ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,262)
  • Cambridge University Press  (1,059)
  • Blackwell Publishing Ltd
  • 1995-1999  (530)
  • 1980-1984  (732)
  • 1925-1929
  • 1995  (530)
  • 1984  (379)
  • 1980  (353)
  • Physics  (1,262)
Collection
  • Articles  (1,262)
Years
  • 1995-1999  (530)
  • 1980-1984  (732)
  • 1925-1929
Year
Journal
  • 1
    Publication Date: 1995-08-25
    Description: The evolution of two-dimensional regular flows laden with solid heavy particles is studied analytically and numerically. The particulate phase is assumed to be dilute enough to neglect the effects of particle-particle interactions. Flows with large Reynolds and Froude numbers are considered, when effects related to viscous dissipation and gravity are negligible. A Cauchy problem is solved for an initially uniform distribution of particles with Stokes (St) and Reynolds (Rep) numbers of order unity in several types of flows representing steady solutions of the two-dimensional Euler equations. We consider flows in the vicinity of the hyperbolic stagnation point (with a uniform strain and zero vorticity) and the elliptic stagnation point (where vorticity is uniform), a circular vortex (with vorticity depending on the radius) and Stuart vortex flow. Analytical solutions are obtained, for the case of sufficiently small St, describing the accumulation of particles and corresponding modification of the fluid flow. Solutions derived show that the concentration of particles, although remaining uniform, decreases at the elliptic stagnation point and grows at the hyperbolic point. Owing to the coupling between the particulate and fluid dynamics, the flow vorticity is reduced at the elliptic point, while flow strain rate is enhanced at the hyperbolic point. Solutions obtained for the circular vortex show that the accumulation of particles proceeds in the form of a travelling wave. The concentration grows locally, forming the crest of the wave which propagates away from the vortex centre. Owing to the influence of the particulate on the carrier flow, the vorticity is reduced in the vortex centre. At the location of the crest the gradient of the flow grows owing to the drag forces between the fluid and particles and a vorticity peak is generated. Analytical solutions are also obtained for a chain of particle-laden Stuart vortices. Owing to the coupling effects, the concentration is diminished and the vorticity is reduced at the centres of the vortices. A sheet of increased concentration and vorticity is formed extending from the braid region to the periphery of the vortices, and the flow strain in the braid region is enhanced. Results of numerical simulations performed for St = 0.5 show good agreement with analytical solutions. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-08-10
    Description: A well-known technique for metering a multiphase flow is to use small probes that utilize some measurement principle to detect the presence of different phases surrounding their tips. In almost all cases of relevance to the oil industry, the flow around such local probes is inviscid and driven by surface tension, with negligible gravitational effects. In order to study the features of the flow around a local probe when it meets a droplet, we analyse a model problem: the interaction of an infinite, initially straight, interface between two inviscid fluids, advected in an initially uniform flow towards a semi-infinite thin flat plate oriented at 90° to the interface. This has enabled us to gain some insight into the factors that control the motion of a contact line over a solid surface, for a range of physical parameter values. The potential flows in the two fluids are coupled nonlinearly at the interface, where surface tension is balanced by a pressure difference. In addition, a dynamic contact angle boundary condition is imposed at the three-phase contact line, which moves along the plate. In order to determine how the interface deforms in such a flow, we consider the small- and large-time asymptotic limits of the solution. The small-time and linearized large-time problems are solved analytically, using Mellin transforms, whilst the general large-time problem is solved numerically, using a boundary integral method. The form of the dynamic contact angle as a function of contact line velocity is the most important factor in determining how an interface deforms as it meets and moves over the plate. Depending on this, the three-phase contact line may, at one extreme, hang up on the leading edge of the plate or, at the other extreme, move rapidly along the surface of the plate. At large times, the solution asymptotes to an interface configuration where the contact line moves at the far-field velocity. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-07-10
    Description: The impact of a nearly cylindrical water mass on a water surface is studied both experimentally and theoretically. The experiments consist of the rapid release of water from the bottom of a cylindrical container suspended above a large water tank and of the recording of the free-surface shape of the resulting crater with a high-speed camera. A bubble with a diameter of about twice that of the initial cylinder remains entrapped at the bottom of the crater when the aspect ratio and the energy of the falling water mass are sufficiently large. Many of the salient features of the phenomenon are explained on the basis of simple physical arguments. Boundary-integral potential-flow simulations of the process are also described. These numerical results are in fair to good agreement with the observations. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-04-10
    Description: The neutral stability curve for the flat-plate boundary layer has been calculated using the Orr-Sommerfeld equation and compared to those obtained using upper- and lower-branch scalings. The Orr-Sommerfeld results agree well with the lower-branch scaling at Reynolds numbers relevant to experiment, but agree well with the upper-branch scaling only for R3〉 105. It is shown that the critical layer only emerges from the viscous wall layer when Rs〉 105. This suggests that for R3〈 105, when the critical layer lies within the viscous wall layer, the disturbance has a triple-deck structure, even for the upper branch of the neutral curve (which can be reached if the phase jump across the critical layer is retained). The transition from a triple-deck to a five-deck structure with increasing Reynolds number on the upper branch occurs relatively abruptly and can be associated with a square-root branch point in the Tietjens function. Essentially, the lower- and upper-branch scalings pertain to two different modes, the first possessing a triple-deck structure, the second a five-deck structure. The modes are connected at the branch point, and the neutral curves of each mode join to give a single curve close to this branch point. The asymptotic expansions for the upper- and lower-branch neutral curves depend upon the analyticity of the dispersion relationship, and so the proximity of the branch point indicates where these expansions will be liable to inaccuracies. This explains the poor neutral-curve predictions made by five-deck analyses at the Reynolds numbers where transition occurs. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-04-10
    Description: The linearized inertial instability of the parallel shear flow of a viscoelastic liquid is considered. An elastic Rayleigh equation is derived, for high Reynolds numbers and high Weissenberg numbers, and for a viscoelastic liquid whose first normal stress dominates other stresses. The equation is used to investigate the stability of a submerged jet, that may be planar or axisymmetric, having a parabolic velocity profile. The sinuous mode is found to be fully stabilized by sufficiently large elasticity. The varicose mode in the planar case is partially stabilized, being unstable only at longer wavelengths and with a reduced growth rate. An axisymmetric jet, which is stable to varicose perturbations at zero elasticity, is found to be unstable to shortwave disturbances for small non-zero elasticity. This novel instability involves elastic waves in the shear. It is also present in other modes but does not have the fastest growth rate. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-04-10
    Description: Recent studies have demonstrated the strong influence of end effects on low-Reynoldsnumber bluff body wakes, and a number of questions remain concerning the intrinsic nature of three-dimensional phenomena in two-dimensional configurations. Some of them are answered by the present study which investigates the wake of bluff rings (i.e. bodies without ends) both experimentally and by application of the phenomenological Ginzburg–Landau model. The model turns out to be very accurate in describing qualitative and quantitative observations in a large Reynolds number interval. The experimental study of the periodic vortex shedding regime shows the existence of discrete shedding modes, in which the wake takes the form of parallel vortex rings or ‘oblique’ helical vortices, depending on initial conditions. The Strouhal number is found to decrease with growing body curvature, and a global expression for the Strouhal–Reynolds number relation, including curvature and shedding angle, is proposed, which is consistent with previous straight cylinder results. A secondary instability of the helical modes at low Reynolds numbers is discovered, and a detailed comparison with the Ginzburg–Landau model identifies it as the Eckhaus modulational instability of the spanwise structure of the near-wake formation region. It is independent of curvature and its clear observation in straight cylinder wakes is inhibited by end effects. The dynamical model is extended to higher Reynolds numbers by introducing variable parameters. In this way the instability of periodic vortex shedding which marks the beginning of the transition range is characterized as the Benjamin–Feir instability of the coupled oscillation of the near wake. It is independent of the shear layer transition to turbulence, which is known to occur at higher Reynolds numbers. The unusual shape of the Strouhal curve in this flow regime, including the discontinuity at the transition point, is qualitatively reproduced by the Ginzburg–Landau model. End effects in finite cylinder wakes are found to cause important changes in the transition behaviour also: they create a second Strouhal discontinuity, which is not observed in the present ring wake experiments. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-03-10
    Description: The turbulent structure in plane Couette flow at low Reynolds numbers is studied using data obtained both from numerical simulation and physical experiments. It is shown that the near-wall turbulence structure is quite similar to what has earlier been found in plane Poiseuille flow; however, there are also some large differences especially regarding Reynolds stress production. The commonly held view that the maximum in Reynolds stress close to the wall in Poiseuille and boundary layer flows is due to the turbulence-generating events must be modified as plane Couette flow does not exhibit such a maximum, although the near-wall coherent structures are quite similar. For two-dimensional mean flow, turbulence production occurs only for the streamwise fluctuations, and the present study shows the importance of the pressure—strain redistribution in connection with the near-wall coherent events. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-03-25
    Description: According to numerous experimental observations and theoretical models vibrated layers composed of large granules behave like a solid plastic body. In contrast, in this study experimental data are presented that reveal that, for constant vibration amplitudes A ≥ 1 cm with the frequency ω increasing from zero, all layers pass through three vibrational states, with the respective behaviours being as of (i) a solid plastic body, (ii) a liquid, (iii) a gas. In the liquid-like vibrational state transverse waves propagating along the layer width were observed. These waves were shown to be gravitational resonance waves, with the corresponding frequencies well correlated by the known formula for incompressible liquids. In the gas-like vibrational state compression (shock) and expansion waves propagating across the layer height, were observed. A theoretical model for time-periodic collisional vibrational regimes was developed on the basis of the Euler-like equations of a granular gas composed of inelastic spheres. The model shows that the vibrational granular state (bed porosity, shock wave speed, granular pressure and kinetic energy) is inter alia governed by the dimensionless parameter V = (Aω)/(hmg)1/2, with g, hm being the gravitational acceleration and the height of the resting layer, respectively. This is in contrast with the previous studies, where the behaviour of vibrated granular layers was interpreted in terms of the dimensionless acceleration Δ = (Aω2)/g. The proposed model was tested by processing the data obtained from photographs of the particle distribution within vibrated layers. Theoretical predictions of the particle average concentration compared favourably with the experimental data. Other phenomena observed in vibrated granular layers include the formation of caverns, circulatory motion of granules and synchronized periodic motion of two adjacent vibrated layers of different widths. The importance of the observed phenomena in relation to various technological processes involving bulk materials (vibromixing, vibroseparation, etc.) is discussed. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-03-10
    Description: Some methods of formation of preforms for drawing of polarization-maintaining optical fibres are based on utilization of the surface tension of glass in the liquid state. Under the action of surface tension non-circular glass articles begin to flow, which results in formation of an anisotropic internal structure of the preforms. The hydrodynamic analysis of two such methods is given in the paper. Analytical solutions of the Stokes equations with linearized boundary conditions for the corresponding creeping surface-tension-driven flows of liquid glass are obtained. By means of these solutions a processing strategy may be predetermined with a view to a specific internal structure of the fibre, as well as to the required value of birefringence. The theoretical results are compared with experimental data and agreement is fairly good. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-10-10
    Description: A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R-1in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R-1) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R-1) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R-1except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1995-10-10
    Description: The use of the mild-slope approximation, which is invoked to simplify the problem of linear water wave diffraction—refraction by bed undulations, is reassessed by using a variational method. It is found that smooth approximations to the free surface elevation obtained by using the long-standing mild-slope equation are not consistent with the continuity of mass flow at locations where the bed slope is discontinuous. The use of interfacial jump conditions at such locations significantly improves the accuracy of approximations generated by the mild-slope equation and by the recently derived modified mild-slope equation. The variational principle is also used to produce a generalization of these equations and of the associated jump condition. Numerical results are presented to illustrate the main points of the theory. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1995-02-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1995-02-10
    Description: The trapping of surface water waves by a thin plate in deep water is reduced to finding non-trivial solutions of a homogeneous, hypersingular integral equation for the discontinuity in velocity potential across the plate. The integral equation is discretized using an expansion-collocation method, involving Chebyshev polynomials of the second kind. A non-trivial solution to the problem is given by the vanishing of the determinant inherent in such a method. Results are given for inclined flat plates, and for curved plates that are symmetric with respect to a line drawn vertically through their centre. Comparisons with published results for horizontal flat plates (in water of finite depth) and for circular cylinders are made. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1995-03-10
    Description: The unsteady laminar necklace vortex system formed at the junction of a rectangular bluff body and a flat plate was studied experimentally using hydrogen bubble flow visualization and particle image velocimetry (PIV). The vortex system was found to exhibit unsteady behaviour similar to that described by other investigators for cylinder-flat plate junctures, and is characterized by the periodic formation of necklace vortices upstream of the body that subsequently break away and advect towards the block. Detailed analysis of PIV measurements on the plane of symmetry indicates that the dominant mechanism for vorticity balance in the vortex system is the cross-cancellation of the vorticity of the necklace vortex with vorticity of opposite sign generated by interaction of the necklace vortex with the approach surface to the body. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1995-03-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1995-02-10
    Description: The unsteady nonlinear potential flow induced by a submerged line source or sink is studied by a vortex sheet method, both to trace the free surface evolution and to explore the possible existence of steady-state solutions. Only steady-state flows have been considered by other investigators, and these flows have been insensitive to whether they are generated by a source or sink, except with respect to the flow direction along the streamlines. The time-dependent solution permits an assessment of the stability of previously found steady solutions, and also reveals differences between source and sink flows: for the infinite-depth case, steady stagnation-point-type solutions are found for source flows, even above the critical value of source/sink strength reported by other investigators; for the finite-depth case, steady stagnation-point-type solutions are found both for source flows and sink flows, above the critical value reported by other investigators; finally, it is shown that streamline patterns of steady stagnation-point flows are identical for source and sink flows only in the limiting case of infinite depth. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1995-02-10
    Description: A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. We derive a simple non-similar analytic solution of the problem for which the interface height is proportional to x1/4and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggest that this asymptotic non-similar air-water boundary layer solution is a global attractor for all initial conditions. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1995-02-10
    Description: Steady flow with constant circulation into a vertical drain is considered. The precise details of the outflow are simplified by assuming that the drain is equivalent to a distributed volume sink, into which the fluid flows with uniform downward speed. It is shown that a maximum outflow rate exists, corresponding to no fluid circulation and vertical entry into the drain hole. Numerical solutions to the full nonlinear problem are computed, using the method of fundamental solutions. An approximate analysis, based on the use of the shallow-water equations, is presented for flows in which the free surface enters the drain. There is, in addition, a second type of solution, having a stagnation point at the free surface and no fluid circulation. These flows are also computed numerically, and results are presented. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1995-02-01
    Description: We have experimentally studied the effects of mean strain on the evolution of stably stratified turbulence. Grid-generated turbulence in a stable linear mean background density gradient was passed through a two-dimensional contraction, contracting the stream only in the vertical direction. This induces an increase in stratification strength, which reduces the largest vertical overturning scales allowed by buoyancy forces. The mean strain through the contraction causes, on the other hand, stretching of streamwise vortices tending to increase the fluctuation levels of the transverse velocity components. This competition between buoyancy and vortex stretching dominates the turbulence dynamics inside and downstream of the contraction. Comparison between non-stratified and stratified experiments shows that the stratification significantly reduces the vertical velocity fluctuations. The vertical heat flux is initially enhanced through the contraction. Then, farther downstream the flux quickly reverses, leading to very strong restratification coinciding with an increase in the vertical velocity fluctuations. The vertical heat flux collapses much more rapidly than in the stratified case without an upstream contraction and the restratification intensity is also much stronger, showing values of normalized flux as strong as −0.55. Velocity spectra show that the revival of vertical velocity fluctuations, due to the strong restratification, starts at the very largest scales but is then subsequently transferred to smaller scales. The distance from the turbulence-generating grid to the entrance of the contraction is an important parameter which was varied in the experiments. The larger this distance, the larger the integral length scale can grow, approaching the limit set by buoyancy, before entering the contraction. The evolution of the various turbulence length scales is described. Two-point measurements of velocity and temperature transverse integral scales were also performed inside the contraction. The emergence of ‘zombie’ turbulence, for large buoyancy times, is in good quantitative agreement with the numerical simulations of Gerz & Yamazaki (1993) for stratification number larger than 1. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1995-02-01
    Description: Considerable confusion surrounds the longstanding question of what constitutes a vortex, especially in a turbulent flow. This question, frequently misunderstood as academic, has recently acquired particular significance since coherent structures (CS) in turbulent flows are now commonly regarded as vortices. An objective definition of a vortex should permit the use of vortex dynamics concepts to educe CS, to explain formation and evolutionary dynamics of CS, to explore the role of CS in turbulence phenomena, and to develop viable turbulence models and control strategies for turbulence phenomena. We propose a definition of a vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor S2+122; here S and Q are respectively the symmetric and antisymmetric parts of the velocity gradient tensor ∇u. This definition captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers, unlike a pressure-minimum criterion. We compare our definition with prior schemes/definitions using exact and numerical solutions of the Euler and Navier-Stokes equations for a variety of laminar and turbulent flows. In contrast to definitions based on the positive second invariant of ∇u or the complex eigenvalues of ∇u. our definition accurately identifies the vortex core in flows where the vortex geometry is intuitively clear. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1995-02-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1995-02-10
    Description: Nonlinear kink instabilities of high-Reynolds-number supersonic shear layers have been studied using high-resolution computer simulations with the piecewise-parabolic-method (PPM). The transition region between the two fluids of the shear layer is spread out over many computational zones to avoid numerical effects introduced on the smallest lengthscales. Mach number, density contrast, and perturbation speed and amplitude were varied to study their effects on the growth of the kink instabilities. In response to a perturbing sound wave, a travelling kink mode grows in amplitude until enough of a disturbance on the shear layer has been created for it to roll up and rapidly grow in thickness. The time it takes for this rapid growth to be initiated is proportional to the initial shear-layer thickness and increases for increasing Mach number or decreasing perturbation amplitude. For equal density, Mach 4 shear layers, perturbed by a sound wave with a 2 % amplitude at the travelling mode velocity, the growth time is rg = (546 ± 24) S/c9 where c is the sound speed and 8 the half-width of the shear layer. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1995-09-25
    Description: It is well known that the imposition of a static magnetic field tends to suppress motion in an electrically conducting liquid. Here we look at the magnetic damping of liquid-metal flows where the Reynolds number is large and the magnetic Reynolds number is small. The magnetic field is taken as uniform and the fluid is either infinite in extent or else bounded by an electrically insulating surface S. Under these conditions, we find that three general principles govern the flow. First, the Lorentz force destroys kinetic energy but does not alter the net linear momentum of the fluid, nor does it change the component of angular momentum parallel to B. In certain flows, this implies that momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow in such a way that the global Joule dissipation, D, decreases, and this decline in D is even more rapid than the corresponding fall in global kinetic energy, E. (Note that both D and E are quadratic in u.) Third, this decline in relative dissipation, D/E, is essential to conserving momentum, and is achieved by propagating linear or angular momentum out along the magnetic field lines. In fact, this spreading of momentum along the /Mines is a diffusive process, familiar in the context of MHD turbulence. We illustrate these three principles with the aid of a number of specific examples. In increasing order of complexity we look at a spatially uniform jet evolving in time, a three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both space and time. We start with a spatially uniform jet which is dissipated by the sudden application of a transverse magnetic field. This simple (perhaps even trivial) example provides a clear illustration of our three general principles. It also provides a useful stepping-stone to our second example of a steady three-dimensional jet evolving in space. Unlike the two-dimensional jets studied by previous investigators, a three-dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section deforms in such a way that the momentum flux of the jet is conserved, despite a continual decline in its energy flux. We conclude with a discussion of magnetic damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot destroy the motion, but rather rearranges the angular momentum of the flow so as to reduce the global kinetic energy. This process ceases, and the flow reaches a steady state, only when the angular momentum is uniform in the direction of the field lines. This is closely related to the tendency of magnetic fields to promote two-dimensional turbulence. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1995-09-25
    Description: The lateral capillary interaction between two particles immersed in a spherical thin liquid film is investigated. The interfacial shape, the lateral capillary force and the interparticle interaction energy are calculated by using the numerical solution of the linearized Laplace equation of capillarity. Orthogonal bipolar coordinates on a sphere (inducing biconical coordinates in space) are introduced as a helpful instrument for solving this problem and other problems of similar geometry. We consider two types of boundary conditions at the particle surfaces: fixed contact angle and fixed contact line. We established that for particles of fixed contact angle the capillary interaction energy depends monotonically on the interparticle distance whereas for particles of fixed contact line the interaction energy exhibits a maximum. The numerical results show that in both cases the capillary interaction is much larger than the thermal energy kT and can induce aggregation and ordering of submicrometre particles. These theoretical findings can be important for understanding the properties of Pickering emulsions (stabilized by particles) and liposomes or biomembranes containing incorporated membrane proteins. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1995-09-25
    Description: A convex variational principle is used to obtain a generalization of the empirical nonlinear one-dimensional Forchheimer-extended Darcy flow equation to the multidimensional and anisotropic (tensor permeability) case. A modified permeability that is a function of flow velocity (or pressure gradient) is introduced in order to transform the nonlinear flow equation into a pseudo-linear form. Imposing an incompressibility condition on this pseudo-linear equation leads to a flow equation in Euler-Lagrange form which is used to build the corresponding variational principle. It is demonstrated that the variational principle is based on minimizing the power (time rate of doing work) required by the fluid to flow at a certain velocity under a prescribed pressure gradient. A consistent generalization of the Forchheimer equation to the tensor case then follows from the variational principle. The existence and uniqueness of solutions to the nonlinear flow equations might also be demonstrated using the variational principle on a case by case basis, once appropriate boundary conditions are chosen. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1995-09-25
    Description: Liquid-metal magnetohydrodynamic flow in a system of electrically coupled U-bends in a strong uniform magnetic field is studied. The ducts composing the bends are electrically conducting and have rectangular cross-sections. It has been anticipated that very strong global electric currents are induced in the system, which modify the flow pattern and produce a very high pressure drop compared to the flow in a single U-bend. A detailed asymptotic analysis of flow for high values of the Harmann number (in fusion blanket applications of the order of 103–104) shows that circulation of global currents results in several types of peculiar flow patterns. In ducts parallel to the magnetic field a combination of helical and recirculatory flow types may be present and vary from one bend to another. The magnitude of the recirculatory motion may become very high depending on the flow-rate distribution between the bends in the system. The recirculatory flow may account for about 50 % of the flow in all bends. In addition there are equal and opposite jets at the walls parallel to the magnetic field, which are common to any two bends. The pressure drop due to three-dimensional effects linearly increases with the number of bends in a system and may significantly affect the total pressure drop. To suppress this and some other unwelcome tendencies either the ducts perpendicular to the magnetic field should be electrically separated, or the flow direction in the neighbouring ducts should be made opposite, so that leakage currents cancel each other. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1995-09-25
    Description: This paper is concerned with the theoretical behaviour of the boundary-layer flow over a disk rotating in otherwise still fluid. The flow is excited impulsively at a certain radius at time t — 0. This paper analyses the inviscid stability of the flow and the stability with viscous, Coriolis and streamline curvature effects included. In both cases, within a specific range of the parameter space, it is shown that the flow is absolutely unstable, i.e. disturbances grow in time at every fixed point in space. Outside this range, the flow is convectively unstable or stable. The absolute or convective nature of the instabilities is determined by examining the branch-point singularities of the dispersion relation. Absolute instability is found for Reynolds numbers above 510. Experimentally observed values for the onset of transition from laminar to turbulent flow have an average value of 513. It is suggested that absolute instability may cause the onset of transition to turbulent flow. The results from the inviscid analysis show that the absolute instability is not caused by Coriolis effects nor by streamline curvature effects. This indicates that this mechanism may be possible on swept wings, where Coriolis effects are not present but the boundary layers are otherwise similar. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1995-09-25
    Description: The Stokes equation system and Ohm’s law were solved numerically for fluid in periodic bicontinuous porous media of simple cubic (SC), body-centred cubic (BCC) and face-centred cubic (FCC) symmetry. The Stokes equation system was also solved for fluid in porous media of SC arrays of disjoint spheres. The equations were solved by Galerkin’s method with finite element basis functions and with elliptic grid generation. The Darcy permeability k computed for flow through SC arrays of spheres is in excellent agreement with predictions made by other authors. Prominent recirculation patterns are found for Stokes flow in bicontinuous porous media. The results of the analysis of Stokes flow and Ohmic conduction through bicontinuous porous media were used to test the permeability scaling law proposed by Johnson, Koplik & Schwartz (1986), which introduces a length parameter A to relate Darcy permeability k and the formation factor F. As reported in our earlier work on the SC bicontinuous porous media, the scaling law holds approximately for the BCC and FCC families except when the porespace becomes nearly spherical pores connected by small orifice-like passages. We also found that, except when the porespace was connected by the small orifice-like passages, the permeability versus porosity curve of the bicontinuous media agrees very well with that of arrays of disjoint and fused spheres of the same crystallographic symmetry. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1995-09-25
    Description: An experimental investigation of high Mach number free shear layers has been undertaken. The experiments were performed using a Mach 7 gun tunnel facility and a planar duct with injection from the base of a central strut producing a Mach 3 flow parallel to the gun tunnel stream. This configuration is relevant to the development of efficient scramjet propulsion, and the gun tunnel Mach number is significantly higher than the majority of previous supersonic turbulent mixing layer investigations reported in the open literature. Schlieren images and Pitot pressure measurements were obtained at four different convective Mach numbers ranging from 0 to 1.8. Only small differences between the four cases were detected, and the relatively large high-speed boundary layers at the trailing edge of the struct injector appear to strongly influence the shear layer development in each case. The Pitot pressure measurements indicated that, on average, the free shear layers all spread into the Mach 3 stream at an angle of approximately 1.4°, while virtually no spreading into the Mach 7 stream was detected until all of the low-speed stream was entrained. The free shear layers were simulated using a PNS code; however, the experimentally observed degree of spreading rate asymmetry could not be fully predicted with the k-∊ turbulence model, even when a recently proposed compressibility correction was applied. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1995-01-10
    Description: A theoretical and experimental investigation of drop motion in rotating fluids is presented. The theory describing the vertical on-axis translation of an axisymmetric rigid body through a rapidly rotating low-viscosity fluid is extended to the case of a buoyant deformable fluid drop of arbitrary viscosity. In the case that inertial and viscous effects are negligible within the bulk external flow, motions are constrained to be two-dimensional in compliance with the Taylor-Proudman theorem, and the rising drop is circumscribed by a Taylor column. Calculations for the drop shape and rise speed decouple, so that theoretical predictions for both are obtained analytically. Drop shapes are set by a balance between centrifugal and interfacial tension forces, and correspond to the family of prolate ellipsoids which would arise in the absence of drop translation. In the case of a drop rising through an unbounded fluid, the Taylor column is dissipated at a distance determined by the outer fluid viscosity, and the rise speed corresponds to that of an identically shaped rigid body. In the case of a drop rising through a sufficiently shallow plane layer of fluid, the Taylor column extends to the boundaries. In such bounded systems, the rise speed depends further on the fluid and drop viscosities, which together prescribe the efficiency of the Ekman transport over the drop and container surfaces. A set of complementary experiments is also presented, which illustrate the effects of drop viscosity on steady drop motion in bounded rotating systems. The experimental results provide qualitative agreement with the theoretical predictions; in particular, the poloidal circulation observed inside low-viscosity drops is consistent with the presence of a double Ekman layer at the interface, and is opposite to that expected to arise in non-rotating systems. The steady rise speeds observed are larger than those predicted theoretically owing to the persistence of finite inertial effects. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1995-01-10
    Description: An analytical model for solving the flow field associated with regular reflections of straight shock waves over porous layers has been developed. The governing equations of the gas inside the porous material were obtained by simplifying the general macroscopic balance equations which were obtained by an averaging process over a representative elementary volume of the microscopic balance equations as originally done by Bear & Bachmat (1990). The analytical predictions of the proposed model were compared to experimental results of Skews (1992) and Kobayashi, Adachi & Suzuki (1993). Very good to excellent agreement was evident. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1995-01-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1995-01-10
    Description: A potential function/stream function formulation is introduced for the solution of the fully 3-D inverse potential ‘target pressure’ problem. In the companion paper (Part 1) it is seen that the general 3-D inverse problem is ill-posed but accepts as a particular solution elementary streamtubes with orthogonal cross-section. Under this simplification, a novel set of flow equations was derived and discussed. The purpose of the present paper is to present the computational techniques used for the numerical integration of the flow and geometry equations proposed in Part 1. The governing flow equations are discretized with centred finite difference schemes on a staggered grid and solved in their linearized form using the preconditioned GMRES algorithm. The geometry equations which form a set of first-order o.d.e.s are integrated numerically using a second-order-accurate space marching scheme. The resulting computational algorithm is applied to a double turning duct and a 3-D converging-diverging nozzle ‘reproduction’ test case. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1995-01-10
    Description: The planar flow arising in an initially quiescent viscous fluid under the action of a localized dipolar-type forcing has been studied analytically and experimentally. The force dipole, with non-dimensional forcing amplitude Re, brings net zero momentum into the fluid and gives rise to the formation of a quadrupolar vortex: a system of two dipolar vortices moving apart. Experimentally, the action of a force dipole was modelled by a vertical cylinder oscillating horizontally in the shallow upper layer of a two-layer fluid. Two cases were studied: single quadrupoles and an array of quadrupoles. It is found that single quadrupoles develop in a self-similar manner: the length L and the translation velocity U of the quadrupolar vortex change with time as L - t1/2and U - t-1/2. These quantities are characterized by non-dimensional functions ai{Re) and fi (Re), respectively, which have been determined theoretically for small Revalues and experimentally for ite-values in the range 160-2200. To produce an array of quadrupoles an array of oscillating vertical rods was used. Two stages in the flow evolution were studied experimentally: the initial stage, when the interactions between the quadrupoles are weak, and the intermediate stage when the interactions play an essential role and the flow is (two-dimensionally) turbulent. It is found that at both stages the width H of the region with intense vortical motions increases with time as H - t1!2. A theoretical explanation of the experimental results is given. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1995-01-10
    Description: An analysis is given for the electro-kinetic transport properties in a system consisting of a line of identical spheres placed equidistantly with their centres on the axis of a cylindrical tube containing a viscous fluid. Both the spheres and the wall of the tube are charged and a two-species symmetrical electrolyte with valence Z is present in the system. As a result of the charges on the surface of the spheres and on the surface of the tube electrical double layers will develop. When an electrical field is applied to the system an electrokinetic motion is induced. We will use the thin double layer theory (Dukhin & Derjaguin 1974; O’Brien 1983), valid for sufficiently high electrolyte concentration and where the polarization of the electrical double layer is included. Using a multipole expansion an infinite set of linear equations for the multipoles will be derived from which the electro-kinetic transport coefficients may be determined. These coefficients depend on the system parameters, such as the radius of the tube R, the radius of the sphere a, the separation between the spheres d, the Debije radius k-1, the zeta-potentials of the spheres ζpand of the wall of the tube ζwand the valency Z of the electrolyte. From these coefficients a relation is found between the pressure drop Δp per unit length and the drag force D on the spheres on one side and with the velocity U of the spheres, the total discharge Q and the applied electrical field E0on the other side. For some values for the system parameters we have numerically solved the infinite set of linear equations by truncation and calculated the transport coefficients. We have also calculated the streamlines for some situations. The plots of these streamlines show that depending on the conditions on the system vortices may appear. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1995-01-25
    Description: The orientation of an ellipsoid falling in a viscoelastic fluid is studied by methods of perturbation theory. For small fall velocity, the fluid’s rheology is described by a second-order fluid model. The solution of the problem can be expressed by a dual expansion in two small parameters: the Reynolds number representing the inertial effect and the Weissenberg number representing the effect of the non-Newtonian stress. Then the original problem is split into three canonical problems: the zeroth-order Stokes problem for a translating ellipsoid and two first-order problems, one for inertia and one for second-order rheology. A Stokes operator is inverted in each of the three cases. The problems are solved numerically on a three-dimensional domain by a finite element method with fictitious domains, and the force and torque on the body are evaluated. The results show that the signs of the perturbation pressure and velocity around the particle for inertia are reversed by viscoelasticity. The torques are also of opposite sign: inertia turns the major axis of the ellipsoid perpendicular to the fall direction; normal stresses turn the major axis parallel to the fall. The competition of these two effects gives rise to an equilibrium tilt angle between 0° and 90° which the settling ellipsoid would eventually assume. The equilibrium tilt angle is a function of the elasticity number, which is the ratio of the Weissenberg number and the Reynolds number. Since this ratio is independent of the fall velocity, the perturbation results do not explain the sudden turning of a long body which occurs when a critical fall velocity is exceeded. This is not surprising because the theory is valid only for slow sedimentation. However, the results do seem to agree qualitatively with ‘shape tilting’ observed at low fall velocities. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1995-01-10
    Description: Care is needed with algorithms for computer simulations of the Brownian motion of complex systems, such as colloidal and macromolecular systems which have internal degrees of freedom describing changes in configuration. Problems can arise when the diffusivity or the inertia changes with the configuration of the system. There are some problems in replacing very stiff bonds by rigid constraints. These problems and their resolution are illustrated by some artificial models; firstly in one dimension, then in the neighbourhood of an ellipse in two dimensions and finally for the trimer polymer molecule. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1995-02-10
    Description: A series of laboratory experiments was performed to investigate the overall mixing characteristics of oscillatory stratified flow past an isolated topography. The experiments were conducted by oscillating a right-circular cylinder in an otherwise quiescent linearly stratified fluid contained in a rectangular basin. The mixing was largely confined to the turbulent ‘core’ region around the cylinder. This mixed fluid was then injected into the fluid interior of the basin by numerous intrusive tongues. These intrusions were accompanied by return currents of unmixed stratified fluid into the turbulent core. The overall effect of this mixing process was to increase the potential energy of the fluid in the basin. An expression is derived to relate the rate of change of potential energy of the system to the basin-averaged buoyancy flux. This formula was then used to calculate the mean buoyancy flux from measurements of the rate of change of potential energy of the fluid system. Basin-averaged diapycnal eddy diffusivities for the experiments were evaluated and the results were found to be in good agreement with the predictions of a heuristic model based on the energetics of the mixing. Observations on the spreading of intrusions and the evolution of the density field are also presented. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1995-02-10
    Description: Numerical experiments are described to ascertain how the steady flow past a circular cylinder loses stability as the Reynolds number is increased. A novel feature of the present study is that the cylinder is confined between parallel planes, allowing a more definitive specification of the flow, both experimentally and computationally, than is possible for the unbounded case. Since the structure of the bifurcation is unclear from the extant literature, with the experimental and computational evidence not in good agreement, a critical appraisal of both sets of evidence is presented. A study has been made of the formation of the steady vortex pair behind the cylinder, and it has been determined that the first appearance of the vortices is not associated with a bifurcation of the full dynamical problem but instead it is probably associated with a bifurcation of a restricted kinematic problem. A set of numerical experiments has been made in which the steady flow past the cylinder was perturbed slightly and the ensuing time-dependent motions were computed. These experiments revealed that, for a given blockage ratio, the perturbation would die away at small Reynolds numbers but that, above a critical Reynolds number, the disturbance would be amplified and the flow would eventually settle down to a new state comprising a time-periodic motion. Experiments were also carried out to determine the bifurcation point numerically by considering an eigenvalue problem based on a linearization about the computed steady flow past the cylinder. The calculations showed that stability is lost through a symmetry-breaking Hopf bifurcation and that, for a given blockage ratio, the critical Reynolds number was in very good agreement with that estimated from the time-dependent computations. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1995-02-10
    Description: An experimental and theoretical investigation of low Reynolds number, high subsonic Mach number, compressible gas flow in channels is presented. Nitrogen, helium, and argon gases were used. The channels were microfabricated on silicon wafers and were typically 100 μm wide, 104 μm long, and ranged in depth from 0.5 to 20 μm. The Knudsen number ranged from 10-3 to 0.4. The measured friction factor was in good agreement with theoretical predictions assuming isothermal, locally fully developed, first-order, slip flow. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1995-02-10
    Description: In contrast to the well-known columnar convection mode in rapidly rotating spherical fluid systems, the viscous dissipation of the preferred convection mode at sufficiently small Prandtl number Pr takes place only in the Ekman boundary layer. It follows that different types of velocity boundary condition lead to totally different forms of the asymptotic relationship between the Rayleigh number R and the Ekman number E for the onset of convection. We extend both perturbation and numerical analyses with the stress-free boundary condition (Zhang 1994) in rapidly rotating spherical systems to those with the non-slip boundary condition. Complete analytical solutions - the critical parameters for the onset of convection and the corresponding flow and temperature structure - are obtained and a new asymptotic relation between R and E is derived. While an explicit solution of the Ekman boundary-layer problem can be avoided by constructing a proper surface integral in the case of the stress-free boundary problem, an explicit solution of the spherical Ekman boundary layer is required and then obtained to derive the solvability condition for the present problem. In the corresponding numerical analysis, velocity and temperature are expanded in terms of spherical harmonics and Chebychev functions. Accurate numerical solutions are obtained in the asymptotic regime of small E and Pr, and comparison between the analytical and numerical solutions is then made to demonstrate that a satisfactory quantitative agreement between the analytical and numerical analyses is reached. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1995-02-01
    Description: A procedure based on energy stability arguments is presented as a method for extracting large-scale, coherent structures from fully turbulent shear flows. By means of two distinct averaging operators, the instantaneous flow field is decomposed into three components: a spatial mean, coherent field and random background fluctuations. The evolution equations for the coherent velocity, derived from the Navier-Stokes equations, are examined to determine the mode that maximizes the growth rate of volume-averaged coherent kinetic energy. Using a simple closure scheme to model the effects of the background turbulence, we find that the spatial form of the maximum energy growth modes compares well with the shape of the empirical eigenfunctions given by the proper orthogonal decomposition. The discrepancy between the eigenspectrum of the stability problem and the empirical eigenspectrum is explained by examining the role of the mean velocity field. A simple dynamic model which captures the energy exchange mechanisms between the different scales of motion is proposed. Analysis of this model shows that the modes which attain the maximum amplitude of coherent energy density in the model correspond to the empirical modes which possess the largest percentage of turbulent kinetic energy. The proposed method provides a means for extracting coherent structures which are similar to those produced by the proper orthogonal decomposition but which requires only modest statistical input. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1995-02-01
    Description: The evolution of an internal gravity wave is investigated by direct numerical computations. We consider the case of a standing wave confined in a bounded (square) domain, a case which can be directly compared with laboratory experiments. A pseudo-spectral method with symmetries is used. We are interested in the inertial dynamics occurring in the limit of large Reynolds numbers, so a fairly high spatial resolution is used (1292 or 2572), but the computations are limited to a two-dimensional vertical plane. We observe that breaking eventually occurs, whatever the wave amplitude: the energy begins to decrease after a given time because of irreversible transfers of energy towards the dissipative scales. The life time of the coherent wave, before energy dissipation, is found to be proportional to the inverse of the amplitude squared, and we explain this law by a simple theoretical model. The wave breaking itself is preceded by a slow transfer of energy to secondary waves by a mechanism of resonant interactions, and we compare the results with the classical theory of this phenomenon: good agreement is obtained for moderate amplitudes. The nature of the events leading to wave breaking depends on the wave frequency (i.e. on the direction of the wave vector); most of the analysis is restricted to the case of fairly high frequencies. The maximum growth rate of the inviscid wave instability occurs in the limit of high wavenumbers. We observe that a well-organized secondary plane wave packet is excited. Its frequency is half the frequency of the primary wave, corresponding to an excitation by a parametric instability. The mechanism of selection of this remarkable structure, in the limit of small viscosities, is discussed. Once this secondary wave packet has reached a high amplitude, density overturning occurs, as well as unstable shear layers, leading to a rapid transfer of energy towards dissipative scales. Therefore the condition of strong wave steepness leading to wave breaking is locally attained by the development of a single small-scale parametric instability, rather than a cascade of wave interactions. This fact may be important for modelling the dynamics of an internal wave field. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1995-02-01
    Description: The far-field sound generated by compressible co-rotating vortices is computed by direct computation of the unsteady compressible Navier-Stokes equations on a computational domain that extends to two acoustic wavelengths in all directions. The vortices undergo a period of co-rotation followed by a sudden merger. The directly computed far-field sound is compared to the prediction of the acoustic analogy due to Mohring (1978, 1979), a modified form of the analogy developed by Lighthill (1952), and an acoustic analogy derived by Powell (1964). All three predictions are in excellent agreement with the simulation. Results of far-field pressure fluctuations from an acoustically non-compact, co-rotating vortex pair are also presented. In this case, the vortex sound theory over-predicts the sound by 65 % in accordance with the analysis of Yates (1978). © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1995-02-01
    Description: For an anisotropic topographic feature in a large-scale flow, the orientation of the topography with respect to the flow will affect the vorticity production that results from the topography-flow interaction. This in turn affects the amount of form drag that the ambient flow experiences. Numerical simulations and perturbation theory are used to explore these effects of change in topographic orientation. The flow is modelled as a quasi-geostrophic homogeneous fluid on an /-plane. The topography is taken to be a hill of limited extent, with an elliptical cross-section in the horizontal. It is shown that, as a result of a basic asymmetry of the quasi-geostrophic flow, the strength of the form drag depends not only on the magnitude of the angle that the topographic axis makes with the oncoming stream, but also on the sign of this angle. For sufficiently low topography, it is found that a positive angle of attack leads to a stronger form drag than that for the corresponding negative angle. For strong topography, this relation is reversed, with the negative angle then resulting in the stronger form drag. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1995-01-25
    Description: Instead of considering just the vertically averaged current and the vertically averaged concentration, a multi-mode model is derived in which more of the vertical structure can be computed directly rather than being lumped into a dispersion coefficient. Test cases, of laminar flows, are used to quantify the accuracy of the lowest non-trivial truncation (two modes) in replicating both the flow and the dispersion process. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1995-01-25
    Description: Surface-tension-driven convection in a planar fluid layer is studied by numerical simulation of the three-dimensional time-dependent governing equations in the limit of infinite Prandtl number. Emphasis is placed on the spatial scale of weakly supercritical flows and on the generation of small-scale structures in strongly supercritical flows. The decrease of the size of weakly supercritical hexagonal convection cells that we find is in agreement with experimental results. In the case of high Marangoni number, discontinuities of the temperature gradient are formed between convection cells, producing a universal spectrum E - k-3 of the two-dimensional surface temperature field. The possibility of experimental verification is discussed on the basis of shadowgraph images calculated from the predicted hydrodynamic fields. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1995-01-10
    Description: Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt and the gradient Mach number Mg. Two series of simulations are performed where the initial values of Mg and Mt are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This ‘stabilizing’ effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of Mg is changed. A systematic comparison of the different DNS cases shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number Mg in the homogeneous shear flow DNS. Estimates of Mg for the mixing layer and the boundary layer are obtained. These estimates show that the parameter Mg becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 6 stabilizing ’ effect of compressibility on the turbulence (over and above that due to any mean density variation) is expected to be larger in the mixing layer relative to the boundary layer, in agreement with experimental observations. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1995-01-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1995-09-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1995-08-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1995-08-25
    Description: The stability of the flow in a half-zone configuration is analysed with the aid of direct numerical simulation. The work is concentrated on the small Prandtl numbers relevant for typical semiconductor melts. The axisymmetric thermocapillary flow is found to be unstable to a steady non-axisymmetric state with azimuthal wavenumber 2, for a zone with aspect ratio 1. The critical Reynolds number for this bifurcation is 1960. This three dimensional steady solution loses stability to an oscillatory state at a Reynolds number of 6250. For small Prandtl numbers, both bifurcations are seen to be quite insensitive to changes in the Prandtl number, and are thus hydrodynamic in nature. An analogy to the instability of thin vortex rings is made. This analogy suggests a physical mechanism behind the instability and also gives an explanation of how the azimuthal wavenumber of the bifurcated solution is selected. The implications of this for the floating-zone crystal growth process are discussed. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1995-08-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1995-08-25
    Description: Results of numerical computations are presented of time-dependent three-dimensional convection flows in a horizontal layer heated from below which evolve from the oscillatory blob instability of steady two-dimensional rolls. It is shown that the heat transport is typically increased in the transition to blob convection. Oscillatory blob convection exists in the forms of standing or travelling blob convection. The latter type of solution represents the stable form bifurcating supercritically at the Rayleigh number R11 for the onset of the oscillatory blob instability. In contrast to standing blob convection travelling blob convection exhibits a mean flow. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1995-08-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 1995-08-25
    Description: Thermohaline convection in a salt water loop is discussed. Fluid temperature is affected by relaxation on the loop surface and fluid salinity by a freshwater flux through the loop surface. In addition, other boundary conditions on salinity, such as the equivalent virtual salt flux or salinity relaxation condition, are examined and the dynamic role of diffusion in thermohaline convection is analysed. Both analytical and numerical analyses indicate that the system behaviour depends sensitively on the nature of the salinity boundary condition. For the saline-only loop model, analysis indicates that perturbations are advected by the mean flow, and flow stability is independent of the strength of the boundary forcing. In the full thermohaline loop problem, the virtual salt flux formulation accurately mirrors the freshwater flux results when the system is in the thermal mode. However, these formulations can differ substantially when the system is in the haline mode, especially in the strongly forced, weakly diffusive limit. For both types of loop configuration, salinity profiles governed by freshwater flux have scales determined by the internal parameters, while virtual salt flux profiles necessarily reflect the lengthscales of applied boundary conditions. Negative salinities can also appear under virtual salt flux owing to the inaccuracies inherent in the approximation, while freshwater flux ensures positive-definite salinity values. Our analysis supports the use of the physically more accurate freshwater flux boundary conditions when simulating thermohaline circulation. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1995-08-25
    Description: A mathematical model is presented for the high pressures and sudden velocity changes which may occur in the impact between a region of incompressible liquid and either a solid surface or a second liquid region. The theory rests upon the well-known idea of pressure impulse, for the sudden initiation of fluid motion in incompressible fluids. We consider the impulsive pressure field which occurs when a moving fluid region collides with a fixed target, such as when an ocean wave strikes a sea wall. The boundary conditions are given for modelling liquid-solid and liquid-liquid impact problems. For a given fluid domain, and a given velocity field just before impact, the theory gives information on the peak pressure distribution, and the velocity after impact. Solutions for problems in simple domains are presented, which give insight into the peak pressures exerted by a wave breaking against a sea wall, and a wave impacting in a confined space. An example of liquid-liquid impact is also examined. Results of particular interest include a relative insensitivity to the shape of the incident wave, and an increased pressure impulse when impact occurs in a confined space. The theory predicts that energy is lost from the bulk fluid motion and we suggest that this energy can be transferred to a thin jet of liquid which is projected away from the impact region. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1995-07-10
    Description: Axisymmetric gravity currents that result when a dense suspension intrudes under a lighter ambient fluid are studied theoretically and experimentally. The dynamics of and deposition from currents flowing over a rigid horizontal surface are determined for the release of either a fixed volume or a constant flux of a suspension. The dynamics of the current are assumed to be dominated by inertial and buoyancy forces, while viscous forces are assumed to be negligible. The fluid motion is modelled by the single-layer axisymmetric shallow-water equations, which neglect the effects of the overlying fluid. An advective transport equation models the distribution of particles in the current, and this distribution determines the local buoyancy force in the shallow-water equations. The transport equation is derived on the assumption that the particles are vertically well-mixed by the turbulence in the current, are advected by the mean flow and settle out through a viscous sublayer at the bottom of the current. No adjustable parameters are needed to specify the theoretical model. The coupled equations of the model are solved numerically, and it is predicted that after an early stage both constant-volume and constant-flux, particle-driven gravity currents develop an internal bore which separates a supercritical particle-free region upstream from a subcritical particle-rich region downstream near the head of the current. For the fixed-volume release, an earlier bore is also predicted to occur very shortly after the initial collapse of the current. This bore transports suspended particles away from the origin, which results in a maximum in the predicted deposition away from the centre.To test the model several laboratory experiments were performed to determine both the radius of an axisymmetric particle-driven gravity current as a function of time and its deposition pattern for a variety of initial particle concentrations, particle sizes, volumes and flow rates. For the release of a fixed volume and of a constant flux of suspension, the comparisons between the experimental results and the theoretical predictions are fairly good. However, for the current of fixed volume, we did not observe the bore predicted to occur shortly after the collapse of the current or the resulting maximum in deposition downstream of the origin. This is unlike the previous study of Bonnecaze et al. (1993) on two-dimensional currents, in which a strong bore was observed during the slumping phase. The radial extent R of the deposit from a fixed-volume current is accurately predicted by the model, and for currents whose particles settle sufficiently slowly, we find that R = 1.9(g′0V3 / v2s)1/8, where V is the volume of the current, vs is the settling velocity of a particle in the suspension and g’0 is the initial reduced gravity of the suspension.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 1995-07-10
    Description: The problem of determining the particle-phase stress in potential flow has been examined recently using two different procedures by Sangani & Didwania (1993a) and by Bulthuis (Appendix C of Zhang & Prosperetti 1994). The present study corrects errors in the expression given by Sangani & Didwania, recasts the expression given by Bulthuis in a form suitable for computation, and shows the equivalence of the results obtained by the two methods. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1995-07-10
    Description: Beyond a short transition region near the inlet, waves on a falling film evolve into distinct pulse-like solitary waves that dominate all subsequent interfacial dynamics. Numerical and physical experiments indicate that these localized structures can attract and repel each other. Attractive interaction through the capillary ripples of the pulses causes two pulses to coalesce into a bigger pulse which accelerates and precipitates further coalescence. This binary interaction between an ‘excited’ pulse after coalescence and its smaller front neighbour is the key mechanism that drives the observed wave dynamics. From symmetry arguments, two dominant modes for a solitary pulse are obtained and used to develop an inelastic coherent structure theory for binary interaction between an excited pulse and its front neighbour. The theory offers a simple dynamical system that quantitatively describes the binary interaction and promises to elucidate the complex wave dynamics on a falling film. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1995-07-01
    Description: To determine a suitable boundary-condition model for the contact line in oscillatory flow, an upright plate, oscillated vertically with sinusoidal motion in dye-laden water with an air interface, is considered experimentally. Constrained by the desirability of a two-dimensional flow field, eight frequencies in the 1-20 Hz range, each with seven different stroke amplitudes (0.5-6 mm) are chosen. The Reynolds number varies from 1.6 to 1878.3 in the experiments, large relative to the Reynolds number in the conventional uni-directional contact-line experiments (e.g. Dussan V.'s 1974 experiments). To facilitate prediction, a high-speed video system is used to record the plate displacement, the contact-line displacement, and the dynamic behaviour of the contact angle. Several interesting contact-line phenomena are shown in the present results. An expression for A, the dimensionless capillary coefficient, is formulated such that the dynamic behaviour at the contact line is predicted reasonably well. A particle-tracking-velocimetry (PTV) technique is used to detect particle trajectories near the plate such that the boundary condition along the entire plate can be modelled. Two sets of PTV experiments are conducted. One set is for stick contact-line motion, the other set is for stick-slip contact-line motion. The results from the PTV experiments show that a vortex is formed near the meniscus in the stick-slip contact-line experiments; however, in the stick contact-line experiments, no such vortex is present. Using the present experimental results, a model is developed for the boundary condition along the vertically oscillating vertical plate. In this model, slip occurs within a specific distance from the contact line while the flow obeys the no-slip condition outside this slip region. Also, the mean slip length is determined for each experimental stroke amplitude. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1995-06-25
    Description: A modification to the 0(Re)-accurate expression for the hydrodynamic force acting on a body in arbitrary time-dependent motion, determined by Lovalenti & Brady (1993), is presented. This simple modification captures the 0(Re2) transient behaviour of the force, which has been recently shown to dominate at large time (Lawrence & Mei 1995), while maintaining the overall O(Re) accuracy. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1995-06-25
    Description: Recent observations of growing and collapsing bubbles in flows over axisymmetric headforms have revealed the complexity of the ‘micro-fluid-mechanics’ associated with these bubbles (van der Meulen & van Renesse 1989; Briançon-Marjollet et al. 1990; Ceccio & Brennen 1991). Among the complex features observed were the bubble-to-bubble and bubble-to-boundary-layer interactions which leads to the shearing of the underside of the bubble and alters the collapsing process. All of these previous tests, though, were performed on small headform sizes. The focus of this research is to analyse the scaling effects of these phenomena due to variations in model size, Reynolds number and cavitation number. For this purpose, cavitating flows over Schiebe headforms of different sizes (5.08, 25.4 and 50.8 cm in diameter) were studied in the David Taylor Large Cavitation Channel (LCC). The bubble dynamics captured using high-speed film and electrode sensors are presented along with the noise signals generated during the collapse of the cavities. In the light of the complexity of the dynamics of the travelling bubbles and the important bubble/bubble interactions, it is clear that the spherical Rayleigh-Plesset analysis cannot reproduce many of the phenomena observed. For this purpose an unsteady numerical code was developed which uses travelling sources to model the interactions between the bubble (or bubbles) and the pressure gradients in the irrotational flow outside the boundary layer on the headform. The paper compares the results of this numerical code with the present experimental results and demonstrates good qualitative agreement between the two. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1995-06-25
    Description: Employing a recently proposed ‘multi-wave interaction’ theory (Glazman 1992), inertial spectra of capillary–gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g. nonlinear inertia–gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov–Filonenko and Phillips spectra. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1995-06-25
    Description: The three-dimensional dynamics of the coherent vortices in periodic planar mixing layers and in wakes subjected to solid-body rotation of axis parallel to the basic vorticity are investigated through direct (DNS) and large-eddy simulations (LES). Initially, the flow is forced by a weak random perturbation superposed on the basic shear, the perturbation being either quasi-two-dimensional (forced transition) or three-dimensional (natural transition). For an initial Rossby number Ro(i), based on the vorticity at the inflexion point, of small modulus, the effect of rotation is to always make the flow more two-dimensional, whatever the sense of rotation (cyclonic or anticyclonic). This is in agreement with the Taylor–Proudman theorem. In this case, the longitudinal vortices found in forced transition without rotation are suppressed.It is shown that, in a cyclonic mixing layer, rotation inhibits the growth of three-dimensional perturbations, whatever the value of the Rossby number. This inhibition exists also in the anticyclonic case for |Ro(i)| ≤ 1. At moderate anticyclonic rotation rates (Ro(i) 〈 −1), the flow is strongly destabilized. Maximum destabilization is achieved for |Ro(i) ≈ 2.5, in good agreement with the linear-stability analysis performed by Yanase et al. (1993). The layer is then composed of strong longitudinal alternate absolute vortex tubes which are stretched by the flow and slightly inclined with respect to the streamwise direction. The vorticity thus generated is larger than in the nonrotating case. The Kelvin–Helmholtz vortices have been suppressed. The background velocity profile exhibits a long range of nearly constant shear whose vorticity exactly compensates the solid-body rotation vorticity. This is in agreement with the phenomenological theory proposed by Lesieur, Yanase & Métais (1991). As expected, the stretching is more efficient in the LES than in the DNS.A rotating wake has one side cyclonic and the other anticyclonic. For |Ro(i)| ≤ 1, the effect of rotation is to make the wake more two-dimensional. At moderate rotation rates (|Ro(i)| 〉 1), the cyclonic side is composed of Kármán vortices without longitudinal hairpin vortices. Karman vortices have disappeared from the anticyclonic side, which behaves like the mixing layer, with intense longitudinal absolute hairpin vortices. Thus, a moderate rotation has produced a dramatic symmetry breaking in the wake topology. Maximum destabilization is still observed for |Ro(i)| ≈ 2.5, as in the linear theory.The paper also analyses the effect of rotation on the energy transfers between the mean flow and the two-dimensional and three-dimensional components of the field.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1995-06-25
    Description: Spanwise scale changes of the streamwise vortical structure in a plane forced mixing layer have been investigated through direct measurements. Detailed three-dimensional phase-averaged measurements were obtained of the spanwise and streamwise vorticity in a forced mixing layer undergoing three spanwise roller pairings. A two-stream mixing layer with a velocity ratio (U2/U1) of 0.6 and laminar initial boundary layers was generated in a mixing-layer wind tunnel. Acoustic forcing, consisting of a fundamental roll-up frequency and its first, second and third subharmonics, was used to phase-lock the initial development and the first three pairings of the spanwise rollers. Although the overall spanwise scale remained unchanged through the first two roller pairings, some (cyclic) ‘readjustment’ of the weaker streamwise structures was observed. The overall spanwise scale doubled during the third roller pairing. For the first time, one of the proposed mechanisms for the scale change has been identified and its details measured directly. The weakest (positive) streamwise vortex is split into two and displaced by stronger neighbouring (negative) vortices. These two vortices (of the same sign) then merge together, thus doubling the spanwise scale and circulation of the resulting streamwise vortical structure. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1995-06-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1995-06-25
    Description: The motion of isothermal vapour in a permeable rock is governed by a nonlinear diffusion equation for the vapour pressure. We analyse vapour flow described by this equation in both bounded and unbounded domains. We then apply these solutions to describe the controls on the rate of vaporization of liquid invading a hot permeable rock. In an unbounded domain, we determine asymptotic similarity solutions describing the motion of vapour when it is either supplied to or removed from the reservoir. Owing to the compressibility, these solutions have the property that vapour surfaces migrate towards the isobar on which the vapour has the maximum speed. In contrast, if vapour is supplied to or removed from a closed bounded system sufficiently slowly then the vapour density and pressure rapidly become approximately uniform. As more vapour is added, the mean pressure gradually increases and vapour surfaces become compressed. If liquid slowly invades a hot bounded porous layer and vaporizes, the vapour pressure becomes nearly uniform. As more liquid is added, the reservoir gradually becomes vapour saturated and the vaporization ceases. In an open bounded system, with a constant rate of vapour injection, the flux of vapour across the reservoir becomes uniform. If liquid is injected slowly and vaporizes then again the vapour flux becomes spatially uniform. However, the vapour flux now increases slowly as the liquid invades further into the rock, as a result of the decreased resistance to vapour flow from the interface to the far boundary. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1995-06-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1995-06-10
    Description: This work determines the pressure—velocity relation of bubble flow in polygonal capillaries. The liquid pressure drop needed to drive a long bubble at a given velocity U is solved by an integral method. In this method, the pressure drop is shown to balance the drag of the bubble, which is determined by the films at the two ends of the bubble. Using the liquid-film results of Part 1 (Wong, Radke & Morris 1995), we find that the drag scales as Ccr :lin the limit C a - 0 (Ca = fiU/a, where /i is the liquid viscosity and σ the surface tension). Thus, the pressure drop also scales as Ca2‘3. The proportionality constant for six different polygonal capillaries is roughly the same and is about a third that for the circular capillary. The liquid in a polygonal capillary flows by pushing the bubble (plug flow) and by bypassing the bubble through corner channels (corner flow). The resistance to the plug flow comes mainly from the drag of the bubble. Thus, the plug flow obeys the nonlinear pressure—velocity relation of the bubble. Corner flow, however, is chiefly unidirectional because the bubble is long. The ratio of plug to corner flow varies with liquid flow rate Q (made dimensionless by era2//t, where a is the radius of the largest inscribed sphere). The two flows are equal at a critical flow rate Qc, whose value depends strongly on capillary geometry and bubble length. For the six polygonal capillaries studied, Qc〈1 10 B. For Qc〈 Q 〈 l, the plug flow dominates, and the gradient in liquid pressure varies with Qm. For Q 〈 Qc, the corner flow dominates, and the pressure gradient varies linearly with Q. A transition at such low flow rates is unexpected and partly explains the complex rheology of foam flow in porous media. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1995-06-10
    Description: Foam in porous media exhibits an unusually high apparent viscosity, making it useful in many industrial processes. The rheology of foam, however, is complex and not well understood. Previous pore-level models of foam are based primarily on studies of bubble flow in circular capillaries. A circular capillary, however, lacks the corners that characterize the geometry of the pores. We study the pressure-velocity relation of bubble flow in polygonal capillaries. A long bubble in a polygonal capillary acts as a leaky piston. The ‘piston’ is reluctant to move because of a large drag exerted by the capillary sidewalls. The liquid in the capillary therefore bypasses the bubble through the leaky corners at a speed an order higher than that of the bubble. Consequently, the pressure work is dissipated predominantly by the motion of the fluid and not by the motion of the bubble. This is opposite to the conclusion based on bubble flow in circular capillaries. The discovery of this new flow regime reconciles two groups of contradictory foam-flow experiments. Part 1 of this work studies the fluid films deposited on capillary walls in the limit CaO (Ca = fiU/a, where [i is the fluid viscosity, U the bubble velocity, and cr the surface tension). Part 2 (Wong et al 1995) uses the film profile at the back end to calculate the drag of the bubble. Since the bubble length is arbitrary, the film profile is determined here as a general function of the dimensionless downstream distance x. For 1 〈 x 〈 Ca-1, the film profile is frozen with a thickness of order Ca2/3 at the centre and order Ca at the sides. For x ~ Ca-1, surface tension rearranges the film at the centre into a parabolic shape while the film at the sides thins to order Ca4/3. For x Ca-1, the film is still parabolic, but the height decreases as film fluid leaks through the side constrictions. For x ~ Ca-5/3, the height of the parabola is order Ca2/3. Finally, for x 〉 Ca“5/3, the height decreases as Ca1/4x”1/4. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1995-06-10
    Description: Systematic asymptotic expansions are used to find the leading-order equations for the pressure-driven flow of a thin sheet of viscous fluid. Assuming the fluid geometry to be slender with non-negligible curvatures, the Navier-Stokes equations with appropriate free-surface conditions are simplified to give a ‘shell-theory’ model. The fluid geometry is not known in advance and a time-dependent coordinate frame has to be employed. The effects of surface tension, gravity and inertia can also be incorporated in the model. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1995-06-10
    Description: When a gravity current meets an obstacle a proportion of the flow may continue over the obstacle while the rest is reflected back as a hydraulic jump. There are many examples of this type of flow, both in the natural and man-made environment (e.g. sea breezes meeting hills, dense gas and liquid releases meeting containment walls). Two-dimensional currents and obstacles, where the reflected jump is in the opposite direction to the incoming current, are examined by laboratory experiment and theoretical analysis. The investigation concentrates on the case of no net flow, so that there is a return flow in the (finite depth) upper layer. The theoretical analysis is based on shallow-water theory. Both a rigid lid and a free surface condition for the top of the upper layer are considered. The flow may be divided into several regions: the inflow conditions, the region around the hydraulic jump, the flow at the obstacle and the flow downstream of the obstacle. Both theoretical and empirical inflow conditions are examined; the jump conditions are based on assuming that the energy dissipation is confined to the lower layer; and the flow over the obstacle is described by hydraulic control theory. The predictions for the proportion of the flow that continues over the obstacle, the speed of the reflected jump and the depth of the reflected flow are compared with the laboratory experiments, and give reasonable agreement. A shallower upper layer (which must result in a faster return velocity in the upper layer) is found to have a significant effect, both on the initial incoming gravity current and on the proportion of the flow that continues over the obstacle. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1995-06-10
    Description: The motion of instantaneous and maintained releases of buoyant fluid through shallow permeable layers of large horizontal extent is described by a nonlinear advection-diffusion equation. This equation admits similarity solutions which describe the release of one fluid into a horizontal porous layer initially saturated with a second immiscible fluid of different density. Asymptotically, a finite volume of fluid spreads as t1/3. On an inclined surface, in a layer of uniform permeability, a finite volume of fluid propagates steadily alongslope under gravity, and spreads diffusively owing to the gravitational acceleration normal to the boundary, as on a horizontal boundary. However, if the permeability varies in this cross-slope direction, then, in the moving frame, the spreading of the current eventually becomes dominated by the variation in speed with depth, and the current length increases as t112. Shocks develop either at the leading or trailing edge of the flows depending upon whether the permeability increases or decreases away from the sloping boundary. Finally we consider the transient and steady exchange of fluids of different densities between reservoirs connected by a shallow long porous channel. Similarity solutions in a steadily migrating frame describe the initial stages of the exchange process. In the final steady state, there is a continuum of possible solutions, which may include flow in either one or both layers of fluid. The maximal exchange flow between the reservoirs involves motion in one layer only. We confirm some of our analysis with analogue laboratory experiments using a Hele-Shaw cell. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1995-05-25
    Description: The problem solved concerns a slender ship moving at a near-critical steady speed in a shallow channel, not necessarily in symmetric configuration, involving the special phenomenon of generation of solitary waves. By using the technique of matched asymptotic expansions along with nonlinear shallow-water wave theory, the problem is reduced to a Kadomtsev-Petviashvili equation in the far field, matched with a nearfield solution obtained by an improved slender-body theory, taking the local wave elevation and longitudinal disturbance velocity into account. The ship can be either fixed or free to squat. Besides wave pattern and wave resistance, the hydrodynamic lift force and trim moment are calculated by pressure integration in the fixed-hull case; running sinkage and trim, by condition of hydrodynamic equilibrium in the free-hull case. The numerical procedure for solving the KP equation consists of a finite-difference method, namely, fractional step algorithm with Crank-Nicolson-like schemes in each half step. Calculated results are compared with several published ship-model experiments and other theoretical predictions; satisfactory agreement is demonstrated. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1995-06-10
    Description: A theoretical model is developed for the sound generated when a convected vortical or entropic gust encounters an airfoil at non-zero angle of attack. The theory is based on a linearization of the Euler equations about the steady subsonic flow past the airfoil. High-frequency gusts, whose wavelengths are short compared to the airfoil chord, but long compared to the displacement of the mean-flow stagnation point from the leading edge, are considered. The analysis utilizes singular-perturbation techniques and involves four asymptotic regions. Local regions, which scale on the gust wavelength, are present at the airfoil leading and trailing edges. Behind the airfoil a ‘transition’ region, which is similar to the transition zone between illuminated and shadow zones in optical problems, is present. In the outer region, far away from the airfoil edges and wake, the solution has a geometric-acoustics form. The primary sound generation is found to be concentrated in the local leading-edge region. The trailing edge plays a secondary role as a scatterer of the sound generated in the leading-edge region. Parametric calculations are presented which illustrate that moderate levels of airfoil steady loading can significantly affect the sound field produced by airfoil-gust interactions. Copyright © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1995-06-10
    Description: The dispersion and mixing of passive scalar (temperature) fluctuations is studied in a turbulent jet. The temperature fluctuations were produced by heated fine wire rings placed axisymmetrically in the flow. Typically the ring diameters were of the same order as the jet, Dj, and they were placed in the self-similar region. However, other initial conditions were studied, including a very small diameter ring used to approximate a point source. Using a single ring to study dispersion (which is analogous to placing a line source in a planar flow such as grid turbulence), it was found that the intense local thermal field close to the ring disperses and fills the whole jet in approximately 1.5 eddy turnover times. Thereafter the thermal field evolves in the same way as for the traditional heated jet experiments. Two heated rings were used to study the mixing of two independently introduced scalar fields. Here an inference method (invoking the principle of superposition) was used to determine the evolution of the cross-correlation coefficient, p, and the segregation parameter, a, as well as the coherence and co-spectrum. While initially strongly dependent on ring locations and spacing, p and a reached asymptotic values of 1 and 0.04, respectively, also in about 1.5 eddy turnover times. These results are contrasted with mixing and dispersion in grid turbulence where the evolution is slower. Measurements in the far field of the jet (where p = 1) of the square of the scalar derivative conditioned on the scalar fluctuation itself, as well as other conditional statistics, showed strong dependence on the measurement location, as well as the direction in which the derivative was determined. The crosscorrelation between the square of the scalar derivative and the signal showed a clear Reynolds-number trend, decreasing as the jet Reynolds number was varied from 2800 to 18000. The far-field measurements, using the heated rings, were corroborated by new heated jet experiments. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1995-05-25
    Description: The amplitude equations governing the nonlinear interaction among normal modes are derived for a multilayer quasi-geostrophic channel. The set of normal modes can represent any wavy disturbance to a parallel shear flow, which may be stable or unstable. Orthogonality in the sense of pseudomomentum or pseudoenergy is used to obtain the amplitude equations in a direct fashion, and pseudoenergy and pseudomomentum conservation laws permit the properties of the interaction coefficients to be deduced. Particular attention is paid to triads exhibiting explosive resonant interaction, as they lead to nonlinear instability of the basic flow. The relationship between this mechanism and the most recently discovered nonlinear stability conditions is discussed. Situations in which the basic velocity is constant in each layer are treated in detail. A particular formulation of the stability condition is given that emphasizes the close connection between linear and nonlinear stability. It is established that this stability condition is also a necessary condition: when it is not satisfied, and when the flow is linearly stable, explosive resonant interaction of baroclinic Rossby waves acts as a destabilizing mechanism. Two- and three-layer models are specifically considered; their stability features are presented in the form of stability diagrams, and interaction coefficients are calculated in particular cases. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1995-05-10
    Description: The equilibrium and stability of a single row of equidistantly spaced identical point vortices is a classical problem in vortex dynamics, which has been addressed by several investigators in different ways for at least a century. Aspects of the history and the essence of these treatments are traced, stating some in more accessible form, and pointing out interesting and apparently new connections between them. For example, it is shown that the stability problem for vortices in an infinite row and the stability problem for vortices arranged in a regular polygon are solved by the same eigenvalue problem for a certain symmetric matrix. This result also provides a more systematic enumeration of the basic instability modes. The less familiar theory of equilibria of a finite number of vortices situated on a line is also recalled. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1995-05-10
    Description: Nonlinear stability of a pressure driven core-annular flow is analysed, and a study of the large-amplitude interfacial dynamics is reported in the limit of a small ratio β of the annular clearance to the radius. An asymptotic nonlinear evolution equation for the annular film thickness is derived as a general case which involves shear coupling with the core flow. We discuss the effects of the surface tension parameter and viscosity stratification of various orders in β. The governing equation is investigated by solving it on extended intervals. Long-term simulations in a wide range of parameters reveal rich dynamics of wave patterns and coherent structures. Only in a narrow window of the small control parameters can it be described by the weakly nonlinear dissipative-dispersive equation, exhibiting behaviour of strictly bounded solutions which varies from a spatiotemporal chaos to the quasi-steady wavetrains. For sufficiently high surface tension, some pulses (to which the primary instabilities saturate) can coalesce into stable larger structures. This leads to the formation of solitary humps via cascade absorption. Substantial thickness non-uniformities can cause collapse of the perfect CAFF owing to the lens formation or extreme film thinning. Our critical value of the control parameter is in good agreement with the experimental data by Aul & Olbricht. Under strong coupling of the core flow with a less viscous annular film the interfacial evolution settles to a train of inverted pulses. Long-time behaviour in the intermediate range of parameters is diversified from regular pulse trains, to the formation of wide multi-peak structures or blow-up, depending on the apparent involvement of the core. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1995-05-10
    Description: This paper represents the second part of a study of semi-geostrophic (SG) geophysical fluid dynamics. SG dynamics shares certain attractive properties with the better known and more widely used quasi-geostrophic (QG) model, but is also a good prototype for balanced models that are more accurate than QG dynamics. The development of such balanced models is an area of great current interest. The goal of the present work is to extend a central body of QG theory, concerning the evolution of disturbances to prescribed basic states, to SG dynamics. Part 1 was based on the pseudomomentum; Part 2 is based on the pseudoenergy. A pseudoenergy invariant is a conserved quantity, of second order in disturbance amplitude relative to a prescribed steady basic state, which is related to the time symmetry of the system. We derive such an invariant for the semi-geostrophic equations, and use it to obtain: (i) a linear stability theorem analogous to Arnol'd's ‘first theorem’; and (ii) a small-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit. The results are analogous to their quasi-geostrophic forms, and reduce to those forms in the limit of small Rossby number. The results are derived for both the f-plane Boussinesq form of semi-geostrophic dynamics, and its extension to β-plane compressible flow by Magnusdottir & Schubert. Novel features particular to semi-geostrophic dynamics include apparently unnoticed lateral boundary stability criteria. Unlike the boundary stability criteria found in the first part of this study, however, these boundary criteria do not necessarily preclude the construction of provably stable basic states. The interior semi-geostrophic dynamics has an underlying Hamiltonian structure, which guarantees that symmetries in the system correspond naturally to the system's invariants. This is an important motivation for the theoretical approach used in this study. The connection between symmetries and conservation laws is made explicit using Noether's theorem applied to the Eulerian form of the Hamiltonian description of the interior dynamics. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1980-12-29
    Description: This note provides some explanation of the fact that, contrary to the requirements of local isotropy, the skewness S of the streamwise temperature derivative ∂θ/∂x1 has been observed to be a non-zero constant of magnitude of about unity in high-Reynolds-number and high-Péclet-number turbulent shear flows. Measurements in slightly heated homogeneous shear flows and in unsheared grid turbulence suggest that S is non-zero only when the mean shear dU1/dx2 and the mean temperature gradient dT/dx2 are both non-zero. The sign of S is given by –sgn (dU1/dx2).sgn (dT/dx2). For fixed dU1/dx2, S is of the form tanh (αdT/dx2), α being a constant, while for fixed dT/dx2, it is of the form S/S* = 1 − β1 exp (− β2τ), where S* is a characteristic value of S, β1 and β2 are positive constants, and τ can be interpreted as a ‘total strain’. The derivative skewness data in other (inhomogeneous) shear flows are also compatible with the latter relation. Predictions from a simplified transport equation for [formula omitted], derived in the light of the present experimental observations, are in reasonable agreement with the measured values of S. A possible physical mechanism maintaining S is discussed. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1980-12-29
    Description: When pure solvent is separated from a solution of non-zero concentration Cb by a semi-permeable membrane, permeable to solvent (water) but not to solute, water flows osmotically across the membrane towards the solution. Its velocity J is given by J = PΔC, where P is a constant and ΔC is the concentration difference across the membrane. Because the osmotic flow advects solute away from the membrane, ΔC is usually less than Cb, by a factor γ which depends on the thickness of and flow in a concentration boundary layer. In this paper the layer is analysed on the assumption that the stirring motions in the bulk solution, which counter the osmotic advection, can be represented as two-dimensional stagnation-point flow. The steady-state results are compared with those of the standard physiological model in which the layer has a given thickness δ and the osmotic advection is countered only by diffusion. It turns out that the standard theory, although mechanistically inadequate, accurately predicts the value of γ over a wide range of values of the governing parameter β = PCbδ/D (where D is the solute diffusivity) if δ is given by where ν is the kinematic viscosity of the fluid and α is the stirring parameter. The final approach to the steady state is also analysed, and it is shown to be achieved in a time scale (D/ν)1/3/αk′ where k′ is a dimensionless number whose dependence on β is computed. Moreover, if β exceeds a certain critical value (≈ 10), the approach to the steady state is not monotonic but takes the form of a damped oscillation (in practice, however, β is unlikely to rise significantly above 1). The theory is extended to the case where the solute concentration is non-zero on both sides of the membrane and in that case it is shown that J is bounded as β → ∞. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1980-12-11
    Description: A rational asymptotic theory describing the perturbed flow in a turbulent boundary layer encountering a small two-dimensional hump is presented. The theory is valid in the limit of very high Reynolds number in the case of an aerodynamically smooth surface, or in the limit of small drag coefficient in the case of a rough surface. The method of matched asymptotic expansions is used to obtain a multiple-structured flow, along the general lines of earlier laminar studies. The leading-order velocity perturbations are shown to be precisely the inviscid, irrotational, potential flow solutions over most of the domain. The Reynolds stresses are found to vary across a thin layer adjacent to the surface, and display a singular behaviour near the surface which needs to be resolved by an even thinner wall layer. The Reynolds stress perturbations are calculated by means of a second-order closure model, which is shown to be the minimum level of sophistication capable of describing these variations. The perturbation force on the hump is also calculated, and its order of magnitude is shown to depend on the level of turbulence closure; a cruder turbulence model gives rise to spuriously large forces. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1980-12-29
    Description: Steady potential flow around a two-dimensional bubble with surface tension, either free or attached to a wall, is considered. The results also apply to a liquid drop. The flow and the bubble shape are determined as functions of the contact angle β and the dimensionless pressure ratio γ = (pb − ps)/½ρU2. Here pb is the pressure in the bubble, ps = p∞ + ½ρU2 is the stagnation pressure, p∞ is the pressure at infinity, ρ is the fluid density and U is the velocity at infinity. The surface tension σ determines the dimensions of the bubble, which are proportional to 2σ/ρU2. As γ tends to ∞, the bubble surface tends to a circle or circular arc, and as γ decreases the bubble elongates in the direction normal to the flow. When γ reaches a certain value γ0(β), opposite sides of the bubble touch each other. The problem is formulated as an integrodifferential equation for the bubble surface. This equation is discretized and solved numerically by Newton's method. Bubble profiles, the bubble area, the surface energy and the kinetic energy are presented for various values of β and γ. In addition a perturbation solution is given for γ large when the bubble is nearly a circular arc, and a slender-body approximation is presented for β ∼ ½π and γ ∼ γ0(β), when the bubble is slender. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1980-12-11
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1980-12-11
    Description: The evolution of the shape of a slender inviscid drop in an axisymmetric straining motion is studied at low Reynolds numbers. It is found that the shape equation can be solved by polynommals with time-dependent coefficients. A global stability result can be used to show simply that only one possible equilibrium is stable. It is further shown that if the slender drop starts with a long-wavelength waist then it cannot go to this stable equilibrium and must either extend indefinitely or burst. In the class of trinomial shapes, it is shown that the drop either bursts or goes to the stable equilibrium, depending on whether or not the initial shape has a waist. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1980-12-11
    Description: Conditions are found for the appearance of non-uniform progressive waves of permanent form from a long-wave modulation of a finite-amplitude Stokes wave on deep water. The waveheight at which the modulated waves can occur is a very slowly decreasing function of the modulation wavelength for values up to 150 times the original wavelength. Some qualitative remarks are made about the problem of determining the stability of the new waves. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1980-12-29
    Description: Based on the parabolic approximation, a refraction—diffraction model for linear water waves is developed. With the assumption that the water depth (refraction index) is slowly varying, the model equation describes the forward-scattered wavefield. Two examples are considered in particular: (i) wave diffraction by a long thin barrier on a uniform slope, and (ii) wave convergence over a semicircular step shoal. For the former problem, a similarity solution in terms of Fresnel integrals is obtained for the wavefield in the neighbourhood of the shadow boundary. For the latter problem, the resulting Schrödinger equation is solved numerically. The wavefield near the caustics as well as in the shadow region is obtained and compared with experimental data. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1980-12-11
    Description: The coherent structure dynamics in the near field of a circular jet has been experimentally explored by inducing ‘stable’ vortex pairing through controlled excitation (see Zaman & Hussain 1980) and applying phase-averaging techniques. Hot-wire measurements were made in a 7·62 cm air jet with laminar exit boundary layer at the Reynolds number ReD = 3·2 × 104, excited at the Strouhal number StD = 0·85. At a particular phase during the pairing process, spatial distributions of the phase-average longitudinal and lateral velocity perturbations (〈u)〉, 〈v〉), vorticity, streamlines, the coherent and background Reynolds stresses and turbulence intensities have been educed. These data have been obtained for four different locations occupied by the vortices at the same phase (preceding, during, and following the pairing event), in the region 0 〈 x/D 〈 5. Spatial distributions of these measures at four successive phases during the pairing process are also educed in an attempt to further understand the vortex-pairing dynamics. The flow physics is discussed on the basis of measurements over the physical extent of the vortical structures, phase-locked to specific phases of the pairing event and thus do not involve use of the Taylor hypothesis. The computed pseudostream functions at particular phases are compared with the corresponding streamlines drawn by the method of isoclines. Transition of the vortices is examined on the basis of vorticity diffusion, the superimposed random fluctuation field intensities and Reynolds stress and phase-locked circumferential correlation measurements. The peak vorticity drops rapidly owing to transition and interaction of the vortices during pairing but, farther downstream, the decay can be attributed to destruction of the coherent vorticity by the background turbulence Reynolds stress, especially at the locations of the latter's ‘saddle points’. Controlled excitation enhances the initial circumferential coherence of the vortical structures, but is ineffective in delaying turbulent breakdown near the end of the potential core; the breakdown appears to occur through evolution of the circumferential lobe structures. The coherent structure Reynolds stress is found to be much larger than the background turbulence Reynolds stress for 0 〈 x/D ≲ 3, but these two are comparable near the end of the jet potential core. The zone average of the coherent structure Reynolds stress over the cross-section of the merging vortex pair is much larger than that over a single vortical structure either before or after the completion of pairing. During the pairing process, such average correlations are found to be the largest at an early phase of the process while entrainment, turbulent breakdown as well as rapid diffusion of vorticity occur at a later phase. The regions of alternate positive and negative coherent Reynolds stresses associated with the structures and their interactions help explain ‘negative production’. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1980-10-01
    Description: Fully developed periodic flow (with non-zero mean) of a Newtonian fluid in a rigid curved tube has been investigated both numerically and experimentally. Results are reported for the mean friction factor, the amplitude ratio and phase angle between flow rate and pressure drop, the axial velocity profile, and the wall shear stress distribution. The numerical results (obtained by a finite difference method) are restricted to rather slow flows (mean Dean number [formula omitted]), while the experimental results (extracted from instantaneous flow rate-pressure drop measurements) extend up to [formula omitted]. A ‘resonant’ interaction between the axial and secondary flows at intermediate frequencies appears to be a characteristic feature of periodic flow in a curved tube. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1980-10-01
    Description: This paper reports on an extensive experimental study of the flows due to under-expanded axisymmetric jets impinging on flat plates. The range of plate locations extends to a point where the jet is just subsonic but the main emphasis is on the behaviour in the first shock cell. Plate inclinations from 90° to 30° were investigated by means of comprehensive surface pressure measurements and shadowgraph pictures. Wherever possible, the main features of the results have been reconstructed using inviscid analyses of the wave interactions. The flows are shown to be extremely complex due to the local structure of the free jet and, particularly, due to interactions between shock waves in the free jet and those created by the plate. In the near field, these interactions tend to be the controlling factors but at larger distances from the nozzle, mixing effects become increasingly important. The maximum pressure on the plate when it is inclined can be very much larger than when the plate is perpendicular, owing to the possibility of high pressure recoveries through multiple shock systems. Correlations are presented for some of the main features on perpendicular plates and it is shown that the integrated pressure loads for both normal and inclined plates can be predicted well by a simple momentum balance. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1980-10-01
    Description: When a pipe, connected to reservoirs at both ends, is subjected to an oscillating compression and expansion, fluid is alternately squeezed into and out of the reservoirs, causing a considerable amount of dissipation. This and two other related geometries (involving a symmetrical channel, and a pair of circular disks) are analysed for their flow patterns and energy dissipation, as a function of frequency. It is found that, under certain circumstances, the impedance due to transverse flow can greatly exceed the acoustical impedance (due to longitudinal flow). © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1980-10-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1980-09-01
    Description: The mechanism of the creation of secondary vortices behind an impulsively started circular cylinder is analysed in this paper by a higher order of accuracy numerical method. This is a combination of second-order and fourth-order compact finite difference schemes to resolve complete unsteady Navier–Stokes equations. The fourth-order compact scheme is used to calculate the Poisson equation of the stream function and the second-order alternating direction implicit scheme to resolve the vorticity transport equation. In particular, the growth of primary and secondary vortices with time is analysed for Reynolds numbers equal to 300, 550 and 1000. A single secondary vortex first appears at a Reynolds number equal to 300 on the surface of the cylinder. At R = 550, this creation is found numerically at dimensionless time t about 2·85, and this single secondary vortex is transformed into a pair of secondary vortices at t about 5. For R = 1000, two single vortices can be observed at t about 2·5, one near the separation point and another more important, easily identified in flow structure. These secondary vortices are transformed into a pair of secondary vortices at t about 4·5. A numerical analysis of the influence of the grid systems and the time step is also given. All numerical results presented here are compared with experimental visualizations. The comparison is found satisfactory. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1980-10-01
    Description: Measurements of velocity fluctuations in the wake of a thin non-lifting aerofoil are presented: in one set of experiments the flow was symmetrical, while in the other the upper surface of the aerofoil was roughened to increase the surface shear stress. Measurements were confined to the near wake, where the disturbed region lies within the inner layers of the original boundary layers; thus the boundary-layer thickness is not a relevant length scale. The practical relevance of the experiment is to the prediction of flow over aerofoils, where only the initial region of the wake significantly affects the aerofoil pressure distribution. Temperature-conditioned sampling techniques were used, one boundary layer at a time being heated so that fluid from each boundary layer could be traced within the wake. In contrast to the behaviour of merging shear layers in ducts and jets, the wake interaction involves significant fine-scale mixing; the results reveal a three-layer structure, with a fine-scale inner wake of mixed fluid separating two layers in which structural changes are confined to the region of time sharing, or internal intermittency, between mixed and unmixed fluid. The implications of the results for calculation methods are discussed. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1980-07-11
    Description: Decaying turbulence in neutral and stratified fluids has been studied experimentally for relatively high mesh Reynolds numbers and long time-histories. The neutral case indicates an initial period decay law, q2∝ t−1, through non-dimensional time which is considerably longer than previous measurements at the same mesh Reynolds number (Re = 48260). The stratified experiment resulted in a decay rate virtually identical to that of the neutral case through Wgt/M = 275. However the decay rate sharply decreased after this time when the field of turbulence was replaced by internal gravity waves. A critical Richardson number marks the transition from the turbulence to an internal gravity wave domain. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
  • 99
    Publication Date: 1980-12-29
    Description: A generalized eddy-viscosity function νT, is introduced in order to express the Reynolds stress in an incompressible dusty gas as a linear combination of the Kronecker and rate-of-strain tensors. On the basis of Saffman's dusty-gas model a transport equation for the eddy viscosity is derived from the general turbulence energy equations, thereby introducing two additional functions, the specific turbulence kinetic energy E1, and a scale variable s. In order to determine the three variables modified Prandtl–Wieghardt relation among them is accepted and a transport equation for s is postulated in the same manner as in the clean-gas turbulence transport model (firstly proposed by Harlow & Nakayama 1967) but with the inclusion of an additional term accounting for the dust particles stabilizing action. We are considering values of loading (mass ratio of particles) of order of unity, with particle/gas density ratios of order of 103 and volume concentrations of the order of 10−3, so that particle–particle interactions are neglected. Supposing that the particles nearly follow the gas motion, following well at large scales and poorly at small, an application of the theory to problem of numerical calculations of the dusty-gas parameters such as mean velocity profile of turbulent pipe flow is given. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1980-12-29
    Description: Measurements of the thermal and velocity structure of the near-surface mixing layer of a freshwater lake in moderate wind conditions from fixed or mobile arrays of sensors reveal large-scale coherent structures consisting of narrow fronts across which both the temperature and the horizontal component of the current increase. These fronts are generally transverse to the wind direction and are inclined to the vertical, and appear to be similar to fronts, reported as temperature ‘ramps’, in the near-surface atmospheric boundary layer. The time derivatives of the temperature are skewed in a sense consistent with observations in laboratory and atmospheric boundary layers, and of a magnitude consistent with measurements in the latter. Evidence is presented to show that bubbles generated by breaking waves are carried down in the large-scale pattern of flow associated with the fronts in the mixing layer. The presence of a Langmuir circulation associated with wind rows has not been established in these experiments. The relevance of the observations to the ocean mixing layer is discussed. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...