ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Maps
  • Other Sources  (1,724)
  • Lunar and Planetary Science and Exploration  (1,455)
  • Composite Materials
  • 2000-2004  (1,724)
  • 1950-1954
  • 1935-1939
  • 2002  (828)
  • 2001  (896)
  • 1947
Collection
  • Maps
  • Other Sources  (1,724)
Source
Years
  • 2000-2004  (1,724)
  • 1950-1954
  • 1935-1939
Year
  • 1
    Publication Date: 2004-12-03
    Description: Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.
    Keywords: Composite Materials
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6; Volume 2444-445; NASA/CP-2002-211212/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: ANTS (Autonomous Nano- Technology Swarm), a mission architecture consisting of a large (1000 member) swarm of picoclass (1 kg) totally autonomous spacecraft with both adaptable and evolvable heuristic systems, is being developed as a NASA advanced mission concept, and is here examined as a paradigm for lunar surface exploration. As the capacity and complexity of hardware and software, demands for bandwidth, and the sophistication of goals for lunar and planetary exploration have increased, greater cost constraints have led to fewer resources and thus, the need to operate spacecraft with less frequent human contact. At present, autonomous operation of spacecraft systems allows great capability of spacecraft to 'safe' themselves and survive when conditions threaten spacecraft safety. To further develop spacecraft capability, NASA is at the forefront of development of new mission architectures which involve the use of Intelligent Software Agents (ISAs), performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. Selected missions in current planning stages require small groups of spacecraft weighing tens, instead of hundreds, of kilograms to cooperate at a tactical level to select and schedule measurements to be made by appropriate instruments onboard. Such missions will be characterizing rapidly unfolding real-time events on a routine basis. The next level of development, which we are considering here, is in the use of autonomous systems at the strategic level, to explore the remote terranes, potentially involving large surveys or detailed reconnaissance.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 15-16; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) will conduct a comprehensive series of investigations of the Martian surface and atmosphere. The investigations will be accomplished using an instrument design that provides high spatial and spectral resolutions, extended wavelength range, and ability to gimbal through a range of orientations. Baseline investigations include a near-global survey to find high science priority sites, full-resolution measurement of thousands of such sites, and tracking of seasonal variations in atmospheric and surface properties.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 49-50; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Planetary targets have been observed with radar since the late 1950s when it was first used for ranging experiments with the Moon. As telescope size and power increased, it became possible to observe more distant targets (Venus, Mars, and the outer satellites). Inherent to radar observations is the uncertainty as to the source of the reflection, there being two points where range and Doppler rings intersect on a sphere. The use of interferometric methods, first used on the moon with two stations and later on Venus and Mars, solved this problem. We extend the method through the addition of a fourth receiving telescope (thus doubling the number of projected baselines) and integration of the newly available Mars Orbiter Laser Altimeter (MOLA) topographic datasets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 43-44; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The intent of this paper is to show the relationships for Mars among albedo, thermal inertia, roughness inferred from MOLA pulse width spread data, and geology inferred from photogeological analyses. Mapping of surface units using these parameters and approaches, in combination with analysis of hyperspectral image data from ISM, TES, OMEGA, and CRISM observations, will maximize our understanding of the distribution and nature of surface units on the red planet. Results will directly impact the selection of landing sites that exhibit geological records needed to understand planetary habitability.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 3-4; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: Rover missions to the surface of Mars after MER 2003, are likely to be centered around focused geologic field mapping. One objective with high priority in selecting landing sites for these missions will be to characterize the nature, spatial distribution, internal structure, composition, and depositional history of exposed sedimentary layered deposits by visiting a number of distributed outcrops identified previously (and with a high degree of certainty) from orbit. These deposits may contain prebiotic material, even fossil organisms, but their primary value will be to enable an assessment of the planet's climate at the time they were emplaced. High resolution imaging from a mobile rover will enable the detailed study of these deposits over a wide area, their internal structure and mineralogy at distributed localities, and could resolve biologically-derived structures (such as stromatolite-like textures) if they are present. With the addition of a spectrometer, it should be possible to ascertain the presence of carbonates, sulfates, organics, water (liquid, frost, and bound water), as well as a variety of silicate minerals in the context of the collected imagery. Such a mission approach is directly relevant to future exploration of Mars, because it provides the geologic context comparable to what a field geologist visiting a site for the first time would acquire. Rover missions after MER will likely have much better targeting and hazard avoidance landing systems, enabling access to planimetrically-challenged sites of high scientific interest. These vehicles will also likely have greater mobility than MER, capable of driving greater distances in a shorter amount of time. Many scientists and mission planners have realized the need to design a rover whose mobility can be comparable to the dimensions of its 3-sigma landing error ellipse.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs; 51-52; LPI-Contrib-1101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Using topography collected over one martian year from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor (MGS) spacecraft, we have measured temporal changes in the elevation of the martian surface that correlate with the seasonal cycle of carbon dioxide exchange between the surface and atmosphere. The greatest elevation change (1.5 to 2 meters) occurs at high latitudes ( above 80 degrees ), whereas the bulk of the mass exchange occurs at lower latitudes (below 75 degrees N and below 73 degrees S). An unexpected period of sublimation was observed during northern hemisphere autumn, coincident with dust storms in the southern hemisphere. Analysis of MGS Doppler tracking residuals revealed temporal variations in the flattening of Mars that correlate with elevation changes. The combined changes in gravity and elevation constrain the average density of seasonally deposited carbon dioxide to be 910 +/- 230 kilograms per cubic meter, which is considerably denser than terrestrial snow.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 294; 5549; 2141-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forensic science international (ISSN 0379-0738); Volume 129; 1; 1-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); Volume 1; 4; 523-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); Volume 2; 2; 183-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) (ISSN 1120-1797); Volume 17 Suppl 1; 81-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: Redox variations have been reported among the shergottites. Eu and Gd partitioning experiments designed for the LEW86010 angrite, to infer a range of fo2 for the shergottites have been used. Fo2 using equilibria between Fe-Ti oxides have been inferred. There is fairly good agreement between the Fe-Ti oxide determinations and the estimates from Eu anomalies in terms of which meteorites are more or less oxidized. The Eu anomaly technique and the Fe-Ti oxide technique both essentially show the same trend, with Shergotty and Zagami being the most oxidized and QUE94201 and DaG 476 being the most reduced. Thus, the variation in fo2 appears to be both real and substantive. However, although the redox trends indicated by the two techniques are similar, there is as much as a two log unit offset between the results. One explanation for this offset is that the Eu calibration used for the shergottites was actually designed for the LEW86010 angrite, a silica-undersaturated basalt whose pyroxene (diopside) compositions are rather extreme. To correct this, a set of experiments on the redox relationship of Eu partitioning relative to Sm and Gd for pyroxene and melt compositions more relevant to Martian meteorites were conducted. We have taken the experimentally determined relationship between D (sup Augite/melt) (Sm,Eu,Gd) and fO2 and applied it to augite Eu and Gd data for the basaltic Shergottites of as well as previously unreported augite Sm data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 41-42; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Solar powered aircraft are of interest for exploring both Mars and Venus. The thin atmosphere of Mars presents a difficult environment for flying. It is clear that a new approach is needed. By making a totally solar airplane, we can eliminate many of the heavy components, and make an airplane that can fly without fuel. Using high efficiency solar cells, we can succeed with an airplane design that can fly for up to 6 hours in near-equatorial regions of Mars (4 hours of level flight, plus two hours of slow descent), and potentially fly for many days in the polar regions. By designing an airplane for a single day flight. In particular, this change means that we no longer have to cope with the weight of the energy storage system that made previous solar powered airplanes for Mars impractical). The new airplane concept is designed to fly only under the optimal conditions: near equatorial flight, at the subsolar point, near noon. We baseline an 8 kg airplane, with 2 kg margin. Science instruments will be selected with the primary criterion of low mass. Solar-powered aircraft are also quite interesting for the exploration of Venus. Venus provides several advantages for flying a solar-powered aircraft. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The atmospheric pressure makes flight much easier than on planets such as Mars. The atmospheric pressure on Venus is presented. From an altitude of approximately 45 km (pressure = 2 bar), to approximately 60 km (pressure = 0.2 bar), terrestrial airplane experience can be easily applied to a Venus airplane design. At these flight altitudes, the temperature varies from 80 C at 45 km, decreasing to -35 C at 60 km. Also, the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. These factors make Venus a prime choice for a long-duration solar-powered aircraft. Fleets of solar-powered aircraft could provide an architecture for efficient and low-cost comprehensive coverage for a variety of scientific missions. Exploratory planetary mapping and atmospheric sampling can lead to a greater understanding of the greenhouse effect not only on Venus but on Earth as well.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 17th Space Photovoltaic Research and Technology Conference; 126-127; NASA/CP-2002-211831
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: Mafic igneous rocks serve as probes of the interiors of their parent bodies - the compositions of the magmas contain an imprint of the source region composition and mineralogy, the melting and crystallization processes, and mixing and assimilation. Although complicated by their multifarious history, it is possible to constrain the petrologic evolution of an igneous province through compositional study of the rocks. Incompatible trace elements provide one means of doing this. I will use incompatible element ratios of martian meteorites to constrain the early petrologic evolution of Mars. Incompatible elements are strongly partitioned into the melt phase during igneous processes. The degree of incompatibility will differ depending on the mineral phases in equilibrium with the melt. Most martian meteorites contain some cumulus grains, but nevertheless, incompatible element ratios of bulk meteorites will be close to those of their parent magmas. ALH 84001 is an exception, and it will not be discussed. The martian meteorites will be considered in two groups; a 1.3 Ga group composed of the clinopyroxenites and dunite, and a younger group composed of all others.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 37-38; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: The shergottite Martian meteorites present a variety of oft-confusing petrologic features. In particular, represented among this subgroup are basalts with very depleted LREE abundances, as well as those with nearly chondritic overall REE abundances. The LREE-depleted basalts appear to more closely record the REE and isotopic features of their mantle source regions. Those basalts with more nearly chondritic REE abundances appear to contain an extra component often referred to as a "crustal" component. The addition of the crustal component tends to restore the overall REE abundance pattern towards chondritic relative abundances. Here we suggest that the crustal component could derive from "andesitic" rocks observed remotely to occur on the Martian surface, and which were analysed at the Pathfinder site.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 43-44; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 39-40; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The reflection of electromagnetic radiation from a planetary regolith involves a combination of geometric and physical optics processes which contribute to the signal returned to the remote observer. The geometric optics effects are the product of singly and multiply scattered radiation from the surfaces of the regolith particles, combined with radiation which has undergone various combinations of transmission through one or more regolith grains followed by one or more scatterings from other particles. The physical optics effects include diffraction of radiation around the edges of large irregular particles and cooperative coherent scattering between particles which are small when compared to the wavelength of the incident radiation. These effects produce measurable changes in the intensity and polarization of reflected light as a function of illumination and viewing geometry. In particular, as phase angle becomes small, the reflectance of a particulate material will increase non-linearly and exhibit the 'opposition effect'. In the planetary science context, the phase curve, and in particular the size of the opposition surge and the width of the phase curve near zero degrees, have been attributed to two processes commonly called 'shadow hiding' (SHOE) and 'coherent backscattering' (CBOE).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 53; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: In this study, we use ultraviolet observations from the International Ultraviolet Explorer (IUE) and the Galileo Ultraviolet Spectrometer (UVS) to compose the ultraviolet solar phase curves of the icy Galilean satellites. Broadband rotation phase curves from 0.26 to 0.32 microns are constructed in order to examine the rotational behavior of the icy Galilean satellites in the ultraviolet. After normalizing the rotational variations, modeling of the solar phase variations are compared to comparable studies in the visible.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 31-32; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: The improvement in weld quality by the friction stir welding (FSW) process invented by TWI of Cambridge, England, patented in 1991, has prompted investigation of this process for advanced structural materials including Al metal matrix composite (Al-MMC) materials. Such materials can have high specific stiffness and other potential beneficial properties for the extreme environments in space. Developments of discontinuous reinforced Al-MMCs have found potential space applications and the future for such applications is quite promising. The space industry has recognized advantages of the FSW process over conventional welding processes such as the absence of a melt zone, reduced distortion, elimination of the need for shielding gases, and ease of automation. The process has been well proven for aluminum alloys, and work is being carried out for ferrous materials, magnesium alloys and copper alloys. Development work in the FSW welding process for joining of Al-MMCs is relatively recent and some of this and related work can be found in referenced research publications. NASA engineers have undertaken to spear head this research development work for FSW process investigation of Al-MMCs. Some of the reported related work has pointed out the difficulty in fusion welding of particulate reinforced MMCs where liquid Al will react with SiC to precipitate aluminum carbide (Al4C3). Advantages of no such reaction and no need for joint preparation for the FSW process is anticipated in the welding of Al-MMCs. The FSW process has been best described as a combination of extrusion and forging of metals. This is carried out as the pin tool rotates and is slowly plunged into the bond line of the joint as the pin tool's shoulder is in intimate contact with the work piece. The material is friction-stirred into a quality weld. Al-MMCs, 4 in. x 12 in. plates of 0.25 in. (6.35mm) thickness, procured from MMCC, Inc. were butt welded using FSW process at Marshall Space Flight Center (MSFC) using prior set of operating conditions. Weld quality was evaluated using radiography and standard metallography techniques. Another aspect of the MMCs centered around the use of the laser engineered net shaping (LENS) processing of selected Narloy-Z composites. Such an approach has been earlier studied for fabrication of stainless steels. In the present study, attempts were made to fabricate straight cylindrical specimens using LENS process of Narloy-Z and Narloy-Z with 20 vol. % Al2O3 MMCs using the direct metal deposition Optomec LENS-750 system.
    Keywords: Composite Materials
    Type: Research Reports: 2001 NASA/ASEE Summer Faculty Fellowship Program; XII-1 - XII-6; NASA/CR-2002-211840
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: The western hemisphere of Mars is dominated by the formation of Tharsis, which is an enormous high-standing region (roughly 25% of the surface area of the planet) capped by volcanics, including the solar system's largest shield volcanoes. Tharsis is surrounded by an enormous radiating system of grabens and a circumferential system of wrinkle ridges that extends over the entire western hemisphere of Mars. This region is perhaps the largest and most long lived tectonic and volcanic province of any of the terrestrial planets with a well-preserved history of magmatic-driven activity that began in the Noachian and has lasted throughout Martian geologic time. Tharsis and the surrounding regions comprise numerous components, including volcanic constructs of varying sizes and extensive lava flow fields, large igneous plateaus, fault and ridge systems of varying extent and relative age of formation, gigantic outflow channel systems, vast system of canyons, and local and regional centers of tectonic activity. Many of these centers are interpreted to be the result of magmatic-related activity, including uplift, faulting, dike emplacement, volcanism, and local hydrothermal activity. Below we present a summary of our work for Tharsis focusing primarily on the earliest stage of development, the Noachian period. Here we hone in on the early centers and how they relate to the early development of the Tharsis Magmatic Complex (TMC).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs; 9-10; LPI-Contrib-1101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) will conduct a comprehensive series of investigations of the Martian surface and atmosphere. The investigations will be accomplished using an instrument design that provides high spatial and spectral resolutions, extended wave- length range, and ability to gimbal through a range of orientations. Baseline investigations include a near-global survey to find high science priority sites, full- resolution measurement of thousands of such sites, and tracking of seasonal variations in atmospheric and surface properties.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Infrared Spectroscopy: From Theory and the Laboratory To Field Observations; LPI-Contrib-1148
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: The objective of this project is to expand the capabilities of for the Mars Umbilical Technology Demonstrator (MUTD). The MUTD shall provide electrical power and fiber optic data cable connections between two simulated mars vehicles, 1000 in apart. ne wheeled mobile robot Omnibot is used to provide the mobile base for the system. The mate-to umbilical plate is mounted on a Cartesian robot, which is installed on the Omnibot mobile base. It is desirable to provide the operator controlling the Omnibot, the distance and direction to the target. In this report, an approach for finding the position and orientation of the mobile robot using inertial sensors and beacons is investigated. First phase of the project considered the Omnibot being on the flat surface. To deal with the uneven Mars environment, the orientation as well as position needs to be controlled. During local positioning, the information received from four ultrasonic sensors installed at the four corner of the mate-mi plate is used to identify the position of mate-to plate and mate the umbilical plates autonomously. The work proposed is the continuation of the principal investigator research effort as a participant in the 1999 NASA/ASEE Summer Faculty Fellowship Program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2000 Research Reports: NASA/ASEE Summer Faculty Fellowship Program; 101-111; NASA/CR-2001-210260
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: This paper presents the human exploration of Mars in viewgraph form.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 119-124; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: The contents include: 1) Crew Autonomy; 2) Bioastronautics Critical Path Roadmap (CPR); 3) CPR Issues; and 4) Clinical Problems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 60-68; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-10-05
    Description: Martian meteorite (shergottite) impact melt glasses that contain high concentrations of martian atmospheric noble gases and show significant variations in Sr-87/Sr-86 isotopic ratios are likely to contain Martian surface fines mixed with coarser regolith materials. The mixed soil constituents were molten due to shock at the time of meteoroid impact near the Martian surface and the molten glass got incorporated into the voids and cracks in some shergottite meteorites. Earlier, Rao et al. found large enrichments of sulfur (sulfate) during an electron-microprobe study of several impact melt glass veins and pods in EET79001,LithC thin sections. As sulfur is very abundant in Martian soil, these S excesses were attributed to the mixing of a soil component containing aqueously altered secondary minerals with the LithC precursor materials prior to impact melt generation. Recently, we studied additional impact melt glasses in two basaltic shergottites, Zagami and Shergotty using procedures similar to those described. Significant S enrichments in Zagami and Shergotty impact melt glass veins similar to the EET79001, LithC glasses were found. In addition, we noticed the depletion of the mafic component accompanied by the enrichment of felsic component in these impact melt glass veins relative to the bulk host rock in the shergottites. To explain these observations, we present a model based on comminution of basaltic rocks due to meteoroid bombardment on martian regolith and mechanical fractionation leading to enrichment of felsics and depletion of mafics in the fine grained dust which is locally mobilized as a result of saltation and deflation due to the pervasive aeolian activity on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites; LPI-Contrib-1153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-10-05
    Description: Mafic igneous rocks serve as probes of the interiors of their parent bodies - the compositions of the magmas contain an imprint of the source region composition and mineralogy, the melting and crystallization processes, and mixing and assimilation. Although complicated by their multifarious history, it is possible to constrain the petrologic evolution of an igneous province through compositional study of the rocks. Incompatible trace elements provide one means of doing this. I will use incompatible element ratios of martian meteorites to constrain the early petrologic evolution of Mars. Incompatible elements are strongly partitioned into the melt phase during igneous processes. The degree of incompatibility will differ depending on the mineral phases in equilibrium with the melt. Most martian meteorites contain some cumulus grains, but nevertheless, incompatible element ratios of bulk meteorites will be close to those of their parent magmas. ALH 84001 is an exception, and it will not be discussed. The martian meteorites will be considered in two groups; a 1.3 Ga group composed of the clinopyroxenites and dunite, and a younger group composed of all others.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites; LPI-Contrib-1153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-10-05
    Description: The martian mantle is apparently heterogeneous, which opens the possibility that it is layered, with each layer convectively isolated. If this is correct, melt generation should occur either at thermal boundary layers or in plumes generated at those boundaries. Mantle layering may be a good means of slowing the planet's cooling rate, allowing young volcanism. Layering may also provide a means for keeping the crust and upper mantle cool, allowing the preservation of ancient variations in crustal thickness.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites; LPI-Contrib-1153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-10-05
    Description: Redox variations have been reported among the shergottites. Eu and Gd were used in partitioning experiments designed for the LEW86010 angrite, to infer a range of fO2 for the shergottites. Inferred fO2 using equilibria between Fe-Ti oxides was used. There is fairly good agreement between the Fe- Ti oxide determinations and the estimates from Eu anomalies in terms of which meteorites are more or less oxidized. The Eu anomaly technique and the Fe-Ti oxide technique both essentially show the same trend, with Shergotty and Zagami being the most oxidized and QUE94201 and DaG 476 being the most reduced. Thus, the variation in fO2 appears to be both real and substantive. However, although the redox trends indicated by the two techniques are similar, there is as much as a two log unit offset between the results of presented. One explanation for this offset is that the Eu calibration used for the shergottites was actually designed for the LEW86010 angrite, a silica-undersaturated basalt whose pyroxene (diopside) compositions are rather extreme. To correct this, a set of experiments were conducted on the redox relationship of Eu partitioning relative to Sm and Gd for pyroxene and melt compositions more relevant to Martian meteorites. We have taken the experimentally determined relationship between (Sm,Eu,Gd) and fO2 and applied it to augite Eu and Gd data for the basaltic Shergottites as well as previously unreported augite Sm data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites; LPI-Contrib-1153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-10-05
    Description: The shergottite Martian meteorites present a variety of oft-confusing petrologic features. In particular, represented among this subgroup are basalts with very depleted LREE abundances, as well as those with nearly chondritic overall REE abundances. The LREE-depleted basalts appear to more closely record the REE and isotopic features of their mantle source legions. Those basalts with more nearly chondritic REE abundances appear to contain an extra component often referred to as a "crustal" component. The addition of the crustal component tends to restore the overall REE abundance pattern towards chondritic relative abundances. Here we suggest that the crustal component could derive from andesitic rocks observed remotely to occur on the Martian surface, and which were analysed at the Pathfinder site.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites; LPI-Contrib-1153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: A major long term NASA objective is to enable human exploration beyond low Earth orbit. This will take a strange approach, with a concentration on new, enabling technologies and capabilities. Mars robotic missions are logical and necessary steps in the progression toward eventual human missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 125-139; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-12-03
    Description: The role of robots and humans in Mars Exploration is presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 27-38; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: A potential challenge for a human Mars mission is that while humans are by most measures the obvious best way to search for life on Mars, we may also be the most problematic in that we could unduly compromise the search for life by contaminating relevant environments and/or possibly adversely and irreversibly affecting indigenous life. Perhaps more problematic is the fundamental epistemic challenge of the "one data point" limitation which could decrease confidence in applying terrestrially based research to extraterrestrial life issues in general. An informal decision tree is presented as one way to begin thinking about contamination issues. There are many sub-questions and distinctions not shown such as biological vs. nonbiological (but biologically relevant) contamination, viable vs. dead organisms, masking indigenous organisms vs. merely making the search more difficult, and independent origin vs. panspermia distinctions. While it may be unlikely that terrestrial microbes could survive on Mars, let alone reproduce and unduly compromise the search for life, the unpredictable potential for microbial life to survive, grow exponentially, evolve and modify (and sometimes destroy) environments, warrants focusing carefully on biologically relevant contamination as we prepare to send humans to the first planet that may have indigenous life-forms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 89-91; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This effort supports the Astrobiology Objective 8 the Search for LIFE ON MARS PAST AND PRESENT -(Astrobiology Program Office, 1998, p.7). The essential trade analysis is between returning very small samples to the Earth while protecting them versus in situ analysis on Mars. Developing these explicit parameters encompasses design, instrumentation, system integration, human factors and surface operations for both alternatives. This allocation of capability approach incorporates a "humans and machines in the loop" model that recognizes that every exploration system involves both humans and automated systems. The question is where in the loop they occur whether on Earth, in the Mars Base, in the rover or creeping over the Mars surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 156-176; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-12-03
    Description: Mars climatology and its influence on human exploration is presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 47-57; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-12-03
    Description: The contents include: 1) Field Exploration Strategy; 2) Analytical Capabilities and Instruments; 3) Crew Skills and Training; and 4) Earth-Mars Communications. This paper is in viewgraph form.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 140-146; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The contents include: 1) Human Contributions; 2) Tasks for Humans (History and Future); 3) Environmental and Physical Limitations; 4) Human and Robotic Implementation Options; 5) Ground Test Experience; 6) Needed Enabling Information and Technology; and 7) Strategic Issues.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 69-77; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-12-03
    Description: This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Science and the Human Exploration of Mars; 78-88; LPI-Contrib-1089
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-12-03
    Description: Martian meteorite (shergottite) impact melt glasses that contain high concentrations of martian atmospheric noble gases and show significant variations in Sr-87/Sr-86 isotopic ratios are likely to contain Martian surface fines mixed with coarser regolith materials. The mixed soil constituents were molten due to shock at the time of meteoroid impact near the Martian surface and the molten glass got incorporated into the voids and cracks in some shergottite meteorites. Earlier, Rao et al. found large enrichments of sulfur (sulfate) during an electron-microprobe study of several impact melt glass veins and pods in EET79001,LithC thin sections. As sulfur is very abundant in Martian soil, these S excesses were attributed to the mixing of a soil component containing aqueously altered secondary minerals with the LithC precursor materials prior to impact melt generation. Recently, we studied additional impact melt glasses in two basaltic shergottites, Zagami and Shergotty using procedures similar to those described by Rao et al. Significant S enrichments in Zagami and Shergotty impact melt glass veins similar to the EET79001, LithC glasses were found. In addition, we noticed the depletion of the mafic component accompanied by the enrichment of felsic component in these impact melt glass veins relative to the bulk host rock in the shergottites. To explain these observations, we present a model based on comminution of basaltic rocks due to meteroid bombardment on martian regolith and mechanical fractionation leading to enrichment of felsics and depletion of mafics in the fine grained dust which is locally mobilized as a result of saltation and deflation due to the pervasive aeolian activity on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 49-50; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2004-12-03
    Description: Particles in a planetary regolith can be treated as independent scatterers when their size is large compared with the wavelength of light. The nature of this scattering, however, is poorly understood as the particle size approaches and becomes smaller than the wavelength. In order to understand this interaction better, the reflectances of well-sorted particulate samples of known composition were measured. This reflectance data was then analyzed to determine how scattering properties change with particle size.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 61-62; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2004-12-03
    Description: The peak of the solar energy distribution occurs at visual wavelengths and falls off rapidly in the infrared. This fact, improvements in infrared detector technology, and the low surface temperatures for most icy objects in the outer solar system have resulted in the bulk of telescopic and spacecraft observations being performed at visual and near-infrared wavelengths. Such observations, begun in the early 1970's and continuing to present, have provided compositional information regarding the surfaces of the satellites of Saturn and Uranus, Neptune's moon Triton, Pluto, Pluto's moon Charon, Centaur objects, and Kuiper belt objects. Because the incident sunlight penetrates the surface and interacts with the materials present there, the measured reflected sunlight contains information regarding the surface materials, and the ratio of the reflected to incident sunlight provides a mechanism of identifying the materials that are present.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 67-68; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2004-12-03
    Description: The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m Deep Space Network (DSN) antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 20 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars. The usefulness of radar data for Mars exploration has been demonstrated in the past. Radar data were critical in assessing the Viking Lander 1 site as well as, more recently, the Pathfinder landing site. In general, radar data have not been available to the Mars exploration community at large. A project funded initially by the Mars Exploration Directorate Science Office at the Jet Propulsion Laboratory (JPL), and later funded by NASA's Mars Data Analysis Program has reprocessed to a common format a decade's worth of raw GSSR Mars delay-Doppler data in aid of landing site characterization for the Mars Program. These data will soon be submitted to the Planetary Data System (PDS). The radar data used were obtained between 1988 and 1995 by the GSSR, and comprise some 63 delay-Doppler radar tracks. Of these, 15 have yet to be recovered from old 9-track tapes, and some of the data may be permanently lost.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 23-24; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2004-12-03
    Description: Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International VLBI Service for Geodesy and Astrometry General Meeting Proceeding; 381-385; NASA/CP-2002-210002
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-12-03
    Description: The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2000 Research Reports: NASA/ASEE Summer Faculty Fellowship Program; 147-156; NASA/CR-2001-210260
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: Interstellar gas and dust constitute the primary material from which the solar system formed. Near the end of the hot early phase of star and planet formation, volatile, less refractory materials were transported into the inner solar system as comets and interplanetary dust particles. Once the inner planets had sufficiently cooled, late accretionary infall seeded them with complex organic compounds [Oro, J. (1961) Nature (London) 190, 389-390; Delsemme, A. H. (1984) Origins Life 14, 51-60; Anders, E. (1989) Nature (London) 342, 255-257; Chyba, C. F. & Sagan, C. (1992) Nature (London) 355, 125-131]. Delivery of such extraterrestrial compounds may have contributed to the organic inventory necessary for the origin of life. Interstellar ices, the building blocks of comets, tie up a large fraction of the biogenic elements available in molecular clouds. In our efforts to understand their synthesis, chemical composition, and physical properties, we report here that a complex mixture of molecules is produced by UV photolysis of realistic, interstellar ice analogs, and that some of the components have properties relevant to the origin of life, including the ability to self-assemble into vesicular structures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 98; 3; 815-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: Infrared (IR) studies of laboratory ices can provide information on the evolution of cosmic-type ices as a function of different simulated space environments involving thermal, ultraviolet (UV), or ion processing. Laboratory radiation experiments can lead to the formation of complex organic molecules. However, because of our lack of knowledge about UV photon and ion fluxes, and exposure lifetimes, it is not certain how well our simulations represent space conditions. Appropriate laboratory experiments are also limited by the absence of knowledge about the composition, density, and temperature of ices in different regions of space. Our current understanding of expected doses due to UV photons and cosmic rays is summarized here, along with an inventory of condensed-phase molecules identified on outer solar system surfaces, comets and interstellar grains. Far-IR spectra of thermally cycled H2O are discussed since these results reflect the dramatic difference between the amorphous and crystalline phases of H2O ice, the most dominant condensed-phase molecule in cosmic ices. A comparison of mid-IR spectra of products in proton-irradiated and UV-photolyzed ices shows that few differences are observed for these two forms of processing for the simple binary mixtures studied to date. IR identification of radiation products and experiments to determine production rates of new molecules in ices during processing are discussed. A new technique for measuring intrinsic IR band strengths of several unstable molecules is presented. An example of our laboratory results applied to Europa observations is included.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (ISSN 1386-1425); Volume 57; 4; 843-58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: "Are they worlds, or are they mere masses of matter? Are physical forces alone at work there or has evolution begotten something more complex, something not unakin to what we know on Earth as life? It is in this that lies the peculiar interest of Mars." Percival Lowell (in ref. 1, p. 3).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 412; 6843; 209-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: We present results from an ongoing program to perform UV measurements (215.0 and 237.0 nm) of the Moon at varying solar phase angles to understand the lunar phase curve at ultraviolet wavelengths. We use new observations from the Ultraviolet Spectrometer (UVS) aboard the Student Nitric Oxide Explorer (SNOE) combined with existing observations from the Galileo UVS. The lunar UV phase curve can be used to further understand the scattering properties of the lunar surface. The Moon's scattering properties at visible wavelengths are well understood; studying scattering properties at shorter wavelengths may provide insight into the roles of volume scattering vs. surface scattering and how weathering processes may affect scattering properties. The UV lunar phase curve can also be helpful for UV observers, as the Moon is often used as a UV calibration source, but the UV brightness variation with phase angle has not been well understood.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 29; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 25; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-23
    Description: LaRC(TM)-PETI-5 is a PhenylEthynyl-Terminated Imide resin developed at NASA Langley Research Center (LaRC) during the 1990s. It offers a combination of attractive composite and adhesive properties. IM7/LaRC(TM)-PETI-5 composites exhibit thermal and thermo-oxidative stability typical of polyimides, superior chemical resistance and processability, excellent mechanical properties, toughness and damage tolerance. It was selected for study in the High Speed Research program aimed at developing technologies for a future supersonic aircraft, the High Speed Civil Transport, with a projected life span of 60 000 h at a cruise speed up to Mach 2.4. Robust autoclave processing cycles for LaRC(TM)-PETI-5 composites have been thoroughly designed and demonstrated, which involved hand lay-up of solvent-ladened 'wet' prepregs. However, this type of processing is not only costly but also environmentally unfriendly. Volatile management and shrinkage could become serious problems in the fabrication of large complex airframe structural subcomponents. Robotic tow placement technology utilizing 'dry' material forms represents a new fabrication process which overcomes these deficiencies. This work evaluates and compares mechanical properties of composites fabricated by heated head automated tow placement (dry process) with those obtained by hand lay-up/autoclave fabrication (wet process). Thermal and rheological properties of the robotically as-placed uncured composites were measured. A post-cure cycle was designed due to the requirement of the PETI-5 resin for a 370 C/1 h hold to reach full cure, conditions which cannot be duplicated during heated head robotic placement. Mechanical properties such as 0 degree flexural strength and modulus, open hole tensile and compressive strength and moduli, reduced section compression dogbone compressive strength, and modified zippora-medium small (MZ-MS) tensile and compressive properties were obtained on the post-cured panels. These properties compared favourably with those obtained from the wet process.
    Keywords: Composite Materials
    Type: High Performance Polymers (ISSN 0954-0083); Volume 13; 323-336
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-23
    Description: The detection of impulsive low-frequency (10 to 80 kHz) radio signals, and separate very-low-frequency (approx. 100 Hz) radio 'whistler' signals provided the first evidence for lightning in the atmosphere of Venus. Later, a small number of impulsive high- frequency (100 kHz to 5.6 MHz) radio signals, possibly due to lightning, were also detected. The existence of lightning at Venus has, however, remained controversial. Here we report the results of a search for high-frequency (0.125 to 16 MHz) radio signals during two close fly-bys of Venus by the Cassini spacecraft. Such signals are characteristic of terrestrial lightning, and are commonly heard on AM (amplitude-modulated) radios during thunderstorms. Although the instrument easily detected signals from terrestrial lightning during a later fly-by of Earth (at a global flash rate estimated to be 70/s, which is consistent with the rate expected for terrestrial lightning), no similar signals were detected from Venus. If lightning exists in the venusian atmosphere, it is either extremely rare, or very different from terrestrial lightning.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature; Volume 409; 313-315
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-23
    Description: The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary and Space Science (ISSN 0032-0633); Volume 47; 1101-1109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-23
    Description: One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.
    Keywords: Composite Materials
    Type: Materials and Design (ISSN 0261-3069); Volume 22; 541-554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. c2002 Published by Elsevier Science Ltd.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Acta astronautica (ISSN 0094-5765); Volume 51; 1-9; 337-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: Radiation is a primary concern in the planning of a manned mission to Mars. Recent studies using NASA Langley Research Center's HZETRN space radiation transport code show that the low energy neutron fluence on the Martian surface is larger than previously expected. The upper atmosphere of Mars is exposed to a background radiation field made up of a large number of protons during a solar particle event and mixture of light and heavy ions caused by galactic cosmic rays at other times. In either case, these charged ions interact with the carbon and oxygen atoms of the Martian atmosphere through ionization and nuclear collisions producing secondary ions and neutrons which then interact with the atmospheric atoms in a similar manner. In the past, only these downward moving particles have been counted in evaluating the neutron energy spectrum on the surface. Recent enhancements in the HZETRN code allow for the additional evaluation of those neutrons created within the Martian regolith through the same types of nuclear reactions, which rise to the surface. New calculations using this improved HZETRN code show that these upward moving neutrons contribute significantly to the overall neutron spectrum for energies less than 10 MeV.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) (ISSN 1120-1797); Volume 17 Suppl 1; 94-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of radiation research (ISSN 0449-3060); Volume 43 Suppl; S35-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Applied and environmental microbiology (ISSN 0099-2240); Volume 68; 8; 3663-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-31
    Description: We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-06-07
    Description: The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.
    Keywords: Composite Materials
    Type: Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A viewgraph presentation gives an overview of the materials selection for the TransHab, the habitation module on the International Space Station (ISS). Details are given on the location of TransHab on the ISS, the multilayer inflatable shell that surrounds the module, the materials requirements (including information on the expected thermal environment), the materials selection challenges, the bladder materials requirements and testing, and meteoroid/debris shielding material.
    Keywords: Composite Materials
    Type: Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-06-07
    Description: Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.
    Keywords: Composite Materials
    Type: Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-06-07
    Description: Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Moon Beyond 2002: Next Steps in Lunar Science and Exploration; 42; LPI-Contrib-1128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-06-07
    Description: The objective of the Composite, Cryogenic, Conformal, Common Bulkhead, Aerogel-insulated Tank (CBAT) Program is to evaluate the potential for using various new technologies in next generation Reusable Launch Vehicles (RLVs) through design, fabrication, and testing of a subscale system. The new technologies include polymer matrix composites (PMCs), conformal propellant storage, common bulkhead packaging, and aerogel insulation. The National Aeronautics and Space Administration (NASA) and Thiokol Propulsion from Cordant Technologies are working together to develop a design and the processing methodologies which will allow integration of these technologies into a single structural component assembly. Such integration will significantly decrease subsystem weight and reduce shape, volume, and placement restrictions, thereby enhancing overall launch system performance. This paper/presentation focuses on the challenges related to materials and processes that were encountered and overcome during this program to date.
    Keywords: Composite Materials
    Type: Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-06-07
    Description: An idea is put forth for a nondestructive characterization (NDC) generated algorithm-N curve to replace a S-N curve. A scenario for NDC life determination has been proposed. There are many challenges for the NDC life determination and prediction, but it could yield a grand payoff. The justification for NDC life determination and prediction is documented.
    Keywords: Composite Materials
    Type: Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-06-07
    Description: During the manufacture of the X-33 liquid hydrogen (LH2) Tank 2, a total of 36 reinforcing caps were inspected thermographically. The cured reinforcing sheets of graphite/epoxy were bonded to the tank using a wet cobond process with vacuum bagging and low temperature curing. A foam filler material wedge separated the reinforcing caps from the outer skin of the tank. Manufacturing difficulties caused by a combination of the size of the reinforcing caps and their complex geometry lead to a potential for trapping air in the bond line. An inspection process was desired to ensure that the bond line was free of voids before it had cured so that measures could be taken to rub out the entrapped air or remove the cap and perform additional surface matching. Infrared thermography was used to perform the procure 'wet bond' inspection as well a to document the final 'cured' condition of the caps. The thermal map of the bond line was acquired by heating the cap with either a flash lamp or a set of high intensity quartz lamps and then viewing it during cool down. The inspections were performed through the vacuum bag and voids were characterized by localized hot spots. In order to ensure that the cap had bonded to the tank properly, a post cure 'flash heating' thermographic investigation was performed with the vacuum bag removed. Any regions that had opened up after the preliminary inspection or that were hidden during the bagging operation were marked and filled by drilling small holes in the cap and injecting resin. This process was repeated until all critical sized voids were filled.
    Keywords: Composite Materials
    Type: Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-06-07
    Description: Today's modern machining projects are composed more and more of complicated and intricate structure due to a variety of reasons including the ability to computer model complex surfaces and forms. The cost of producing these forms can be extremely high not only in dollars but in time to complete. Changes are even more difficult to incorporate. The subject blade shown is an excellent example. Its complex form would have required hundreds of hours in fabrication for just a simple prototype. The procurement would have taken in the neighborhood of six weeks to complete. The actual fabrication would have been an equal amount of time to complete. An alternative to this process would have been a wood model. Although cheaper than a metal fabrication, it would be extremely time intensive and require in the neighborhood of a month to produce in-house.
    Keywords: Composite Materials
    Type: Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-29
    Description: Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-29
    Description: Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-29
    Description: Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (〈5 pr-micrometer) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-29
    Description: For twelve days in April 2002 we performed a closed simulation in the Mars Desert Research Station, isolated from other people, as on Mars, while performing systematic surface exploration and life support chores. Email provided our only means of contact; no phone or radio conversations were possible. All mission-related messages were mediated by a remote mission support team. This protocol enabled a systematic and controlled study of crew activities, scheduling, and use of space. The analysis presented here focuses on two questions: Where did the time go-why did people feel rushed and unable to complete their work? How can we measure and model productivity, to compare habitat designs, schedules, roles, and tools? Analysis suggests that a simple scheduling change-having lunch and dinner earlier, plus eliminating afternoon meetings-increased the available productive time by 41%.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: By now, everyone who's heard of the Haughton-Mars Project knows that we travel to Devon Island to learn how people will live and work on Mars. But how do we learn about Mars operations from what happens in the Arctic? We must document our experience--traverses, life in the hab, instrument deployment, communications, and so on. Then we must analyze and formally model what happens. In short, while most scientists are studying the crater, other scientists must be studying the expedition itself. That's what I have done in the past four field seasons. I study field science, both as it naturally occurs at Haughton (unconstrained by a "Mars Sam") and as a constrained experiment using the Flashline Mars Arctic Research Station. During the second week of July 2001, I lived and worked in the hab as part of the Phase 2 crew of six. Besides participating in all activities, I took many photographs and time lapse video. The result of my work will be a computer simulation of how we lived and worked in the hab. It won't be a model of particular people or even my own phase per se, but a pastiche that demonstrates (a proof of concept) that we have appropriate tools for simulating the layout of the hab and daily routines followed by the group and individual scientists. Activities-how people spend their time-are the focus of my observations for building such a simulation model.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-29
    Description: Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-29
    Description: Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-29
    Description: Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining the chemical composition of those meteors which do not reach the ground. Particularly, we hope to get information about the composition difference between particles of different meteor showers and also sporadic and shower meteoroids". These visions categorized the aims of many subsequent rocket-borne ion mass spectrometer experiments in the lower ionosphere, Although the use such measurements to deduce the composition of different classes of meteoroids has not been successful, the past four decades of rocket observations have provided po%erful sets of data for advancing our understanding of meteor ablation, meteoric composition, metal neutral and ion chemistry as well as ionospheric dynamics.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-29
    Description: Knowledge gained from measurements and models is used to study the high-speed plasmas interacting with the atmospheres and ionospheres of Titan and Venus. Considering the similarities of the interactions, comparative analysis is used to support the interpretations of observations made at each body. Ionospheric flow inferred to exist by analysis of measurements made from the Pioneer Venus Orbiter supports the interpretation of similar flow in the ionosphere of Titan. The concept that cold ions escape from the ionosphere of Venus is supported by the Voyager I observation that cold ions escape down the magnetic tail of Titan. Pickup O+ ion energy distributions observed at their source in the ionosheath of Venus are shown to be influenced by finite gyroradius effects. The signatures of such effects are expected to be retained as the ions move into the wakes of Titan and Venus.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-08-29
    Description: Spectral lags (tau(sub lag)) are deduced for 1437 long (T(sub 90) greater than 2 s) BATSE gamma-ray bursts (GRBs) with peak flux F(sub p) greater than 0.25 photons cm(sup -2)/s, near to the BATSE trigger threshold. The lags are modeled to approximate the observed distribution in the F(sub p)-T(sub lag) plane, realizing a noise-free representation. Assuming a two-branch lag-luminosity relationship, the lags are self-consistently corrected for cosmological effects to yield distributions in luminosity, distance, and redshift. The results have several consequences for GRB populations and for unified gamma-ray/afterglow scenarios which would account for afterglow break times and gamma-ray spectral evolution in terms of jet opening angle, viewing angle, or a profiled jet with variable Lorentz factor: A component of the burst sample is identified - those with few, wide pulses, lags of a few tenths to several seconds, and soft spectra - whose Log[N]-Log[F(sub p)] distribution approximates a -3/2 power-law, suggesting homogeneity and thus relatively nearby sources. The proportion of these long-lag bursts increases from negligible among bright BATSE bursts to approx. 50% at trigger threshold. Bursts with very long lags, approx. 1-2 less than tau(sub lag) (S) less than 10, show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of approx. -0.10 +/- 0.04. GRB 980425 (SN 1998bw) is a member of this subsample of approx. 90 bursts with estimated distances less than 100 Mpc. The frequency of the observed ultra-low luminosity bursts is approx. 1/4 that of SNe Ib/c within the same volume. If truly nearby, the core-collapse events associated with these GRBs might produce gravitational radiation detectable by LIGO-II. Such nearby bursts might also help explain flattening of the cosmic ray spectrum at ultra-high energies, as observed by AGASA.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-29
    Description: During the week of March 26, 2001, I was asked by Rich Katz, NASA-GSFC, to participate on the Mars Odyssey Independent Assessment Team (IAT) that would investigate the implications of the failure of an Actel RP 1280 Field Programmable Gate Array (FPGA), which occurred on the Space Infrared Telescope Facility (SIRTF) spacecraft, on the Mars Odyssey spacecraft that was set to launch on April 7, 2001. We were provided with review materials from JPL and Lockheed Martin (LMA) that would be discussed at a meeting on April 2, 2001.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: The galilean satellites represent a diverse collection, ranging from the volcanic moon Io, with a surface that is changing yearly, to Callisto, with a dark, ancient surface overlying ice. The composition of these surfaces are also quite different due to a variety of processes and influences, including tidal heating, radiolysis, gardening, a magnetic field (Ganymede), and meteoritic infall. Io's surface contains large quantities of sulfur dioxide (SO2) and colorful sulfur allotropes, both originating in plumes and flows from the tidally driven volcanoes. A broad, 1-micron band is found at high latitudes and may be due to absorption by long-chain sulfur polymers produced by SO2 radiolysis, although iron and iron sulfide compounds are candidates. An unidentified 3.15 micron absorber is equatorially distributed while a 4.62 micron band, perhaps due to a sulfate compound, exhibits a non-uniform distribution. Hot spots are generally dark, and some exhibit negative reflectance slopes (i.e., blue). The composition of these lavas has not been established spectroscopically, but the high temperatures of some volcanoes suggest ultramafic silicates or perhaps more refractory material such as oxides.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 9; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-23
    Description: The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfect ions that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations local shell-wall ply-gaps associated with the fabrication process, sheltered geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the nonlinear response, and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.
    Keywords: Composite Materials
    Type: International Journal of Non-Linear Mechanics (ISSN 0020-7462); Volume 37; 623-643
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-08-23
    Description: The effects of several critical assumptions and parameters on the computation of strain energy release rates for delamination and debond configurations modeled with plate elements have been quantified. The method of calculation is based on the virtual crack closure technique (VCCT), and models of the upper and lower surface of the delamination or debond that use two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler configurational modeling. Specific issues that are discussed include: constraint of translational degrees of freedom, rotational degrees of freedom or both in the neighborhood of the debond front, shear deformation assumptions; and continuity of material properties and section stiffness in the vicinity of the debond front. Where appropriate, the plate element analyses are compared with corresponding two-dimensional plane strain analyses.
    Keywords: Composite Materials
    Type: CMES; Volume 3; No. 1; 103-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-08-23
    Description: Limited single-spacecraft observations of Jupiter's magnetopause have been used to infer that the boundary moves inward or outward in response to variations in the dynamic pressure of the solar wind. At Earth, multiple-spacecraft observations have been implemented to understand the physics of how this motion occurs, because they can provide a snapshot of a transient event in progress. Here we present a set of nearly simultaneous two-point measurements of the jovian magnetopause at a time when the jovian magnetopause was in a state of transition from a relatively larger to a relatively smaller size in response to an increase in solar-wind pressure. The response of Jupiter's magnetopause is very similar to that of the Earth, confirming that the understanding built on studies of the Earth's magnetosphere is valid. The data also reveal evidence for a well-developed boundary layer just inside the magnetopause.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature: Letters to Nature; Volume 415; 991-994
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-23
    Description: Organically modified montmorrrillonite clay, containing a long chain aliphatic quarternary ammonium cation, was used to prepare polyimide/organoclay hybrids. Several approaches were examined in an attempt to achieve fully exfoliated nanocomposites. These included simple mixing of the clay in a pre-made high molecular weight poly(amide acid) solution; simple mixing followed by sonication of the organoclay/poly(amide acid) solutions; and the preparation of high molecular weight poly(amide acid)s in the presence of the organoclay dispersed in N-methyl-2-pyrrolidinone (NMP). The best results were obtained using the in-situ polymerization approach. The resulting nanocomposite films (both amide acid and imide), containing 3-8% by weight of organoclay, were characterized by differential scanning calorimetry (DSC), dynamic thermogravimetric analysis (TGA), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin film tensile properties. A significant degree of dispersion was observed in the nanocomposite films of the amide acid and the imide. After thermal treatment of amide acid films to effect imidization, in both air and nitrogen, the films were visually darker than control films without clay and the level of clay dispersion appeared to have decreased. In the latter case, the separation between the layers of the clay decreased to a spacing less than that present in the original organoclay. These observations suggest that thermal degradation of the aliphatic quarternary ammonium cation occurred likely during thermal treatment to effect imidization and solvent removal. These thermal degradation effects were less pronounced when thermal treatment was performed under nitrogen. The polyimide/organoclay hybrid films exhibited higher room temperature tensile moduli and lower strength and elongation to break than the control films.
    Keywords: Composite Materials
    Type: Polymer (ISSN 0032-3861); Volume 43; 813-822
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-08-23
    Description: Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Letters to Nature; Volume 415; 985-987
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-08-23
    Description: A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.
    Keywords: Composite Materials
    Type: Composite Structures (ISSN 0263-8223); Volume 52; 67-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-29
    Description: The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of approximately 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance approximately 3.2 kpc and a surface magnetic field approximately 1.2 x 10(exp 13) Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking approximately 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of Kappa(sub alpha) fluorescence from cool iron. The equivalent width of this emission did not share the orbital modulation, but nearly doubled during the faint phase, despite little change in the column density. The outburst could have been caused by an episode of increased wind from a Be star, such that a small accretion disk is formed during each periastron passage. A change in the wind and disk structure apparently occurred after 5 months such that the accretion rate was no longer modulated or the diffusion time was longer. The distance estimate implies the X-ray luminosity observed was between 1 X 10(exp 36) ergs s(exp -1) and 6 x 10(exp 34) ergs s(exp -1), with a small but definite correlation of the intrinsic power-law spectral index.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-06-07
    Description: The interior properties of the Moon influence lunar tides and rotation. Three-axis rotation and tides are sensed by tracking lunar landers. The Lunar Laser Ranging (LLR) experiment has acquired three decades of accurate ranges from observatories on the Earth to four corner-cube retroreflector arrays on the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Moon Beyond 2002: Next Steps in Lunar Science and Exploration; 67; LPI-Contrib-1128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-06-07
    Description: Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Moon Beyond 2002: Next Steps in Lunar Science and Exploration; 52; LPI-Contrib-1128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-06-07
    Description: Dr. Geoffrey A. Landis of the Photovoltaics and Space Environment Effects Branch presented an overview of recent discoveries about the environment of Mars. He covered missions from the 1966 Mariner IV that returned those first grainy close-up pictures of Mars showing an ancient cratered terrain to the Mars Odyssey mission with its tantalizing evidence of recent water flows on Mars. Mars is one of the most interesting planets in the solar system, featuring enormous canyons, giant volcanoes, and indications that, early in its history, it might have had rivers and perhaps even oceans. Five years ago, in July of 1997, the Pathfinder mission landed on Mars, bringing with it the microwave-oven sized Sojourner rover to wander around on the surface and analyze rocks. Pathfinder is only the first of an armada of spacecraft that will examine Mars from the pole to the equator in the next decade, culminating (someday, we hope!) with a mission to bring humans to Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Mechanisms Technology Workshop; 8-13; NASA/CP-2002-211882
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-06-07
    Description: Lunar missions over the past few years have provided new evidence that water may be present at the lunar poles in the form of cold-trapped ice deposits, thereby rekindling interest in sampling the polar regions. Robotic landers fitted with mineralogical instrumentation for in-situ analyses could provide unequivocal answers on the presence of crystalline water ice and/or hydrous minerals at the lunar poles. Data from Lunar Prospector suggest that any surface exploration of the lunar poles should include the capability to drill to depths of more than 40 cm. Limited data on the lunar geotherm indicate temperatures of approximately 245-255 K at regolith depths of 40 cm, within a range where water may exist in the liquid state as brine. A relevant terrestrial analog occurs in Antarctica, where the zeolite mineral chabazite has been found at the boundary between ice-free and ice-cemented regolith horizons, and precipitation from a regolith brine is indicated. Soluble halogens and sulfur in the lunar regolith could provide comparable brine chemistry in an analogous setting. Regolith samples collected by a drilling device could be readily analyzed by CheMin, a mineralogical instrument that combines X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques to simultaneously characterize the chemical and mineralogical compositions of granular or powdered samples. CheMin can unambiguously determine not only the presence of hydrous alteration phases such as clays or zeolites, but it can also identify the structural variants or types of clay or zeolite present (e.g., well-ordered versus poorly ordered smectite; chabazite versus phillipsite). In addition, CheMin can readily measure the abundances of key elements that may occur in lunar minerals (Na, Mg, Al, Si, K, Ca, Fe) as well as the likely constituents of lunar brines (F, Cl, S). Finally, if coring and analysis are done during the lunar night or in permanent shadow, CheMin can provide information on the chemistry and structure of any crystalline ices that might occur in the regolith samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Moon Beyond 2002: Next Steps in Lunar Science and Exploration; 53; LPI-Contrib-1128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-06-07
    Description: There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Moon Beyond 2002: Next Steps in Lunar Science and Exploration; 10; LPI-Contrib-1128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-06-07
    Description: NASA teams, such as the NASA Exploration Team (NEXT), utilize advanced computational visualization processes to develop mission designs and architectures for lunar and planetary missions. One such process, Strategic Visualization (trademark), is a tool used extensively to help mission designers visualize various design alternatives and present them to other participants of their team. The participants, which may include NASA, industry, and the academic community, are distributed within a virtual network. Consequently, computer animation and other digital techniques provide an efficient means to communicate top-level technical information among team members. Today,Strategic Visualization(trademark) is used extensively both in the mission design process within the technical community, and to communicate the value of space exploration to the general public. Movies and digital images have been generated and shown on nationally broadcast television and the Internet, as well as in magazines and digital media. In our presentation will show excerpts of a computer-generated animation depicting the reference Earth/Moon L1 Libration Point Gateway architecture. The Gateway serves as a staging corridor for human expeditions to the lunar poles and other surface locations. Also shown are crew transfer systems and current reference lunar excursion vehicles as well as the Human and robotic construction of an inflatable telescope array for deployment to the Sun/Earth Libration Point.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Moon Beyond 2002: Next Steps in Lunar Science and Exploration; 17; LPI-Contrib-1128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Type: AGU Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Type: Asteroids, Comets, Meteors ACM 2002; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Type: 34th Meeting, Division of Planetary Sciences of American Astronomical Society; Birmingham, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-08
    Description: In this paper we describe the software aspects of the overall Athena SDM rover mobility system in three parts: the control electronics, the software architecture and development environment, and surface navigation software. The Athena SDM architecture has been shown to be capable of meeting mission navigation requirements by being able to safely drive 100 meters using allowable resources within three hours.
    Keywords: Lunar and Planetary Science and Exploration
    Type: i-SAIRAS; Montreal, Quebec; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: This paper introduces the concept saturation of the DSN assets as a growing number of missions are continually added.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 12th AAS/AIAA Space Flight Mechanics Meeting; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-08
    Description: The design of the ultralight propellant tanks and the PMD device, flight qualification testing of the tank and the PMD system, and damage control methods is discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Indianapolis, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-08
    Description: Talks of how asteroid 1998 SF36 (25143) is the target of the Japanese/NASA MUSES-C sample return mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 33rd Annual Meeting of the Division for Planetary Sciences; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-08
    Description: In this paper the concept for a mobile vehicle system which performs an in situ science mission to Mars is described. This rover mission with its requirements for driving, positioning at science selected targets, and remote and in situ measurement will utilize the technologies for hazard avoidance and autonomous navigation supported by ground operation tools which use rover-based imagery for position estimation and motion planning.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2001 International Conference on Environmental Systems (ICES); Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-08
    Description: Effective midleware can improve the capability of business and science applications in several ways, e.g., by hiding platform heterogeneity or by providing standard shared services which reduce the complexity or increase the capability of every application. Recent successes in midleware, such as multi-tier client/server and web-based architectures, have fueled phenomenal growth in enterprise level applications, which provide better integration and more rapid adaptability of business in many fields.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA International Communications Satellite Systems Conference; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...