496	2	
156009	34.9494	2	
156038	34.8752	2	
156038	34.8693	2	
156059	34.8762	2	
156059	34.8780	2	
156072	34.9135	2	
156072	34.9117	2	

Table C.1	Replicate	water	sample	salinity	values	with	their	quality	flags.
-----------	-----------	-------	--------	----------	--------	------	-------	---------	--------

Table C.1	Replicate	water sam	ple salinity	values	with the	eir quality	/ flags.
-----------	-----------	-----------	--------------	--------	----------	-------------	----------

Sample ID		WOCE	Sample ID		WOCE
Number	Salinity	QF	Number	Salinity	QF
156096	34.9093	2			
156096	34.9095	2			
156139	35.3421	2			
156139	35.3415	2			
156141	34.8995	2			
156141	34.8999	2			
156164	34.8996	2			
156164	34.8994	2			
156199	34.9347	2			
156199	34.9347	2			
156210	34.9002	2			
156210	34.8994	2			
156233	34.9055	2			
156233	34.9055	2			
156275	35.5071	2			
156275	35.5067	2			
156280	34.9141	2			
156280	34.9145	2			
156302	34.9117	2			
156302	34.9117	2			
156340	34.9416	2			
156340	34.9412	2			
156365	35.6322	2			
156365	35.6322	2			
156370	34.9306	2			
156370	34.9304	2			
156395	34.9263	2			
156395	34.9259	2			
156399	34.9031	2			
156399	34.9035	2			
156403	34.8968	2			
156403	34.8972	2			
156410	34.9237	2			
156410	34.9241	2			

3. Oxygen

(Pierre Clement)

a. Description of Equipment and Technique

The oxygen samples wee analyzed using an automated procedure developed by the Physical and Chemical Services Branch (PCS) of the Bedford Institute of Oceanography (BIO) from a manual titration system (Levy et al. 1977). The PCS procedure is a modified Winkler titration from Carritt and Carpenter (1966), using a whole bottle titration. In this method there is no starch indicator and a wetting agent (Wetting Agent A, BDR) is introduced to reduce bubble formation. The automated titration system consists of an IBM PC linked to a Brinkmann PC800 colorimeter and a Metrohm 665 Multi-Dosimat Automatic Titrator. A full description of the system and method can be found in Jones, et al. (1992) with the following exception: Page 2-4, section 2.3 Method - Sample titration should read, 'The stopper is not replaced and the acid rinsed down the stopper's end into the flask. The end is then rinsed into the flask with deionized water. One drop of wetting agent and the magnetic stirring bar are then added.'

b. Sampling Procedure and Data Processing Technique

The sampling bottles were 125ml lodine flasks with custom ground stoppers (Levy et al. 1977). The flask volumes were determined gravimetrically. The matched flasks and stoppers were etched with Identification numbers and entered into the Oxygen program database.

For this cruise 10 litre rosette bottles were used to obtain the original sample. The oxygen subsamples were drawn immediately following the drawing of the CFC and helium subsamples. The oxygen subsamples were drawn through the bottles spigot with a latex or silicone tube attached so as to introduce the water to the bottom of the flask. The flask and its stopper were thoroughly rinsed and filled to overflowing. The flow was allowed to continue until at least two to three flask volumes overflowed. The flask was then slowly retracted with continuous low flow to ensure that no air was trapped in the flask. The flask was then brought to the reagent station and one ml each of the Alkaline lodide and Manganous Chloride Reagents were added and the stoppers carefully inserted, again ensuring that no air was entering into the flasks. The flasks were thoroughly shaken then carried to the lab for analysis.

c. Replicate Analysis

There were 1212 unique sample id numbers that were analyzed for dissolved oxygen, of which 1130 had one sample value, 79 had two sample values and 3 had three sample values. A duplicate oxygen sample was drawn from one of the rosette bottles on every cast. On one cast, duplicate samples were drawn from all the rosette bottles.

Statistics of the replicate differences follow. Only acceptable values were used in calculating the replicate differences. The calculated replicate statistics used the absolute value of the replicate differences. Of the 79 unique ids that had one

replicate sample, the replicate difference was not calculated for five sample id numbers (155248, 155251, 155260, 155785 and 155786) because one of the sample values was unacceptable. All of the replicate sample values and their quality flags are listed in Table C.2 below.

Number of replicate differences

- = (79 5) sample id numbers having one replicate * 1 possible difference
- + (3) sample id numbers having two replicates * 3 possible differences = 83

Median of [(absolute difference/sample mean concentration of all samples) * 100%] = 0.22 %

Statistic	Value (μmoles/kg)
Minimum	0.0
Maximum	40.8
Mean	2.2
Median	0.6
Standard Deviation	5.6

Cumulative Frequency	Oxygen Difference (μmoles/kg)
50 %	≤ 0.6
68 %	≤ 1.3
95 %	≤ 6.9

Sample ID	WOO	E		Sample ID)	W	DCE	
	quality flags.							
Table C.2	Replicate water	sample	oxygen	values in	moles/kg,	along	with	their

Sample ID	. ,	WOCE
Number	Oxygen	QF
155219	304.4	2
155219	303.0	2
155226	327.4	2
155226	327.4	2
155231	320.6	2
155231	320.9	2
155236	323.9	2
155236	323.9	2
155239	305.3	2
155239	306.2	2
155248	343.8	3
155248	330.5	2
155251	311.2	3
155251	315.3	2
155260	308.8	2
155260	309.1	3
155271	294.3	2
155271	295.1	2
155283	295.8	2
155283	298.2	2
155294	287.0	2
155294	286.6	2
155312	296.0	2
155312	295.9	2
155343	300.5	2
155343	300.9	2
155367	299.3	2
155367	299.6	2
155380	291.4	2
155380	291.5	2
155401	301 7	2
155401	330.0	2
155402	302.4	2
155402	302.8	2
155403	310.7	2
155403	310.7	2
155404	317 1	2
155404	310.1	2
155404	326.6	2
155405	320.0	2
155400	221.3 277 G	2
155/12	211.0	2
155420	211.3	2
100400	300.7	

Number	Oxygen	QF
155430	293.8	2
155453	299.1	2
155453	301.0	2
155485	298.2	2
155485	299.1	2
155499	299.2	2
155499	299.4	2
155516	300.8	2
155516	301.1	2
155525	280.9	2
155525	285.0	2
155535	298.8	2
155535	298.2	2
155537	301.3	2
155537	301.8	2
155547	290.4	2
155547	291.0	2
155547	291.0	2
155556	298.3	2
155556	298.3	2
155556	297.2	2
155580	299.3	2
155580	299.3	2
155712	292.5	2
155712	298.0	2
155725	297.3	2
155725	299.8	2
155757	295.9	2
155757	295.9	2
155757	296.1	2
155777	364.8	2
155777	365.7	2
155779	322.0	2
155779	321.9	2
155781	391.5	2
155/81	393.0	2
155/85	385.8	3
155/85	388.7	2
155/86	305.9	2
155/86	311.6	3
155817	286.3	2
	280.U	2
15584 <i>1</i>	283.0	2

Sample ID	4)	WOCE
Number	Oxygen	QF
155847	292.6	2
155858	278.1	2
155858	281.7	2
155910	281.7	2
155910	282.0	2
155929	271.6	2
155929	271.7	2
155951	278.7	2
155951	276.2	2
155969	274.6	2
155969	275.0	2
155988	273.4	2
155988	273.7	2
156020	280.6	2
156020	281.7	2
156037	288.9	2
156037	294.1	2
156063	273.9	2
156063	270.9	2
156071	279.4	2
156071	276.9	2
156072	275.9	2
156072	276.1	2
156073	275.4	2
156073	275.9	2
156074	275.4	2
156074	275.8	2
156075	269.2	2
156075	275.5	2
156076	274.9	2
156076	275.2	2
156077	275.0	2
156077	274.8	2
156078	275.1	2
156078	275.7	2
156079	280.5	2
156079	282.3	2
156080	281.1	2
156080	285.5	2
156081	284.6	2
156081	285.9	2
156082	282.3	2
156082	282.3	2
156083	274,1	2
156083	276.5	2
156084	268.8	2

Sample ID	_	WOCE
Number	Oxygen	QF
156084	269.4	2
156085	250.3	2
156085	256.7	2
156086	229.1	2
156086	228.9	2
156087	223.1	2
156087	224.1	2
156097	274.2	2
156097	274.3	2
156130	274.7	2
156130	275.1	2
156140	281.5	2
156140	281.5	2
156163	280.5	2
156163	279.2	2
156200	265.0	2
156200	264.2	2
156211	277.7	2
156211	277.8	2
156232	275.5	2
156232	275.6	2
156270	242.4	2
156270	243.2	2
156278	274.9	2
156278	275.0	2
156303	273.9	2
156303	274.6	2
156333	286.2	2
156333	279.3	2
156334	242.9	2
156334	283.7	2
156347	271.7	2
156347	272.5	2
156371	271.0	2
156371	265.7	2

 Table C.2
 Replicate water sample oxygen values in moles/kg, along with their quality flags.

4. Nutrients

(Pierre Clement)

a. Description of Equipment and Technique

Nutrient concentrations were determined using a Technicon Autoanalyser II. The chemistries were standard Technicon (Silicate 186-72W, Phosphate 155-71W, Nitrate/Nitrite 158-71W) except for Phosphate which was modified by separating the Ascorbic Acid (4.0 gms/l) from the Mixed Reagent. This alteration was achieved by introducing the modified Mixed Reagent instead of water at the start of the sample stream at 0.23 ml/min and the Ascorbic Acid was pumped into the stream between the two mixing coils at 0.32 ml/min.

b. Sampling Procedure and Data Processing Technique

Duplicate nutrient subsamples were drawn into 30 ml HDPE (Nalge) wide mouth sample bottles from 10 litre Niskins. The bottles were 10% HCl washed, rinsed once with tap water, three times with Super-Q and oven dried at >100 °F.

A sample run included six Working Standards run at the beginning and end. Duplicate Check Standards were run every 16 samples followed by blanks as a Baseline Check. These Standards were made up in 33 ppt NaCl (VWR,Analar grade) as is the wash water. The Standards were tested against CSK Solution Standards (Sagami Chemical Center, Japan).

Analog data was converted to digital, processed and statistics calculated by a Pascal 6.0 in house program (Logger) on a PC. Chart recordings, hard copy and disk copies of the data were kept for reference.

c. Replicate Analysis

A total of 2068 seawater samples were analyzed for silicate, phosphate and NO_2+NO_3 . Included in these samples were a total of 1030 duplicate samples and 2 quadruplicate samples. Statistics relating to the precision of the sample values follow. All values are given in µmoles/kg. Only the samples that had acceptable replicate values were included in the statistics. All replicate values and their quality flags are given in Table C.3.

Precision is a measure of the variability of individual measurements and in the following analysis two categories of precision were determined: field and analytical precision. Analytical precision is based on the pooled estimate of the standard deviation of the check standards over the course of a complete autoanalyzer run and is a measure of the greatest precision possible for a particular analysis. Field precision is based on the analysis of two or more water samples taken from a single Niskin sampling bottle and has an added component of variance due to subsampling, storage and natural sample variability.

Both categories of precision were determined by computing the variance, σ_i^2 , of each replicate set, where "i" is the index of the replicate set. In the case of analytical (field) precision, a replicate set consisted of all the check standards (duplicate samples). Given p replicate sets and n samples within any replicate set, the mean standard deviation, $\overline{\sigma}$, was determined from

$$\sigma = \sqrt{\frac{\sum_{i=1}^{p} (n-1)_{i} \sigma_{i}^{2}}{\sum_{i=1}^{p} (n-1)_{i}}}$$

The precision expressed in percent was based on the mean concentration (M) of the check standards (analytical precision) or water samples (field precision) and was given by

$$P_{\%} = \frac{\sigma}{M} \times 100\%$$

The following table indicates the analytical and field precision obtained for this cruise.

Statistic	Silicate	Phosphate	NO2+NO3
Number of Samples	2068	2068	2068
Number of Replicates	1036	1036	1036
Mean concentration (µmoles/kg)	10.48	1.01	14.86
Field Precision (µmoles/kg)	0.11	0.03	0.16
Field Precision (%)	1.07	2.70	1.08
Analytical Precision (µmoles/kg)	0.69	0.03	0.31
Analytical Precision (%)	2.06	2.84	1.86
Detection Limit (µmoles/kg)	0.20	0.06	0.19

The laboratory temperature during all analyses was between 21 and 23 °C.

The conversion to mass units for the analytical precision and detection limits used a standard density of 1.02443 kg/liter corresponding to 33 ppt and 15°C. The conversion of individual sample values from volume to mass units used a potential density with a fixed temperature of 15° C.

Duplicate samples were drawn from each rosette bottle for the determination of silicate, phosphate and nitrate concentrations.

The nutrient detection limits noted in the above table were applied to the dataset. All values at or below the detection limits were set to zero.

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

			NO2+	
D	SiO2	PO4	NO3	QF

ID	SiO2	PO4	NO2+ NO3	QF

155201	8.80	0.98	7.90	222
155201	8.75	0.99	7.81	222
155202	8.88	1.01	8.20	222
155202	8.96	1.00	8.22	222
155203	8.92	1.04	8.10	222
155203	9.01	1.02	8.33	222
155204	8.82	1.26	7.98	222
155204	8.82	1.07	7.98	222
155205	8.95	1.08	8.09	222
155205	8.89	1.07	8.00	222
155206	8.79	1.07	8.09	222
155206	8.87	1.07	8.14	222
155207	8.80	1.07	7.91	222
155207	8.81	1.08	8.14	222
155209	8.51	1.05	7.81	222
155209	8.61	1.05	7.81	222
155210	8.51	0.98	7.76	222
155210	8.47	0.99	7.78	222
155211	8.82	1.00	7.94	222
155211	8.63	1.00	7.85	222
155212	8.74	1.00	8.08	222
155212	8.89	1.00	7.97	222
155213	8.77	1.01	8.04	222
155213	8.87	1.00	8.15	222
155214	8.57	1.02	7.96	222
155214	8.67	1.01	7.81	222
155215	8.79	1.02	8.03	222
155215	8.92	1.02	7.99	222
155216	8.76	1.02	8.12	222
155216	8.72	1.02	8.15	222
155217	8.79	1.01	8.10	222
155217	8.81	1.00	7.97	222
155219	8.61	0.97	7.87	222
155219	8.37	0.99	7.89	222
155220	8.46	0.99	7.84	222
155220	8.34	1.00	7.75	222
155221	8.25	1.01	7.80	222
155221	8.37	1.01	7.71	222
155222	8.33	1.02	7.80	222
155222	8.44	1.00	7.86	222
155223	8.41	1.01	7.81	222
155223	8.44	1.02	7.84	222
155224	11.15	1.04	9,99	222
155224	11.41	1.03	10,19	222
155225	12.18	1.04	9.45	222
155225	12.09	1.05	9.39	222
155226	11.56	1.04	8.19	222

155226	11.75	1.03	8.47	222
155227	1.11	0.50	0.00	222
155227	1.15	0.47	0.23	222
155228	12.06	1.03	13.15	222
155228	12.26	1.01	12.86	222
155229	11.90	1.02	12.32	222
155229	11.95	1.01	12.38	222
155230	10.97	1.03	11.32	222
155230	11.07	0.99	11.39	222
155231	10.50	1.02	10.32	222
155231	10.54	1.02	10.22	222
155232	11.59	1.04	9.07	222
155232	11.45	1.05	8.92	222
155233	11.13	1.02	7.90	222
155233	11.29	1.04	8.06	222
155234	1.02	0.51	0.00	222
155234	1.06	0.47	0.00	222
155235	12.45	1.04	11.28	222
155235	12.62	1.07	11.23	222
155236	11.62	1.03	9.03	222
155236	11.79	1.05	9.14	222
155237	11.31	1.04	8.14	222
155237	11.51	1.05	8.23	222
155238	0.90	0.52	0.00	222
155238	0.97	0.50	0.00	222
155239	10.99	1.02	12.52	222
155239	11.19	1.01	12.97	222
155240	8.04	0.91	8.69	222
155240	7.93	0.90	8.67	222
155241	11.17	1.04	8.52	222
155241	11.34	1.03	8.65	222
155242	10.97	1.03	7.77	222
155242	11.08	1.02	7.74	222
155243	0.42	0.45	0.00	222
155243	0.49	0.44	0.00	222
155244	9.68	0.95	12.75	222
155244	9.51	0.95	12.49	222
155245	10.13	1.01	12.54	222
155245	9.76	0.98	12.19	222
155246	9.96	0.98	9.36	222
155246	10.04	0.96	9.48	222
155247	11.51	1.02	9.26	222
155247	11.74	1.03	9.11	222
155248	10.38	1.03	7.34	222
155248	10.76	1.01	7.58	222
155249	0.38	0.50	0.00	222
155249	0.38	0.46	0.00	222

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 NO2+
 NO2+

ID	SiO2	PO4	NO2+ NO3	QF
155250	9.01	1.03	15.02	222
155250	8.85	1.03	15.03	222
155251	9.23	0.92	12.11	222
155251	9.29	0.93	12.24	222
155252	11.14	1.00	11.45	222
155252	10.74	1.00	11.26	222
155253	11.78	1.03	9.57	222
155253	11.58	1.04	9.42	222
155254	10.77	1.00	7.56	222
155254	10.81	1.00	7.70	222
155255	0.73	0.48	0.00	222
155255	0.80	0.47	0.00	222
155256	8.96	1.03	14.88	222
155256	9.19	1.01	14.97	222
155257	8.43	1.00	14.49	222
155257	8.48	1.01	14.61	222
155258	8.89	1.01	14.45	222
155258	8.88	0.99	14.54	222
155259	8.78	0.99	13.68	222
155259	9.00	1.00	13.99	222
155260	8.47	0.96	12.63	222
155260	8.49	0.94	12.84	222
155261	9.42	0.95	11.56	222
155261	9.47	0.99	11.37	222
155262	10.08	0.98	10.30	222
155262	10.03	0.99	10.26	222
155263	4.61	0.77	4.98	222
155263	4.65	0.75	4.78	222
155264	0.36	0.37	0.00	222
155264	0.40	0.42	0.00	222
155265	8.67	1.07	15.71	222
155265	8.85	1.03	16.03	222
155266	8.86	1.05	15.64	222
155266	9.05	1.04	15.73	222
155267	8.78	1.04	16.05	222
155267	8.79	1.06	15.79	222
155268	8.58	1.05	15.53	222
155268	8.56	1.04	15.66	222
155269	8.87	1.06	15.84	222
155269	8.79	1.07	15.84	222
155270	0.02	1.04	15.54	222
155270	0.09	1.04	15.97	222
155271	0.01	1.04	15.50	222
1002/1	0.09	1.04	10.//	222
100272	0.00 0.70	1.00	10.07	222
155272	0.12	1.04	15.00	222
155273	9.10	1.02	15.09	222
155277	0.00	0.02	1/ 22	222
1002/4	0.04	ເບ.ວຽ	14.00	

ID	SiO2	PO4	NO2+ NO3	QF
155274	8.42	0.99	14.46	222
155277	10.50	1.06	16.19	222
155277	10.58	1.07	16.11	222
155278	10.27	1.08	16.34	222
155278	10.38	1.08	16.43	222
155279	10.04	1.07	16.10	222
155279	9.99	1.08	16.66	222
155280	9.24	1.08	16.32	222
155280	9.22	1.06	16.02	222
155281	9.23	1.08	16.48	222
155281	9.25	1.07	16.29	222
155282	9.17	1.07	15.95	222
155282	9.42	1.08	16.01	222
155283	9.25	1.08	16.25	222
155283	9.42	1.10	16.62	222
155284	9.50	1.06	16.10	222
155284	9.53	1.08	16.41	222
155285	9.27	1.08	16.22	222
155285	9.19	1.07	16.13	222
155286	8.84	1.07	16.15	222
155286	8.86	1.04	15.57	222
155287	8.44	1.04	15.44	222
155287	8.40	1.05	15.64	222
155288	8.56	1.06	15.66	222
155288	8.48	1.06	15.84	222
155289	6.66	0.84	11.26	222
155289	6.76	0.83	11.26	222
155290	8.11	1.00	14.10	222
155290	8.49	1.00	14.32	222
155291	4.51	0.60	7.86	222
155291	4.51	0.60	8.07	222
155293	11.59	1.03	15.36	222
155293	11.60	1.05	15.23	222
155294	11.61	1.05	15.47	222
155294	11.54	1.03	15.27	222
155295	11.40	1.06	15.66	222
155295	11.47	1.05	15.24	222
155296	11.33	1.07	15.67	222
155296	11.34	1.08	15.70	222
155297	10.71	1.07	15.82	222
155297	10.75	1 07	15 48	222
155298	10.38	1.09	16.17	222
155298	10.34	1.08	16 47	222
155299	9 16	1 11	16.07	222
155299	9 4 2	1 09	15.82	222
155300	9.31	1.08	16 27	222
155300	941	1.00	16 12	222
155301	9.21	1.00	16 21	222
155301	9.24	1.10	16.41	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. -

ID	SiO2	PO4	NO2+ NO3	QF
155302	8.98	1.09	16.20	222
155302	9.08	1.10	15.91	222
155303	8.97	1.09	16.35	222
155303	9.14	1.10	16.46	222
155304	9.21	1.09	16.01	222
155304	9.19	1.09	15.73	222
155305	9.00	1.08	15.84	222
155305	8.87	1.07	15.84	222
155306	8.32	1.05	15.52	222
155306	8.56	1.06	15.59	222
155307	8.57	1.07	15.29	222
155307	8.59	1.06	15.31	222
155308	8.51	1.04	15.48	222
155308	8.67	1.06	15.42	222
155309	8.21	1.02	15.05	222
155309	8.32	1.04	15.20	222
155310	7.17	0.92	12.53	222
155310	7.09	0.89	12.51	222
155311	3.92	0.51	7.19	222
155311	4.00	0.52	7.10	222
155312	10.66	1.00	14.16	222
155312	10.77	1.00	14.22	222
155313	10.91	1.02	14.71	222
155313	10.93	1.03	14.49	222
155314	11.75	1.05	15.23	222
155314	11.83	1.06	15.31	222
155315	11.25	1.10	15.72	222
155315	11.33	1.08	15.55	222
155316	10.57	1.11	15.98	222
155316	10.64	1.11	15.86	222
155317	9.58	1.11	15.96	222
155317	9.42	1.09	15.86	222
155318	9.26	1.09	16.18	222
155318	9.30	1.09	16.02	222
155319	9.31	1.08	16.23	222
155319	9.36	1.10	16.43	222
155320	9.44	1.10	16.35	222
155320	9.49	1.12	16.07	222
155321	9.30	1.09	16.15	222
155321	9.51	1.10	15.88	222
155322	9.28	1.10	15.75	222
155322	9.38	1.08	15.58	222
155323	9.15	1.10	15.94	222
155323	9.29	1.08	15.90	222
155324	9.63	1.11	15.85	222
155324	9.65	1.10	15.76	222
155325	9.55	1.09	15.65	222
155325	9.41	1.10	15.68	222
155326	8.97	1.10	15.67	222

Г

ID	SiO2	PO4	NO2+ NO3	QF
	•	1		-
155326	9.15	1.09	15.46	222
155327	8.83	1.07	15.70	222
155327	8.90	1.08	15.63	222
155328	8.84	1.08	15.87	222
155328	8.91	1.06	15.80	222
155329	8.60	1.05	15.26	222
155329	8.65	1.04	15.04	222
155330	7.00	0.64	7.27	222
155330	6.98	0.64	7.31	222
155331	6.12	0.56	6.80	222
155331	6.14	0.55	6.81	222
155332	10.93	1.00	14.24	222
155332	11.10	0.99	14.10	222
155333	11.04	0.98	14.41	222
155333	11.15	0.99	14.56	222
155335	11.78	1.03	14.79	222
155335	12.01	1.02	15.02	222
155336	12.27	1.06	15.72	222
155336	12 49	1.05	15 54	222
155337	12.10	1.00	15.54	222
155337	12.20	1.00	15.39	222
155338	12.20	1.00	15.00	222
155338	11.00	1.12	16.01	222
155330	11.00	1.00	15.87	222
155330	11 44	1.03	15.07	222
155340	11.44	1.07	16.30	222
155340		1.10	16.64	222
1553/1	0.88	1.00	16.04	222
155341	9.00	1.09	16.04	222
155242	10.03	1.00	16.50	222
155342	0.71	1.00	16.00	222
155342	9.71	1.00	16.04	222
155343	9.00	1.00	16.04	222
100040	9.00	1.00	10.20	222
100044	9.00	1.00	10.40	222
100044	9.00	1.00	10.09	222
100340	9.70	1.07	10.00	222
155345	9.75	1.10	16.21	222
155346	9.89	1.07	10.52	222
155346	9.80	1.10	16.59	222
155347	9.93	1.10	16.42	222
155347	9.76	1.11	16.21	222
155348	9.79	1.09	16.46	222
155348	9.80	1.08	16.55	222
155349	9.48	1.10	16.11	222
155349	9.50	1.06	16.19	222
155350	9.30	1.10	16.20	222
155350	9.37	1.08	16.34	222
155351	9.11	1.08	15.90	222
155351	9.44	1.07	16.09	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г ٦

ID	SiO2	PO4	NO2+	QF
155352	8.92	1.04	15.69	222
155352	8.91	1.05	15.74	222
155353	8.78	1.07	14.81	222
155353	8.83	1.06	14.98	222
155354	6.94	0.62	8.18	222
155354	6.92	0.62	8.18	222
155355	11.03	1.00	14.43	222
155355	11.01	1.00	14.35	222
155356	10.97	1.02	14.87	222
155356	11.14	1.02	14.98	222
155357	11.49	1.01	15.00	222
155357	11.72	1.02	15.07	222
155358	12.32	1.05	15.36	222
155358	12.40	1.05	15.36	222
155359	12.45	1.07	15.76	222
155359	12.50	1.06	15.93	222
155360	12.34	1.06	16.25	222
155360	12.34	1.08	15.99	222
155361	11.62	1.09	16.02	222
155361	11.63	1.10	15.93	222
155362	11.44	1.10	16.40	222
155362	11.55	1.08	16.42	222
155363	10.82	1.09	16.38	222
155363	11.74	1.10	16.29	222
155364	9.83	1.09	16.36	222
155364	9.71	1.09	16.52	222
155365	9.55	1.09	16.19	222
155365	9.60	1.08	16.38	222
155366	9.46	1.09	16.13	222
155366	9.68	1.08	16.04	222
155367	9.66	1.09	16.34	222
155367	9.71	1.09	16.47	222
155368	9.52	1.08	16.09	222
155368	9.65	1.07	16.59	222
155369	9.33	1.09	16.28	222
155369	10.19	1.09	16.38	222
155370	9.73	1.09	16.72	222
155370	9.70	1.10	16.68	222
155371	9.63	1.07	16.13	222
155371	9.41	1.08	16.13	222
155372	9.19	1.07	16.21	222
155372	9.24	1.08	16.37	222
155373	9.16	1.08	16.26	222
155373	9.38	1.08	16.07	222
155374	9.09	1.08	15.65	222
155374	9.10	1.08	16.11	222
155375	8.72	1.07	15.45	222
155375	8.77	1.06	15.62	222
155376	7.61	0.76	9.72	222

ID	SiO2	PO4	NO2+ NO3	QF
155376	7.53	0.77	9.77	222
155377	6.40	0.57	6.87	222
155377	6.53	0.56	6.85	222
155378	10.86	1.00	14.43	222
155378	10.98	1.00	14.71	222
155379	11.14	1.01	14.37	222
155379	11.24	1.02	14.88	222
155380	11.18	1.01	14.91	222
155380	11.19	1.01	14.75	222
155381	12.28	1.05	15.33	222
155381	12.60	1.05	15.68	222
155382	13.33	1.06	15.68	222
155382	13.34	1.08	16.10	222
155383	12.55	1.07	15.82	222
155383	12.42	1.09	15.89	222
155384	11.93	1.10	16.38	222
155384	11.98	1.10	16.44	222
155385	11.55	1.07	16.02	222
155385	11.61	1.09	16.42	222
155386	10.57	1.11	16.45	222
155386	10.67	1.11	16.27	222
155387	9.66	1.10	16.57	222
155387	9.80	1.10	16.32	222
155389	9.76	1.11	16.21	222
155389	9.77	1.11	16.15	222
155390	9.56	1.08	16.21	222
155390	9.60	1.07	16.02	222
155391	9.46	1.09	16.30	222
155391	9.51	1.10	16.13	222
155392	9.66	1.09	15.96	222
155392	9.59	1.08	16.15	222
155393	9.55	1.09	16.32	222
155393	9.60	1.09	16.37	222
155394	9.53	1.08	15.77	222
155394	9.59	1.10	16.43	222
155395	9.18	1.09	16.00	222
155395	9.28	1.08	15.83	222
155396	9.25	1.09	16.22	222
155396	9.17	1.08	16.16	222
155397	9.13	1.10	15.86	222
155397	9.21	1.10	15.66	222
155398	8.77	1.05	15.79	222
155398	9.02	1.07	15.54	222
155399	8.25	0.89	11.34	222
155399	8.29	0.89	11.25	222
155400	7.14	0.68	8.24	222
155400	7.31	0.69	8.28	222
155407	10.84	1.02	14.16	222
155407	10.87	0.98	14.44	222
Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г ٦ Т

ID	SiO2	PO4	NO2+ NO3	QF
155408	10.98	0.99	14.39	222
155408	11.16	0.98	14.53	222
155409	12.94	1.02	15.37	222
155409	13.06	1.02	15.21	222
155410	13.36	1.05	15.77	222
155410	14.27	1.05	15.31	222
155411	12.42	1.05	15.34	222
155411	12.76	1.05	15.48	222
155412	12.14	1.06	15.78	222
155412	12.26	1.07	15.58	222
155413	12.44	1.09	16.23	222
155413	12.56	1.08	16.45	222
155414	12.85	1.09	16.25	222
155414	11.88	1.08	16.45	222
155415	10.90	1.09	16.30	222
155415	11.08	1.06	16.55	222
155416	9.60	1.05	16.23	222
155416	9.79	1.07	16.39	222
155417	9.63	1.04	16.11	222
155417	9.75	1.04	16.17	222
155418	9.92	1.04	16.12	222
155418	9.86	1.03	16.08	222
155419	9.61	1.05	16.10	222
155419	9.48	1.08	16.18	222
155420	9.66	1.09	16.49	222
155420	10.36	1.09	16.69	222
155421	9.86	1.10	16.39	222
155421	9.90	1.10	16.79	222
155422	9.73	1.12	16.12	222
155422	9.77	1.10	16.25	222
155423	9.59	1.08	16.47	222
155423	9.67	1.09	16.55	222
155424	9.85	1.09	16.59	222
155424	9.82	1.08	16.48	222
155425	9.32	1.05	15.60	222
155425	9.35	1.05	15.66	222
155426	8.61	1.02	15.22	222
155426	8.61	1.03	15.40	222
155427	7.90	0.82	10.30	222
155427	/.8/	0.81	10.40	222
155428	6.43	0.56	6.66	222
155428	6.49	0.55	6.79	222
155429	9.80	0.96	13.78	222
155429	9.83	0.94	13.83	222
155430	11.32	0.99	14.44	222
155430	11.41	0.99	14.50	222
155431	11.93	1.02	15.13	222
155431	11.99	1.01	14.98	222
100432	14.24	1.06	10.20	222

ID	SiO2	PO4	NO2+	QF
II			1100	I
155/22	14.00	1.06	15.24	222
155432	14.00	1.00	15.24	222
155455	14.23	1.00	15.72	222
100400	14.30	1.00	10.92	222
155434	13.31	1.06	10.14	222
100434	13.30	1.06	10.21	222
155435	12.84	1.05	16.15	222
155435	12.89	1.08	16.01	222
155436	12.52	1.08	16.09	222
155436	12.43	1.09	16.15	222
155437	11.90	1.10	16.36	222
155437	12.00	1.10	16.38	222
155438	9.70	1.08	16.10	222
155438	9.76	1.10	16.14	222
155439	9.56	1.10	15.74	222
155439	9.79	1.09	16.06	222
155440	9.75	1.08	16.14	222
155440	9.76	1.09	16.16	222
155441	9.50	1.07	16.29	222
155441	9.78	1.08	16.18	222
155442	9.52	1.16	15.90	222
155442	9.38	1.16	16.00	222
155443	9.64	1.09	16.16	222
155443	9.61	1.08	16.51	222
155444	9.44	1.10	15.68	222
155444	9.54	1.09	15.78	222
155445	9.50	1.09	16.00	222
155445	9.65	1.10	16.04	222
155446	9.46	1.09	16.07	222
155446	9.58	1.09	16.17	222
155447	9.19	1.09	16.04	222
155447	9.28	1.07	16.08	222
155448	9.24	1.07	15.86	222
155448	9.21	1.08	15.65	222
155449	8.93	1.05	14.95	222
155449	9.02	1.06	15.27	222
155450	7.61	0.73	8.63	222
155450	7 83	0.74	8 66	222
155451	6.55	0.59	7.39	222
155451	6.67	0.61	7 74	222
155452	9.18	1.06	14 01	222
155452	9.10	0.90	14 11	222
155/52	0.50	0.00	1/ 1/	222
155/52	0.50	0.07	1/ 20	222
155/5/	10.00	1.90	14.29	222
155454	10.21	1.02	1/ 20	222
155454	11.40	1.04	14.20	222
155455	11.04	1.00	14.//	222
100400	12.20	1.00	14.49	222
100400	13.30	1.00	10.03	222
155456	13.36	1.09	15.53	222

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 ID
 SiO2
 PO4
 NO2+
 OE

ID	SiO2	PO4	NO2+ NO3	QF
		r		
155457	13.50	1.08	15.56	222
155457	13.60	1.08	15.87	222
155458	13.01	1.10	15.48	222
155458	13.16	1.09	15.62	222
155459	12.00	1.09	15.70	222
155459	12.30	1.10	15.62	222
155460	11.44	1.12	15.71	222
155460	11.57	1.13	15.71	222
155461	11.07	1.12	15.92	222
155461	11.10	1.13	16.15	222
155462	9.73	1.11	16.00	222
155462	9.82	1.10	15.90	222
155463	9.46	1.09	15.87	222
155463	9.46	1.09	15.85	222
155464	9.36	1.11	15.97	222
155464	9.36	1.12	15.77	222
155465	9.57	1.13	16.18	222
155465	9.59	1.14	16.14	222
155466	9.61	1.14	16.22	222
155466	9.62	1.12	16.30	222
155467	9.33	1.13	16.25	222
155467	9.43	1.14	16.21	222
155468	9.41	1.19	16.37	222
155468	9.39	1.13	16.33	222
155469	9.23	1.13	16.15	222
155469	9.25	1.13	16.08	222
155470	8.89	1.12	15.50	222
155470	8.91	1.11	15.56	222
155471	8.71	1.14	15.41	222
155471	8.80	1.09	15.48	222
155472	8.70	1.12	15.66	222
155472	8.82	1.12	15.84	222
155473	8.09	0.97	12.69	222
155473	8.21	0.99	12.81	222
155474	6.42	0.66	7.37	222
155474	6.45	0.66	7.33	222
155475	10.72	0.94	14.35	222
155475	10.57	1.04	14.26	222
155476	10.86	0.94	14.06	222
155476	11.01	0.94	14.33	222
155477	12.16	0.99	14.61	222
155477	12.30	0.99	14.87	222
155478	12.30	0.99	15.02	222
155478	12.48	0.99	15.06	222
155479	13.81	1.02	15.50	222
155479	13.69	1.04	15.33	222
155480	13.10	1.02	15.31	222
155480	13.40	1.01	15.31	222
155481	13.31	1.03	16.01	222

ID	SiO2	PO4	NO2+ NO3	QF
155481	13.45	1.03	15 79	222
155482	11.68	1.00	15.78	222
155/82	11.86	1.01	15.06	222
155492	12.10	1.01	16.24	222
155405	12.19	1.07	16.09	222
155405	10.65	1.02	16.00	222
100404	10.00	1.03	10.11	222
155484	10.59	1.06	10.53	222
155485	9.65	1.05	16.06	222
155485	9.74	1.04	16.46	222
155486	9.77	1.03	15.93	222
155486	9.86	1.07	16.46	222
155487	9.65	1.05	16.04	222
155487	9.68	1.05	15.95	222
155488	9.59	1.06	16.56	222
155488	9.65	1.06	16.22	222
155489	9.79	1.06	16.72	222
155489	9.76	1.08	16.93	222
155490	9.70	1.05	15.98	222
155490	9.79	1.05	16.33	222
155491	9.70	1.10	16.46	222
155491	9.50	1.04	16.22	222
155492	9.70	1.04	16.32	222
155492	9.70	1.02	16.03	222
155493	9.79	1.04	16.21	222
155493	9.85	1.04	16.10	222
155494	9.43	1.06	15.96	222
155494	9.61	1.05	16.02	222
155495	8.70	1.02	15.65	222
155495	8.78	1.02	15.71	222
155496	7.49	0.68	9.19	222
155496	7.55	0.70	9.21	222
155497	6.01	0.61	7.88	222
155497	5.92	0.66	7.72	222
155498	9.70	0.91	13.66	222
155498	9.70	0.92	13.64	222
155499	9.69	0.92	13.57	222
155499	9.69	0.97	14.02	222
155500	9.66	0.92	13.57	222
155500	9.84	0.94	13.63	222
155501	10.52	1.01	14.21	222
155501	10.64	0.96	14.41	222
155502	11.64	0.97	15.00	222
155502	11.76	0.99	14.80	222
155503	12.47	1.01	15.18	222
155503	12.53	1.03	15.35	222
155504	12.30	1.05	15.51	222
155504	12.24	1.02	15.49	222
155505	11.35	1.04	15.68	222
155505	11.55	1.04	15.54	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г Т

ID	SiO2	PO4	NO2+ NO3	QF
155506	10.90	1.01	16.05	222
155506	11.02	1.05	16.19	222
155507	10.22	1.09	15.49	222
155507	10.25	1.07	15.89	222
155508	9.56	1.03	16.14	222
155508	9.59	1.03	16.16	222
155509	9.71	1.02	16.18	222
155509	9.77	1.05	15.95	222
155510	9.71	1.05	15.97	222
155510	9.74	1.04	15.61	222
155511	9.38	1.06	15.56	222
155511	9.44	1.04	15.64	222
155512	9.53	1.03	15.53	222
155512	9.47	1.04	15.73	222
155513	9.41	1.04	16.00	222
155513	9.53	1.05	15.93	222
155514	9.17	1.04	15.94	222
155514	9.20	1.02	16.33	222
155515	9.05	1.08	15.04	222
155515	9.14	1.00	15.48	222
155516	8.69	1.00	15.25	222
155516	8.69	0.98	15.39	222
155517	8.75	1.00	15.18	222
155517	8.63	1.02	15.26	222
155518	8.39	0.98	14.97	222
155518	8.45	0.97	14.98	222
155519	7.20	0.69	8.34	222
155519	7.29	0.72	8.39	222
155520	6.13	0.54	6.66	222
155520	6.28	0.55	6.64	222
155521	9.70	0.90	13.56	222
155521	9.70	0.93	14.16	222
155522	9.70	0.94	13.45	222
155522	9.31	0.94	13.47	222
155523	10.62	1.00	14.35	222
155523	10.77	0.93	14.45	222
155524	11.09	0.95	14.28	222
155524	11.01	0.95	14.76	222
155525	13.60	1.02	15.05	222
155525	13.54	1.04	14.97	222
155526	13.93	1.03	15.80	222
155526	13.99	1.02	15.68	222
155527	13.33	1.05	15.10	222
155527	13.42	1.05	15.60	222
155528	11.75	1.05	15.21	222
155528	11.78	1.04	15.37	222
155529	11.06	1.04	15.80	222
155529	11.15	1.07	15.88	222
155530	10.37	1.03	15.69	222

ID	SiO2	PO4	NO2+	QF
			nee	
155520	10.29	1.06	15 71	222
155530	0.50	1.00	15.71	222
155551	9.00	1.04	10.07	222
100001	9.71	1.12	14.00	222
100032	9.35	1.00	15.55	222
100032	9.38	1.07	15.90	222
155533	9.14	1.09	15.48	222
155533	9.14	1.04	15.56	222
155534	9.83	1.05	16.12	222
155534	9.77	1.08	15.89	222
155535	9.50	1.06	16.28	222
155535	9.56	1.06	16.25	222
155536	9.41	1.06	15.79	222
155536	9.50	1.07	15.61	222
155537	8.96	1.06	15.55	222
155537	9.08	1.03	15.37	222
155544	9.38	1.04	13.48	222
155544	9.50	0.93	13.50	222
155545	9.73	0.92	13.68	222
155545	9.76	1.00	13.56	222
155546	9.49	1.01	13.97	222
155546	9.49	0.94	13.75	222
155547	11.56	0.99	14.38	222
155547	11.53	0.99	14.55	222
155548	12.19	1.01	15.16	222
155548	12.40	0.99	15.10	222
155549	12.70	1.08	15.59	222
155549	12.79	1.04	15.21	222
155550	12.40	1.04	14.89	222
155550	12.46	1.05	14.89	222
155551	11.44	1.05	15.18	222
155551	11.23	1.04	15.12	222
155552	12.01	1.07	15.51	222
155552	12.22	1.08	15.78	222
155553	10.56	1.12	15.80	222
155553	10.84	1.10	15.77	222
155554	9.69	1.06	15.96	222
155554	975	1 09	15 99	222
155555	9.66	1.08	15 77	222
155555	9.66	1.06	15 71	222
155557	9.63	1.00	16.21	222
155557	9.60	1.07	15.84	222
155558	9.00	1.00	15 00	222
155558	9.40	1.07	15.99	222
155550	0.30	1.00	16.05	222
155550	0.10	1.00	16.00	222
155560	9.40 0.17	1.07	16.20	222
155560	9.17	1.00	16.20	222
100000	9.30	1.04	10.29	222
100001	9.02	1.05	15.03	222
155561	9.02	1.04	15.77	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г ٦

ID	SiO2	PO4	NO3	QF
155562	8 87	1.06	15 65	222
155562	8.78	1.10	15.32	222
155563	8 66	1.02	15 57	222
155563	8.69	1.03	15.43	222
155566	6.24	0.56	5.34	222
155566	6.12	0.54	5.59	222
155567	9.44	0.93	14.31	222
155567	9.32	1.05	14.12	222
155568	8.89	0.93	14.31	222
155568	9.01	0.94	14.52	222
155569	9.04	0.96	14.16	222
155569	9.07	0.93	14.42	222
155570	9.89	1.02	16.22	222
155570	9.95	1.04	16.23	222
155571	12.81	1.06	15.50	222
155571	12.87	1.06	15.73	222
155572	12.41	1.04	15.97	222
155572	12.22	1.05	15.74	222
155573	12.98	1.08	16.27	222
155573	13.32	1.07	16.48	222
155574	11.64	1.10	16.23	222
155574	11.76	1.09	16.38	222
155575	11.24	1.15	16.57	222
155575	11.33	1.06	16.74	222
155576	10.44	1.06	16.76	222
155576	10.20	1.09	16.39	222
155577	9.53	1.09	16.75	222
155577	9.65	1.07	16.75	222
155578	9.59	1.09	16.52	222
155578	9.74	1.08	16.39	222
155579	9.53	1.09	16.67	222
155579	9.59	1.08	16.92	222
155580	9.67	1.08	16.57	222
155580	9.73	1.10	16.57	222
155581	9.55	1.09	16.88	222
155581	9.58	1.11	17.08	222
155582	9.67	1.07	16.53	222
155582	9.55	1.10	16.85	222
155583	9.33	1.1/	16.66	222
155583	9.30	1.06	16.75	222
155584	9.12	1.06	10.75	222
155584	9.14	1.05	16.42	222
100000	0.54	1.07	10.10	222
100000	0.04	1.04	15.00	222
100000	0.51	1.03	15.//	222
100000	9.74	1.02	17.90	222
10000/	0.14	1.02	14.00	222
10000/	0.20	0.74	13.91	222
100000	0.03	0.71	1.09	$\angle \angle \angle$

ID	SiO2	PO4	NO2+ NO3	QF
I				
155588	6.00	0.65	7 66	222
155589	5 15	0.47	5.21	222
155589	5 18	0.50	5 15	222
155701	9.79	0.00	14 96	222
155701	9.92	1.02	14.68	222
155702	10.54	1.02	15.26	222
155702	10.01	0.99	14 97	222
155703	10.57	1.02	15 14	222
155703	10.07	1.02	15 14	222
155704	10.01	1.00	15.40	222
155704	10.20	0.98	15 10	222
155705	11 98	1.03	15.10	222
155705	12.13	1.00	15.00	222
155706	11 77	1.04	16.12	222
155706	11 71	1.04	16.12	222
155707	11./1	1.04	16.08	222
155707	11.45	1.04	15.00	222
155708	11.01	1.07	16.38	222
155708	11.22	1.04	15.87	222
155700	10.82	1.07	16.51	222
155709	10.02	1.00	16.29	222
155709	10.91	1.07	16.20	222
155710	10.42	1.00	16.00	222
155710	0.07	1.10	16.02	222
155711	9.97	1.00	16.92	222
100711	10.03	1.09	10.03	222
100712	9.02	1.09	16.77	222
100712	9.90	1.17	16.77	222
100/13	9.87	1.08	16.97	222
100/13	9.99	1.12	16.99	222
100/14	9.84	1.11	10.00	222
100/14	9.81	1.09	16.02	222
100/10	9.03	1.11	10.93	222
100/10	9.84	1.11	10.70	222
155/16	9.50	1.09	16.79	222
100/10	9.59	1.13	10.03	222
100/1/	9.05	1.09	10.07	222
155/1/	9.26	1.07	16.37	222
155/18	8.95	1.07	16.59	222
155/18	9.10	1.14	16.06	222
155/19	8.98	1.05	16.07	222
155/19	8.95	1.04	16.30	222
155/20	8.59	1.03	15.84	222
155/20	8.68	1.04	15.27	222
155/21	1.8/	0.93	12.//	222
155/21	7.99	0.94	12.62	222
155/22	6.58	0./1	8.33	222
155/22	6.61	0./1	8.31	222
155723	5.77	0.58	6.45	222
155723	5.83	0.57	6.42	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г Т

ID	SiO2	PO4	NO2+ NO3	QF
155724	9.36	1.01	14.88	222
155724	9.42	1.00	14.52	222
155725	9.74	0.98	14.71	222
155725	9.45	1.00	14.95	222
155726	10.19	1.08	14.70	222
155726	9.86	0.98	15.25	222
155727	11.14	1.02	15.49	222
155727	11.32	1.05	15.19	222
155728	11.53	1.05	15.97	222
155728	11.71	1.07	15.72	222
155729	11.74	1.08	16.48	222
155729	11.79	1.07	15.94	222
155730	10.62	1.06	15.96	222
155730	10.53	1.06	16.00	222
155731	10.80	1.07	16.47	222
155731	10.89	1.09	16.26	222
155732	10.44	1.09	16.74	222
155732	10.62	1.10	16.45	222
155733	9.99	1.09	16.37	222
155733	10.11	1.10	16.64	222
155734	9.62	1.19	16.65	222
155734	9.62	1.08	16.80	222
155735	9.83	1.10	16.59	222
155735	9.65	1.09	16.97	222
155736	9.71	1.10	16.53	222
155736	9.80	1.10	16.68	222
155737	9.26	1.09	16.68	222
155737	9.38	1.10	16.49	222
155738	8.90	1.11	16.53	222
155738	9.08	1.07	16.12	222
155739	8.51	1.04	15.06	222
155739	8.60	1.02	15.30	222
155740	8.27	0.96	13.26	222
155740	8.18	0.96	13.48	222
155741	7.82	0.86	10.73	222
155741	7.82	0.82	10.45	222
155742	6.15	0.57	6.22	222
155742	6.12	0.63	6.20	222
155747	11.08	1.08	15.33	222
155747	10.93	1.03	15.65	222
155748	10.66	1.04	15.87	222
155748	10.72	1.04	15.55	222
155749	10.48	1.08	15.93	222
155749	10.66	1.08	16.23	222
155750	10.48	1.07	16.31	222
155750	10.71	1.10	16.06	222
155751	10.38	1.09	15.98	222
155751	10.39	1.07	16.61	222
155752	10.15	1.09	16.47	222

ID	SiO2	PO4	NO2+ NO3	QF
155752	9.97	1.08	16.40	222
155753	9.93	1.10	16.41	222
155753	9.99	1.11	16.66	222
155754	9.75	1.16	16.65	222
155754	9.78	1.11	16.21	222
155755	9.69	1.09	16.73	222
155755	9.78	1.10	16.77	222
155756	9.77	1.09	16.40	222
155756	9.71	1.10	16.97	222
155757	9.41	1.10	16.66	222
155757	9.50	1.11	16.80	222
155758	9.38	1.11	16.53	222
155758	9.47	1.11	16.58	222
155759	9.08	1.08	16.37	222
155759	9.14	1.08	16.50	222
155760	8.93	1.08	16.35	222
155760	9.02	1.08	16.29	222
155761	8.37	1.06	15.58	222
155761	8.49	1.04	15.60	222
155762	7.83	1.08	14.69	222
155762	7.83	1.00	16.74	222
155766	9.48	1.12	16.62	222
155766	9.45	1.12	16.85	222
155767	9.45	1.09	16.68	222
155767	9.45	1.10	16.68	222
155768	9.39	1.11	16.83	222
155768	9.39	1.10	16.66	222
155769	8.97	1.10	16.27	222
155769	9.06	1.09	16.52	222
155770	8.94	1.09	16.31	222
155770	9.03	1.10	16.31	222
155771	8.85	1.10	16.38	222
155771	8.73	1.10	16.30	222
155772	8.46	1.07	15.83	222
155772	8.52	1.04	15.80	222
155773	8.22	1.09	15.45	222
155773	8.37	1.05	15.80	222
155774	7.89	1.03	14.54	222
155774	7.98	1.02	14.83	222
155775	7.39	0.96	13.12	222
155775	7.45	0.97	13.12	222
155776	7.25	0.80	9.84	222
155776	7.30	0.82	9.86	222
155777	4.34	0.50	3.62	222
155777	4.37	0.44	3.62	222
155778	6.27	0.81	9.02	222
155778	6.24	0.78	9.09	222
155779	6.21	0.80	9.31	222
155779	6.24	0.81	9.53	222

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 Image: Ima

ID	SiO2	PO4	NO2+	QF
155780	5.95	0.81	9.98	222
155780	5.98	0.81	10.00	222
155781	1.97	0.60	1.12	222
155781	2.00	0.35	0.82	222
155782	6.00	0.79	9.17	222
155782	6.79	0.77	9.23	222
155783	5.80	0.80	9.21	222
155783	5.80	0.79	9.34	222
155784	5.39	0.76	8.74	222
155784	5.39	0.77	8.82	222
155785	1.88	0.34	1.33	222
155785	1.94	0.30	1.44	222
155786	8.75	0.98	13.24	223
155786	8.67	0.90	13.32	223
155787	11.16	0.99	14.62	222
155787	11.47	0.95	14.70	222
155788	11.81	0.97	14.49	222
155788	11.81	1.08	14.81	222
155789	12.90	0.98	15.56	222
155789	12.99	1.00	15.78	222
155790	13.82	1.02	15.81	222
155790	13.73	1.04	15.53	222
155791	13.10	1.02	15.86	222
155791	13.30	1.03	16.08	222
155792	13.04	1.04	16.54	222
155792	13.16	1.05	16.13	222
155793	12.39	1.06	16.30	222
155793	12.53	1.04	16.49	222
155795	10.44	1.10	15.94	222
155795	10.75	1.03	15.89	222
155796	9.72	1.04	16.41	222
155796	9.75	1.04	16.00	222
155797	9.55	1.03	16.58	222
155797	9.63	1.03	16.14	222
155798	9.46	1.05	16.38	222
155798	9.60	1.04	16.25	222
155799	9.57	1.04	16.73	222
155799	9.69	1.04	16.68	222
155800	9.46	1.05	16.50	222
155800	9.72	1.04	16.53	222
155801	9.49	1.06	16.57	222
155801	9.51	1.10	16.38	222
155802	9.51	1.03	16.01	222
155802	9.74	1.04	16.50	222
155803	9.57	1.11	16.58	222
155803	9.71	1.03	16.94	222
155804	9.63	1.07	16.97	222
155804	9.68	1.06	16.55	222
155805	9.31	1.04	16.32	222

I	D	SiO2	PO4	NO2+	QF
				INUS	
450	-005	0.00	4.04	40.45	0.0.0
155	5805	9.22	1.04	16.45	222
155	00806	9.11	1.04	15.29	222
155	0806	9.25	1.07	15.32	222
155	<u>1080</u>	5.60	0.67	9.98	222
155	5807	5.63	0.71	10.15	222
155	5808	5.36	0.65	9.29	222
155	5808	5.39	0.64	9.56	222
155	5809	8.90	0.93	13.64	222
155	5809	8.93	0.92	13.87	222
155	5810	9.33	0.95	14.46	222
155	5810	9.42	0.93	14.38	222
155	5811	10.88	0.99	15.06	222
155	5811	11.00	1.04	14.70	222
155	5812	12.04	1.12	15.81	222
155	5812	11.98	0.98	15.77	222
155	5813	13.22	1.04	15.90	222
155	5813	13.42	1.09	15.80	222
155	5814	12.18	1.05	15.77	222
155	5814	12.21	1.03	15.79	222
155	5815	12.01	1.04	15.86	222
155	5815	12.01	1.06	16.18	222
155	5816	11.37	1.05	16.59	222
155	5816	11.40	1.05	16.56	222
155	5817	10.88	1.07	16.12	222
155	5817	10.91	1.07	16.37	222
155	5818	9.67	1.07	16.36	222
155	5818	9.67	1.05	16.28	222
155	5819	9 58	1 07	15.80	222
155	5819	9.64	1 1 1	16.09	222
155	5820	9.55	1.06	16.34	222
155	5820	947	1.07	16.02	222
155	5821	9.61	1.07	16.60	222
154	5821	9.75	1.00	16.00	222
154	5822	9.46	1.07	16.20	222
154	5822	9.55	1.07	16.48	222
150	5823	9.00	1.07	15.75	222
150	5823	0.52	1.03	16.23	222
150	582/	9.52	1.07	15.87	222
150	5024	9.00	1.00	16.05	222
150	5024	9.50	1.00	16.03	222
150	2025	9.52	1.07	15.71	222
100	2020	9.52	1.07	10.00	222
100	2020	9.09	1.10	10.00	222
100	020	9.84	1.00	10.22	222
155	0021	9.03	1.13	10.30	222
155	0827	9.80	1.09	16.32	222
155	0828	9.60	1.09	16.74	222
155	0828	9.72	1.09	16.42	222
155	<u>5829</u>	7.69	0.95	14.64	222
155	5829	7.75	0.97	14.25	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г Т

ID	SiO2	PO4	NO3	QF
		-		
155830	8.88	1.04	14.03	222
155830	9.02	1.05	13.73	222
155831	2.14	0.62	9.72	222
155831	2.19	0.64	9.70	222
155832	9.69	1.01	13.86	222
155832	9.89	0.99	13.84	222
155833	9.80	0.98	14.02	222
155833	9.80	1.01	14.02	222
155834	11.45	1.03	14.41	222
155834	11.45	1.04	14.26	222
155835	12.43	1.12	15.35	222
155835	12.55	1.05	15.59	222
155836	9.83	1.09	15.78	222
155836	9.74	1.09	15.88	222
155837	12.55	1.09	15.78	222
155837	12.75	1.07	15.96	222
155838	12.72	1.08	16.37	222
155838	12.81	1.12	15.77	222
155839	11.74	1.10	15.68	222
155839	11.77	1.09	15.56	222
155840	10.98	1.10	15.34	222
155840	10.95	1.09	15.37	222
155841	9.94	1.10	16.17	222
155841	9.82	1.11	15.74	222
155842	9.73	1.10	16.06	222
155842	9.79	1.09	16.04	222
155843	9.50	1.16	15.68	222
155843	9.56	1.10	16.18	222
155844	9.79	1.10	16.37	222
155844	9.85	1.09	16.10	222
155845	9.61	1.11	16.10	222
155845	9.85	1.07	16.10	222
155846	9.67	1.12	15.62	222
155846	9.67	1.11	15.99	222
155847	9.87	1.11	16.22	222
155847	10.02	1.14	15.83	222
155848	10.16	1.12	16.41	222
155848	10.08	1.11	16.66	222
155849	10.19	1.15	16.72	222
155849	10.19	1.14	16.56	222
155850	10.19	1.16	16.41	222
155850	10.22	1.17	17.08	222
155851	9.26	1.13	15.85	222
155851	9.49	1.21	15.80	222
155852	8.85	1.10	15.57	222
155852	9.05	1.10	15.72	222
155853	8.47	1.07	14.81	222
155853	8.47	1.07	15.00	222
155854	2.16	0.60	8.62	222

ID	SiO2	PO4	NO2+ NO3	QF
155854	2.13	0.63	8.57	222
155855	11.20	1.08	15.23	222
155855	11.28	1.00	15.25	222
155856	11.68	0.99	15.38	222
155856	11.65	0.98	15.04	222
155857	11.98	1.01	15.61	222
155857	12.30	1.00	15.67	222
155858	13.41	1.02	15.90	222
155858	13.58	1.01	16.03	222
155859	13.92	1.05	16.41	222
155859	14.03	1.04	16.54	222
155860	13.80	1.05	16.68	222
155860	13.85	1.05	16.31	222
155861	13.51	1.07	16.75	222
155861	13.54	1.08	16.52	222
155862	12.87	1.08	16.56	222
155862	13.27	1.08	16.48	222
155863	12.37	1.15	16.53	222
155863	12.45	1.08	16.90	222
155864	11.82	1.05	16.57	222
155864	12.08	1.09	17.01	222
155865	10.93	1.06	16.78	222
155865	11.04	1.06	16.89	222
155866	10.04	1.04	16.70	222
155866	10.13	1.07	17.12	222
155867	9.84	1.05	16.60	222
155867	9.92	1.05	16.83	222
155868	10.06	1.08	17.06	222
155868	9.89	1.06	17.12	222
155869	9.91	1.05	16.74	222
155869	9.94	1.06	17.00	222
155870	10.05	1.06	17.31	222
155870	10.19	1.09	17.31	222
155871	10.12	1.18	17.09	222
155871	10.23	1.09	17.03	222
155872	10.43	1.10	17.64	222
155872	10.40	1.12	17.45	222
155873	10.33	1.11	17.45	222
155873	10.25	1.12	17.60	222
155874	10.22	1.12	17.62	222
155874	10.30	1.12	17.90	222
155875	9.07	1.08	16.74	222
155875	9 13	1.08	16 51	222
155876	8.67	0.99	14.32	222
155876	8.78	1.02	14.44	222
155877	0.82	0.46	5 84	222
155877	0.88	0.38	6.03	222
155878	14.90	1.06	16.60	222
155878	14.79	1.14	16.51	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г ٦ Т

ID	SiO2	PO4	NO2+	QF
			1100	
155879	14 83	1 18	16 75	222
155879	14.94	1.07	16.69	222
155880	15.24	1.05	16.84	222
155880	15.16	1.05	16.61	222
155881	15.10	1.08	16.95	222
155881	14.78	1.08	16.68	222
155882	14.87	1.06	16.60	222
155882	14.92	1.06	16.70	222
155883	14.69	1.08	16.84	222
155883	14.89	1.08	17.02	222
155884	14.11	1.08	16.52	222
155884	14.28	1.07	16.86	222
155886	12.97	1.07	17.09	222
155886	13.02	1.08	17.16	222
155887	11.99	1.09	16.91	222
155887	11.85	1.08	16.66	222
155888	11.46	1.08	17.13	222
155888	11.47	1.13	16.80	222
155889	10.06	1.07	16.74	222
155889	10.29	1.06	16.88	222
155890	10.17	1.06	17.06	222
155890	10.20	1.07	17.08	222
155891	10.37	1.08	17.12	222
155891	10.20	1.08	16.83	222
155892	10.25	1.09	17.02	222
155892	10.39	1.08	17.44	222
155893	10.53	1.11	17.47	222
155893	10.56	1.10	17.66	222
155894	10.58	1.12	17.60	222
155894	10.66	1.12	17.75	222
155895	10.32	1.11	17.77	222
155895	10.40	1.19	17.73	222
155896	9.68	1.09	17.08	222
155896	9.76	1.17	17.11	222
155897	9.67	1.08	17.44	222
155897	9.64	1.09	17.31	222
155898	8.99	1.06	16.44	222
155898	8.95	1.06	16.33	222
155899	8.61	0.99	14.52	222
155899	8.64	1.01	14.35	222
155900	0.34	0.27	3.38	222
155900	0.43	0.20	3.44	222
155901	14.82	1.12	16.57	222
155901	15.02	1.08	16.81	222
155902	15.16	1.08	17.01	222
155902	15.27	1.08	17.10	222
155903	14.75	1.06	10.64	222
155903	14.75	1.07	10.75	222
155904	14.57	1.16	16.81	222

ID	SiO2	PO4	NO2+ NO3	QF
155904	14.70	1.06	16.94	222
155905	14.44	1.08	16.65	222
155905	14.67	1.08	17.13	222
155906	14.01	1.09	16.67	222
155906	14.10	1.09	16.92	222
155908	13.04	1.07	17.05	222
155908	13.13	1.07	17.12	222
155909	12.22	1.08	16.63	222
155909	12.30	1.09	16.84	222
155910	11.36	1.09	16.91	222
155910	11.41	1.06	17.16	222
155911	10.73	1.07	16.61	222
155911	10.70	1.07	16.70	222
155912	10.30	1.08	16.93	222
155912	10.32	1.09	17.08	222
155913	10.28	1.07	16.88	222
155913	10.31	1.15	17.04	222
155914	10.30	1.09	17.06	222
155914	10.31	1.09	16.93	222
155915	10.53	1.10	17.48	222
155915	10.64	1.09	17.57	222
155916	10.35	1.11	17.53	222
155916	10.44	1.10	17.34	222
155917	10.40	1.12	17.62	222
155917	10.46	1.13	17.88	222
155918	10.60	1.12	17.97	222
155918	10.62	1.13	17.78	222
155919	9.54	1.09	17.28	222
155919	9.52	1.08	17.06	222
155920	9.06	1.07	17.17	222
155920	9.17	1.07	16.96	222
155921	8.56	1.10	15.32	222
155921	8.64	1.03	15.54	222
155922	8.16	0.99	13.26	222
155922	8.19	0.98	13.26	222
155923	0.35	0.31	3.70	222
155923	0.41	0.25	3.81	222
155924	14.74	1.15	16.73	222
155924	14.51	1.07	16.81	222
155925	14.51	1.08	16.93	222
155925	14.54	1.08	16.94	222
155926	14.42	1.09	17.04	222
155926	14.56	1.08	17.16	222
155927	14.38	1.09	16.88	222
155927	14.39	1.09	17.17	222
155928	14.29	1.09	16.71	222
155928	14.30	1.08	16.64	222
155929	13.80	1.08	17.14	222
155929	13.80	1.16	17.03	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г Т

ID	SiO2	PO4	NO2+ NO3	QF
		1		
155930	13.26	1.08	16.67	222
155930	12.94	1.07	16.78	222
155931	12.80	1.07	16.70	222
155931	12.74	1.06	16.81	222
155933	11.57	1.09	17.10	222
155933	11.60	1.07	17.01	222
155934	11.06	1.12	17.33	222
155934	11.12	1.08	17.08	222
155935	10.80	1.10	16.92	222
155935	10.83	1.11	17.39	222
155936	10.49	1.11	17.18	222
155936	10.57	1.12	17.19	222
155937	10.73	1.12	17.77	222
155937	10.65	1.13	17.59	222
155938	10.66	1.11	17.71	222
155938	10.69	1.22	17.38	222
155939	10.80	1.15	18.07	222
155939	10.82	1.15	18.26	222
155940	10.85	1.16	18.44	222
155940	10.90	1.16	18.48	222
155941	10.67	1.15	18.53	222
155941	10.73	1.16	18.36	222
155942	8.55	1.06	15.96	222
155942	8.64	1.04	16.39	222
155943	8.24	1.05	15.65	222
155943	8.27	1.02	15.63	222
155944	8.43	1.03	15.72	222
155944	8.32	1.03	15.59	222
155945	6.87	0.95	12.96	222
155945	6.87	0.98	12.87	222
155946	0.47	0.49	5.74	222
155946	0.47	0.57	5.60	222
155947	14.84	1.12	16.71	222
155947	14.95	1.08	16.79	222
155948	14.26	1.13	16.54	222
155948	14.29	1.10	16.97	222
155949	13.19	1.10	16.65	222
155949	13.44	1.10	16.84	222
155950	12.45	1.08	16.74	222
155950	12.48	1.05	16.72	222
155951	11.68	1.08	17.15	222
155951	11.82	1.10	17.09	222
155952	10.83	1.07	17.09	222
155952	10.77	1.09	16.84	222
155953	10.43	1.09	16.84	222
155953	10.43	1.09	16.63	222
155954	10.36	1.08	17.20	222
155954	10.36	1.20	17.13	222
155955	10.41	1.10	16.91	222

ID	SiO2	PO4	NO2+	QF
			nee	
155055	10.52	1 1 2	17 16	222
155955	10.52	1.12	17.10	222
155950	10.51	1.12	17.04	222
100900	10.74	1.14	17.47	222
155957	10.31	1.15	17.72	222
100907	10.29		17.07	222
155958	10.05	1.14	17.84	222
155958	10.11	1.13	17.90	222
155959	8.47	1.06	15.82	222
155959	8.48	1.04	16.20	222
155960	8.42	1.08	15.66	222
155960	8.50	1.04	15.79	222
155961	8.27	1.04	15.75	222
155961	8.35	1.06	15.76	222
155962	3.92	0.77	9.12	222
155962	3.93	0.84	9.07	222
155963	0.53	0.42	4.42	222
155963	0.52	0.45	4.44	222
155964	14.77	1.08	16.81	222
155964	14.54	1.27	16.44	222
155965	14.69	1.07	16.77	222
155965	14.71	1.09	16.66	222
155966	13.78	1.08	16.82	222
155966	14.15	1.08	16.74	222
155967	13.33	1.08	16.52	222
155967	13.52	1.07	16.90	222
155968	12.68	1.05	16.58	222
155968	12.79	1.08	16.68	222
155969	12.37	1.07	16.90	222
155969	12.25	1.05	16.78	222
155970	11.46	1.17	16.90	222
155970	11.55	1.03	16.94	222
155971	10.87	1.07	17.08	222
155971	11 01	1.06	17 19	222
155974	10.42	1.00	17.52	222
155974	10.12	1.20	17.60	222
155975	10.59	1.12	18 17	222
155975	10.00	1.10	17 97	222
155976	10.00	1.12	17.37	222
155076	10.00	1.11	17.67	222
155077	Q 71	1.10	16.40	222
155077	8.76	1.04	16.50	222
155070	0.70	0.00	16.09	222
1559/0	0.01	0.99	15.40	222
1009/0	0.04	1.00	10.39	222
1559/9	0.03	1.00	15.51	222
1009/9	0.09	1.03	10.72	222
155980	0.09	1.00	15.34	222
155980	8.17	1.01	15.23	222
155981	2.86	0.70	9.15	222
155981	2.78	0.75	9.02	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г ٦

ID	SiO2	PO4	NO2+	QF
155982	0.75	0.53	6.11	222
155982	0.73	0.63	5.94	222
155983	13.45	1.15	16.41	222
155983	13.65	1.02	16.62	222
155984	13.34	1.04	16.55	222
155984	13.39	1.04	16.66	222
155985	12.68	1.05	16.09	222
155985	12.71	1.06	16.48	222
155986	12.46	1.05	16.33	222
155986	12.60	1.05	16.23	222
155987	12.54	1.07	16.51	222
155987	12.43	1.05	16.47	222
155988	12.46	1.07	16.90	222
155988	12.63	1.07	16.96	222
155989	12.00	1.11	16.96	222
155989	11.95	1.07	17.08	222
155990	10.42	1.26	16.21	222
155990	10.53	1.05	16.87	222
155991	10.45	1.07	17.00	222
155991	10.56	1.11	17.06	222
155992	10.22	1.09	16.95	222
155992	10.25	1.13	16.70	222
155993	10.44	1.09	16.92	222
155993	10.55	1.06	16.92	222
155994	10.58	1.09	17.29	222
155994	10.58	1.09	17.31	222
155995	10.38	1.13	17.30	222
155995	10.52	1.12	17.72	222
155996	10.52	1.15	17.80	222
155996	10.66	1.14	18.02	222
155997	10.01	1.13	17.81	222
155997	10.01	1.13	17.69	222
155998	7.92	0.98	15.47	222
155998	7.98	1.25	15.29	222
155999	8.03	1.03	15.49	222
155999	8.12	1.03	15.85	222
156000	4.65	0.82	10.58	222
156000	4.71	0.86	10.62	222
156001	1.43	0.41	5.09	222
156001	1.42	0.48	5.04	222
156002	17.27	1.07	16.74	222
156002	17.70	1.22	16.77	222
156003	17.16	1.09	16.43	222
156003	17.22	1.07	16.68	222
156004	17.02	1.07	16.74	222
156004	17.22	1.09	16.79	222
156005	17.21	1.09	16.85	222
156005	17.07	1.09	17.02	222
156006	16.24	1.27	16.61	222

ID	SiO2	PO4	NO2+	QF
			NO3	-
	<u> </u>			
156006	16.13	1.09	16.81	222
156007	14.70	1.07	16.58	222
156007	14.90	1.08	17.12	222
156008	13.82	1.04	16.62	222
156008	13.99	1.07	16.69	222
156009	13.39	1.09	16.62	222
156009	13.45	1.10	16.86	222
156011	12.43	1.14	16.95	222
156011	12.65	1.08	16.98	222
156012	11.60	1.07	16.80	222
156012	11.57	1.09	16.82	222
156013	10.55	1.06	16.67	222
156013	10.61	1.05	16.90	222
156014	10.46	1.08	16.87	222
156014	10.38	1.07	16.72	222
156015	10.77	1.25	17.27	222
156015	10.46	1.08	16.75	222
156016	10.43	1 15	17 04	222
156016	10.10	1.10	17.01	222
156017	10.07	1.11	17.02	222
156017	10.00	1.10	17.85	222
156018	10.71	1.11	18.01	222
156018	10.00	1.12	17.53	222
156010	10.31	1.12	18 15	222
156010	10.75	1.17	18.03	222
156020	8.80	1.17	16.03	222
156020	8.88	1.05	16.63	222
156020	0.00	1.00	16.03	222
156021	0.00 9.07	1.07	10.42	222
150021	0.97	1.05	15.99	222
100022	0.00	1.04	10.02	222
150022	9.02	1.05	10.11	222
156023	0.36	0.30	3.15	222
156023	0.36	0.43	3.09	222
156025	17.89	1.12	16.52	222
156025	17.78	1.12	16.52	222
156026	17.29	1.14	16.58	222
156026	17.40	1.14	16.71	222
156027	16.79	1.17	16.78	222
156027	16.82	1.14	16.86	222
156028	16.30	1.11	16.99	222
156028	16.33	1.13	17.12	222
156029	14.91	1.15	17.10	222
156029	15.23	1.11	17.12	222
156030	14.10	1.15	16.52	222
156030	14.19	1.09	16.54	222
156031	13.69	1.12	16.73	222
156031	13.64	1.09	16.67	222
156032	13.00	1.08	16.76	222
156032	12.92	1.09	16.80	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г Т

ID	SiO2	PO4	NO2+ NO3	QF
156033	12.27	1.09	16.80	222
156033	12.44	1.09	16.93	222
156034	11.66	1.12	16.84	222
156034	11.66	1.10	16.76	222
156035	10.80	1.06	16.93	222
156035	10.82	1.09	17.04	222
156036	10.74	1.11	17.12	222
156036	10.79	1.10	17.29	222
156037	10.88	1.10	17.38	222
156037	10.85	1.09	17.36	222
156038	10.67	1.10	17.16	222
156038	10.70	1.10	17.21	222
156039	10.87	1.11	17.55	222
156039	10.87	1.15	17.55	222
156040	10.98	1.13	18.04	222
156040	11.01	1.11	17.93	222
156041	11.40	1.14	18.11	222
156041	11.17	1.16	17.96	222
156042	11.28	1.16	18.34	222
156042	11.43	1.17	18.56	222
156043	10.97	1.16	18.10	222
156043	11.11	1.17	18.23	222
156044	9.84	1.12	16.97	222
156044	9.98	1.11	17.12	222
156045	8.85	1.03	15.77	222
156045	8.94	1.02	15.98	222
156046	5.31	0.71	10.19	222
156046	5.39	0.73	10.21	222
156047	1.99	0.46	4.56	222
156047	1.96	0.46	4.63	222
156048	17.63	1.09	16.88	222
156048	17.60	1.10	16.67	222
156049	17.94	1.11	16.67	222
156049	17.96	1.07	16.82	222
156050	18.25	1.10	17.14	222
156050	18.25	1.09	16.95	222
156051	18.27	1.08	17.21	222
156051	18.36	1.10	17.25	222
156052	18.15	1.09	17.51	222
156052	18.18	1.08	17.18	222
156053	17.81	1.12	17.18	222
156053	17.52	1.12	17.14	222
156054	16.07	1.10	17.31	222
156054	16.13	1.09	17.36	222
156055	15.18	1.09	17.51	222
156055	15.12	1.09	17.53	222
156056	14.02	1.08	17.31	222
156056	14.11	1.07	17.32	222
156057	12.92	1.08	117.27	222

ID	SiO2	PO4	NO2+ NO3	QF
-		-		
156057	13.12	1.11	17.27	222
156058	11.67	1.10	17.18	222
156058	11.85	1.15	17.33	222
156059	11.09	1.09	16.78	222
156059	11.21	1.09	16.78	222
156060	10.74	1.05	17.03	222
156060	10.92	1.07	16.99	222
156061	10.37	1.08	17.16	222
156061	10.45	1.10	17.05	222
156062	10.34	1.10	17.44	222
156062	10.36	1.07	17.40	222
156064	11.11	1.18	18.09	222
156064	11.28	1.15	17.89	222
156065	10.27	1.15	17.83	222
156065	10.59	1.16	17.66	222
156066	11.73	1.23	18.85	222
156066	11.79	1.22	18.73	222
156067	10.40	1.17	17.89	222
156067	10.55	1.16	17.80	222
156068	7.52	0.93	14.52	222
156068	7 37	0.92	14 54	222
156069	3.94	0.64	7 84	222
156069	3.94	0.64	8.01	222
156070	1.95	0.38	2 90	222
156070	2.01	0.37	2.95	222
156071	17.04	1.06	16.48	222
156071	17 10	1.09	16.80	222
156072	17.53	1.00	16.84	222
156072	17.09	1.10	16.32	222
156072	16.95	1.00	16.02	222
156072	17 55	1.07	17.08	222
156073	16.94	1.07	16.87	222
156073	17.00	1.00	16.07	222
156073	17.55	1.06	17 12	222
156073	17.60	1.00	17.06	222
156074	16.53	1.00	17.00	222
156074	16.88	1.00	16.03	222
156075	14.62	1.03	16.55	222
156075	15.02	1.07	16.50	222
156076	13.69	1.00	17.02	222
156076	13.00	1.05	16.02	222
156077	12.08	1.07	16.50	222
156077	12.00	1.07	16.90	222
156079	12.70	1.09	17.24	222
156070	12.19	1.00	17.04	222
156070	12.00	1.00	17.17	222
156070	12.02	1.00	16.00	222
150079	11.00	1.00	16.09	222
150000	11.13	1.09	17.42	222
080061	11.39	1.06	17.12	222

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 ID
 SiQ2
 PO4
 NO2+
 OF
 ID
 SiQ2
 PO4
 NO2+
 OF

ID	SiO2	PO4	NO2+	QF
156081	11.18	1.05	17.27	222
156081	11.25	1.04	17.38	222
156082	10.71	1.08	17.47	222
156082	10.86	1.07	17.17	222
156083	10.68	1.09	17.91	222
156083	11.00	1.09	17.99	222
156084	11.47	1.09	17.70	222
156084	11.41	1.10	17.85	222
156085	11.43	1.16	18.50	222
156085	11.46	1.16	18.31	222
156086	12.01	1.19	18.96	222
156086	11.96	1.22	19.48	222
156087	11.48	1.22	19.08	222
156087	11.54	1.22	19.35	222
156094	19.47	1.06	17.20	222
156094	19.53	1.14	17.05	222
156095	18.79	1.09	16.81	222
156095	19.23	1.08	16.80	222
156096	18.76	1.11	17.29	222
156096	18.79	1.10	17.23	222
156097	18.46	1.07	16.91	222
156097	18.64	1.08	17.04	222
156098	17.16	1.09	17.38	222
156098	17.37	1.10	17.30	222
156099	15.64	1.10	17.34	222
156099	15.81	1.08	16.96	222
156100	14.17	1.09	17.03	222
156100	14.20	1.08	17.18	222
156101	13.11	1.09	17.37	222
156101	13.25	1.10	17.05	222
156102	12.31	1.06	17.17	222
156102	12.31	1.09	16.83	222
156103	11.89	1.08	17.53	222
156103	11.92	1.07	17.32	222
156104	11.51	1.09	17.11	222
156104	11.51	1.07	17.20	222
156105	11.01	1.08	17.45	222
150105	11.06	1.10	17.70	222
150100	11.00	1.14	17.68	222
150100	10.00	1.13	10.02	222
100107	10.82	1.11		222
100107	11.00	1.10	10.01	222
156100	10.00	1.13	10.11	222
150100	10.99	1.10	10.34	222
156109	12.01	1.10	19.10	222
156110	12.10	1.20	19.01	222
156110	12.09	1.20	10.00	222
156111	12.20 8.80	1.20	15.90	222
	0.09	1.00	10.97	<u> </u>

ID	SiO2	PO4	NO2+	QF
			NUS	
450444	0.00	1.01	45.00	000
150111	8.9Z	1.01	15.96	222
156112	5.73	0.74	12.26	222
156112	5.88	0.75	12.45	222
156113	5.26	0.67	10.94	222
156113	5.29	0.70	11.13	222
156114	2.69	0.37	6.30	222
156114	2.74	0.37	6.35	222
156115	2.19	0.28	4.18	222
156115	2.19	0.28	4.27	222
156116	0.52	0.08	0.72	222
156116	0.52	0.08	0.74	222
156117	18.77	1.06	16.70	222
156117	18.97	1.02	16.62	222
156118	19.22	1.08	16.79	222
156118	19.46	1.04	17.09	222
156119	19.69	1.07	16.94	222
156119	19.84	1.05	17.45	222
156120	20.06	1.08	17.51	222
156120	19.95	1.10	17.36	222
156121	19.86	1.06	17.81	222
156121	20.03	1.07	17.60	222
156122	17.71	1.07	17.23	222
156122	17.80	1.07	17.44	222
156123	16.09	1.04	17.63	222
156123	16.21	1.08	17.73	222
156124	15.27	1.05	17.21	222
156124	15.27	1.04	17.30	222
156125	14.36	1.06	17.26	222
156125	13.95	1.08	17.45	222
156126	12.70	1.06	17.29	222
156126	12 85	1 11	17.08	222
156127	11.32	1.10	17.35	222
156127	11.39	1.07	17.42	222
156128	11.06	1.09	17 23	222
156128	11.00	1.00	17.00	222
156129	10.79	1.10	17.66	222
156129	10.70	1.11	17.55	222
156130	10.02	1.10	17.50	222
156130	10.70	1.12	17.33	222
156131	10.70	1.12	18 1/	222
156131	10.70	1.14	10.14	222
150151	10.75	1.12	10.00	222
150152	11.71	1.17	10.20	222
156132	12.06	1.1/	10.90	222
150133	12.00	1.22	19.10	222
100133	12.15	1.22	19.11	222
156134	11.8/	1.27	20.25	222
156134	12.19	1.24	19.90	222
156135	10.82	1.18	18.06	222
156135	10.93	1.17	17.87	222

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 NO2+
 NO2+

ID	SiO2	PO4	NO2+ NO3	QF
			-	
1 <u>5</u> 6136	<u>8</u> .85	1.04	16.17	222
156136	9.00	1.07	16.08	222
156137	5.47	0.70	10.54	222
156137	5.43	0.73	10.22	222
156138	5.75	0.79	11.98	222
156138	5.81	0.79	11.75	222
156139	0.51	0.14	0.57	222
156139	0.54	0.12	0.59	222
156140	16.24	1.05	16.05	222
156140	16.38	1.06	15.88	222
156141	17.29	1.09	16.78	222
156141	17.38	1.08	16.60	222
156142	17.95	1.11	16.68	222
156142	18.42	1.10	16.80	222
156143	17.59	1.07	16.81	222
156143	18.45	1.11	16.53	222
156144	16.92	1.09	17.08	222
156144	16.91	1.08	16.75	222
156145	15.82	1.11	17.26	222
156145	15.89	1.10	16.67	222
156146	14.97	1.10	17.03	222
156146	15.24	1.08	17.03	222
156147	13.97	1.10	16.65	222
156147	14.09	1.09	16.88	222
156148	12.51	1.12	17.04	222
156148	12.71	1.12	16.93	222
156149	11.21	1.12	16.60	222
156149	11.30	1.11	16.97	222
156150	10.97	1.13	16.97	222
156150	11.15	1.13	16.60	222
156151	10.76	1.09	17.43	222
156151	10.85	1.09	17.47	222
156152	10.73	1.13	16.91	222
156152	10.73	1.13	17.22	222
156153	10.67	1.15	17.80	222
156153	10.84	1.13	18.01	222
156154	11.27	1.15	18.30	222
156154	11.42	1.16	17.87	222
156155	11.62	1.21	18.61	222
156155	11.80	1.29	18.50	222
156156	11.88	1.28	19.09	222
156156	11.85	1.27	19.57	222
156157	10.79	1.23	18.67	222
156157	10.79	1.21	18.40	222
156158	7.40	0.96	14.62	222
156158	7.66	0.99	14.43	222
156159	6.55	0.87	13.19	222
156159	6.61	0.88	13.05	222
156160	5.26	0.75	111.12	222

156160 5.26 0.80 10.94 $2.2.2$ 156161 3.37 0.40 3.67 $2.2.2$ 156162 1.16 0.22 0.59 $2.2.2$ 156162 1.16 0.20 0.61 $2.2.2$ 156163 16.26 1.13 16.15 $2.2.2$ 156163 16.38 1.14 15.92 $2.2.2$ 156164 17.38 1.17 16.12 $2.2.2$ 156164 17.41 1.17 16.25 $2.2.2$ 156165 18.00 1.16 16.72 $2.2.2$ 156166 17.57 1.15 16.56 $2.2.2$ 156166 17.766 1.17 16.83 $2.2.2$ 156166 17.766 1.17 16.83 $2.2.2$ 156166 17.66 1.17 16.83 $2.2.2$ 156167 17.20 1.15 17.45 $2.2.2$ 156168 16.01 1.14 17.16 $2.2.2$ 156169 13.89 1.15 17.45 $2.2.2$ 156170 11.69 1.13 16.76 $2.2.2$ 156170 11.69 1.13 16.76 $2.2.2$ 156170 11.69 1.13 16.76 $2.2.2$ 156171 10.84 1.12 16.87 $2.2.2$ 156172 10.87 1.14 17.49 $2.2.2$ 156173 11.39 1.14 17.49 $2.2.2$ 156174 11.62 1.16 17.90 $2.2.2$ 156175 11.20 1		ID	SiO2	PO4	NO2+ NO3	QF
156160 5.26 0.80 10.94 2.22 156161 3.37 0.40 3.67 2.22 156162 1.16 0.22 0.59 2.22 156162 1.16 0.20 0.61 2.22 156163 16.26 1.13 16.15 2.22 156163 16.26 1.13 16.15 2.22 156164 17.38 1.17 16.12 2.22 156164 17.38 1.17 16.12 2.22 156165 18.00 1.16 16.72 2.22 156166 17.57 1.15 16.56 2.22 156166 17.57 1.15 16.56 2.22 156166 17.70 1.16 17.36 2.22 156166 17.70 1.15 17.55 2.22 156167 17.20 1.15 17.45 2.22 156168 16.01 1.14 17.46 2.22 156169 13.89 1.15 17.42 2.22 156170 11.69 1.13 16.76 2.22 156170 11.69 1.13 16.76 2.22 156170 11.69 1.13 16.74 2.22 156171 10.84 1.12 16.87 2.22 156172 10.87 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.62 1.16 17.90 2.22 156175 11.29 1.14 17.49						
156161 3.34 0.39 3.73 2.22 156161 3.37 0.40 3.67 2.22 156162 1.16 0.22 0.59 2.22 156162 1.16 0.20 0.61 2.22 156163 16.26 1.13 16.15 2.22 156163 16.38 1.14 15.92 2.22 156164 17.38 1.17 16.12 2.22 156164 17.41 1.17 16.25 2.22 156165 18.00 1.16 16.72 2.22 156165 18.20 1.15 16.81 2.22 156166 17.66 1.17 16.83 2.22 156166 17.66 1.17 16.83 2.22 156166 17.66 1.17 16.83 2.22 156167 17.20 1.15 17.24 2.22 156168 16.01 1.14 17.16 2.22 156169 13.89 1.15 17.45 2.22 156170 11.69 1.13 16.76 2.22 156170 11.02 1.13 16.74 2.22 156171 10.84 1.12 16.87 2.22 156172 10.87 1.14 17.49 2.22 156173 11.51 1.15 17.49 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.49 2.22 156176 11.52 1.15 18.23 <		156160	5.26	0.80	10.94	222
156161 3.37 0.40 3.67 2.22 156162 1.16 0.22 0.59 2.22 156162 1.16 0.20 0.61 2.22 156163 16.26 1.13 16.15 2.22 156164 17.38 1.17 16.12 2.22 156164 17.38 1.17 16.12 2.22 156164 17.41 1.17 16.25 2.22 156165 18.00 1.16 16.72 2.22 156165 18.20 1.15 16.81 2.22 156166 17.57 1.15 16.56 2.22 156166 17.66 1.17 16.83 2.22 156167 17.03 1.16 17.57 2.22 156168 16.01 1.14 17.16 2.22 156168 15.97 1.15 17.45 2.22 156169 13.89 1.15 17.45 2.22 156170 11.69 1.13 16.76 2.22 156170 11.69 1.13 16.76 2.22 156171 10.84 1.12 16.87 2.22 156172 10.87 1.14 17.49 2.22 156173 11.51 1.15 17.49 2.22 156174 11.62 1.13 17.49 2.22 156175 11.20 1.13 17.49 2.22 156175 11.20 1.13 17.92 2.22 156176 11.52 1.15 18.23 <td></td> <td>156161</td> <td>3.34</td> <td>0.39</td> <td>3.73</td> <td>222</td>		156161	3.34	0.39	3.73	222
1561621.160.220.592.2.21561621.160.200.612.2.215616316.261.1316.152.2.215616417.381.1716.122.2.215616417.411.1716.252.2.215616518.001.1616.722.2.215616518.201.1516.812.2.215616518.201.1516.812.2.215616617.571.1516.562.2.215616617.661.1716.832.2.215616617.661.1716.832.2.215616717.201.1517.552.2.215616816.011.1417.162.2.215616913.891.1517.452.2.215616914.131.1517.242.2.215617011.691.1316.762.2.215617011.691.1316.742.2.215617110.821.1316.742.2.215617211.021.1317.342.2.215617311.511.1517.492.2.215617411.621.1617.902.2.215617511.201.1317.922.2.215617611.641.1518.042.2.215617611.641.1518.232.2.215617611.641.1518.042.2.215617611.641.1518.232.		156161	3.37	0.40	3.67	222
1561621.160.200.61 $2 2 2$ 15616316.261.1316.15 $2 2 2$ 15616417.381.1716.12 $2 2 2$ 15616417.411.1716.25 $2 2 2$ 15616518.001.1616.72 $2 2 2$ 15616518.001.1616.72 $2 2 2$ 15616518.201.1516.81 $2 2 2$ 15616617.571.1516.66 $2 2 2$ 15616617.661.1716.83 $2 2 2$ 15616617.661.1716.83 $2 2 2$ 15616717.031.1617.36 $2 2 2$ 15616816.011.1417.16 $2 2 2$ 15616815.971.1517.24 $2 2 2$ 15616913.891.1517.45 $2 2 2$ 15616914.131.1517.22 $2 2 2$ 15617011.691.1316.76 $2 2 2$ 15617011.021.1316.74 $2 2 2$ 15617110.821.1316.74 $2 2 2$ 15617210.871.1417.51 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617411.621.1617.90 $2 2 2$ 15617511.201.1317.92 $2 2 2$ 15617611.641.1518.23 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 156176		156162	1.16	0.22	0.59	222
15616316.261.1316.15 $2 2 2$ 15616316.381.1415.92 $2 2 2$ 15616417.381.1716.12 $2 2 2$ 15616518.001.1616.72 $2 2 2$ 15616518.201.1516.81 $2 2 2$ 15616617.571.1516.66 $2 2 2$ 15616617.661.1716.83 $2 2 2$ 15616617.661.1716.83 $2 2 2$ 15616717.031.1617.36 $2 2 2$ 15616816.011.1417.16 $2 2 2$ 15616816.011.1417.16 $2 2 2$ 15616913.891.1517.45 $2 2 2$ 15616914.131.1517.22 $2 2 2$ 15617011.691.1316.76 $2 2 2$ 15617011.701.1417.24 $2 2 2$ 15617110.821.1316.74 $2 2 2$ 15617210.871.1417.51 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617411.621.1617.90 $2 2 2$ 15617511.201.1317.92 $2 2 2$ 15617611.521.1518.23 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617511.201.1317.92 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 1561		156162	1.16	0.20	0.61	222
15616316.381.1415.922.2.215616417.381.1716.122.2.215616518.001.1616.722.2.215616518.201.1516.812.2.215616518.201.1516.812.2.215616617.571.1516.662.2.215616617.661.1716.832.2.215616717.031.1617.362.2.215616717.201.1517.552.2.215616816.011.1417.162.2.215616815.971.1517.242.2.215616913.891.1517.452.2.215617011.691.1316.762.2.215617011.691.1316.762.2.215617110.821.1316.742.2.215617211.021.1317.342.2.215617311.511.1417.492.2.215617411.621.1617.902.2.215617511.201.1317.922.2.215617611.621.1617.902.2.215617611.521.1518.232.2.215617611.521.1518.232.2.215617611.641.1518.502.2.215617611.641.1518.502.2.215617611.641.1518.502.2.215617611.641.1518.50 <td< td=""><td></td><td>156163</td><td>16.26</td><td>1.13</td><td>16.15</td><td>222</td></td<>		156163	16.26	1.13	16.15	222
15616417.381.1716.122.2.215616417.411.1716.252.2.215616518.001.1616.722.2.215616518.201.1516.812.2.215616617.571.1516.662.2.215616617.661.1716.832.2.215616717.031.1617.362.2.215616717.201.1517.552.2.215616816.011.1417.162.2.215616913.891.1517.452.2.215616914.131.1517.222.2.215616914.131.1517.242.2.215617011.691.1316.762.2.215617011.691.1316.742.2.215617011.021.1317.342.2.215617110.821.1316.742.2.215617210.871.1417.512.2.215617311.511.1517.492.2.215617411.621.1617.902.2.215617511.201.1317.922.2.215617511.201.1317.922.2.215617611.521.1518.232.2.215617511.291.1417.692.2.215617611.641.1518.502.2.215617611.641.1518.502.2.215617611.641.1518.50 <td< td=""><td></td><td>156163</td><td>16.38</td><td>1.14</td><td>15.92</td><td>222</td></td<>		156163	16.38	1.14	15.92	222
15616417.411.1716.252.2.215616518.001.1616.722.2.215616518.201.1516.812.2.215616617.571.1516.662.2.215616617.661.1716.832.2.215616717.031.1617.362.2.215616717.201.1517.552.2.215616816.011.1417.162.2.215616913.891.1517.452.2.215616914.131.1517.222.2.215616914.131.1517.242.2.215617011.691.1316.762.2.215617011.701.1417.242.2.215617011.701.1417.242.2.215617110.821.1316.742.2.215617211.021.1317.342.2.215617210.871.1417.512.2.215617311.511.1517.492.2.215617411.621.1617.902.2.215617511.201.1317.922.2.215617511.201.1317.922.2.215617611.641.1518.602.2.215617611.641.1518.502.2.215617611.641.1518.502.2.215617611.641.1518.502.2.215617611.641.1518.50 <td< td=""><td></td><td>156164</td><td>17.38</td><td>1.17</td><td>16.12</td><td>222</td></td<>		156164	17.38	1.17	16.12	222
15616518.001.1616.72 $2 2 2$ 15616518.201.1516.81 $2 2 2$ 15616617.571.1516.56 $2 2 2$ 15616717.031.1617.36 $2 2 2$ 15616717.201.1517.55 $2 2 2$ 15616816.011.1417.16 $2 2 2$ 15616815.971.1517.24 $2 2 2$ 15616913.891.1517.45 $2 2 2$ 15616914.131.1517.22 $2 2 2$ 15617011.691.1316.76 $2 2 2$ 15617011.701.1417.24 $2 2 2$ 15617011.701.1417.24 $2 2 2$ 15617110.821.1316.74 $2 2 2$ 15617211.021.1317.34 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617311.391.1417.49 $2 2 2$ 15617311.391.1417.49 $2 2 2$ 15617411.621.1617.90 $2 2 2$ 15617511.201.1317.92 $2 2 2$ 15617611.521.1518.23 $2 2 2$ 15617611.521.1518.23 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617712.221.2219.09 $2 2 2$ 15617813.451.3321.07 $4 3 3$ 1561		156164	17.41	1.17	16.25	222
15616518.201.1516.81 $2 2 2$ 15616617.571.1516.56 $2 2 2$ 15616717.031.1617.36 $2 2 2$ 15616717.201.1517.55 $2 2 2$ 15616816.011.1417.16 $2 2 2$ 15616815.971.1517.24 $2 2 2$ 15616913.891.1517.45 $2 2 2$ 15616914.131.1517.22 $2 2 2$ 15617011.691.1316.76 $2 2 2$ 15617011.701.1417.24 $2 2 2$ 15617110.821.1316.74 $2 2 2$ 15617211.021.1317.34 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617411.531.1518.04 $2 2 2$ 15617511.201.1317.92 $2 2 2$ 15617611.521.1518.23 $2 2 2$ 15617611.521.1518.23 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617613.511.3321.074 3 31561797.310.9014.59 $2 2 2$ 1561806.860.9014.76 $2 2 2$ 1561806.840.9215.07 $2 2 2$ 156181 <td></td> <td>156165</td> <td>18.00</td> <td>1.16</td> <td>16.72</td> <td>222</td>		156165	18.00	1.16	16.72	222
15616617.571.1516.56 $2 \cdot 2 \cdot 2$ 15616617.661.1716.83 $2 \cdot 2 \cdot 2$ 15616717.031.1617.36 $2 \cdot 2 \cdot 2$ 15616717.201.1517.55 $2 \cdot 2 \cdot 2$ 15616816.011.1417.16 $2 \cdot 2 \cdot 2$ 15616815.971.1517.24 $2 \cdot 2 \cdot 2$ 15616913.891.1517.45 $2 \cdot 2 \cdot 2$ 15616914.131.1517.22 $2 \cdot 2 \cdot 2$ 15617011.691.1316.76 $2 \cdot 2 \cdot 2$ 15617011.701.1417.24 $2 \cdot 2 \cdot 2$ 15617110.821.1316.74 $2 \cdot 2 \cdot 2$ 15617211.021.1317.34 $2 \cdot 2 \cdot 2$ 15617210.871.1417.51 $2 \cdot 2 \cdot 2$ 15617311.511.1517.49 $2 \cdot 2 \cdot 2$ 15617311.511.1517.49 $2 \cdot 2 \cdot 2$ 15617411.531.1518.04 $2 \cdot 2 \cdot 2$ 15617511.201.1317.92 $2 \cdot 2 \cdot 2$ 15617611.521.1518.23 $2 \cdot 2 \cdot 2$ 15617611.521.1518.23 $2 \cdot 2 \cdot 2$ 15617611.641.1518.50 $2 \cdot 2 \cdot 2$ 15617613.451.3321.07 $4 \cdot 3 \cdot 3$ 1561797.310.9014.76 $2 \cdot 2 \cdot 2$ 1561806.860.9014.76 $2 \cdot 2 \cdot 2$ 1561812.350.385.95 $2 \cdot 2 \cdot 2$ <		156165	18.20	1.15	16.81	222
156166 17.66 1.17 16.83 2.22 156167 17.03 1.16 17.36 2.22 156167 17.20 1.15 17.55 2.22 156168 16.01 1.14 17.16 2.22 156169 13.89 1.15 17.45 2.22 156169 13.89 1.15 17.24 2.22 156169 14.13 1.15 17.22 2.22 156170 11.69 1.13 16.76 2.22 156170 11.70 1.14 17.24 2.22 156170 11.70 1.14 17.24 2.22 156170 11.70 1.14 17.24 2.22 156171 10.82 1.13 16.74 2.22 156172 10.87 1.14 17.49 2.22 156172 10.87 1.14 17.49 2.22 156173 11.51 1.15 17.49 2.22 156174 11.52 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156176 13.45 1.33 21.07 4.33 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181		156166	17.57	1.15	16.56	222
156167 17.03 1.16 17.36 $2.2.2$ 156167 17.20 1.15 17.55 $2.2.2$ 156168 16.01 1.14 17.16 $2.2.2$ 156169 13.89 1.15 17.45 $2.2.2$ 156169 14.13 1.15 17.24 $2.2.2$ 156169 14.13 1.15 17.22 $2.2.2$ 156169 14.13 1.15 17.22 $2.2.2$ 156170 11.69 1.13 16.76 $2.2.2$ 156170 11.70 1.14 17.24 $2.2.2$ 156170 11.70 1.14 17.24 $2.2.2$ 156171 10.82 1.13 16.74 $2.2.2$ 156172 10.87 1.14 17.51 $2.2.2$ 156172 10.87 1.14 17.49 $2.2.2$ 156173 11.51 1.15 17.49 $2.2.2$ 156173 11.39 1.14 17.49 $2.2.2$ 156173 11.39 1.14 17.69 $2.2.2$ 156174 11.62 1.16 17.90 $2.2.2$ 156175 11.20 1.13 17.92 $2.2.2$ 156176 11.52 1.15 18.23 $2.2.2$ 156176 11.64 1.15 18.50 $2.2.2$ 156177 12.22 1.22 19.47 $2.2.2$ 156178 13.51 1.33 21.07 $4.3.3$ 156179 7.31 0.90 14.59 $2.2.2$ <		156166	17.66	1.17	16.83	222
156167 17.20 1.15 17.55 2.22 156168 16.01 1.14 17.16 2.22 156168 15.97 1.15 17.24 2.22 156169 13.89 1.15 17.45 2.22 156169 14.13 1.15 17.22 2.22 156170 11.69 1.13 16.76 2.22 156170 11.70 1.14 17.24 2.22 156170 11.70 1.14 17.24 2.22 156170 11.70 1.14 17.24 2.22 156171 10.82 1.13 16.74 2.22 156171 10.84 1.12 16.87 2.22 156172 11.02 1.13 17.34 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156177 12.22 1.22 19.47 2.22 156178 13.51 1.33 21.07 4.33 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181		156167	17.03	1.16	17.36	222
15616816.011.1417.16 $2 2 2$ 15616815.971.1517.24 $2 2 2$ 15616913.891.1517.45 $2 2 2$ 15616914.131.1517.22 $2 2 2$ 15617011.691.1316.76 $2 2 2$ 15617011.701.1417.24 $2 2 2$ 15617110.821.1316.74 $2 2 2$ 15617110.821.1316.74 $2 2 2$ 15617211.021.1317.34 $2 2 2$ 15617210.871.1417.51 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617311.511.1517.49 $2 2 2$ 15617311.511.1518.04 $2 2 2$ 15617411.531.1518.04 $2 2 2$ 15617511.201.1317.92 $2 2 2$ 15617611.521.1518.23 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617611.641.1518.50 $2 2 2$ 15617613.511.3321.07 $4 3 3$ 1561797.310.9014.59 $2 2 2$ 15617813.451.3321.07 $4 3 3$ 1561797.310.9014.59 $2 2 2$ 1561806.860.9014.76 $2 2 2$ 1561812.350.385.95 $2 2 2$ 156182 <td></td> <td>156167</td> <td>17.20</td> <td>1.15</td> <td>17.55</td> <td>222</td>		156167	17.20	1.15	17.55	222
156168 15.97 1.15 17.24 2.22 156169 14.13 1.15 17.45 2.22 156169 14.13 1.15 17.22 2.22 156170 11.69 1.13 16.76 2.22 156170 11.70 1.14 17.24 2.22 156170 11.70 1.14 17.24 2.22 156171 10.82 1.13 16.74 2.22 156171 10.82 1.13 16.74 2.22 156172 11.02 1.13 17.34 2.22 156172 10.87 1.14 17.51 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.90 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156178 13.51 1.33 21.07 4.33 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181 2.35 0.38 5.95 2.22 156181 2.35 0.33 5.23 2.22 156182 <td></td> <td>156168</td> <td>16.01</td> <td>1.14</td> <td>17.16</td> <td>222</td>		156168	16.01	1.14	17.16	222
156169 13.89 1.15 17.45 2.22 156169 14.13 1.15 17.22 2.22 156170 11.69 1.13 16.76 2.22 156170 11.70 1.14 17.24 2.22 156171 10.82 1.13 16.74 2.22 156171 10.82 1.13 16.74 2.22 156171 10.84 1.12 16.87 2.22 156172 11.02 1.13 17.34 2.22 156172 10.87 1.14 17.51 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156176 11.52 1.15 18.23 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.33 21.07 433 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181 2.35 0.38 5.95 2.22 156181 2.35 0.39 5.86 2.22 156182 1.97 0.35 5.27 2.22 <t< td=""><td></td><td>156168</td><td>15.97</td><td>1.15</td><td>17.24</td><td>222</td></t<>		156168	15.97	1.15	17.24	222
15616914.131.1517.222.2215617011.691.1316.762.2215617011.701.1417.242.2215617110.821.1316.742.2215617110.841.1216.872.2215617211.021.1317.342.2215617210.871.1417.512.2215617311.511.1517.492.2215617311.511.1517.492.2215617411.531.1518.042.2215617511.201.1317.922.2215617511.201.1317.922.2215617611.621.1617.902.2215617611.621.1518.232.2215617611.641.1518.502.2215617611.641.1518.502.2215617712.221.2219.092.2215617813.511.3321.344.3315617813.451.3321.074.331561797.310.9014.592.221561806.860.9014.762.221561812.350.385.952.221561821.970.355.272.221561821.970.355.272.221561832.080.335.332.221561842.190.325.252.22156184 <td< td=""><td></td><td>156169</td><td>13.89</td><td>1.15</td><td>17.45</td><td>222</td></td<>		156169	13.89	1.15	17.45	222
156170 11.69 1.13 16.76 2.22 156170 11.70 1.14 17.24 2.22 156171 10.82 1.13 16.74 2.22 156171 10.84 1.12 16.87 2.22 156172 11.02 1.13 17.34 2.22 156172 10.87 1.14 17.51 2.22 156173 11.51 1.15 17.49 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156175 11.29 1.14 17.69 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156178 13.51 1.33 21.07 4.33 156179 7.31 0.90 14.76 2.22 156180 6.86 0.90 14.76 2.22 156181 2.35 0.38 5.95 2.22 156182 1.97 0.35 5.27 2.22 156183 2.06 0.33 5.33 2.22 156184		156169	14.13	1.15	17.22	222
156170 11.70 1.14 17.24 2.22 156171 10.82 1.13 16.74 2.22 156171 10.84 1.12 16.87 2.22 156172 11.02 1.13 17.34 2.22 156172 10.87 1.14 17.51 2.22 156173 11.51 1.15 17.49 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.53 1.15 18.04 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156175 11.20 1.13 17.92 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156177 12.22 1.22 19.47 2.22 156178 13.45 1.33 21.07 4.33 156179 7.31 0.90 14.59 2.22 156180 6.84 0.92 15.07 2.22 156181 2.35 0.38 5.95 2.22 156181 2.35 0.33 5.33 2.22 156183 2.06 0.33 5.33 2.22 156184		156170	11.69	1.13	16.76	222
156171 10.82 1.13 16.74 2.22 156171 10.84 1.12 16.87 2.22 156172 11.02 1.13 17.34 2.22 156172 10.87 1.14 17.51 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.53 1.15 18.04 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156175 11.29 1.14 17.69 2.22 156176 11.52 1.15 18.23 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156177 12.22 1.22 19.09 2.22 156178 13.51 1.33 21.34 4.33 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181 2.35 0.38 5.95 2.22 156181 2.35 0.39 5.86 2.22 156182 1.97 0.35 5.27 2.22 156183 2.08 0.33 5.33 2.22 156184 <t< td=""><td></td><td>156170</td><td>11.70</td><td>1.14</td><td>17.24</td><td>222</td></t<>		156170	11.70	1.14	17.24	222
156171 10.84 1.12 16.87 2.22 156172 11.02 1.13 17.34 2.22 156172 10.87 1.14 17.51 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.53 1.15 18.04 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156175 11.29 1.14 17.69 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156177 12.22 1.22 19.09 2.22 156178 13.51 1.33 21.34 4.33 156178 13.45 1.33 21.07 4.33 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181 2.35 0.38 5.95 2.22 156182 1.97 0.35 5.27 2.22 156183 2.08 0.33 5.33 2.22 156184 2.19 0.32 5.25 2.22 156184 2.19 0.32 5.25 2.22 156184		156171	10.82	1.13	16.74	222
156172 11.02 1.13 17.34 2.22 156172 10.87 1.14 17.51 2.22 156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.53 1.15 18.04 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156175 11.29 1.14 17.69 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156177 12.22 1.22 19.47 2.22 156178 13.51 1.33 21.07 4.33 156178 13.45 1.33 21.07 4.33 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181 2.35 0.38 5.95 2.22 156181 2.35 0.39 5.86 2.22 156182 1.97 0.35 5.27 2.22 156183 2.08 0.33 5.33 2.22 156184 2.19 0.32 5.25 2.22 156184 2.19 0.32 5.25 2.22 156184 2		156171	10.84	1.12	16.87	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156172	11.02	1.13	17.34	222
156173 11.51 1.15 17.49 2.22 156173 11.39 1.14 17.49 2.22 156174 11.53 1.15 18.04 2.22 156174 11.62 1.16 17.90 2.22 156175 11.20 1.13 17.92 2.22 156175 11.29 1.14 17.69 2.22 156175 11.29 1.14 17.69 2.22 156176 11.52 1.15 18.23 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.50 2.22 156176 11.64 1.15 18.02 2.22 156177 12.22 1.22 19.09 2.22 156178 13.51 1.33 21.34 4.33 156178 13.45 1.33 21.07 4.33 156179 7.31 0.90 14.59 2.22 156180 6.86 0.90 14.76 2.22 156181 2.35 0.38 5.95 2.22 156181 2.35 0.38 5.95 2.22 156182 1.97 0.35 5.27 2.22 156183 2.08 0.33 5.33 2.22 156184 2.19 0.32 5.25 2.22 156184 2.19 0.32 5.25 2.22 156184 2		156172	10.87	1.14	17.51	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156173	11.51	1.15	17.49	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156173	11.39	1.14	17.49	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156174	11.53	1.15	18.04	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156174	11.62	1.16	17.90	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156175	11.20	1.13	17.92	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156175	11.29	1.14	17.69	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156176	11.52	1.15	18.23	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156176	11.64	1.15	18.50	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156177	12.19	1.22	19.47	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156177	12.22	1.22	19.09	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156178	13.51	1.33	21.34	433
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156178	13.45	1.33	21.07	433
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		156179	7.31	0.90	14.59	222
1561806.860.9014.762 2 21561806.840.9215.072 2 21561812.350.385.952 2 21561812.350.395.862 2 21561821.970.355.272 2 21561822.000.345.172 2 21561832.050.335.232 2 21561832.080.335.332 2 21561842.190.325.252 2 21561842.220.335.332 2 2		156179	7.31	0.91	14.30	222
1561806.840.9215.072 2 21561812.350.385.952 2 21561812.350.395.862 2 21561821.970.355.272 2 21561822.000.345.172 2 21561832.050.335.232 2 21561832.080.335.332 2 21561842.190.325.252 2 21561842.220.335.332 2 2		156180	6.86	0.90	14.76	222
1561812.350.385.952.221561812.350.395.862.221561821.970.355.272.221561822.000.345.172.221561832.050.335.232.221561832.080.335.332.221561842.190.325.252.221561842.220.335.332.22		156180	6.84	0.92	15.07	222
1561812.350.395.862.221561821.970.355.272.221561822.000.345.172.221561832.050.335.232.221561832.080.335.332.221561842.190.325.252.221561842.220.335.332.22		156181	2.35	0.38	5.95	222
156182 1.97 0.35 5.27 2.22 156182 2.00 0.34 5.17 2.22 156183 2.05 0.33 5.23 2.22 156183 2.08 0.33 5.33 2.22 156184 2.19 0.32 5.25 2.22 156184 2.22 0.33 5.33 2.22		156181	2.35	0.39	5.86	222
156182 2.00 0.34 5.17 2.22 156183 2.05 0.33 5.23 2.22 156183 2.08 0.33 5.33 2.22 156184 2.19 0.32 5.25 2.22 156184 2.22 0.33 5.33 2.22	F	156182	1.97	0.35	5.27	222
156183 2.05 0.33 5.23 2.22 156183 2.08 0.33 5.33 2.22 156184 2.19 0.32 5.25 2.22 156184 2.22 0.33 5.33 2.22	F	156182	2.00	0.34	5.17	222
156183 2.08 0.33 5.33 2.22 156184 2.19 0.32 5.25 2.22 156184 2.22 0.33 5.33 2.22	F	156183	2.05	0.33	5.23	222
156184 2.19 0.32 5.25 2.22 156184 2.22 0.33 5.33 2.22	F	156183	2.08	0.33	5.33	222
156184 2.22 0.33 5.33 2.2.2	F	156184	2.19	0.32	5.25	222
	F	156184	2.22	0.33	5.33	222

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 Image: Ima

ID	SiO2	PO4	NO2+	QF
156185	0.97	0.07	0.00	222
156185	0.99	0.07	0.00	222
156186	17.64	1.02	16.71	222
156186	17.31	1.02	16.73	222
156187	18.84	1.05	16.73	222
156187	19.16	1.03	17.02	222
156188	20.04	1.06	17.46	222
156188	19.68	1.07	17.64	222
156189	19.03	1.08	17.06	222
156189	19.20	1.06	17.31	222
156190	17.78	1.07	17.74	222
156190	18.19	1.07	17.64	222
156191	15.66	1.06	17.35	222
156191	15.69	1.06	17.31	222
156192	14.51	1.05	17.78	222
156192	14.60	1.04	17.56	222
156193	13.45	1.06	17.78	222
156193	13.51	1.05	17.43	222
156194	12.54	1.06	17.78	222
156194	12.56	1.04	17.89	222
156195	11.96	1.03	17.93	222
156195	12.13	1.04	17.72	222
156196	11.75	1.04	17.68	222
156196	11.83	1.06	17.49	222
156197	11.80	1.09	17.54	222
156197	11.91	1.08	17.64	222
156198	11.61	1.13	17.91	222
156198	11.91	1.10	17.86	222
156199	11.93	1.20	17.82	222
156199	11.99	1.23	17.76	222
156200	11.87	1.24	18.07	222
156200	11.86	1.22	18.23	222
156201	11.71	1.25	18.50	222
156201	11.92	1.25	18.77	222
156202	12.03	1.27	18.58	222
156202	12.05	1.26	18.79	222
156203	11.80	1.23	18.66	222
156203	11.91	1.22	18.93	222
156204	9.24	1.07	16.35	222
156204	9.00	1.09	15.90	222
156205	7.81	0.97	14.03	222
156205	7.69	0.93	14.10	222
156206	6.58	0.86	12.81	222
156206	6.67	0.87	12.85	222
156207	3.19	0.50	5.44	222
156207	3.25	0.51	5.46	222
156208	1.22	0.18	0.95	222
156208	1.28	0.18	0.90	222
156209	17.07	1.07	16.08	222

ID	SiO2	PO4	NO2+	QF
			NO3	
<u></u>	T .=			
156209	17.32	1.09	16.21	222
156210	18.33	1.08	16.74	222
156210	18.31	1.10	16.52	222
156211	17.29	1.10	16.25	222
156211	17.84	1.08	16.58	222
156212	17.25	1.10	16.66	222
156212	17.11	1.12	16.56	222
156213	16.54	1.11	17.15	222
156213	16.46	1.11	16.93	222
156214	14.05	1.11	16.64	222
156214	14.25	1.10	16.60	222
156215	13.29	1.11	16.93	222
156215	13.37	1.12	17.07	222
156216	11.26	1.10	16.66	222
156216	11.32	1.11	16.58	222
156217	10.56	1.12	16.64	222
156217	10.62	1.10	16.93	222
156218	10.61	1.13	16.86	222
156218	10.59	1.10	17.17	222
156219	10.57	1.12	16.80	222
156219	10.65	1.12	16.84	222
156220	10.85	1.11	17.40	222
156220	10.93	1.14	17.56	222
156221	10.78	1 15	17 29	222
156221	11 10	1 15	17.65	222
156222	11 29	1 15	18.02	222
156222	11 15	1 19	17.96	222
156223	11.95	1.10	19.00	222
156223	11.00	1.22	18.67	222
156224	12 17	1.30	19.37	222
156224	12.17	1.00	19.53	222
156225	11 10	1.20	19.00	222
156225	11.38	1.25	19.62	222
156226	5.63	0.81	12.66	222
156226	5.66	0.80	12.00	222
156227	3.41	0.56	8 4 5	222
156227	3.46	0.55	8.60	222
156228	2 72	0.35	6.76	222
156228	2.72	0.45	6.95	222
156220	2.03	0.40	5.45	222
156220	2.14	0.00	5.40	222
156220	1.57	0.00	3.44	222
156220	1.07	0.20	3.91	222
156221	0.50	0.29	0.90	222
1560201	0.50	0.09	0.00	222
1562201	10.00	0.09	16.00	222
156222	10.10	1.10	16.54	222
100232	19.43	1.10	10.02	222
100233	19.74	1.10	10.70	222
156233	19.81	1.09	10.83	222

Table C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags. Г ٦ Т

ID	SiO2	PO4	NO2+ NO3	QF
			-	
156234	19.20	1.10	16.58	222
156234	19.17	1.12	16.27	222
156235	17.49	1.11	16.41	222
156235	17.94	1.12	16.33	222
156236	15.47	1.10	16.51	222
156236	15.65	1.07	16.65	222
156237	14.37	1.07	16.75	222
156237	14.55	1.07	16.26	222
156238	13.83	1.07	16.58	222
156238	13.77	1.08	16.46	222
156239	13.24	1.06	16.91	222
156239	13.50	1.06	16.99	222
156240	11.95	1.03	16.37	222
156240	11.97	1.02	16.62	222
156241	11.38	1.06	16.91	222
156241	11.53	1.05	16.76	222
156242	11.11	1.07	17.19	222
156242	11.11	1.07	17.09	222
156243	11.19	1.10	17.24	222
156243	11.28	1.09	17.07	222
156244	11.45	1.10	17.07	222
156244	11.33	1.10	17.26	222
156245	11.38	1.13	17.71	222
156245	11.17	1.15	17.77	222
156246	6.28	0.71	11.17	444
156246	6.30	0.71	11.23	444
156247	11.92	1.23	19.57	222
156247	11.95	1.23	19.19	222
156248	11.57	1.25	19.89	222
156248	11.72	1.24	20.14	222
156249	6.79	0.87	14.08	222
156249	6.82	0.87	13.82	222
156250	4.12	0.57	9.30	222
156250	4.06	0.57	9.40	222
156251	2.62	0.40	6.45	222
156251	2.68	0.40	6.47	222
156252	2.01	0.30	5.20	222
156252	2.01	0.29	5.16	222
156253	2.00	0.28	4.72	222
156253	2.03	0.28	4.71	222
156254	0.44	0.00	0.00	222
156254	0.44	0.00	0.00	222
156255	18.53	1.04	16.56	222
156255	18.77	1.04	16.44	222
156256	18.74	1.08	16.21	222
156256	19.09	1.05	16.13	222
156257	18.76	1.07	16.50	222
100257	10.96	80.1	10.02	222
156258	19.01	1.10	10.74	222

ID	SiO2	PO4	NO2+ NO3	QF
ļi				
156258	10.00	1 10	16.46	222
156250	18.50	1.10	16.62	222
150259	10.50	1.10	16.02	222
100209	10.00	1.09	10.04	222
150200	10.30	1.08	10.04	222
100200	10.50	1.07	10.40	222
150201	14.92	1.08	10.02	222
156261	15.06	1.08	16.79	222
156262	14.00	1.07	16.73	222
156262	14.04	1.06	16.93	222
156263	12.72	1.09	16.44	222
156263	12.77	1.08	16.46	222
156264	12.69	1.08	16.81	222
156264	12.55	1.09	16.73	222
156265	11.38	1.08	16.63	222
156265	11.43	1.07	16.45	222
156266	11.57	1.09	16.92	222
156266	11.60	1.08	16.82	222
156267	11.22	1.10	17.29	222
156267	11.24	1.12	17.39	222
156268	11.47	1.12	17.53	222
156268	11.41	1.12	17.74	222
156269	11.72	1.16	17.96	222
156269	11.69	1.14	17.70	222
156270	11.83	1.17	17.96	222
156270	11.94	1.18	18.13	222
156271	11.79	1.24	19.29	222
156271	12.03	1.24	19.08	222
156272	10.90	1.22	18.82	222
156272	10.93	1.22	19.21	222
156273	6.77	0.88	13.90	222
156273	6.77	0.88	13.86	222
156274	4.24	0.63	10.21	222
156274	4.23	0.63	10.25	222
156275	3.11	0.48	7.04	222
156275	3.14	0.48	6.87	222
156276	2.24	0.32	3.68	222
156276	2.24	0.32	3.64	222
156277	0.23	0.11	0.30	222
156277	0.00	0.11	0.24	222
156278	19.06	1 07	16.51	222
156278	19.21	1.08	16.26	222
156279	19.26	1 10	16.85	222
156270	19.28	1 10	16.81	222
156280	18.98	1.10	16.57	222
156280	10.00	1.03	16.07	222
156281	17 10	1.09	16.65	222
156291	17.10	1 1 1 1	16.05	222
156201	15.52	1 1 1	16.70	222
156202	15.00	1.11	16.45	222
100202	15.42	1.09	CO.01	2 Z Z

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 Image: Ima

ID	SiO2	PO4	NO2+ NO3	QF
156283	14.66	1.13	16.23	222
156283	14.69	1.12	16.43	222
156284	13.81	1.11	16.53	222
156284	13.85	1.10	16.49	222
156285	12.05	1.09	16.68	222
156285	12.28	1.10	16.56	222
156286	11.21	1.09	16.88	222
156286	11.21	1.09	16.88	222
156288	10.95	1.11	16.76	222
156288	11.00	1.11	16.74	222
156289	10.84	1.10	17.24	222
156289	10.92	1.14	17.38	222
156290	11.23	1.17	17.90	222
156290	11.40	1.17	17.40	222
156291	11.71	1.20	17.94	222
156291	11.73	1.20	18.00	222
156292	12.25	1.30	19.39	222
156292	12.27	1.30	19.57	222
156293	9.03	1.08	16.46	222
156293	8.97	1.08	16.52	222
156294	5.67	0.80	12.15	222
156294	5.64	0.80	12.27	222
156295	4.69	0.70	10.64	222
156295	4.69	0.70	10.72	222
156296	4.26	0.65	9.85	222
156296	4.29	0.65	9.91	222
156297	3.53	0.56	8.46	222
156297	3.53	0.57	8.52	222
156298	2.41	0.38	4.51	222
156298	2.46	0.38	4.44	222
156299	0.21	0.12	0.00	222
156299	0.21	0.13	0.00	222
156301	19.28	1.28	16.51	222
156301	19.45	1.12	16.18	222
156302	18.86	1.12	16.19	222
156302	18.91	1.14	16.32	222
156303	18.44	1.11	16.58	222
156303	18.49	1.14	16.81	222
156304	16.78	1.10	16.41	222
156304	16.39	1.11	16.32	222
156305	15.37	1.08	16.63	222
156305	15.37	1.08	16.55	222
156306	13.74	1.09	16.17	222
156306	13.94	1.30	16.41	222
156307	12.52	1.06	16.70	222
156307	12.62	1.09	16.89	222
156308	11.78	1.06	16.57	222
156308	11.78	1.09	16.70	222
156309	10.99	1.28	16.96	222

ID	SiO2	PO4	NO2+ NO3	QF
156309	11 21	1 09	17 23	222
156310	11.21	1.00	17.20	222
156310	11.12	1.00	17.20	222
156311	11.1	1.00	17.22	222
156311	11.20	1.10	17.51	222
156312	11.10	1.10	17.00	222
156212	11.13	1.10	19.46	222
156212	11.54	1.11	10.40	222
156212	11.00	1.14	10.72	222
150313	11.09	1.15	10.97	222
150314	10.04	1.14	19.04	222
100314	12.11	1.10	19.00	222
100310	12.11	1.19	19.73	222
150315	12.24	1.18	19.93	222
156316	12.31	1.23	20.84	222
156316	12.18	1.23	20.49	222
156317	11.22	1.34	19.55	222
156317	11.27	1.16	19.93	222
156318	7.58	0.83	15.10	222
156318	7.43	0.88	15.12	222
156319	5.58	0.72	12.18	222
156319	5.59	0.70	12.44	222
156320	5.31	0.70	11.72	222
156320	5.36	0.71	11.84	222
156321	4.72	0.65	10.95	222
156321	4.74	0.66	11.01	222
156322	2.81	0.36	5.33	222
156322	2.84	0.35	5.46	222
156323	0.27	0.07	0.00	222
156323	0.31	0.00	0.00	222
156324	19.69	1.25	17.18	222
156324	19.85	1.08	17.13	222
156325	18.63	1.08	16.54	222
156325	18.97	1.24	16.65	222
156326	17.94	1.10	16.79	222
156326	18.09	1.11	16.92	222
156327	17.03	1.07	16.94	222
156327	17.15	1.08	16.70	222
156328	15.58	1.09	16.53	222
156328	15.60	1.07	16.41	222
156329	14 46	1.09	16.70	222
156329	14 61	1.07	16.72	222
156330	13 44	1.06	16 15	222
156330	13.24	1.00	16 17	222
156331	11 74	1.07	16.36	222
156331	11 76	1.00	16.00	222
156332	11 1/	1.07	16.17	222
156332	11.14	1.00	15.00	222
156222	10.79	1.00	16 10	222
156222	10.70	1.23	16.19	222
100333	10.03	1.07	10.42	2 Z Z

 Table C.3
 Replicate nutrient water sample values in moles/kg, along with their quality flags.

 NO2+
 --

ID	SiO2	PO4	NO2+	QF
156334	10.97	1.08	16.62	222
156334	10.83	1.08	16.84	222
156335	11.22	1.09	17.00	222
156335	11.11	1.08	16.73	222
156336	11.16	1.11	17.40	222
156336	11.22	1.12	17.14	222
156337	11.21	1.11	17.47	222
156337	11.30	1.11	17.71	222
156338	11.29	1.15	18.09	222
156338	11.49	1.15	17.95	222
156339	11.60	1.18	18.47	222
156339	11.86	1.20	18.32	222
156340	12.19	1.23	19.87	222
156340	12.08	1.23	19.72	222
156341	9.12	1.21	16.81	222
156341	9.25	1.04	17.34	222
156342	6.23	0.73	13.26	222
156342	6.08	0.78	12.99	222
156343	5.22	0.68	11.64	222
156343	5.20	0.70	11.73	222
156344	4.26	0.57	10.20	222
156344	4.27	0.59	10.23	222
156345	2.85	0.28	4.45	222
156345	2.87	0.33	4.39	222
156346	0.40	0.00	0.00	222
156346	0.42	0.07	0.00	222
156347	18.52	1.06	17.35	222
156347	18.57	1.22	17.30	222
156348	16.98	1.05	16.69	222
156348	16.71	1.07	16.44	222
156349	16.69	1.08	16.26	222
156349	16.85	1.26	15.99	222
156350	15.99	1.09	16.45	222
156350	15.97	1.09	16.49	222
156351	14.76	1.10	16.01	222
156351	14.83	1.10	16.01	222
156352	13.43	1.09	16.09	222
156352	13.44	1.09	16.24	222
156353	12.75	1.08	16.00	222
156353	12.82	1.10	16.42	222
156354	11.41	1.09	15.96	222
156354	11.46	1.07	15.67	222
156355	10.86	1.09	15.96	222
156355	10.93	1.10	15.94	222
156356	10.81	1.10	15.75	222
156356	10.85	1.13	15.84	222
156357	10.56	1.27	15.79	222
156357	10.61	1.10	15.99	222
156358	10.54	1.12	16.26	222

ID	SiO2	PO4	NO2+ NO3	QF
L				
156358	10.65	1.11	16.03	222
156359	10.78	1.15	16.81	222
156359	10.81	1.12	16.41	222
156360	11 19	1 17	17 53	222
156360	11 21	1 19	17 20	222
156361	11.43	1.18	17.87	222
156361	11 53	1 20	18 18	222
156362	11.86	1.28	18.81	222
156362	11.72	1.28	19.16	222
156363	8.47	1.05	15.92	222
156363	8.54	1.02	15.85	222
156364	5.05	0.68	11.50	222
156364	5 16	0.74	11 33	222
156365	4.34	0.77	10.01	222
156365	4 36	0.65	10.26	222
156366	3 85	0.56	9 10	222
156366	3.73	0.57	8.84	222
156367	2 52	0.37	5.88	222
156367	2 57	0.40	5.92	222
156368	2.07	0.34	4 29	222
156368	2.44	0.36	4.23	222
156369	0.25	0.08	0.00	222
156369	0.26	0.00	0.00	222
156370	16.72	1.26	16.78	222
156370	16.87	1.10	16.90	222
156371	16.75	1.10	16.80	222
156371	16.76	1.11	16.53	222
156372	15.78	1.13	16.54	222
156372	16.05	1.12	16.45	222
156373	14.60	1.13	16.44	222
156373	14.75	1.13	16.58	222
156374	12.93	1.12	16.00	222
156374	13.05	1.14	15.94	222
156375	11.60	1.10	15.96	222
156375	11.69	1.11	16.09	222
156376	11.33	1.12	16.32	222
156376	11.42	1.12	16.24	222
156377	11.56	1.13	15.95	222
156377	11.57	1.15	16.20	222
156378	7.13	0.81	11.99	444
156378	7.06	0.78	11.82	444
156379	11.33	1.14	16.59	222
156379	11.35	1.20	16.94	222
156380	11.39	1.20	17.17	222
156380	11.59	1.39	16.90	232
156381	11.41	1.20	17.93	222
156381	11.46	1.20	18.17	222
156382	11.51	1.29	18.79	222
156382	11.53	1 <u>.2</u> 7	18.49	222

 C.3 Replicate nutrient water sample values in moles/kg, along with their quality flags.
 SiO2 PO4 NO2+ QF
 ID SiO2 PO4 NO2+ QF Table C.3

D	SiO2	PO4	NO2+ NO3	QF
156383	8.78	1.10	16.54	222
156383	8.67	1.08	16.73	222
156384	5.39	0.80	11.70	222
156384	5.40	0.73	11.85	222
156385	3.56	0.59	8.72	222
156385	3.57	0.54	8.60	222
156386	2.89	0.50	7.39	222
156386	2.92	0.47	7.43	222
156387	2.11	0.35	5.05	222
156387	2.12	0.34	4.98	22
156388	1.24	0.25	1.81	22
156388	1.26	0.19	1.84	22
156389	0.37	0.07	0.00	222
156389	0.33	0.09	0.00	222

|--|

5. Dissolved Inorganic Carbon in Seawater

(Bob Gershey)

a. Description of Equipment and Technique

The total dissolved inorganic carbon content of seawater is defined as the total concentration of carbonate ion, bicarbonate ion and unionized species of carbon dioxide.

Before analysis, the sample was treated with acid to convert all ionized species to the unionized form, which was then separated from the liquid phase and subsequently measured using the coulometric titration technique. This involved the reaction of carbon dioxide gas with a dimethysulfoxide solution of ethanoline to produce hydroxyethylcarbamic acid. The acidic solution was titrated with a hydroxide ion formed by the electrolytic decomposition of water. The progress of the titration was followed through colorimetric measurement of the absorbance of a pH indicator dye (thymolphthalein) in the ethanolamine solution.

A known volume of seawater was dispensed into a stripping chamber from a pipet of known volume and temperature controlled to within 0.4 °C. It was then acidified with ten percent its volume of an eight percent solution of carbon dioxide-free phosphoric acid. The solution was stripped of carbon dioxide gas by bubbling with a stream of nitrogen gas directed through a glass frit. The carrier gas exiting the stripper passed through a magnesium perchlorate trap to remove water vapour and acidic water droplets.

The gas stream was then directed into the coulometric titrator where the total amount of carbon dioxide gas was quantified. The coulometer was calibrated in two ways. Calibration using gas loops was accomplished by filling stainless steel sample loops (1.5, 2.5 ml) with 99.995% carbon dioxide gas and injecting these into the coulometer. The temperature and pressure of the gas within the loops must be known to within 0.05 °C and 20 Pa respectively. Standard solutions of sodium carbonate were also used to calibrate the system. These samples were treated in the same manner as a seawater sample.

Values were reported in units of μ mol/kg. The overall precision of the analysis should have been at least 1.5 μ mol/kg for samples with concentrations in the range of 1800-2300 μ mol/kg.

b. Sampling Procedure and Data Processing Technique

Water samples were initially collected using a 10 litre rosette bottle. Samples for analysis of total inorganic carbon were drawn immediately following the drawing of the oxygen samples in order to minimize exchange of carbon dioxide gas with the headspace in the sampler. This exchange will typically result in a loss of carbon dioxide. It was desirable that the samples be drawn before half the sampler was emptied and within ten minutes of recovery. Clean borosilicate glass bottles were rinsed twice with 30 - 50 ml of the sample. The bottle was then filled from the bottom using a length of vinyl tubing attached to the spigot of the sampler. The sample was overflowed by at least a half of the volume of the bottle (typically 250 ml). A headspace of 1% was left to allow for expansion without leakage. If samples

were not to be analyzed within four to five hours, the sample was poisoned with 100 μ l / 250 ml of 50% saturated mercuric chloride solution. The bottle was tightly sealed and stored preferably at the temperature of collection in the dark.

c. Replicate Analysis

In total, 113 replicate carbonate measurements were obtained for 107 sample id numbers; 105 sample id numbers had one replicate, while two sample id number had three replicates. The following is a statistical summary of the absolute value of the replicate differences. Table C.4 lists all 113 replicate measurements.

Number of Replicate Differences = 2 id had two replicates * 4 possible differences + 105 ids had one replicate * 1 possible difference = 8 + 105 = 113

Statistic	Value
Number of Replicate Differences	113
Minimum (μmoles/kg)	0.0
Maximum (μmoles/kg)	33.3
Mean (µmoles/kg)	0.8
Median (μmoles/kg)	0.3
Standard Deviation (µmoles/kg)	3.2

Table C.4 Replicate water sample total carbon values in moles.kg.

Sample ID	Total	WOCE
Number	Carbon	QF

Sample ID	Total	WOCE
Number	Carbon	QF

155204	2112.8	2
155204	2112.8	2
155218	2112.1	2
155218	2113.2	2
155223	2109.0	2
155223	2109.0	2
155225	2127.0	2
155225	2127.3	2
155227	1971.4	2
155227	1971.4	2
155228	2135.7	2
155228	2135.7	2
155232	2122.7	2
155232	2122.9	2
155237	2120.1	2
155237	2120.1	2
155238	1969.0	2
155238	1968.8	2
155240	2112.4	2
155240	2113.0	2
155243	1942.9	2
155243	1942.9	2
155244	2127.5	2
155244	2128.2	2
155247	2126.2	2
155247	2126.2	2
155252	2125.8	2
155252	2125.3	2
155254	2117.1	2
155254	2117.1	2
155256	2145.2	2
155256	2145.2	2
155257	2141.5	2
155257	2142.4	2
155260	2127.7	2
155260	2129.1	2
155267	2146.7	2
155267	2146.7	2
155269	2146.2	2
155269	2147.2	2
155279	2153.2	2
155279	2153.2	2

155288	2147.4	2
155288	2148.6	2
155293	2155.8	2
155293	2156.1	2
155298	2154.3	2
155298	2154.3	2
155339	2151.0	2
155339	2151.0	2
155342	2150.2	2
155342	2150.7	2
155378	2155.7	2
155378	2155.7	2
155383	2154.7	2
155383	2155.3	2
155389	2150.8	2
155389	2151.1	2
155418	2153.0	2
155418	2153.0	2
155422	2152.3	2
155422	2152.4	2
155437	2155.4	2
155437	2155.7	2
155442	2153.3	2
155442	2153.3	2
155457	2158.9	2
155457	2158.9	2
155462	2149.6	2
155462	2151.5	2
155474	2097.4	2
155474	2095.9	2
155485	2152.2	2
155485	2153.2	2
155487	2152.9	2
155487	2152.9	2
155537	2149.6	2
155537	2149.6	2
155553	2154.0	2
155553	2154.8	2
155707	2156.2	2
155707	2154.1	2
155711	2155.2	2
155711	2148.8	2

Table C.4 Replicate water sample total carbon values in moles.kg. Sample ID WOCE

Sample ID	Total	WOCE
Number	Carbon	QF
155714	2150.7	2
155714	2150.7	2
155731	2151.3	2
155731	2151.3	2
155759	2152.6	2
155759	2152.6	2
155768	2154.0	2
155768	2155.2	2
155776	2113.0	4
155776	2113.0	4
155778	2107.8	4
155778	2105.7	4
155782	2102.9	4
155782	2102.9	4
155784	2094.3	4
155784	2095.1	4
155787	2152.6	2
155787	2154.0	2
155808	2103.6	2
155808	2103.6	2
155821	2152.1	2
155821	2152.1	2
155823	2150.6	2
155823	2150.9	2
155830	2110.2	2
155830	2143.5	2
155838	2155.6	2
155838	2155.6	2
155840	2152.4	2
155840	2152.8	2
155861	2155.4	2
155861	2156.3	2
155866	2150.3	2
155866	2150.3	2
155915	2152.9	2
155915	2157.1	2
155920	2149.4	2
155920	2149.4	2
155920	2148.6	2
155920	2148.6	2
155952	2152.4	2
155952	2151.6	2
155954	2150.3	2

455054	0450.0	
155954	2150.3	2
155955	2152.2	2
155955	2152.5	2
155974	2157.8	2
155974	2159.0	2
155975	2159.5	2
155975	2159.5	2
155985	2157.1	2
155985	2157.7	2
155994	2156.4	2
155994	2156.4	2
155995	2156.8	2
155995	2158.7	2
156006	2159.5	2
156006	2160.1	2
156009	2157.0	2
156009	2157.0	2
156029	2156.8	2
156029	2157.2	2
156038	2154.4	2
156038	2154.4	2
156038	2155.3	2
156038	2155.3	2
156051	2158.8	2
156051	2159.0	2
156055	2156.5	2
156055	2155.8	2
156059	2152.3	2
156059	2152.3	2
156072	2159.9	2
156072	2159.9	2
156074	2158.6	2
156074	2159.1	2
156094	2160.2	2
156094	2161.6	2
156096	2161.1	2
156096	2161.1	2
156117	2162.4	2
156117	2161.4	2
156139	2052.9	2
156139	2052.9	2
156141	2160.3	2
156141	2160.3	2
	2.00.0	· ~

Total

Carbon

QF

Number

 Table C.4
 Replicate water sample total carbon values in moles.kg.

WOCE

Number	Carbon	QF
		1
156142	2158.9	2
156142	2159.1	2
156146	2155.3	2
156146	2155.3	2
156164	2160.7	2
156164	2160.7	2
156166	2159.9	2
156166	2160.3	2
156199	2155.3	2
156199	2155.3	2
156208	2044.4	2
156208	2043.7	2
156210	2159.9	2
156210	2159.9	2
156211	2158.3	2
156211	2160.5	2
156216	2151.3	2
156216	2153.0	2
156233	2161.0	2
156233	2161.0	2
156251	2100.4	2
156251	2097.2	2
156260	2156.7	2
156260	2156.3	2
156268	2156.5	2
156268	2157.1	2
156275	2096.9	2
156275	2096.9	2
156280	2159.5	2
156280	2159.5	2
156296	2118.5	2
156296	2119.0	2
156302	2161.4	2
156302	2161.4	2
156304	2158.4	2
156304	2157.6	2
156327	2158.6	2
156327	2159.2	2
156340	2170.7	2
156340	2170.7	2
156359	2155.9	2
156359	2156.9	2
156365	2119.0	2

Sample ID

Total

Son raidee in melecing.		
Sample ID	Total	WOCE
Number	Carbon	QF

156365	2119.0	2
156370	2161.3	2
156370	2161.3	2
156374	2155.7	2
156374	2155.7	2

6. Alkalinity

(Frank Zemlyak)

a. Description of Equipment and Technique

Total alkalinity was determined using the Marine Chemistry automated titration system. Total alkalinity was determined using a potentiometric titration of the seawater sample using hydrochloric acid. Once the sample was connected to the system, the operation proceeded automatically, from the reaction vessel being rinsed and filled with the sea water sample, to the final calculations at the conclusion of the titration.

When the reaction vessel was filled, the semi-micro combination Ross electrode sensed when the sample had come to equilibrium, the initial relative mvolt reading was then logged, at the same time, the cell temperature was also recorded. At this point, a rather large quantity of 0.2N hydrochloric acid was added to the cell with a Metrohm E-655 Dosimat. The addition of this large quantity of acid titrated the sample beyond the carbonate endpoint. At this point, smaller aliquots (0.040mL) of acid were added until the sample had been titrated to and beyond the second inflection point. With each addition of acid the sample was allowed to come to equilibrium, the mvolt reading was logged. Thus, with these relative changes in the voltage in the cell, the endpoint was calculated by using a modified Gran function. Using the sample salinity, sample temperature and the nutrients silicate and phosphate corrections were made to the final total alkalinity result.

b. Sampling Procedure and Data Processing Technique

The 500 ml samples used for alkalinity analysis were collected from 10 litre rosette bottles in much the same fashion as the total carbonate samples. The alkalinity samples were drawn immediately following the drawing of the total carbonate samples. The samples were stored in a cold water bath whilst awaiting analysis.

c. Replicate Analysis

The precision of the alkalinity data is 3 to 5 μ moles/kg. The alkalinity replicates consisted of 40 duplicate measurements. A statistical summary of the absolute value of the replicate differences is below. Only acceptable sample values were used when calculating replicate differences. All replicates and their quality flags are given in Table C.5.

Statistic	Value
Number of Replicate Differences	31
Minimum (μmoles/kg)	0.3
Maximum (μmoles/kg)	117.0
Mean (μmoles/kg)	20.8
Median (µmoles/kg)	12.1
Standard Deviation (µmoles/kg)	26.3

Sample ID	Total	WOCE
Number	Alkalinity	QF
155217	2196.3	2
155217	2192.8	2
155222	2186.1	2
155222	2198.2	2
155224	2213.0	2
155224	2223.5	2
155230	2225.9	3
155230	2232.4	3
155235	2224.8	3
155235	2214.9	3
155259	2248.6	2
155259	2249.3	2
155273	2262.6	3
155273	2268.4	3
155286	2264.3	3
155286	2279.5	3
155296	2265.9	2
155296	2267.1	2
155341	2267.3	3
155341	2258.3	3
155390	2269.1	3
155390	2263.0	3
155412	2272.5	2
155412	2273.7	2
155439	2268.0	2
155439	2268.8	2
155464	2262.4	2
155464	2262.6	2
155472	2280.6	2
155472	2278.8	2
155484	2284.9	3
155484	2299.2	3
155521	2295.2	2
155521	2299.7	2
155534	2285.5	2
155534	2288.4	2
155774	2274.6	3
155774	2306.3	3
155781	2205.8	2
155781	2207.3	2

Sample ID	Total	WOCE
Number	Alkalinity	QF
155783	2266.3	3
155783	2240.8	3
155814	2294.8	2
155814	2331.6	2
155850	2288.4	2
155850	2365.2	2
155863	2312.8	2
155863	2336.8	2
155906	2326.2	2
155906	2303.5	2
155909	2285.2	2
155909	2313.8	2
155957	2281.1	2
155957	2282.9	2
155980	2297.2	2
155980	2300.9	2
156070	2308.1	2
156070	2329.4	2
156083	2332.5	2
156083	2273.9	2
156095	2416.1	2
156095	2299.0	2
156118	2296.8	2
156118	2323.0	2
156124	2283.1	2
156124	2302.0	2
156143	2289.5	2
156143	2321.2	2
156171	2282.2	2
156171	2281.9	2
156188	2282.6	2
156188	2300.2	2
156209	2295.0	2
156209	2306.0	2
156256	2300.7	2
156256	2358.6	2
156305	2294.4	2
156305	2325.2	2
156376	2310.1	2
156376	2291.2	2

 Table C.5
 Replicate water sample total alkalinity values in moles/kg.

7. CFC s

(Mike Hingston)

a. Description of Equipment and Technique

The analyses were carried out on two purge and trap systems developed at the Bedford Institute of Oceanography. The water samples were injected into the systems directly from the syringes. To ensure proper rinsing, at least two volumes of water were passed through the sample pipette before the actual sample volume. The samples were purged for 4 minutes with ultra high purity nitrogen at a flow rate of 60 ml/min. The components were trapped in a Porapak-N trap that was cooled to a temperature of less than 100 °C. They were then desorbed by heating the trap up to at least 170°C. The contents of the trap were then passed through a 75 m DB-624 megabore column.

b. Sampling Procedure and Data Processing Technique

All samples were collected directly from the Niskin bottles using 100 ml syringes. The syringes were rinsed three times before they were filled. To prevent contamination, the CFC samples were the first samples that were collected from the Niskin bottles. The samples were then stored in a water bath of continuously flowing surface sea water until analysis. Air samples from the winch room were taken periodically to ensure that it had not become contaminated. The analysis of the samples was always completed within 24 hours after they had been drawn.

c. Replicate Analysis

A total of 48 unique sample id numbers had replicate CFC water samples drawn. In total, three sample id numbers had duplicate samples drawn and 45 sample id numbers had triplicate samples drawn. Replicates were taken at each station, with some of these being run on each system to ensure that the results were comparable. A statistical summary of the absolute value of the replicate differences is below. Only acceptable sample values were used when calculating replicate differences. All replicates and their quality flags are given in Table C.6.

Statisti	CFC11	CFC12	CFC113	Carbon Tet.	Methyl Chl.	
Number of Replicate Differences		138	136	134	137	138
Minimum	(pmoles/kg)	0.000	0.001	0.000	0.000	0.006
Maximum	(pmoles/kg)	0.332	1.033	0.186	0.646	2.786
Mean	(pmoles/kg)	0.057	0.205	0.040	0.131	0.718
Median	(pmoles/kg)	0.041	0.141	0.033	0.111	0.564
Standard Deviation	(pmoles/kg)	0.057	0.202	0.031	0.109	0.634
Detection Limits	(pmoles/kg)	0.022	0.017	0.010	0.040	0.017

Sample	Freon 11	Freon 12	Freon 13	Carbon	Methyl	WOCE QF
שו				let.	Cni.	
155220	6 600	2 0 9 4	0.207	0.010	20 167	22222
155220	6.645	2.904	0.307	9.910	20.107	22222
155220	0.040	2.531	0.344	10.551	21.401	22232
155227	5 922	2.636	0.485	0.512	15 002	22222
155227	5.052	2.030	0.403	9.013	16 1 4 1	22222
155227	5.090	2.000	0.473	9.307	16,141	22222
155227	5.040	5.570	0.000	9.011	10.010	
155233	5 / 32	2 670	0 472	8 355	15 / 53	22222
155233	5 358	2.070	0.472	7 709	16 264	22222
155233	5.463	3 229	0.000	8 029	17 248	22222
100200	0.400	0.225	0.400	0.025	17.240	
155246	4 963	3 251	0 362	7 194	15 312	22222
155246	5.045	3 400	0.325	7.187	15.012	22222
155246	4 882	2 495	0.020	6 985	15.038	22222
100240	4.002	2.400	0.202	0.000	10.000	
155261	4 829	2 321	0.394	7 161	15 194	22222
155261	4 591	2 342	0.346	6 760	14 463	22222
155261	4 642	2 309	0.316	6 807	15 025	22222
100201		2.000	01010	0.001	101020	
155266	3 895	2 109	0 314	5 836	11 698	22222
155266	3.899	2.490	0.222	5.950	11.678	22222
155266	3 802	2 509	0 408	5 808	13 322	22222
	0.001					
155282	3.479	1.798	0.209	5.274	11.807	22222
155282	3.470	2.263	0.176	5.381	10.940	22222
155282	3.400	1.229	0.164	5.187	10.653	22222
155301	3,560	1.580	0.171	5.610	11.334	22222
155301	3.550	1.586	0.167	5.591	11.277	22222
155301	3.504	1.576	0.178	5.316	10.929	22222
155320	3.752	1.797	0.236	5.804	11.665	22222
155320	3.631	1.852	0.275	5.810	11.854	22222
155320	3.748	1.968	0.333	5.839	12.513	22222
155336	2.120	1.157	0.074	3.369	6.258	22222
155336	1.974	1.340	0.142	3.562	6.985	22222
155336	1.984	1.146	0.047	3.394	7.188	22222
155361	1.953	0.931	0.019	3.323	5.870	22222
155361	1.892	1.008	0.081	3.262	6.284	22222
155361	1.936	0.916	0.047	3.418	6.612	22222
155419	3.561	1.641	0.244	5.579	11.303	22222
155419	3.645	1.695	0.225	5.643	12.967	22222
155419	3.703	1.957	0.261	5.927	12.434	22222
155448	4.022	2.138	0.274	6.366	12.359	22222
155448	4.021	2.762		6.300	14.242	22522
155448	4.056	2.397	0.296	6.262	12.963	22222

 Table C.6
 Replicate water sample CFC values in pmoles/kg.

Sample ID	Freon 11	Freon 12	Freon 13	Carbon Tet.	Methyl Chl.	WOCE QF
					•	
155462	3.379	1.885	0.276	5,491	11.403	22222
155462	3.398	2.043	0.221	5.354	11.944	22222
155462	3.322	2.059	0.200	5.250	10.847	22222
155481	1.473	0.428	0.066	2.789	4.732	22222
155481	1.456	0.588	0.066	2.671	4.667	22222
155481	1.481	0.903	0.066	2.732	4.530	22222
155515	3.788	1.830	0.259	6.055	11.600	22222
155515	3.904	1.891	0.192	5.828	11.488	22222
155515	3.868	1.792	0.236	6.021	12,165	22222
155557	3.536	1.699	0.212	5.535	11.917	22222
155557	3.533	1.738	0.164	5.461	11.277	22222
155557	3.583	1.650	0.213	5.576	11.403	22222
155587	4.355	2.428	0.289	6.840	12.963	22222
155587	4.340	2.436	0.335	7.006	12.814	22222
155587	4.306	2.441	0.302	6.752	12.664	22222
155718	3.912	1.920	0.243	6.033	11.993	22222
155718	3.881	2.145	0.260	5.981	11.467	22222
155718	3.894	1.947	0.259	5.992	11.595	22222
155757	3.414	1.983	0.258	5.285	11.693	22222
155757	3.408	2.244	0.376	5.483	12.348	22222
155773	3.656	1.904	0.286	5.477	11.486	22222
155773	3.824	2.026	0.336	5.632	11.110	22222
155773	3.804	2.183	0.302	5.597	11.898	22222
155790	1.448	0.772	0.059	3.038	4.773	22222
155790	1.440	0.999	0.021	2.541	2.538	22222
155790	1.499	0.609	0.016	2.773	4.729	22222
155815	1.704	0.945	0.058	3.083	5.353	22222
155815	1.726	1.261	0.038	2.937	3.464	22222
155815	1.678	0.788	0.051	2.966	3.303	22222
155852	3.815	1.916	0.257	5.955	11.098	22222
155852	3.799	1.865	0.267	6.148	11.204	22222
155852	3.958	2.029	0.211	6.079	10.563	22222
	_	-		-		
155867	3.554	1.764	0.241	5.636	11.297	22222
155867	3.575	2.010	0.188	5.625	11.212	22222
155867	3.523	1.671	0.243	5.635	11.641	22222
155899	4,391	2,355	0.441	7.081	13,959	22222
155899	4.325	2,535	0.383	7.045	11,651	22222
155899	4.394	2.535	0.403	7.006	11.885	22222

 Table C.6
 Replicate water sample CFC values in pmoles/kg.

Sample	Freon 11	Freon 12	Freon 13	Carbon	Methyl	WOCE QF
				161.	Ciii.	
155021	4 260	2 204	0.212	6 801	12 595	22222
155921	4.209	2.204	0.313	7.006	12.004	22222
155921	4.414	2.330	0.440	7.090	12.004	22222
155921	4.340	2.110	0.332	0.944	12.591	
1550/1	2 634	1 375	0 117	3 667	7 826	22222
155941	2.034	1.375	0.117	3 789	7.620	22222
155941	2.504	1.000	0.170	3.688	8 751	22222
155541	2.075	1.432	0.133	3.000	0.751	
155953	2 986	1 472	0 200	4 902	10 283	22222
155953	2 973	1.557	0.113	4 722	10.105	22222
155953	2.070	1.607	0.173	4 795	9 271	22222
100000	2.001	1.017	0.170	1.700	0.271	
155966	1.285	0.330	0.101	2,180	1,266	22222
155966	1 268	0 478	0.000	2 349	1 672	22222
155966	1.277	1.086	0.033	2.356	4.052	22222
155991	2.600	1.288	0.113	4.288	8.567	22222
155991	2.599	1.425	0.089	4.323	9.376	22222
156009	1.337	0.583	0.026	2.314	4.387	22222
156009	1.319	0.703	0.015	2.426	5.239	22222
156009	1.331	0.804	0.044	2.565	4.583	22222
156040	2.549	1.202	0.110	4.040	8.480	22222
156040	2.518	1.259	0.132	3.980	8.137	22222
156040	2.543	1.436	0.125	4.008	8.707	22222
156051	1.103	0.561	0.039	2.224	3.366	22222
156051	1.268	0.859	0.135	2.357	4.279	22222
156051	1.103	0.486	0.082	2.126	3.239	22222
156075	1.143	0.501	0.074	2.368	3.420	22222
156075	1.134	0.540	0.012	2.204	3.274	22222
156075	1.080	0.448	0.022	2.169	2.952	22222
156100	1.057	0.371	0.043	2.017	3.015	22222
156100	1.038	0.477	0.040	2.088	3.137	22222
156100	1.023	0.560	0.015	2.267	0.553	22222
156135	2.581	1.272	0.153	3.454	6.454	22222
156135	2.541	1.705	0.112	3.358	5.029	22222
156135	2.483	1.296	0.175	3.223	7.400	22222
156160	2.881	1.430	0.134	3.288	5.781	22222
156160	2.794	1.695	0.201	3.421	7.127	22222
156160	2.795	1.775	0.159	3.263	7.242	22222
156168	0.855	0.334	0.000	1.857	2.997	22222
156168	0.829	0.379	0.070	1.849	2.723	22222
156168	0.870	0.469	0.024	1.871	2.441	22222

 Table C.6
 Replicate water sample CFC values in pmoles/kg.

Sample ID	Freon 11	Freon 12	Freon 13	Carbon Tet.	Methyl Chl.	WOCE QF
156206	3.119	2.142	0.186	4.078	10.173	22222
156206	3.045	2.371	0.240	3.777	9.501	22222
156206	3.031	1.677	0.179	3.888	8.547	22222
156214	1.051	0.606	0.000	2.321	3.570	22222
156214	1.092	0.640	0.022	2.206	3.197	22222
156214	1.073	0.580	0.033	2.181	3.284	22222
156245	2.329			3.194	7.548	25522
156245	2.007	0.975	0.094	3.314	6.308	22222
156245	1.996	1.158	0.127	3.392	6.006	22222
156264	2.277	1.131	0.071	3.687	7.356	22222
156264	2.219	1.352	0.120	3.783	7.300	22222
156264	2.180	1.335	0.121	3.659	6.720	22222
156285	1.592	0.599	0.059	3.090	4.426	22222
156285	1.639	0.719	0.029	3.050	4.623	22222
156285	1.607	0.732	0.054	3.026	5.304	22222
156320	2.594	1.277	0.117	2.384	6.918	22222
156320	2.657	1.348	0.157	2.337	6.503	22222
156320	2.648	1.356	0.178	2.353	7.585	22222
156330	1.195	0.474	0.035	2.604	3.349	22222
156330	1.148	0.504	0.031	2.389	3.165	22222
156330	1.167	0.609	0.000	2.312	3.412	22222
156362	1.826	0.766	0.080	2.197	6.515	22222
156362	1.821	0.790	0.056	2.281	6.459	22222
156362	1.946	1.178	0.050	2.283	5.702	22222
156375	1.596	0.754	0.116	3.255	4.977	22222
156375	1.581	0.632	0.034	3.124	5.493	22222
156375	1.561	0.726	0.024	3.018	4.762	22222

 Table C.6
 Replicate water sample CFC values in pmoles/kg.

d. Standards Used

Standardization was carried out using gas standards made up at Brookhaven National Laboratories. Standard volumes were corrected for lab temperature and pressure. Results were reported in units of pmol/kg of sea water. Clean air samples were also analyzed with each station, as a check on the standardization.

8. Reversing Thermometers

(Anthony W. Isenor)

a. Description of Equipment and Technique

Sensoren-Instrumente-Systeme digital reversing thermometers model RTM 4002 were used to verify CTD thermistor readings on most deep stations. The thermometers had a depth range of up to 10000 m. The pressure housing was made of a glass tube closed at the ends by metal stoppers. One end contained the platinum sensor and the other end housed the battery compartment. The thermometers were placed on bottles 2 and 4 on the rosette, thus sampling temperature at the second and forth deepest bottle trips.

The thermometers were placed in standard reversing thermometer racks on the Niskin bottles. Before deployment, a magnet was passed over the thermometers to clear the display and place the thermometer in sample mode. A new temperature was then recorded upon reversal of the thermometer.

b. Sampling Procedure and Data Processing Technique

The digital thermometers indicate the temperature reading via a digital display. The temperature was read and noted on log sheets. The readings were later digitized and corrections applied using the water sample database system.

The following table lists the number of reading from each thermometer.

Thermometer Ser. No.	Number of Readings
000T345	18
000T347	36
000T354	16
000T881	36
000T884	13
000T885	15

In total, 134 readings were obtained. Of these, 18 had confirmed or suspected problems with either the thermometer or with insufficient soaking time. Thus, only 116 valid thermometer temperature values were available to be used in comparisons with the CTD thermistor.

c. Calibration Data

The digital reversing thermometers were calibrated at BIO in March 1995.

d. Replicate Analysis

Typically, a rack containing three thermometers would be tripped when the second and forth Niskin bottles were fired. Thus, we would obtain three independent temperature readings. However, due to the loss of a rack of three thermometers and the malfunction of other thermometers, many readings near the end of the cruise resulted in only two independent thermometer readings.

A total of 52 sample id numbers had digital thermometer temperature replicates. One sample id number had no replicates, 20 sample id numbers had one replicate and 31 sample id numbers had two replicates. The following is a statistical summary of the absolute value of the replicate differences. Only acceptable values were used in calculating the statistics.

Statistic	Value (°C)
Number of Replicate Differences	90
Minimum Difference	0.000
Maximum Difference	0.008
Mean Difference	0.003
Median Difference	0.002
Standard Deviation of Differences	0.003

All of the replicate reversing thermometer temperature values, along with the reversing thermometer pressure values are given in Table C.7.

Using the median difference as a measure of the inter-thermometer comparison (the mean is influenced equally by all points, including outliers), we noted that the estimated thermometer difference is 0.002°C. Thus, the difference between thermometers was the same as the difference between thermometers and the CTD. Therefore, we could not distinguish the difference between the thermometers and the CTD. Consequently, we did not apply any temperature calibration to the CTD.

 Table C.7
 Replicate Reversing Thermometer samples. Temperature is in °C and ITS-90 scale.

Г

Sample ID Number	Thermo- meter Serial Number	Main Corrected	WOCE QF
------------------------	--------------------------------------	-------------------	------------

155204	+245	0 1 7 1	2
155204	1345	0.171	2
155204	1047	0.175	2
199204	1304	0.176	2
155313	t345	1.825	2
155313	t347	1 831	2
155313	t881	1.830	2
100010	1001	1.000	~
155315	t354	2.824	2
155315	t884		9
155315	t885	2.821	2
155333	t345	1.689	2
155333	t347	1.695	2
155333	t881	1.695	2
455005	1054	0.450	
155335	t354	2.158	2
155335	t885	2.156	2
155256	+245	1 792	2
155350	+247	1.702	2
100000	1004	1.700	2
155356	1881	1.789	2
155358	t354	2.273	2
155358	t884		9
155358	t885	2.270	2
155379	t345	1.768	2
155379	t347	1.773	2
155379	t881	1.774	2
155381	t354	2.259	2
155381	t885	2.257	2
155/07	t3/5	1 706	2
155/07	+3/17	1.700	2
155/07	1041 1021	1./11	2
100407	1001	1./13	
155409	t354	2.187	2
155409	t884	2.187	2
155409	t885	2.185	2
155430	t345	1.732	2
155430	t347	1.738	2
155430	t881	1.736	2

155432	t354	2.282	3
155432	t884	2.281	3
155432	t885	2.279	3
155453	t345	1.570	2
155453	t347	1.577	2
155453	t881	1.578	2
155455	t354	2.002	2
155455	t884	2.002	2
155455	t885	2.000	2
155476	t345	1.677	2
155476	t347	1.683	2
155476	t881	1.682	2
155478	t354	2.072	2
155478	t884	2.070	3
155478	t885	2.069	2
155499	t345	1.677	2
155499	t347	1.684	2
155499	t881	1.684	2
155501	t354	2.059	2
155501	t884	1.885	3
155501	t885	2.058	2
155522	t345	1.516	2
155522	t347	1.522	2
155522	t881	1.521	2
155524	t354	1.941	2
155524	t884	1.853	3
155524	t885	1.938	2
155545	t345	1.520	2
155545	t347	1.526	2
155545	t881	1.526	2
155547	t354		9
155547	t884		9
155547	t885	1.962	2
155568	t345	1.571	2

Table C.7 Replicate Reversing Thermometer samples. Temperature is in °C and ITS-90 scale.

Sample ID Number	Thermo- meter Serial	Main Corrected	WOCE QF
	Number		

155568	t347	1.577	2			
155568	t881	1 576	2			
100000			_			
155570	t354	1 977	2			
155570	1884	1.577	0			
155570	1004	1 075	9			
155570	1000	1.975	2			
455700	10.45	4 004	0			
155702	1345	1.921	2			
155702	t347	1.928	2			
155702	t881	1.928	2			
155704	t354	2.038	2			
155704	t884	2.036	2			
155704	t885	2.036	2			
155725	t345	1.779	2			
155725	t347	1.786	2			
155725	t881	1.785	2			
155727	t354	2 058	2			
155727	t884	2.058	2			
155727		2.000	2			
100121	1000	2.000	2			
155748	t345	2 511	2			
155748	+347	2.516	2			
155740	+9.9.1	2.510	2			
155746	1001	2.500	2			
155750	+254	2.970	2			
155750	1004	2.070	2			
155750	1884	2.870	2			
155750	t885	2.868	2			
4						
155767	t345	3.302	2			
155767	t347	3.306	2			
155767	t881	3.306	2			
155786	t345		9			
155786	t347	1.987	2			
155786	t881	1.986	2			
155810	t347	1.768	2			
155810	t881	1,769	2			
155833	t347	1 856	2			
155833	<u>+8</u> 81	1.856	2			
100000	1001	1.000	<u> </u>			
155056	+217	2 150	2			
100000	ເວ47	2.150	2			

Sample ID Number	meter Serial Number	Main Corrected	WOCE QF			
-			•			
155856	t881	2.159	2			
155879	t347	2.676	3			
155879	t881	2.675	3			
155000	+2.4.7	0.976	2			
155902	1347 +881	2.070	2			
133902	1001	2.070	2			
155925	t347	3.006	2			
155925	t881	3.006	2			
155948	t347	3.047	2			
155948	t881	3.047	2			
455005	10.47	0.000				
155965	t347	2.980	2			
155965	1881	2.981	2			
156164	t347	2 297	3			
156164	t881	2 296	3			
		2.200	Ŭ			
156187	t347	2.261	2			
156187	t881	2.260	2			
156210	t347	2.271	2			
156210	t881	2.270	2			
156233	t3/17	2 350	2			
156233	t881	2.349	2			
100200	1001	2.010				
156256	t347	2.329	2			
156256	t881	2.328	2			
156279	t347	2.383	2			
156279	t881	2.382	2			
156202	+247	2 4 2 9	2			
156302	1347 t881	2.420	2			
100002		2.720	<u> </u>			
156325	t347	2.467	2			
156325	t881	2.467	2			
156348	t347	2.716	2			
156348	t881	2.714	2			
450074	10.47	0.010				
156371	[34/ +001	2.910	<u>う</u>			
1203/1	IOO I	2.910	3			

9. Helium/Tritium

(Maureen K. F. Noonan)

A total of 242 samples of He and Tr samples were collected by Maureen Noonan for Peter Schlosser of Lamont-Doherty Earth Observatory, Columbia University. See Figure 8 below for the sampling locations across the Labrador Sea.

a. Description of Equipment and Technique

He samples were collected through tygon tubing into copper tubes (40 g capacity) bolted into aluminum channels for support and protection. Tr samples were collected into one-litre Argon filled brown glass bottles, directly from the Niskin spigot.

b. Sampling Procedure and Data Processing Technique

He samples were drawn after the CFC's. Delivery was through tygon tubing, cured in seawater to reduce bubbles, which was monitored for air bubbles. All detected bubbles were worked out of the line. The metal channel holding the copper sample tube was then struck several times on both sides with a ratchet in a pattern from the intake end towards the outflow end of the copper tube in order to pass any air bubbles out of the sample tube. Flushing of the copper tube took place during both parts of the bubble-removing procedure. When air removal and flushing were complete, both ends of the copper tube were sealed by tightening the two bolts at each end with a ratchet wrench starting at the outflow end. GMT time of sampling was routinely noted for each sample. These samples will be shipped to Lamont for analysis.

Tritium samples were collected into argon-filled bottles without rinsing or flushing after all other samples were collected from the rosette. The bottle caps were secured with electrical tape at the completion of each station. These samples will be shipped to Lamont for analysis. Occassionally, the Niskins were drained before the tritium was collected. Careful rinsing of all samples helped alleviate this problem.

Replacement watches were handed out to all persons in the scientific party and the winch drivers who normally wore luminous-dial watches, and a sign was posted at each rosette room door to avoid wearing luminous-dial watches inside the room.

								Lab	rac	lor	· Se	ea 95	Heli	um/T	ritium	Sar	nple
	00			888	800	800					XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	88 88 8	<mark>8</mark> 0	× ×	8000	X X X X X X X X
500	500	_							8 (8 (× ×	0	\bigotimes	0	× ×	0 0	\bigotimes
										C N	8 0	0	\bigotimes	0 0	× ×	0 0	Ø Ø
	1000	_					×	×0&(&0'		C	Ø	0	Ø	0	Ø	0	Ø
(dbar)	1500							000	S X X	× N	Ø	0	O Ø	0	Ø	0	Ø
									c ` c ¤	X X	0	0	0	0	Ø	0	0
sure	2000	_						㤠(2 (C	× ×	0	Ø	0	0	0	Ø
oress								× ×	(X X) X	0	0	Ø	0	\boxtimes	0	Ø
²⁵⁰⁰ 3000	2500	_						⊗ ؤ	× (C C	Ø Ø	0	×	0	Ø	0	Ø
	3000) ۵	C X X X	× C	\bigotimes	0	Ø	0	× ×	0	Ø
										Ø	0	Ø	0	\propto	0	X X	

Figure 8. Location of Helium/Tritium samples drawn across the LSW.

10. Oxygen Isotopes

(Anthony W. Isenor)

a. Sampling Procedure

Water samples were initially collected using a 10 litre rosette bottle. Samples for oxygen isotope analysis were collected last in the sampling. A total of about 600 isotope samples were drawn. Duplicates were drawn on some stations. Samples were collected in 15 ml sample bottles. Samples are being sent to Bob Houghton at Lamont Geological Earth Observatory, Columbia University, Palisades, NY.
1. Current Meter Moorings

(John R. N. Lazier)

a. Description of the Equipment and Technique

There was one recovery (1168) and two deployments (1194 & 1200) of BIO deep sea moorings on cruise 95011.

The recovered mooring (1168) and its replacement (1194) had the same configuration of six Aanderaa current meters, one IOS CTD, one WOTAN, one ADCP, six Seacat CT probes, seven back up buoyancy packages and two acoustic releases. The main subsurface float was either a Braincon float constructed of 10" glass balls supported in a fiberglass structure or a syntactic foam float formed in the same streamlined shape as the Braincon floats.

The second deployed mooring (1200) had a configuration of one main float called a Hibernia Package, one Aanderaa Current Meter, two backup buoyancy packages and one acoustic release.

All three of these moorings were constructed using jacketed 1/4" wire and 5/16" or 1/4" Kevlar. Stainless steel shackles and swivels were used to connect the instruments and backup buoyancy packages. All shackles were secured with a short piece of wire. The acoustic releases were 723A EG&G DACs. The moorings were designed for a 12 month deployment.

The back-up buoyancy packages consisted of two 17" glass balls contained in plastic hard hats and fastened to a stainless steel tension bar one meter in length. These backup buoyancy packages were shackled together to form doubles and triples before they are shackled into the mooring line.

b. Sampling Procedure and Data Processing Techniques

The recovered Aanderaa current meters recorded at a sampling interval of three hours. The data will be processed using standard software packages within the BIO Oceans suite of programs.

c. Calibration Data

The temperature, pressure and direction sensors of the Aanderaa current meters were calibrated in the laboratory prior to deployment. These calibrations were not included in this cruise report.

d. Deployment and Recovery Logs

Mooring No: Geographic Area: Ship: Sea State: Mooring Tech.:	<u>1194</u> Labrador Sea <u>Hudson</u> 2 Murray Scotney	Intended Duration: Cruise no.: Weather Conditions: Navigation Inst.	<u>1 year</u> <u>95011</u> <u>cloudy, cool, S</u> <u>GPS</u>	Date: <u>wind</u>	<u>May 13/95</u>
Latitude:	<u>56 45.15 N</u>	Longitude:	<u>52 27.36 W</u>	Time of Fix:	<u>2018 Z</u>
Deptn:	Raw:	<u>1876 ftm</u>	Corrected:	<u>3502 m</u>	
Main Float:	Туре:	<u>Braincon</u>	Markings:	Govt. of Cana	ada stickers,
			C C	no numbers	
Radio beacon:	Туре:	<u>OAR</u>	Freq.:	<u>163.000</u>	
Light:	Туре:	<u>Novatech</u>	Colour/Rate:	<u>White, 1 sec</u>	
Mooring Line:	Туре:	<u>Jacketed</u>	Colour:	Y <u>ellow</u>	
Release	Туре:	DAC	S/N:	308806 (upp	<u>er</u>
			Release Code:		
				504801 (lowe	<u>er)</u>

Deployment

Deployment Log

Time (Z)	Instrument	Remarks
1838	Main Float	in water
	SEACAT 1493	in water
1841	CM 4355	in water
1844	WOTAN	in water
1847	3 BUB Packages	in water
1850	SEACAT 1893	in water
1857	ADCP	in water
1859	SEACAT 1897	in water
1905	CM 4200	in water
1908	2 BUB Packages	in water
1914	SEACAT 1898	in water
1921	CM 7123	in water
1925	2 BUB Packages	in water
1928	SEACAT 1894	in water
1933	CM 818	in water
1935	SEACAT 1895	in water
1950	CM 9328; SEACAT 1896	in water
2005	Release 308806	in water
2011	CM 4195	in water
2017	Release 504801	in water
2018	Anchor	release

Recovery

Mooring No:	<u>1168</u>				
Ship:	<u>Hudson</u>	Cruise No:	<u>95011</u>	Date:	<u>May 13/95</u>
Mooring Tech:	<u>Scotney</u>				
Type of Nav:	<u>GPS</u>				
Sea State:	<u>2</u>	Weather Condi	tions:	<u>20 kt winds</u>	

Recovery Log

vth Sea Snot
l been picked

Deployment

Mooring No:	<u>1200</u>			
Geographic Area:	Labrador Slope	Intended Duration:	<u>1 year</u>	
Ship:	<u>Hudson</u>	Cruise no.:	<u>95011</u>	Date: <u>May 12/95</u>
Sea State:	<u>0</u>	Weather Conditions:	clear and call	m
Mooring Tech.:	Murray Scotney	Navigation Inst.:	<u>GPS</u>	
Latitude:	<u>55 7.34 N</u>	Longitude:	<u>54 5.74 W</u>	Time of Fix: 0304 Z
Depth:	Raw:	<u>1061 m</u>	Corrected:	<u>1061 m</u>
Main Float:	Туре:		Markings:	
Radio beacon:	Туре:	<u>OAR</u>	Freq.:	<u>163.000 MHz</u>
Light:	Туре:	<u>OAR</u>	Colour/Rate:	<u>White</u>
Mooring Line:	Туре:	Yellow Jacketed wire	Colour:	Yellow
Release	Туре:	<u>EG&G</u>	S/N:	<u>100606</u>
	Release Code:			

Deployment Log

Time (Z)	Instrument	Remarks
0230	Release	Test OK
0245		Mooring assembled
		Light flashing - Beacon working
0300	CM 5577	current meter submerged

2. Inverted Echo Sounders (Randy Watts)

a. Labrador Sea Deployment.

An Inverted Echo Sounder (IES) was launched to serve as a water-column calorimeter along the hydrography line in the central Labrador Sea. The vertically integrated acoustic travel time, which the IES measures round-trip from the ocean bottom to the surface, determines the vertically integrated heat content (relative to one or more calibration CTDs during its moored measurement period).

The site was chosen to take advantage of this natural vertically integrating nature of the measurement, and to attempt to avoid situations where higher order vertical structure might produce significant internal-cancelling. Thus, we were more interested in the central Labrador Sea and its main lens of Labrador Sea Water, than around its periphery, which is known to have surface currents of varied temperature/salinity characteristics. The site, at 57°22.72'N, 51°47.19'W (Station 27, Location 16), was chosen "near" the former Ocean Weather Ship Bravo site, to build upon its historical record; yet "far" (relative to estimated eddy scales) from the Lazier/Rhines mooring, in order to provide heat-content information that is independently affected by eddies. The planned deployment period is about two years, to span the winters of 95-96, and 96-97.

Deployment details:

It couldn't have drifted more than 0.3 NM or 0.5 km.

I reconfirmed this position against what the bridge recorded (57° 22.72'N 51° 47.19'W), which coincided more exactly with the launch time. (Ours was 4 minutes after launch). They were still getting ready to take the calibration CTD while the IES sank, and didn't begin until a few minutes after the IES was on the bottom; so the time is coincident.

b. Newfoundland Basin/ North Atlantic Current recovery.

Six Inverted Echo Sounders with bottom pressure sensors (PIES) had been deployed in August 1993 along the NAC current meter line (on the same R/V Oceanus cruise as the current meter moorings).

The acoustic travel times in this region are functionally related (i.e., with small noise relative to the dominant signals) to the dynamic heights between 3500dbar and a variety of shallower levels in the water column. For initial and final calibration, the IES records require CTD stations.

The baroclinic geostrophic current profile may be determined from the profile of dynamic height differences between neighbouring pairs of IESs. The abyssal or barotropic reference current to make these current profiles absolute may be determined from the gradient of pressure along a deep level. For this purpose, the bottom pressure records will be "levelled" relative to the time-average deep currents that have been coherently measured in this same experiment by the deepest current meters along the NAC line.

An alternative way to reference the velocities, in a time-dependent sense that allows independently for temporally-varying shear in the deep water, is relative to the vertically-averaged currents. The latter may, in future deployments along this same NAC line, be measured by moored horizontal electric field (HEF) recorders. For this experiment, the HEF performance will be simulated from the currents measured at seven levels on the moorings.

This experiment was designed to improve and refine the calibrations and functional relationships that will allow quantitatively accurate determination of the currents and transports in the North Atlantic Current, using a combination of IES/P/HEF and CM measurements.

Recovery Details:

<u>June 28, 1995.</u> At the first IES recovery site IES 73 (# 8.5, Station 81) the instrument was silent or gone.

At site 8.0 IES 71 (Station 82, Cast 1) was recovered with no problems; recovery site agreed within 0.1 km with launch site. CTD Station 82, Cast 2 at 0932-1058Z (start-bottom), 41°54.7'N 44°34.55'W to 41°55.58'N 44°35.32'W. D=4726m.

<u>June 29, 1995.</u> At site 6.5 IES 75 (Station 83, Cast 2) was recovered without problems, but it began screeching once aboard. We had to open it fast since we could not shut it off, both on and reset LED s were constantly on. There was water inside and more impressive there was a large crack in the sphere, we were very lucky it didn't implode. The water appears to have entered after releasing, and the data tape appears to be good.

CTD Station 83, Cast 1 at 1911-2043Z (start-bottom) 42°13.03N 45°39.75'W to 42°13.76'N 45°40.45'W. D= 4580m.

At site 5.5 IES 67 (Station 84, Cast 1) was dead or gone. No acoustic responses. A cable-laying ship was working nearby on a line that passed within less than a mile from site 5.5---makes us wonder if they damaged or knocked it free?°

- <u>June 30, °1995.</u> At site 4.0 we recovered IES 65 (Station 85, Cast 2). It also had a small amount of water that entered after recovery. Data tape appears to be good. CTD Station 85, Cast 1 at 1104-1210 (start-bottom) 42°44.10'N 47°23.20'W to 42°44.33'N to 47°22.64'W. D=3821m.
- <u>July 1, 1995.</u> Recovered IES 69 at site 3.0 (Station 86, Cast 2) during the night. All went well. CTD Station 86, Cast 1 at 0321-0420Z (start-bottom) at 42°56.99N 48°11.07W to 42°56.51'N 48°11.17'W. D=(approx) 3322 dbar.

E. ACKNOWLEDGEMENTS

F. APPENDICES

Appendix 1: Along Track CTD Calibration Information

BSB SEABIRD Model 25-03 Serial Number 258917-0116

Temperature Sensor 031548

 $T = 1/\{a + b[ln(f_0/f)] + c[ln^2[f_0/f] + d[ln^3(f_0/f)]\} - 273.15$

where In indicates a natural logarithm, f is the frequency a = 3.68120903 E-03b = 6.05726873 E-04c = 1.57453931 E-05d = 2.37605653 E-06f_o = 6145.410slope = 1, offset = 0(Seabird calibration dated November 2, 1993)

Conductivity Sensor 041124

Conductivity = $(af^{m} + bf^{2} + c + dt)/[10(1-9.57(10^{-8})p)]$

where f is the frequency, p is pressure in dbars, t is the temperature

 $\begin{array}{l} m = \ 4.4 \\ a = \ 7.91164000 \ \text{E-06} \\ b = \ 4.91698742 \ \text{E-01} \\ c = -4.03526125 \ \text{E+00} \\ d = \ 6.64743265 \ \text{E-05} \\ \text{Slope} = \ 1.00000000 \\ \text{Offset} = \ 0.000 \end{array}$

Irradiance Sensor 1567

where

Fluorometer Sensor 304

where

Scale Factor = 10.000 Offset = 0.000

Appendix 2: 95011 CTD Oxygen Calibrations

INTRODUCTION

The difference between the water sample oxygen values and their corresponding down cast CTD oxygen values was used to calculate suitable CTD oxygen calibration coefficients. There were 88 stations occupied during cruise 95011. All 88 stations used the same CTD oxygen sensor. No Seabird CTD data were obtained at stations: 9, 15, 17, 18, 20, 21, 22, 25, 26, 27, 31, 36, 38, 45, 49, 51, 54, 56, 62, 64, 68, 75, 80, 81, 84, 87 and 88.

Before any CTD oxygen calibrations could be produced, a useful data file had to be assembled that could be used in the calibration process. Two consecutive file merges were performed for each station on the cruise having CTD oxygen data and water sample oxygen data. The resulting merged files were then concatenated to form the data file containing all the necessary data from the cruise.

The two file merges are described below in more detail:

- 1. The up cast CTD data (including only the data obtained from the CTD at the time when the water sample bottles were closed) and the down cast CTD data (2 dbar average) were sorted by pressure in ascending order, then merged. The merge combines up cast CTD records containing a water sample id number with the down cast CTD data having the closest pressure within \pm 2 dbar of the up cast CTD pressure. If no down cast CTD data record was found within 2 dbar, then no record was output to the merged CTD file for that sample id number.
- 2. Using sample id numbers as the merging variable, the CTD file was then merged with a file containing the mean water sample oxygen values.

A plot of oxygen difference (water sample oxygen - down cast CTD oxygen) versus pressure for all stations is shown in Figure 1. The plot indicates considerable nonlinear drift, which make it unreasonable to calculate just one calibration equation for all the data. After looking more closely at the data, it was decided that the cruise should be broken up into smaller groups. The smaller groups were based on the similarity of the oxygen difference versus pressure profiles. Each group was then calibrated separately. The groupings are listed in Table 1.

Station Range	Number of Unique Sample ID Numbers	Number of IDs having no water sample oxygen value(s)	Number of IDs not having a down CTD oxygen value and/or not being present in the Merged CTD file	Number of IDs having both a mean water sample oxygen value and a down cast CTD oxygen value that was con- tained in the Merged CTD file
1 - 7	55	1	0	54
8	9	0	0	9
10	12	2	0	10
11	16	1	0	15
12	19	0	0	19
13	20	0	1	19
14	23	0	0	23
16	23	0	0	23
19	23	1	0	22
23 - 43	385*	126	1	258
44 - 79	607	20	2	585
82 - 86	20	20	0	0
TOTAL	1212*	171	4	1037

* There were 111 sample id numbers, 155590 - 155700, that were not used, but are included in these totals.

Near Surface Data Points Not Used

All oxygen differences associated with a pressure between 0 dbar and 180 dbar were automatically removed prior to CTD oxygen calibration processing. By excluding these points, the turbulent near surface region was avoided thereby making the calibration procedure more accurate for the remainder of the CTD casts. This pressure cutoff was initially applied to the 18HU90012 CTD oxygen calibration process.

WOCE Accuracy Guideline

WOCE has an accuracy guideline for CTD oxygen measurements, which states that the CTD oxygen values should be within 1.0 % to 1.5 % of the mean water sample oxygen value for the cruise.

The mean water sample oxygen value for 95011 was 6.527 ml/l. Therefore, according to WOCE s accuracy guideline, this would imply that the standard deviations of the differences between the water sample oxygens and the calibrated CTD oxygens should be within or below the interval 0.07 to 0.10 ml/l.

Table 1.

Summary of Variables Used in the Calibration Process

The following describes the notation used in the calibration.

- j : station
- i : observation taken on station j
- n_i : is the number of observations taken for station j
- p_{ij}: pressure for the ith observation of station j
- b_{ij} : water sample oxygen for the ith observation of station j
- c_{ij} : down CTD oxygen for the ith observation of station j

 $d_{ij} = b_{ij} - c_{ij}$: ith oxygen difference for station j

$$\sum_{i=1}^n d_{ii}$$

 $d_{i} = n_i$: mean of the oxygen differences for station j

 e_{ij} = d_{ij} - $d_{\cdot j}$: the ith oxygen difference expressed as a deviation from the mean oxygen difference for station j

 ϵ_{ij} : predicted value of d_{ij} (when d_{.j} offset not used) or e_{ij} (when d_{.j} offset is used) from the regression analysis depending if a station offset was subtracted from the station differences before performing the regression analysis

 $r_{ij} = d_{ij} - \epsilon_{ij}$ or $e_{ij} - \epsilon_{ij}$: ith residual for station j resulting from the regression analysis

k_{ii}: calibrated CTD oxygen

if a station offset was used:	if no station offset was used:	
since $r_{ij} = e_{ij} - \varepsilon_{ij} = b_{ij} - k_{ij}$ $d_{ij} - d_{j} - \varepsilon_{ij} = b_{ij} - k_{ij}$ $b_{ij} - c_{ij} - d_{j} - \varepsilon_{ij} = b_{ij} - k_{ij}$	since $r_{ij} = d_{ij} - \epsilon_{ij} = b_{ij} - k_{ij}$ $b_{ij} - c_{ij} - \epsilon_{ij} = b_{ij} - k_{ij}$	
therefore the calibration is:	therefore the calibration is:	
Eqn. 1 $k_{ij} = c_{ij} + d_{j} + \varepsilon_{ij}$	(when d. _j not used) $k_{ij} = c_{ij} + \varepsilon_{ij}$	

Stations 1 to 7

Only 6 points were below the near surface region. Three points for station 3, one for station 6 and two for station 7. Due to the lack of data points it was decided not to produce calibrations for these stations.

Stations 8 to 19

A plot of the oxygen differences versus pressure for these stations is displayed in Figure 2. Each of these stations had CTD oxygen data calibrated separately because of the large drift.

Station 8

Five data points were used in calculating a station offset (mean of the oxygen differences) to be used in calibrating this station s CTD oxygen data. No regression was computed because of the clustered nature of the data points.

Table 2.

Station	Mean of Oxygen Differences (ml/l)	Standard Deviation of Differences (ml/l)
8	3.463	0.15

Station 10

Nine data points were analyzed using regression analysis to obtain calibration coefficients. The regression analysis used oxygen difference (d_{ij}) as the dependent variable and pressure (p_{ij}) as the independent variable. Figure 3 is a plot of d_{ij} against p_{ij} , along with the regression equation (ϵ_{ij}) .

The regression equation was:

Eqn. 2. $\epsilon_{ij} = 4.036 + 1.518E-04 * p_{ij}$

The residuals had a standard deviation of 0.027 ml/l.

Station 11

A regression analysis was performed using 13 data points. The analysis used oxygen difference (d_{ij}) as the dependent variable and pressure (p_{ij}) as the independent variable. A plot of d_{ij} against p_{ij} is shown in Figure 4, along with the regression equation (ϵ_{ij}) .

The regression equation was:

Eqn. 3. $\epsilon_{ij} = 4.514 - 2.714E-04 * p_{ij}$

The residuals had a standard deviation of 0.088 ml/l.

Station 12

A regression analysis using oxygen difference (d_{ij}) as the dependent variable and p_{ij} , p_{ij}^2 and p_{ij}^3 as the independent variables was performed to find calibration coefficients using 16 data points. Figure 5 shows a plot of d_{ij} against p_{ij} and the resulting regression equation (ϵ_{ij}).

The regression equation was:

Eqn. 4.
$$\epsilon_{ij} = 3.917 + 4.844 \text{E}-04 * p_{ij} - 4.654 \text{E}-07 * p_{ij}^2 + 9.091 \text{E}-11 * p_{ij}^3$$

The residuals had a standard deviation of 0.036 ml/l.

Station 13

Sixteen data points were used in performing a regression analysis. The regression analysis used oxygen difference (d_{ij}) as the dependent variable and p_{ij} , p_{ij}^2 and p_{ij}^3 as the independent variables. A plot showing d_{ij} against p_{ij} and the estimated regression equation (ϵ_{ij}) is given in Figure 6.

The regression equation was:

Eqn. 5. $\epsilon_{ij} = 3.431 + 6.670E-04 * p_{ij} - 5.584E-07 * p_{ij}^{2} + 1.128E-10 * p_{ij}^{3}$

The residuals had a standard deviation of 0.040 ml/l.

Station 14

A regression analysis using 20 data points, oxygen difference (d_{ij}) as the dependent variable and p_{ij} , p_{ij}^{2} and p_{ij}^{3} as the independent variables was conducted to find calibration coefficients. A plot of d_{ij} against p_{ij} is pictured in Figure 7. The estimated regression equation (ϵ_{ij}) is also displayed.

The regression equation was:

Eqn. 6. $\epsilon_{ij} = 2.897 + 9.746E-04 * p_{ij} - 7.048E-07 * p_{ij}^{2} + 1.327E-10 * p_{ij}^{3}$

The residuals had a standard deviation of 0.052 ml/l.

Station 16

Twenty data points were used in a regression analysis. The regression analysis used oxygen difference (d_{ij}) as the dependent variable and p_{ij} , p_{ij}^2 and p_{ij}^3 as the independent variables to obtain calibration coefficients. A plot of d_{ij} against p_{ij} and the estimated regression equation (ϵ_{ij}) are given in Figure 8.

The regression equation was:

Eqn. 7.
$$\epsilon_{ij} = 2.761 + 7.149E-04 * p_{ij} - 5.186E-07 * p_{ij}^2 + 9.504E-11 * p_{ij}^3$$

The residuals had a standard deviation of 0.032 ml/l.

Station 19

A regression analysis using oxygen difference (d_{ij}) as the dependent variable and p_{ij} , p_{ij}^2 and p_{ij}^3 as the independent variables was conducted to find calibration coefficients using 20 data points. Figure 9 shows d_{ij} plotted against p_{ij} , the estimated regression equation (ϵ_{ij}) is also shown.

The regression equation was:

Eqn. 8. $\epsilon_{ij} = 2.450 + 6.894 \text{E-}04 * p_{ij} - 4.388 \text{E-}07 * p_{ij}^{2} + 7.643 \text{E-}11 * p_{ij}^{3}$

The residuals had a standard deviation of 0.054 ml/l.

Stations 23 to 43

There were 216 data points available for a regression analysis that used oxygen difference (d_{ij}) as the dependent variable and p_{ij} , p_{ij}^2 and p_{ij}^3 as the independent variables. Figure 10 displays a plot of d_{ij} against p_{ij} and the estimated regression equation (ϵ_{ij}).

The regression equation was:

Eqn. 9. $\epsilon_{ii} = 2.229 + 4.174E-04 * p_{ii} - 3.187E-07 * p_{ii}^{2} + 6.226E-11 * p_{ii}^{3}$

A residual plot is given in Figure 11. The residuals had a standard deviation of 0.108 ml/l.

Note: All data points for stations 42 and 43 were located in the near surface region; but the data points lay within the data points for stations 23 to 41. Therefore, the regression equation computed for stations 23 to 41 (i.e. Eqn. 9) will also be used for stations 42 and 43.

Stations 44 to 79

An outlier data point corresponding to sample id number 155833 was removed. A plot of the oxygen differences versus pressure for these stations is displayed in Figure 12. The mean of the oxygen differences (station offset d._j) for each station was calculated (see Table 3), then the e_{ij} values were calculated. A regression analysis was performed using the 491 remaining data points. The regression used e_{ij} as the dependent variable and p_{ij}, p_{ij}², and p_{ij}³ as the independent variables. The regression equation is given below as Eqn. 10. A plot of e_{ij} versus p_{ij}, along with the estimated regression curve (ϵ_{ij}) is shown in Figure 13.

Table 3.

Station	Mean of Oxygen	Standard Deviation of
	Differences (ml/l)	the Difference (ml/l)
44	1.986	0.11
46	2.113	0.09
47	2.078	0.13
48	2.013	0.17
50	1.966	0.13
52	2.009	0.10
53	1.937	0.12
55	2.031	0.11
57	1.911	0.15
58	1.932	0.21
59	1.973	0.11
60	1.924	0.25
61	1.955	0.20
63	2.002	0.24
65	1.824	0.27
66	1.767	0.18
67	1.970	0.26
69	1.878	0.34
70	2.017	0.22
71	1.913	0.32
72	1.924	0.34
73	1.860	0.26
74	1.882	0.22
76	1.886	0.27
77	1.897	0.24
78	1.875	0.25
79	1.749	0.27

The regression equation was:

Eqn. 10. $\epsilon_{ii} = -0.2$

 ϵ_{ij} = -0.525 + 7.124E-04 * p_{ij} - 2.671E-07 * p_{ij}^{2} + 3.273E-11 * p_{ij}^{3}

A residual plot is given in Figure 14. The residuals had a standard deviation of 0.149 ml/l. However, the standard deviation for the points having a pressure >=1500 dbars is 0.077 ml/l.

Stations 82 to 86

No water sample oxygen values were available for these stations; thus no oxygen differences could be calculated and used in calibrating the CTD oxygen data. In order to calibrate the data for these stations, the average of the oxygen differences for stations 76 to 79 (1.852 \pm 0.08) and Eqn. 10 was used in the calibration of these stations.

CTD Oxygen Calibration Procedure

The CTD oxygen data was calibrated for each CTD station according to the following expression:

Eqn. 1 $k_{ij} = c_{ij} + d_{ij} + \varepsilon_{ij}$

where

- k_{ij} is the calibrated CTD oxygen value
- c_{ii} is the raw CTD oxygen value

d., the station offset:

- is given in Table 2 for station 8,
- is 0 for stations 10 to 14, 16, 19, 23 to 43 and
- is given in Table 3 for stations 44 to 79, and
- is given by 1.852 for stations 82 to 86.

 $\epsilon_{\mbox{\scriptsize ij}}$ the regression offset:

is 0 for station 8,
is given as Eqn. 2 for station 10,
is given as Eqn. 3 for station 11,
is given as Eqn. 4 for station 12,
is given as Eqn. 5 for station 13,
is given as Eqn. 6 for station 14,
is given as Eqn. 7 for station 16,
is given as Eqn. 8 for station 19,
is given as Eqn. 9 for station 23 to 43, and
is given as Eqn. 10 for station 44 to 86.

All CTD oxygen data for the listed stations will be calibrated by the above procedure regardless of pressure.

Figure 1. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij).

95011: STATIONS 8 TO 19

Figure 2. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij).

Figure 3. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown. The symbol colors are the same as used in Figure 2 for this station.

Figure 4. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown. The symbol colors are the same as used in Figure 2 for this station.

Figure 5. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown. The symbol colors are the same as used in Figure 2 for this station.

Figure 6. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown. The symbol colors are the same as used in Figure 2 for this station.

Figure 7. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown. The symbol colors are the same as used in Figure 2 for this station.

Figure 8. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown. The symbol colors are the same as used in Figure 2 for this station.

Figure 9. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown. The symbol colors are the same as used in Figure 2 for this station.

Figure 10. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij). Regression line is also shown.

95011: STATIONS 23 TO 43

Figure 11. Residuals (rij) remaining after the regression offset have been removed.

95011: STATIONS 44 TO 79

Figure 12. Water sample oxygen minus CTD down cast oxygen (dij) plotted against pressure (pij).

95011: STATIONS 44 TO 79

Figure 13. Oxygen difference expressed as a deviation from the mean oxygen difference (eij) plotted against pressure (pij) with regression line shown.

95011: STATIONS 44 TO 79

Figure 14. Residuals (rij) remaining after the station and regression offsets have been removed.

G. REFERENCES

- Carritt, D.E. and J.H. Carpenter. 1966. Comparison and Evaluation of Currently Employed Modifications of the Winkler Method for Determining Dissolved Oxygen in Seawater. A NASCO Report, Jour. Mar. Res., 24, 268-318.
- Clarke, R. Allyn, Jean-Guy Dessureault and Geoff Lebans. 1995. Upper Ocean Profiling from Vessels Underway, Sea Technology, February 1995.
- Jones, E.P., F. Zemlyak and P. Stewart. 1992. Operating Manual for the Bedford Institute of Oceanography Automated Dissolved Oxygen Titration System. Can. Tech. Rep. of Hydrography and Ocean Sci. 138: iv+51p.
- Levy, E.M., C.C. Cunningham, C.D.W. Conrad and J.D. Moffatt. 1977. The Determination of Dissolved Oxygen in Sea Water, Bedford Institute of Oceanography Report Series, BI-R-77-9, August 1977.

Data Processing History:

Date	Last Name	Data Type	Data Status	Summary	
8/22/95	Lazier	CTD/SUM/DOC	Submitted		
11/5/96	Sy BSH, Hamburg A. Sy	CTD/BTL	Update Needed	See note:	
	5 November 1996 To whom it may concern:				
	Cruise "Meteor"	30, leg 3, bottle da	ata processing.		
	Because of the v from requirement ought to have be software. Thus requirements as	very limited resour nts outlined in Wl een assembled ac please, note described in WHF	ces it was necessary to de HPO 90-1. Otherwise diffe ccording specific needs a the differences from V PO 90-1 (section 3.3).	eviate in some points erent bottle data files nd specific computer VHP water sample	
	Data are reporte CTD rosette are cruise.	ed in terms of corr e corrected. No s	ected samples, i.e. mis- erious rosette problems	or double trips in the occured during this	
	Clearly bad (we measurements leaking (malfunc or less reasona	Rearly bad (wrong) bottle trips have been removed completely. Bad single neasurements have been removed and marked by 4. Samples drawn from eaking (malfunctioning) bottles are not reported except values seem to be mor- r less reasonable.			
	BIO denotes the Bedfort numbering system we used.				
	CTDRAW is not acquisition data bottle data file. (unloading courv	ot a real raw pressure. The values reported are calibrated in our ta stream (transformation in physical units (dbar)) and stored in the e. CTDRAW is corrected according laboratory calibration results urve) and pressure offset correction from beginning of profile.			
	CTDTMP is repo	orted in ITS-90.			
	CTDSAL has been corrected with in-situ salinity correction. Standard Co used was C(15,35,0)=42.914.			Standard Conductivity	
	OXYGEN has measured.	not been yet cor	overted to UMOL/KG. Th	ey are reported as	
	Finally: if you find errors of any kind, discrepancies in the data, etc, etc, please contact me. As anyone else I would like to work with the best available version of Meteor 30/3 data.				
	Address information or inquiries should be sent to: Alexander Sy Bundesamt fuer Seeschiffahrt und Hydrographie Bernhard-Nocht-Str. 78 D-22359 Hamburg				
	Germany Tel: + 40 3190 3 Fax: + 40 3190 5 email: sy@ham	430 5000 burg.bsh.d400.de			

Data Processing History:

Date	Last Name	Data Type	Data Status	Summary
4/7/98	Schott	Cruise ID	Data Update	
	North Atlantic cr	uise list		
	Enclosed please	e find a list of cruis	es (since 1990) we use a	s references for our
	work or are awa	re of in the North A	tlantic.	
	18HU95011-1 H	udson 09.0602	.07.1995 J. Lazier BIC)
3/9/99	Карра	DOC	PDF Version Created	
2/11/00	Diggs	CTD/BTL/SUM/	Website Updated	files added to
3/24/00	Schlosser	He/Tr	Data are Public	See note:
	as mentioned in indicates that the and we will con expected order of	n my recent mess ey are not yet final. atinue with the tran of delivery in my la	age, we will release our We started the process of nsfer during the next we st message.	data with a flag that f transferring the data eks. I had listed the
2/20/01	Карра	DOC	Doc Update	
	Found complete	doc to replace on	line docs. Caroline is proc	ducing txt version.
3/16/01	Uribe	CTD/BTL	Website Updated	Expocodes updated
	Danie and I hav	e edited the expo	code in all ctd files and th	e bottle to match the
	underscored ex	pocode in the sur	n and bottle files. New fi	les were zipped and
	replaced existing ctd files online. Old files were moved to original directory.			ginal directory.
4/23/01	KAPPA	DOC	PDF, TXT files updated	
	Data Processing WHO cruise trac files.	g History added, ck added to PDF fi	Figures linked to text rel ile, numerous sections ac	ferences in PDF file, Ided to PDF and TXT