ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (262)
  • Man/System Technology and Life Support  (138)
  • Space Sciences (General)  (124)
  • 2015-2019  (262)
  • 1980-1984
  • 1960-1964
  • 2017  (262)
  • 1926
  • 1
    Publication Date: 2019-07-19
    Description: Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37805 , International Conference on Environmental Systems (ICES 2017); Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The length of proposed Mars missions and the lack of resupply missions increases the importance of nutritional content in the food system, which will need a five-year shelf life. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortification nutrients will remain stable through a long duration exploration mission at sufficient levels if compatible formulation, processing, and storage temperatures are achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX) such that the vitamin concentration per serving equaled 25% of the recommended daily intake after two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermo-stabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced, with and without the vitamin premix, to assess the impact of the added fortification on color and taste and to determine the stability of supplemental vitamins in spaceflight foods. The addition of fortification to spaceflight foods did not greatly alter the organoleptic properties of most products. In most cases, overall acceptability scores remained above 6.0 (minimum acceptable score) following six months and one year of low-temperature storage. Likewise, the color of fortified products appears to be preserved over one year of storage. The only exceptions were Grilled pork Chop and Chicken Noodle Soup whose individual components appeareddegrade rapidly over one year of storage. Finally, most vitamins appeared to be stable during long-term storage. The only exception was thiamin, which degraded rapidly during the first year of storage at 35C. It was previously believed that the imprecise method of fortification would prove problematic for nutrient quantification; however, this was only an issue in stored samples of Grilled Pork Chop, Italian Vegetables and Curry Sauce with Vegetables. Year two data may further reveal the extent to which this is a problem, as well as identify overall quality changes over time.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37794 , NASA HRP Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: This paper continues the annual tradition of summarizing at this conference the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life on board the ISS, including the successful conclusion for two crew members of a record one-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crew members of ISS Expeditions 46-50. The year 2016 was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples taken during Expedition 46 in February 2016 and returned on Soyuz 44, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archive sample results.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37969 , International Conference on Environmental Systems; Apr 16, 2017 - Apr 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Multiple organizations within NASA as well as industry and academia fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the preliminary Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of: physiological and performance capabilities; suit design parameters; EVA human health and performance modeling; EVA tasks and concepts of operations; EVA informatics; human-suit sensors; suit sizing and fit; and EVA injury risk and mitigation. This paper represents the 2017 update to the Integrated EVA Human Research Plan.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-38643
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The Environmental Control System provides a controlled air purge to Orion and SLS. The ECS performs this function by processing 100% ambient air while simultaneously controlling temperature, pressure, humidity, cleanliness and purge distribution.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN43751
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN40559
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-38351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Electrochemical and crevice corrosion laboratory test results are presented for three noble metal candidates with possible application on the Universal Waste Management System (UWMS) in support of the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The three metal candidates, which included Inconel 625, Hastelloy C276 and Titanium 6Al-4V, were evaluated in two solutions representative of the acidic pretreatment formulations utilized during processing of waste liquids within the ECLSS. Final test results and data analysis indicated that the passive layer on all three metals provides excellent corrosion protection in both solutions under standard test conditions.
    Keywords: Man/System Technology and Life Support
    Type: NASA/CR-2017-218240 , M-1432
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-2017-219846 , M-1449
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: NASA's Human Research Program (HRP) funds research efforts aimed at mitigating various human health and performance risks, including the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI). As such, within HRP, the Human Factors and Behavioral Performance (HFBP) Element tasked an evaluation of future HARI needs in order to scope and focus the HARI risk research plan. The objective was to provide a systematic understanding of the critical factors associated with effective HARI that will be necessary to achieve the future mission goals for near- and deep-space exploration. Future mission goals are specified by NASA Design Reference Missions (DRMs) that are pertinent to the HRP. The outcome of this evaluation is a set of NASA-relevant HARI tasks, factors, and interactions required for exploration-class missions.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2017-219516 , ARC-E-DAA-TN40802
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: Spectra or similar Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is the likely choice for future structural space suit restraint materials due to its high strength-to-weight ratio, abrasion resistance, and dimensional stability. During long duration space missions, space suits will be subjected to significant amounts of high-energy radiation from several different sources. To insure that pressure garment designs properly account for effects of radiation, it is important to characterize the mechanical changes to structural materials after they have been irradiated. White Sands Test Facility (WSFTF) collaborated with the Crew and Thermal Systems Division at the Johnson Space Center (JSC) to irradiate and test various space suit materials by examining their tensile properties through blunt probe puncture testing and single fiber tensile testing after the materials had been dosed at various levels of simulated GCR and SPE Iron and Proton beams at Brookhaven National Laboratories. The dosages were chosen based on a simulation developed by the Structural Engineering Division at JSC for the expected radiation dosages seen by space suit softgoods seen on a Mars reference mission. Spectra fabric tested in the effort saw equivalent dosages at 2x, 10x, and 20x the predicted dose as well as a simulated 50 year exposure to examine the range of effects on the material and examine whether any degradation due to GCR would be present if the suit softgoods were stored in deep space for a long period of time. This paper presents the results of this work and outlines the impact on space suit pressure garment design for long duration deep space missions.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37904 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: For the past four years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses air as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine air monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the sea trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent closed environments. In U.K. submarine trials in the early 2000s, the submarine and ISS atmospheres were found to be remarkably similar.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37932 , International Conference on Environmental Systems (ICES); Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.
    Keywords: Space Sciences (General)
    Type: JSC-CN-38191 , European Conference on Space Debris; Apr 18, 2017 - Apr 21, 2017; Darmstadt; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: The development of a microgravity air-evaporation urine brine dryer (CapiBRiC - Capillary Brine Residual in Containment) that releases its effluent gas into the cabin of the International Space Station will require some form of a demister to guarantee that no acid, chromium, or other hazardous materials are released within the effluent gas stream. A hydrophobic membrane demister can be used for this application, and can be compatible with the proposed high flow rates of the effluent gas stream. This paper will describe the construction and sizing of such a membrane demister.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-62 , ARC-E-DAA-TN39524 , International Conference on Environmental Systems (ICES 2017); Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: A laboratory investigation of acetone, an interstellar and cometary molecule, has produced new results concerning its decomposition in a radiation environment. Mid-infrared spectroscopy has been used to follow amorphous acetone's destruction by ionizing radiation (1 MeV protons) at 20 K. Radiation products identified are the CH4, CO, and CO2 usually made in such experiments, along with ketene, allene, and the acetonyl radical, all identified here for the first time in irradiated solid acetone. Evidence for the reduction product 2-propanol was suggestive, but a firm identification could not be made either for it or for the C2 hydrocarbons (i.e., C2H6, C2H4, C2H2). The acetyl radical was not observed as a radiation product. Isotopically labeled reagents were used to demonstrate ketene formation and to emphasize that multiple approaches are needed for robust assignments of infrared spectral features of irradiated icy solids. Results from a supporting radiation experiment with isotopically labeled acetic acid are described. Comparisons are made to a previous study of acetone's stability in extraterrestrial radiation environments, and caution is urged in measuring and interpreting CO abundances in irradiated icy solids.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN56719 , Physical Chemistry Chemical Physics (ISSN 1463-9076) (e-ISSN 1463-9084); 8; 8; 5389-5398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by an early episode of thermally-driven hydrodynamic escape when host stars have saturated XUV fluxes.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42111 , Astrobiology Science Conference (AbSciCon 2017); Apr 24, 2017 - Apr 28, 2017; Mesa, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and anM4Vdwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 approx. 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/ CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R 〉 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 microns, likely the most accessible CO2 feature on an Archean-like exoplanet.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN50416 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 18; 4; 1666
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: We present a path forward on a long-standing issue concerning the flux of small and slow meteoroids, which are believed to be the dominant portion of the incoming meteoric mass flux into the Earth's atmosphere. Such a flux, which is predicted by dynamical dust models of the Zodiacal Cloud, is not evident in ground-based radar observations. For decades this was attributed to the fact that the radars used for meteor observations lack the sensitivity to detect this population, due to the small amount of ionization produced by slow-velocity meteors. Such a hypothesis has been challenged by the introduction of meteor head echo (HE) observations with High Power and Large Aperture radars, in particular the Arecibo 430 MHz radar. Janches et al. developed a probabilistic approach to estimate the detectability of meteors by these radars and initially showed that, with the current knowledge of ablation and ionization, such particles should dominate the detected rates by one to two orders of magnitude compared to the actual observations. In this paper, we include results in our model from recently published laboratory measurements, which showed that (1) the ablation of Na is less intense covering a wider altitude range; and (2) the ionization probability, Beta ip, for Na atoms in the air is up to two orders of magnitude smaller for low speeds than originally believed. By applying these results and using a somewhat smaller size of the HE radar target we offer a solution that reconciles these observations with model predictions.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN50883 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 843; 1; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A presentation of the current plan for the development of an exploration space suit pressure garment, beginning with a demonstration unit for the performance of EVA's on the ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN49965 , Joint EVA Working Group Technical Interchange Meeting; Dec 06, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Challenges in retrieving D- and E-region Ne from GPS-RO, New algorithm, Initial results, Implications for energetic electron precipitation (EEP).
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN47635 , COSMIC Data Users'' Workshop; Sep 21, 2017 - Sep 25, 2017; Estes Park, CO; United States|Workshop of the International Radio Occultation Working Group (IROWG); Sep 21, 2017 - Sep 25, 2017; Estes Park, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40714 , Human Dependability Workshop (HUDEP 2017); Nov 14, 2017 - Nov 16, 2017; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: Background: NASA Strategic Knowledge Gap B5: Forward Contamination for Mars. Issue: we have knowledge gaps!: Whether / how microbes are released from crewed pressure systems. Why do we care?: Informs Mars operational concepts - How to protect the science; Informs architecture decisions - How open Environmental Control and Life Support (ECLS) systems are; Informs landing site selection decisions - How close we can land / operate to where life may be present. Project goal: get some data to fill in these gaps: Data will help determine whether were ready to go to Mars, or if we need to change our systems or operational designs.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40513 , Extravehicular Activity Technology Workshop 2017; Oct 17, 2017 - Oct 19, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-257 , M17-6319 , International Conference on Environmental Systems (ICES 2017); Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Presentation on New Space development paradigm.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42624 , Asian Space Technology Summit 2017; May 11, 2017; Kuala Lumpur; Malaysia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-38430 , Human Research Program Investigators'' Workshop; Jan 23, 2017 - Jan 27, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40501 , Human Factors and Ergonomics Conference; Oct 09, 2017 - Oct 13, 2017; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: The International Planetary Probe Workshop (IPPW) is a forum for exchanging information and encourage collaboration. The IPPW-14 (2017) in its 14th year and attracts participants mainly from US and Europe. The authors of this proposed talk are exploring and have established international collaboration in multiple areas of interest to IPPW community. The authors will present examples that illustrate the motivations for the partnership, the unique capabilities and the potential benefits of international collaboration and how to approach the collaboration in order to overcome the challenges.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN43025 , International Planetary Probe Workshop; Jun 12, 2017 - Jun 16, 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6200 , Huntsville Hamfest 2017; Aug 19, 2017 - Aug 20, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: Simulations of six new 4-Bed Molecular Sieve configurations have been performed using a COMSOL model. The preliminary results show that reductions in desiccant bed size and sorbent bed size when compared to the International Space Station configuration are feasible while still yielding a process that handles at least 4.0 kg/day CO2. The results also show that changes to the CO2 sorbent are likewise feasible. Decreasing the bed sizes was found to have very little negative effect on the adsorption process; breakthrough of CO2 in the sorbent bed was observed for two of the configurations, but water breakthrough in the desiccant beds was not observed. Nevertheless, both configurations for which CO2 breakthrough was observed still yield relatively high CO2 efficiency, and future investigations will focus on bed size in order to find the optimum configuration.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-111 , M17-5887 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-308 , M17-5875 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Human exploration missions to Mars and other destinations beyond low Earth orbit require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. In order to meet this requirement, NASA has continued the development of a Series-Bosch System, a two stage reactor process that reduces carbon dioxide (CO2) with hydrogen (H2) to produce water and solid carbon. Theoretically, the Bosch process can recover 100% of the oxygen (O2) from CO2 in the form of water, making it an attractive option for long duration missions. The Series Bosch system includes a reverse water gas shift (RWGS) reactor, a carbon formation reactor (CFR), an H2 extraction membrane, and a CO2 extraction membrane. In 2016, the results of integrated testing of the Series Bosch system showed great promise and resulted in design modifications to the CFR to further improve performance. This year, integrated testing was conducted with the modified reactor to evaluate its performance and compare it with the performance of the previous configuration. Additionally, a CFR with the capability to load new catalyst and remove spent catalyst in-situ was built. Flow demonstrations were performed to evaluate both the catalyst loading and removal process and the hardware performance. The results of the integrated testing with the modified CFR as well as the flow demonstrations are discussed in this paper.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-219 , M17-5959 , International Conference on Environmental Systems (ICES) 2017; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: State-of-the-art life support oxygen recovery technology on the International Space Station is based on the Sabatier reaction where only about half of the oxygen required for the crew is recovered from metabolic carbon dioxide (CO2). The Sabatier reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by both the limited availability of reactant hydrogen from water electrolysis and Sabatier methane (CH4) being vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover this hydrogen has the potential to substantially increase oxygen recovery and thus dramatically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. A purification system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of acetylene removal systems and PPA system architectures are presented and discussed.
    Keywords: Man/System Technology and Life Support
    Type: M17-5961 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: NASA has embarked on an endeavor that will enable humans to explore deep space, with the ultimate goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas, as resupply is unavailable in the Mars transit phase and early return is not possible. Additionally, mass, power, volume, and other resources must be minimized for all subsystems to reduce propulsion needs. Among the critical areas identified for development are life support systems, which will require increases in reliability and reductions in resources. This paper discusses current and planned developments in the area of carbon dioxide removal to support crewed Mars-class missions.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-209 , M17-6065 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: NASA has embarked on the mission to enable humans to explore deep space, including the goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas as resupply and early return are not possible. Additionally, mass, power, and volume must be minimized for all phases to maximize propulsion availability. Among the critical areas identified for development are life support systems, which will require increases in reliability as well as reduce resource usage. Two primary points for reliability are the mechanical stability of sorbent pellets and recovery of CO2 sorbent productivity after off-nominal events. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds. With minimized dusting as the primary criteria, a commercial 13X zeolite was selected and tested for performance and risk.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-188 , M17-6066 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-240 , M17-6072 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) program is investigating methods to increase carbon dioxide (CO2) removal on ISS in order to support an increased number of astronauts at a future date. The Carbon Dioxide Removal Assembly - Engineering Unit (CDRA-4EU) system at NASA Marshall Space Flight Center (MSFC) was tested at maximum fan settings to evaluate CO2 removal rate and power consumption at those settings.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-241 , M17-6073 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications aim to reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of reverse osmosis membrane technology to reduce the resupply mass of the WPA Multi-filtration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the system, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, and evaluating upgrades to the UPA vacuum pump.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-40 , M17-6116 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M17-6149 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M17-6162 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The US Antarctic Meteorite Program has visited the Dominion Range in the Transantarctic Mountains during several different seasons, including the 1985, 2003, 2008, 2010, and 2014 seasons. Total recovered meteorites from this region is over 2000. The 1985 (11 samples), 2003 (141 samples), 2008 (521) and 2010 (901 samples) seasons have been fully classified, and the 2014 samples (562) are in the process of being classified and characterized. Given that close to 1500 samples have been classified so far, it seems like a good opportunity to summarize the state of the collection. Here we describe the significant samples documented from this area, as well as a large meteorite shower that dominates the statistics of the region.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40505 , 2017 Hayabusa Symposium of the Solar System Materials; Dec 04, 2017 - Dec 07, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: We describe an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA)-class SmallSat spinning lander concept for the exploration of Europa or other Ocean World surfaces to ascertain the potential for life. The spinning lander will be ejected from an ESPA ring from an orbiting or flyby spacecraft and will carry on-board a standoff remote Spatial Heterodyne Raman spectrometer (SHRS) and a time resolved laser induced fluorescence spectrograph (TR-LIFS), and once landed and stationary the instruments will make surface chemical measurements. The SHRS and TR-LIFS have no moving parts have minimal mass and power requirements and will be able to characterize the surface and near-surface chemistry, including complex organic chemistry to constrain the ocean composition.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN42646 , European Planetary Science Congress 2017 Meeting; Sep 17, 2017 - Sep 22, 2017; Riga; Latvia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN40056 , COSPAR Small Satellite Symposium; Sep 18, 2017 - Sep 22, 2017; Jeju; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40432 , Industrial Fabric Association International (IFAI) Expo 2017; Sep 26, 2017 - Sep 29, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the Earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40468 , International Association for the Advancement of Space Safety (IAASS) Conference; Oct 18, 2017 - Oct 20, 2017; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.
    Keywords: Man/System Technology and Life Support
    Type: GRC-E-DAA-TN44367 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160 K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160 K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670 nm of amorphous ethanol at 16 K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45485 , Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (ISSN 1386-1425); 187; 82-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The NASA Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT's known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment. A simulated GEO debris population is created and sampled at various cadences and run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT's ability to determine accurately the orbits of debris at various sample rates. Additionally, estimates of the rate at which MCAT will be able produce a complete GEO survey are presented using collected weather data and the proposed observation data collection cadence. The specific methods and results are presented here.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40380 , Advanced Maui Optical and Space Surveillance Conference; Sep 19, 2017 - Sep 22, 2017; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) has led in the development of unique flame retardant fibers for human spaceflight since the beginning of the Apollo program. After the Apollo 1 fire which killed Command Pilot Virgil I 'Gus' Grissom, Senior Pilot Edward H. White II, and Pilot Roger B. Chaffee from cardiac arrest on January 27, 1967, the accident investigators found severe third degree burns and melted spacesuits on the astronauts bodies. NASA immediately initiated an extensive research program aimed at developing flame retardant and flame resistant fibers for the enriched oxygen atmosphere of the Apollo crew cabin. Fibers are flame retardant when they have been modified by chemical and thermal treatments. Fibers are flame resistant when they are made of inherently flame resistant materials (i.e. glass, ceramic, highly aromatic polymers). Immediately after this tragic accident, NASA funded extensive research in specifically developing flame retardant fibers and fabrics. The early developmental efforts for human spaceflight were for the outer layer of the Apollo spacesuit. It was imperative that non-flammable fabrics be used in a 100% oxygen environment. Owens-Corning thus developed the Beta fiber that was immediately used in the Apollo program and later in the Space Shuttle program. Aside from the urgent need for protective fabrics for the spacesuit, NASA also needed flame retardant fabrics for both clothing and equipment inside the spacecraft. From the mid-1960s to the early 1980's, NASA contracted with many companies to develop inherently flame retardant fibers and flame retardant finishes for existing fibers. Fluorocarbons and aromatic polyamides were the polymers of great interest for the development of new inherently flame retardant fibers for enriched oxygen environments. These enriched environments varied for different space programs. For example, the Apollo program requirements were for materials that would not support combustion in a 70%/30% oxygen/nitrogen environment at 6.3 pounds per square inch (psi). The Skylab program flammability requirements were set at 80%/20% oxygen/nitrogen ratios at 5 psi. While many fibers produced under several NASA contracts were never used, a few have become commercial products. The intent of this paper is to present the developmental history of some of these new or modified textile fibers. These developmental efforts are presented at various levels of details depending on the source of the historical records.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40369 , Dornbirn Man-Made Fibers Congress; Sep 13, 2017 - Sep 15, 2017; Dornbirn; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C- ring, leading to field-aligned plasma transport to Saturns ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma fountains. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend 〉10(exp 9) years, and that there is limited evidence for prompt destruction (loss in 〈100 Myrs).
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45495 , Icarus (ISSN 0019-1035); 292; 48-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40073 , Simulation Innovation Workshop (SIW) Simulation Interoperability Standards Organization (SISO); Sep 10, 2017 - Sep 15, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: The Vegetable Production System (Veggie) is a scientific payload designed to support plant growth for food production under microgravity conditions. The configuration of Veggie consists of an LED lighting system with modular rooting pillows designed to contain substrate media and time-release fertilizer. The pillows were designed to be watered passively using capillary principles but have typically been watered manually by the astronauts in low-Earth orbit (LEO). The design of Veggie allows cabin air to be drawn through the plant enclosure for thermal and humidity control and for supplying CO2 to the plants. Since its delivery to the International Space Station (ISS) in 2014, Veggie has undergone several experimental trials by various crews. Ground unit testing of Veggie was conducted during an 8-month Mars analog study in a semi-contained environment of a simulated habitat located at approximately 8,200 feet (2,500 m) elevation on the Mauna Loa volcano on the Island of Hawaii. The Hawaii Space Exploration Analog and Simulation (HI-SEAS) offered conditions (habitat, mission, communications, etc.) intended to simulate a planetary exploration mission. This paper provides data and analyses to show the prospect for optimized use of the current Veggie design for human habitats. Lessons learned during the study may provide opportunities for updating the system design and operational parameters for current Veggie experiments being conducted onboard the ISS and for payloads on future deep space missions.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN45420 , AIAA SPACE Forum 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: Over a million individually measured meteoroid orbits were collected with the Southern Argentina Agile MEteor Radar (SAAMER) between 2012-2015. This provides a robust statistical database to perform an initial orbital survey of meteor showers in the Southern Hemisphere via the application of a 3D wavelet transform. The method results in a composite year from all 4 years of data, enabling us to obtain an undisturbed year of meteor activity with more than one thousand meteors per day. Our automated meteor shower search methodology identified 58 showers. Of these showers, 24 were associated with previously reported showers from the IAU catalogue while 34 showers are new and not listed in the catalogue. Our searching method combined with our large data sample provides unprecedented accuracy in measuring meteor shower activity and description of shower characteristics in the Southern Hemisphere. Using simple modeling and clustering methods we also propose potential parent bodies for the newly discovered showers.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45798 , ICARUS (ISSN 0019-1035) (e-ISSN 1090-2643); 290; 162–182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN46611 , Lecture at the at Norwegian Institute of Bioeconomy; Oct 12, 2017 - Oct 20, 2017; Tromso; Norway
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Burns et al. (1979) use the parameter beta to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1- beta ), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of beta at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical beta values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet's nucleus for 10 major meteor showers. Finally, we numerically solve for critical beta values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.
    Keywords: Space Sciences (General)
    Type: M17-6070 , Division for Planetary Sciences (DPS) 2017 Annual Meeting; Oct 15, 2017 - Oct 20, 2017; Provo, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: The ISS WRS produces potable water from crew urine, crew latent, and Sabatier product water. This system has been operational on ISS since November 2008, producing over 30,000 L of water during that time. The WRS includes a Urine Processor Assembly (UPA) to produce a distillate from the crew urine. This distillate is combined with the crew latent and Sabatier product water and further processed by the Water Processor Assembly (WPA) to the potable water. The UPA and WPA use technologies commonly used on ISS for water purification, including filtration, distillation, adsorption, ion exchange, and catalytic oxidation. The primary challenge with the design and operation of the WRS has been with implementing these technologies in microgravity. The absence of gravity has created unique issues that impact the constituency of the waste streams, alter two-phase fluid dynamics, and increases the impact of particulates on system performance. NASA personnel continue to pursue upgrades to the existing design to improve reliability while also addressing their viability for missions beyond ISS.
    Keywords: Man/System Technology and Life Support
    Type: M17-6277 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2017); Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: Throughout the human space flight program there have been instances where smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In every instance the mission has been in Low-Earth-Orbit (LEO) with access to multiple volumes that could be used to quickly seal off the damaged module or escape vehicles for a quick return to Earth. For long duration space missions beyond LEO, including Mars transit missions of about 1000 days, the mass penalty for multiple volumes has been a concern as has operating in an environment where a quick return will not be possible. In 2016 a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that for a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were developed that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts considered in the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.
    Keywords: Man/System Technology and Life Support
    Type: M17-5955 , AIAA Space and Astronautics Forum and Exposition; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: In support of the NASA Human Research Program Exploration Medical Capability (ExMC) Element, NASA Ames Research Center (ARC) established a collaborative effort with the Canadian Space Agency (CSA). The collaboration focuses on leveraging CSA capability in the areas of biosensors and decision support that will augment future development of such components for Exploration Missions. The CSA advancement of biosensors enables NASA to focus on the integration and data management associated with these types of components through the system currently under development by the Medical Data Architecture (MDA) project. This approach has enabled the establishment of a successful collaborative working relationship between ExMC and CSA.Applying lessons learned from the fiscal year 2016 (FY16) Human Exploration Research Analog (HERA) campaign, CSA and NASA ARC developed a solution to provide real-time feedback to researchers who monitor the collection of vital signs data from a wearable Astroskin garment. The advances in the interfaces included the development of an iPad application (by CSA) to wirelessly forward the vital signs data to the MDA system, which collected the vital signs data through a receiver developed by NASA ARC. The development of these interfaces aims to provide communications between the Astroskin and the MDA system such that data may be seamlessly collected, stored and retrieved by the MDA. The first steps towards this goal were demonstrated in FY16. In FY17, ExMC will complete the first in a series of test beds that establishes a system to automate collection and management of vital sign data from the Astroskin, and other sources of data, to provide information for a crewmember to make medical decisions. In addition, the MDA Test Bed 1 will enable CSA to evaluate and optimize biosensor advancement and facilitate decision support algorithm development.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN38215 , 2017 Human Research Program Investigators'' Workshop; Jan 23, 2017 - Jan 27, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nanometer auroral emissions. We report on a single event of nightside aurora (at approximately 22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 minutes duration, images at 3.31 hertz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN51702 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 2; 2455-2466
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42113 , Astrobiology Science Conference (AbSciCon 2017); Apr 24, 2017 - Apr 28, 2017; Mesa, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6411 , American Geophysical Union (AGU) Fall 2017 Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: The extreme surface environment (462 C, 93 bars pressure) of Venus makes subsurface measurements of its bulk elemental composition extremely challenging. Instruments landed on the surface of Venus must be enclosed in a pressure vessel. The high surface temperatures also require a thermal control system to keep the instrumentation temperatures within their operational range for as long as possible. Since Venus surface probes can currently operate for only a few hours, it is crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x.9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN51094 , Conference on the Application of Accelerators in Research and Industry (CAARI 2016); Oct 30, 2016 - Nov 04, 2016; Ft. Worth, TX; United States|Physics Procedia (ISSN 1875-3892); 90; 180-186
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN50960 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); o 122; 8; 8026–8036
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000 by 36 megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million square kilometers. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN48160 , AGU Fall Meeing 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M17-6245 , AIAA Greater Huntsville Section Young Professionals Symposium; Oct 19, 2017 - Oct 20, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: Throughout the human space flight program there have been instances where systems failures resulting in smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In most instances the missions have been in Low-Earth-Orbit (LEO) or Earth-Moon vicinity, with access to multiple volumes that could be used to quickly seal off the damaged module or access escape vehicles for return to Earth. For long duration missions beyond LEO, including Mars transit missions of about 1100 days, the mass penalty for multiple volumes and operating in an environment where a quick return will not be possible have been concerns. In 2016, a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that with a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were considered that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts developed during the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.
    Keywords: Man/System Technology and Life Support
    Type: M17-6195 , AIAA Space 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: NASA has conducted research and development on forward osmosis (FO) membranes for wastewater reclamation in space since 1993. The lessons learned during operation of the International Space Station and FO based technologies on the ground taught us that reliability is a key limitation. Membranes are susceptible to organic fouling, oxidation and calcium scaling, and these factors tend to damage the membrane reducing their operating life and performance. The development of a Synthetic Biological Membrane (SBM), a membrane that mimics naturally occurring biological processes, will mitigate membrane damage and improve reliability. The SBM is a lipid-based membrane with a protective fatty acid layer configured for use in a FO water purification system. In this configuration, the protective layer on the surface of the lipid membrane is composed of fatty acids (FA). The FA interact with the chemicals found in the wastewater feed, and protect the membrane from damage. In this study, we conducted preliminary experiments to determine the feasibility of using fatty acids to alleviate damage from calcium scaling, oxidation and organic fouling.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN44080 , International Conference on Environmental Systems (ICES); Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Wavelike perturbations in the Martian upper thermosphere observed by the Neutral Gas Ion Mass Spectrometer (NGIMS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have been analyzed. The amplitudes of small-scale perturbations with apparent wavelengths between approx. 100 and approx. 500 km in the Ar density around the exobase show a clear dependence on temperature (T(sub 0)) of the upper thermosphere. The average amplitude of the perturbations is approx. 10% on the dayside and approx. 20% on the nightside, which is about 2 and 10 times larger than those observed in the Venusian upper thermosphere and in the low-latitude region of Earths upper thermosphere, respectively. The amplitudes are inversely proportional to T(sub 0), suggesting saturation due to convective instability in the Martian upper thermosphere. After removing the dependence on T(sub 0), dependences of the average amplitude on the geographic latitude and longitude and solar wind parameters are found to be not larger than a few percent. These results suggest that the amplitudes of small-scale perturbations are mainly determined by convective breaking saturation in the upper thermosphere on Mars, unlike those on Venus and Earth.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN42421 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 2; 2374–2397
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN43781 , Summer Camp; Jun 19, 2017; Santa Clara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40585 , EVA Technology Workshop; Oct 17, 2017 - Oct 19, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: We are interested in illumination conditions and the temperature distribution within the upper two meters of regolith near the lunar poles. Here, areas exist receiving almost constant illumination near areas in permanent shadow, which were identified as potential exploration sites for future missions. For our study a numerical simulation of the illumination and thermal environment for lunar near-polar regions is needed. Our study is based on high-resolution, twenty meters per pixel and 400 x 400 km large polar Digital Terrain Models (DTMs), which were derived from Lunar Orbiter Laser Altimeter (LOLA) data. Illumination conditions were simulated by synthetically illuminating the LOLA DTMs using the horizon method considering the Sun as an extended source. We model polar illumination for the central 50 x 50 km subset and use it as an input at each time-step (2 h) to evaluate the heating of the lunar surface and subsequent conduction in the sub-surface. At surface level we balance the incoming insolation with the subsurface conduction and radiation into space, whereas in the sub-surface we consider conduction with an additional constant radiogenic heat source at the bottom of our two-meter layer. Density is modeled as depth-dependent, the specific heat parameter as temperature-dependent and the thermal conductivity as depth- and temperature-dependent. We implemented a fully implicit finite-volume method in space and backward Euler scheme in time to solve the one-dimensional heat equation at each pixel in our 50 x 50 km DTM. Due to the non-linear dependencies of the parameters mentioned above, Newton's method is employed as the non-linear solver together with the Gauss-Seidel method as the iterative linear solver in each Newton iteration. The software is written in OpenCL and runs in parallel on the GPU cores, which allows for fast computation of large areas and long time scales.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN46777 , European Planetary Science Congress 2017; Sep 17, 2017 - Sep 22, 2017; Riga; Latvia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Removing Carbon Dioxide (CO2) from a spacecraft environment for deep space exploration requires a robust system that is low in weight, power, and volume. Current state-of-the-art microgravity compatible CO2 removal systems, such as the carbon dioxide removal assembly (CDRA), utilize solid sorbents that demand high power usage due to high desorption temperatures and a large volume to accommodate for their comparatively low capacity for CO2. Additionally, solid sorbent systems contain several mechanical components that significantly reduce reliability and contribute to a large overall mass. A liquid sorbent based system has been evaluated as an alternative is proposed to consume 65% less power, weight, and volume than solid based CO2 scrubbers. This paper presents the design of a liquid sorbent CO2 removal system for microgravity applications.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40407 , AIAA SPACE and Astronautics Forum and Exposition (AIAA SPACE 2017); Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42139 , Congress and General Assembly of the International Union of the Crystallography Society (IUCR-2017); Aug 21, 2017 - Aug 28, 2017; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6058 , Meteor Physics Group Meeting; Jun 06, 2017 - Jun 08, 2017; London, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Long-duration space missions will benefit from closed-loop life support technologies that minimize mass, volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of essential vitamins and nutrients can address the documented problem of degradation of stored food and supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-demand system for the production of various compounds that are beneficial to human health. A critical objective in the development of this approach for long-duration space missions is the effective storage of the selected microorganisms. This research investigates the effects of different storage methods on survival rates of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here, including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an attempt to maintain higher survival rates, the effect of temperature during long-term storage was investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors than vegetative cells of either strain, and maintain high viability rates even after one year at room temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being conducted.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN39871 , International Conference on Environmental Systems, Inc.; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current International Space Station (ISS) medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable an increasingly autonomous crew than the current ISS paradigm. The MDA will develop capabilities that support automated data collection, and the necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support.To attain this goal, the first year of the MDA project focused on reducing technical risk, developing documentation and instituting iterative development processes that established the basis for the first version of MDA software (or Test Bed 1). Test Bed 1 is based on a nominal operations scenario authored by the ExMC Element Scientist. This narrative was decomposed into a Concept of Operations that formed the basis for Test Bed 1 requirements. These requirements were successfully vetted through the MDA Test Bed 1 System Requirements Review, which permitted the MDA project to begin software code development and component integration. This paper highlights the MDA objectives, development processes, and accomplishments, and identifies the fiscal year 2017 milestones and deliverables in the upcoming year.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN38212 , 2017 Human Research Program Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. Here we present the detection of the complex organic molecules (COMs) acetaldehyde (CH3CHO) and methyl formate (CH3OCHO), as well as formic acid (HCOOH) and ketene (CH2CO), and the tentative detection of di-methyl ether (CH3OCH3) towards the ''methanol hotspot'' of Barnard 5 located between two dense cores using the single dish OSO 20 m, IRAM 30 m, and NRO 45 m telescopes. The high energy cis-conformer of formic acid is detected, suggesting that formic acid is mostly formed at the surface of interstellar grains and then evaporated. The detection of multiple transitions for each species allows us to constrain their abundances through LTE and non-LTE methods. All the considered COMs show similar abundances between approx. 1 and approx. 10% relative to methanol depending on the assumed excitation temperature. The non-detection of glycolaldehyde, an isomer of methyl formate, with a [glycolaldehyde]/[methyl formate] abundance ratio lower than 6%, favours gas phase formation pathways triggered by methanol evaporation. According to their excitation temperatures derived in massive hot cores, formic acid, ketene, and acetaldehyde have been designated as ''lukewarm'' COMs whereas methyl formate and di-methyl ether were defined as ''warm'' species. Comparison with previous observations of other types of sources confirms that lukewarm and warm COMs show similar abundances in low-density cold gas whereas the warm COMs tend to be more abundant than the lukewarm species in warm protostellar cores. This abundance evolution suggests either that warm COMs are indeed mostly formed in protostellar environments and/or that lukewarm COMs are efficiently depleted by increased hydrogenation efficiency around protostars.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN53275 , Astronomy and Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 607; A20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: This paper presents a method for taking into account changes of solar wind parameters in the foreshock using global MHD simulations. We simulate four events with very distant subsolar magnetopause crossings that occurred during quasi-radial interplanetary magnetic field (IMF) intervals lasting from one to several hours. Using previous statistical results, we suggest that the density and velocity in the foreshock cavity decrease to approx. 60% and approx. 94% of the ambient solar wind values when the IMF cone angle falls below 50 deg. This diminishes the solar wind dynamic pressure to 53% and causes a corresponding magnetospheric expansion. We change the upstream solar wind parameters in a global MHD model to take these foreshock effects into account. We demonstrate that the modified model predicts magnetopause distances during radial IMF intervals close to those observed by THEMIS. The strong total pressure decrease in the data seems to be a local, rather than a global, phenomenon. Although the simulations with decreased solar wind pressure generally reproduce the observed total pressure in the magnetosheath well, the total pressure in the magnetosphere often agrees better with results for nonmodified boundary conditions. The last result reveals a limitation of our method: we changed the boundary conditions along the whole inflow boundary, although a more correct approach would be to vary parameters only in the foreshock. A model with the suggested global modification of the boundary conditions better predicts the location of part of the magnetopause behind the foreshock but may fail in predicting the rest of the magnetopause.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN51479 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9402); 122; 3; 3110-3126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN48498 , Mountain View High School''s STEM Week; Oct 27, 2017; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN51130 , Journal of Geophysical Research: Planets (ISSN 2169-9097); 122; 2; 400–410
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40638 , EVA Technology Workshop 2017; Oct 17, 2017 - Oct 19, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN46573 , Cluster Workshop; Sep 11, 2017 - Sep 15, 2017; Bled; Slovenia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40373 , AIAA Space Forum 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production. This work is supported by NASA.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN47895 , American Society for Gravitational and Space Research; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2017-233 , M17-6340 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: JSC-CN-40393 , Simulation Innovation Workshop (SIW) Simulation Interoperability Standards Organization (SISO); Sep 10, 2017 - Sep 15, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types: waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45756 , Geophysical Research Letters (ISSN 0094-8276); 44; 3; 1227–1233
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6102 , National Space and Missile Materials Symposium; Jun 26, 2017 - Jun 29, 2017; Indian Wells, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN45369 , Annual AIAA/USU Conference on Small Satellites; Aug 05, 2017 - Aug 10, 2017; Salt Lake City, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-27
    Description: Legacy of the Apollo samples is the link forged between radiometric ages of rocks and relative ages according to stratigraphic relationships and impact crater size frequency distributions.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45365 , Annual Meeting of the Meteoritical Society; 23-28 Jul/ 2017; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-24
    Description: The present invention is a sorbent-based atmosphere revitalization (SBAR) system using treatment beds each having a bed housing, primary and secondary moisture adsorbent layers, and a primary carbon dioxide adsorbent layer. Each bed includes a redirecting plenum between moisture adsorbent layers, inlet and outlet ports connected to inlet and outlet valves, respectively, and bypass ports connected to the redirecting plenums. The SBAR system also includes at least one bypass valve connected to the bypass ports. An inlet channel connects inlet valves to an atmosphere source. An outlet channel connects the bypass valve and outlet valves to the atmosphere source. A vacuum channel connects inlet valves, the bypass valve and outlet valves to a vacuum source. In use, one bed treats air from the atmosphere source while another bed undergoes regeneration. During regeneration, the inlet, bypass, and outlet valves sequentially open to the vacuum source, removing accumulated moisture and carbon dioxide.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-24
    Description: A method and associated system for processing waste gases, liquids and solids, produced by human activity, to separate (i) liquids suitable for processing to produce potable water, (ii) solids and liquids suitable for construction of walls suitable for enclosing a habitat volume and for radiation shielding, and (iii) other fluids and solids that are not suitable for processing. A forward osmosis process and a reverse osmosis process are sequentially combined to reduce fouling and to permit accumulation of different processable substances. The invention may be used for long term life support of human activity.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.
    Keywords: Man/System Technology and Life Support
    Type: M18-6526 , Thermal & Fluids Analysis Workshop (TFAWS 2017); Aug 21, 2017 - Aug 25, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-13
    Description: Small Polycyclic Aromatic Hydrocarbon molecules or PAHs (〈30 carbon atoms) have been identified in comets, meteorites, asteroids, and interplanetary dust particles in our Solar System, while PAHs in the Interstellar Medium (ISM) tend to be much larger, usually between 50 to 100 carbon atoms in size. The cause of the size disparity between PAHs found in the ISM and Solar System as well as their influence on Solar System organics is not yet understood. Two chemical evolutionary paths have been proposed to explain the inventory of solar system organics. In one the prebiotic material was formed from the radiation induced modification of large pre-solar carbon-bearing species (e.g. ISM PAHs). The second path suggests that Solar System prebiotic matter is the result of bottom-up synthesis from small reactive molecules after the Solar System was formed. In this second scenario very few ISM PAHs survived the harsh pre-solar radiation as aromatic structures. ICEE PoC (ICEE Proof of Concept) investigated factors impacting the chemical evolution of large PAHs irradiated under conditions similar to the proto-solar nebula. Likewise ICEE PoC will refine the technical parameters of the proposed ICEE (Institute for Carbon Evolution Experiment) laboratory.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN47116 , Ames Research and Technology Showcase (ARTS) Event; Sep 28, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN46739 , Scintillation Prediction Observation Research Task (SPORT) Mission Team Meeting; Sep 14, 2017; Sao Paulo; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-13
    Description: Future NASA robotic missions utilizing an entry system into Venus and the outer planets, results in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or AVCOAT. Previously, mission planners had to assume the use of fully dense carbon phenolic heatshields similar to what was flown on Pioneer Venus or Galileo. Carbon phenolic is a robust TPS material, however, its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. NASA has decided to invest in new technology development rather than invest in reviving carbon phenolic. The HEEET project, funded by STMD is maturing a game changing Woven Thermal Protection System technology. HEEET is a capability development project and is not tied to a single mission or destination, therefore, it is challenging to complete ground testing needed to demonstrate a capability that is much broader than any single mission or destination would require. This presentation will status HEEET progress. Near term infusion target for HEEET is the upcoming New Frontiers (NF-4) class of competitively selected Science Mission Directorate (SMD) missions for which it is incentivized.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN43931 , National Space and Missile Materials Symposium (NSMMS) 2017; Jun 26, 2017 - Jun 29, 2017; Indian Wells, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-40674 , EVA Technology Workshop 2017; Oct 17, 2017 - Oct 18, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: The life support systems on the International Space Station (ISS) are the culmination of an extensive effort encompassing development, design, and test to provide the highest possible confidence in their operation on ISS. Many years of development testing are initially performed to identify the optimum technology and the optimum operational approach. The success of this development program depends on the accuracy of the system interfaces. The critical interfaces include the specific operational environment, the composition of the waste stream to be processed and the quality of the product. Once the development program is complete, a detailed system schematic is built based on the specific design requirements, followed by component procurement, assembly, and acceptance testing. A successful acceptance test again depends on accurately simulating the anticipated environment on ISS. The ISS Water Recovery System (WRS) provides an excellent example of where this process worked, as well as lessons learned that can be applied to the success of future missions. More importantly, ISS has provided a test bed to identify these design issues. Mechanical design issues have included an unreliable harmonic drive train in the Urine Processor's fluids pump, and seals in the Water Processor's Catalytic Reactor with insufficient life at the operational temperature. Systems issues have included elevated calcium in crew urine (due to microgravity effect) that resulted in precipitation at the desired water recovery rate, and the presence of an organosilicon compound (dimethylsilanediol) in the condensate that is not well removed by the water treatment process. Modifications to the WRS to address these issues are either complete (and now being evaluated on ISS) or are currently in work to insure the WRS has the required reliability before embarking on a mission to Mars.
    Keywords: Man/System Technology and Life Support
    Type: M17-5935 , 2017 Berlin Colloquium of the Daimler and Benz Foundation; May 22, 2017 - May 24, 2017; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-5997 , Applied Space Environments Conference 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-13
    Description: The meteoroid environment is often divided conceptually into meteor showers and the sporadic meteor background. It is commonly but incorrectly assumed that meteoroid impacts primarily occur during meteor showers; instead, the vast majority of hazardous meteoroids belong to the sporadic complex. Unlike meteor showers, which persist for a few hours to a few weeks, sporadic meteoroids impact the Earth's atmosphere and spacecraft throughout the year. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. The sporadic complex, despite its year-round activity, is not isotropic in its directionality. Instead, their apparent points of origin, or radiants, are organized into groups called "sources". The speed, directionality, and size distribution of these sporadic sources are modeled by the Meteoroid Engineering Model (MEM), which is currently in its second major release version (MEMR2) [Moorhead et al., 2015]. MEM provides the meteoroid flux relative to a user-provided spacecraft trajectory; it provides the total flux as well as the flux per angular bin, speed interval, and on specific surfaces (ram, wake, etc.). Because the sporadic complex dominates the meteoroid flux, MEM is the most appropriate model to use in spacecraft design. Although showers make up a small fraction of the meteoroid environment, they can produce significant short-term enhancements of the meteoroid flux. Thus, it can be valuable to consider showers when assessing risks associated with vehicle operations that are brief in duration. To assist with such assessments, the MEO issues an annual forecast that reports meteor shower fluxes as a function of time and compares showers with the time-averaged total meteoroid flux. This permits missions to do quick assessments of the increase in risk posed by meteor showers. Section II describes MEM in more detail and describes our current efforts to improve its characteristics for a future release. Section III describes the annual shower forecast and highlights recent improvements made to its algorithm and inputs.
    Keywords: Space Sciences (General)
    Type: M17-5966 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6032 , In-Space Manufacturing Workshop; May 23, 2017; Louisville, KY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...