ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (201)
  • Spacecraft Design, Testing and Performance  (106)
  • Spacecraft Propulsion and Power  (95)
  • 2015-2019  (201)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2017  (201)
  • 1926
Collection
  • Other Sources  (201)
Years
  • 2015-2019  (201)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-08-18
    Description: DSG will be placed in halo orbit around themoon- Platform for international/commercialpartners to explore lunar surface- Testbed for technologies needed toexplore Mars Habitat module used to house up to 4crew members aboard the DSG- Launched on EM-3- Placed inside SLS fairing Habitat Module - Task Habitat Finite Element Model Re-modeled entire structure in NX2) Used Beam and Shell elements torepresent the pressure vessel structure3) Created a point cloud of centers of massfor mass components- Can now inspect local moments andinertias for thrust ring application8/ Habitat Structure Docking Analysis Problem: Artificial Gravity may be necessary forastronaut health in deep spaceGoal: develop concepts that show how artificialgravity might be incorporated into a spacecraft inthe near term Orion Window Radiant Heat Testing.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-40342 , Summer Intern Final Presentation; * Aug. 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-17
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-40261 , NASA's Space Technology Mission Directorate (STMD) ESI Parachute FSI Workshop; 12-13 Oct. 2017; virtual; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-18
    Description: Thermionic energy conversion (TEC) is the direct conversion of heat into electricity by the mechanism of thermionic emission, the spontaneous ejection of hot electrons from a surface. Although the physical mechanism has been known for over a century, it has yet to be consistently realized in a manner practical for large-scale deployment. This perspective article provides an assessment of the potential of TEC systems for space and terrestrial applications in the twenty-first century, overviewing recent advances in the field and identifying key research challenges. Recent developments as well as persisting research needs in materials, device design, fundamental understanding, and testing and validation are discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-E-DAA-TN48527 , Frontiers in Mechanical Engineering (e-ISSN 2297-3079); 3; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN48936 , The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17); Nov 12, 2017 - Nov 17, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: Distributed Spacecraft Missions (DSMs) are gaining momentum in their application to Earth Observation (EO) missions owing to their unique ability to increase observation sampling in spatial, spectral, angular and temporal dimensions simultaneously. DSM design includes a much larger number of variables than its monolithic counterpart, therefore, Model-Based Systems Engineering (MBSE) has been often used for preliminary mission concept designs, to understand the trade-offs and interdependencies among the variables. MBSE models are complex because the various objectives a DSM is expected to achieve are almost always conflicting, non-linear and rarely analytical. NASA Goddard Space Flight Center (GSFC) is developing a pre-Phase A tool called Tradespace Analysis Tool for Constellations (TAT-C) to initiate constellation mission design. The tool will allow users to explore the tradespace between various performance, cost and risk metrics (as a function of their science mission) and select Pareto optimal architectures that meet their requirements. This paper will describe the different types of constellations that TAT-Cs Tradespace Search Iterator is capable of enumerating (homogeneous Walker, heterogeneous Walker, precessing type, ad-hoc) and their impact on key performance metrics such as revisit statistics, time to global access and coverage. We will also discuss the ability to simulate phased deployment of the given constellations, as a function of launch availabilities and/or vehicle capability, and show the impact on performance. All performance metrics are calculated by the Data Reduction and Metric Computation module within TAT-C, which issues specific requests and processes results from the Orbit and Coverage module. Our TSI is also capable of generating tradespaces for downlinking imaging data from the constellation, based on permutations of available ground station networks - known (default) or customized (by the user). We will show the impact of changing ground station options for any given constellation, on data latency and required communication bandwidth, which in turn determines the responsiveness of the space system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN65923 , International Astronautical Congress (IAC); Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2017-219713 , IEPC-2017-304 , E-19441 , GRC-E-DAA-TN48807
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The Attitude Control System (ACS) is developed for a Near Earth Asteroid (NEA) Scout mission using a solar sail. The NEA-Scout spacecraft is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The solar sail spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Adjustable Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. Because the sail is a flexible structure, care must be taken in designing a control system to avoid exciting the structural modes of the sail. This is especially true for the RCS, which uses pulse actuated, cold-gas jets to control the spacecraft's attitude. While the reaction wheels can be commanded smoothly, the RCS jets are simple on-off actuators. Long duration firing of the RCS jets - firings greater than one second - can be thought of as step inputs to the spacecraft's torque. On the other hand, short duration firings - pulses on the order of 0.1 seconds - can be thought of as impulses in the spacecraft's torque. These types of inputs will excite the structural modes of the spacecraft, causing the sail to oscillate. Sail oscillations are undesirable for many reasons. Mainly, these oscillations will feed into the spacecraft attitude sensors and pointing accuracy, and long term oscillations may be undesirable over the lifetime of the solar sail. In order to limit the sail oscillations, an RCS control scheme is being developed to minimize sail excitations. Specifically, an input shaping scheme similar to the method described in Reference 1 will be employed. A detailed description of the RCS control scheme will be provided with particular emphasis on flexible body excitation. The RCS performance will be provided to show that sail and boom excitation is minimized.
    Keywords: Spacecraft Propulsion and Power
    Type: M16-5500 , International Symposium on Solar Sailing (ISSS 2017); Jan 17, 2017 - Jan 20, 2017; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS, which implements the Soft Impact Mating and Attenuation Concept (SIMAC). This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38403 , European Space Mechanism and Tribology Symposium; Sep 20, 2017 - Sep 22, 2017; Hatfield, Hertfordshire; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center in Houston has performed 26 post-flight inspections on space exposed hardware that have been returned from the International Space Station. Data on 1,024 observations of MMOD damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of Scanning Electron Microscopy (SEM) analysis to discern impactor source is included in the database. This paper will summarize the post-flight MMOD inspections, and focus on two inspections in particular: (1) Pressurized Mating Adapter-2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed damages, and (2) Airlock shield panels returned in 2010 after 8.7 years exposure with 58 MMOD damages. Feature sizes from the observed data are compared to predictions using the Bumper risk assessment code.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38421 , European Conference on Space Debris; Apr 18, 2017 - Apr 21, 2017; Darmstadt; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-20
    Description: Time histories of pressure fluctuations on a generic, hammerhead space vehicle model were measured using unsteady Pressure-Sensitive Paint (uPSP). The test was conducted in the 11-foot transonic wind tunnel of NASA Ames Research Center over a Mach number range of 0.6 M 1.2, and angles of attack of -4 4. The model was coated with a porous binder and PtTFPP-based porous polymer paint. An elaborate system of four high-speed cameras, and forty LED lamps was used for image acquisition. Various steps for image registration, reduction of shot noise, photogrammetry procedure to map images from the four cameras on a grid for the model, and finally a calibration procedure to convert the measured fluctuations in light intensity to fluctuating pressure, are discussed in the paper. The calibration process using a set of unsteady pressure sensors mounted on the model, was found to overcome some of the inherent problems of the fast response paint, such as rapid photo-degradation, non-linearity in pressure response, and significant temperature sensitivity. Comparison of spectra of pressure fluctuations between UPSP and pressure sensors demonstrated the ability of the paint to faithfully follow fluctuations up to 10 kHz, the maximum attempted. It was also found that the camera bit-depth and the illumination level limited the lowest measurable levels of pressure fluctuations to around 140dB. The large data set exposed various critical transonic flow physics not seen before, such as a coupling of the shock motion on the Payload Fairing (PF) with the separated flow region on the upper stage of the launch vehicle, and upstream convection of pressure fluctuation on PF at certain Mach numbers. The data also confirmed the expectation of a general lowering of the coefficient of pressure fluctuation with Mach number. The availability of the data set on a dense, regularly-spaced, surface grid allowed for the calculation of wavenumber-frequency (k-) spectra via straightforward applications of Fourier transform. The k- spectra were compared for the separated flow regions on the Second Stage, and the shock-boundary layer interactions on PF. The former showed self-similarity with Mach number while the latter was distinctly different, and confirmed the upstream propagation of pressure fluctuations. The k- spectra were dominated by the convected fluctuations; the acoustic domain was not discernable. These data, valuable for the vibro-acoustics analysis of aerospace vehicles, are believed to be the first obtained for the transonic flight regime, and pave the path for application on production models of aerospace vehicles.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN37737 , AIAA SciTech Forum 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micoN- to mN-level thrust and microNs-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with the implementation of hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN53330 , Journal of Propulsion and Power (ISSN 0748-4658) (e-ISSN 1533-3876); 33; 3; 539-555
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: Benchmarks are introduced for evaluating the performance of numerical simulations of space deployable structures. These benchmarks embody the key challenges of interest to future large space deployable structures, including large angle motion, contact between flexible bodies, and the presence of both soft and stiff mechanical components. The benchmarks were used in companion studies to evaluate the ADAMS multibody dynamics code, the LS-Dyna nonlinear finite element code, and the Sierra large-scale parallel nonlinear finite element code. In the past, only multibody codes would have been considered for this application. This study found that all three codes could be used for these benchmarks, a finding that may lead to larger scale, higher fidelity simulations in the future.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-6017 , AIAA SciTech 2017 & Aerospace Sciences Meeting; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: CubeSats have experienced a number of exciting technological advancements in the past several years. However, until recently, there has been very limited development in the area of high gain CubeSat antennas, which are critical for both high data rate communications and radar science. A Ka-band high gain antenna would provide a 10,000 times increase in data communication rates over an X-band patch antenna and a 100 times increase over state-of-the-art S-band parabolic antennas. Because of this, three years ago the Jet Propulsion Laboratory (JPL) initiated a research and technology development effort to advance CubeSat communication capabilities, with one of the key thrusts being the Ka-band parabolic deployable antenna (KaPDA). This antenna started with the ambitious goal of fitting a 42 dB, 0.5 meter, 35 Ghz antenna in a 1.5U canister. This paper discusses the process of taking the antenna from a first prototype to the flight design, how the design successfully met its goals, and lessons learned. A prototype antenna was constructed in early 2015, and then upgraded to an engineering model at the end of 2016. KaPDA will be flying on the RainCube mission, and earth science CubeSat. KaPDA is the second deployable parabolic antenna to fly on a CubeSat, and the first of its kind to operate at Ka-band enabling a number of opportunities for high rate deep space antenna communications and radar science.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-5663 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: This paper will cover the conceptual design of a Mars Ascent Vehicle (MAV) and efforts underway to raise the TRL at both the component and system levels. A system down select was executed resulting in a Hybrid Propulsion based Single Stage To Orbit (SSTO) MAV baseline architecture. This paper covers the Point o f Departure design, as well as results of hardware developments that will be tested in several upcoming flight opportunities.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-5043 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: Dawn is a low-thrust interplanetary spacecraft currently orbiting the dwarf planet Ceres, to better understand the early creation of the solar system. Launched in September 2007, Dawn arrived at Vesta in July 2011. After a 16-month successful science campaign at Vesta, Dawn departed for Ceres, arriving in early 2015. The Dawn spacecraft uses both reaction wheel assemblies (RWA) and a reaction control system (RCS) to provide 3-axis attitude control for the spacecraft. Reaction wheels were designed to be the primary system for attitude control, however two wheels have shown high friction anomalies and have been removed from service. The project has implemented a hybrid control algorithm using two reaction wheels and RCS thrusters. This hybrid control capability enabled Dawn to achieve very high science return, while significantly conserving remaining hydrazine propellant. With only two remaining healthy RWAs, hybrid control became part of the baseline plan for Ceres science operations. The Dawn team developed specific operational approaches in which sequences were developed with careful consideration of science versus resource trades. Commanding and sequence planning also incorporated contingency planning, in the event that another reaction wheel may fail. Despite the differences in operational approach between Vesta and Ceres, both campaigns achieved very rich scientific data return. This paper highlights Dawns recent flight experience with hybrid attitude control during Ceres orbit operations. The discussion includes the approaches utilized by the Dawn team to address unique operational challenges presented by the hybrid approach, and reviews spacecraft performance under hybrid control in low orbit at Ceres. Additionally, methods used to optimize hydrazine use and thereby extend the science campaign will be presented. Finally, a preliminary assessment of an orbit transfer with two reaction wheels, during extended mission operations, is discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-CL#17-0441 , Annual Guidance and Control Conference; Feb 02, 2017 - Feb 08, 2017; Breckenridge, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: A unique single degree-of-freedom approximation technique has been developed to enable rapid application of a temporally-defined multi-spectral semi-narrow-band loading for generation of realistic stress/cycle values compared to a resonant analysis. The technique uses the harmonic analysis at resonance of a high-fidelity finite element model to produce a transfer function, which is then used to calibrate the response of the SDOF model. A standard numerical ordinary differential equation solver is then used to obtain the temporal response, and its histogram is used in a fatigue/fracture model. This technique is related to other SDOF methods used widely in industry, such as Miles' Equation and the Shock Response Spectra, but it is unique in that it produces a realistic time history of the response. The most obvious error in the process, which is the effect of closely-spaced modes, was also assessed using the parallel application of several SDOF models, and the error is shown to be small. The application of this unique and tractable reduced-order methodology has enabled the SLS program to avoid substantial cost and schedule penalties if a redesign or change of material were required. It has also enabled quick analysis of a number of other structures undergoing the same or similar excitation fields, and quick assessment when the excitation and structural configuration has been altered due to design changes in the system.
    Keywords: Spacecraft Propulsion and Power
    Type: M18-6723 , SciTech Forum; Jan 09, 2017 - Jan 13, 2017; Grapevine, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The inductive pulsed plasma thruster (IPPT) is an electromagnetic plasma accelerator that has been identified in NASA roadmaps as an enabling propulsion technology for some niche low-power missions and for high-power in-space propulsion needs. The IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. Thrusters of this type possess many demonstrated and potential benefits that make them worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants are accessible when compatibility with metallic electrodes in no longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there is no fundamental reason why they would not operate on other in situ propellants like H2O. It is well-known that pulsed accelerators can maintain constant specific impulse (I(sub sp)) and thrust efficiency (eta(sub t)) over a wide range of input power levels by adjusting the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that an inductive pulsed plasma thruster can operate in a regime where eta(sub t) is relatively constant over a wide range of I(sub sp) values (3000-8000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, and by increasing the pulse rate they offer the potential to process very high levels of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state-of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation (approx. = 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is similar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been repaired, with a few additional design changes implemented after discussions with the late Prof. Lovberg regarding the initial testing results and issues encountered. In the present work, we present results from testing of both the small IPPT and the larger MkVI thruster. The smaller device (Fig. 1) is tested on a thrust stand on multiple gases to demonstrate its capability to operate in a repetition-rate mode and serve as a IPPT technology-development testbed. The larger MkVI (Fig. 2) is operated for the first time in its newly reconstituted state, demonstrating full-power pulsed operation and, for the first time, repetition-rate operation of a high-power IPPT. The additional upgrades required for synchronous operation of all the pulsed systems in single-pulse and repetition-rate mode are described in detail.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5796 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6209 , AIAA Space and Astronautics Forum and Exposition (AIAA SPACE 2017); Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: The discovery of 2016 HO3 and its classification as a quasi-satellite has sparked a stronger interest towards Near Earth Asteroids (NEAs). This work presents low-thrust low-power mission designs to various NEAs using an EELV Secondary Payload Adapter (ESPA). A global trajectory optimizer (EMTG) was used to generate mission solutions to a select 13 NEAs using a 200 watt BHT-200 thruster as a proof of concept. The missions presented here demonstrate that a low-cost electric propulsion ESPA mission to NEAs is a feasible concept for many asteroids.
    Keywords: Spacecraft Propulsion and Power
    Type: GSFC-E-DAA-TN46575 , 2017 International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN45147 , Annual AIAA/USU Conference on Small Satellites; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TP-2017-219555 , SEAT-MTP-FINAL-B , ARC-E-DAA-TN41572
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: A 1722-hour wear test campaign of NASAs 12.5 kilowatt Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-307 , GRC-E-DAA-TN45412 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN43840 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a commercial compact exciter system, which eliminates this high voltage cabling, was tested at altitude conditions. A modified, conventional exciter system with an improved ignition lead was also recently tested at altitude conditions. This test program demonstrated the capability of these exciter systems to operate at altitude. While more extensive testing may be required, these systems or similar ones may be used for future NASA and commercial engine programs.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN43341 , AIAA Propulsion and Energy Forum 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6155 , SLaMS Early Career Forum; Aug 15, 2017 - Aug 18, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5774 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: In 2011 the Space Shuttle, the only Reusable Launch Vehicle (RLV) in the world, returned to earth for the final time. Upon retirement of the Space Shuttle, the United States (U.S.) no longer possessed a reusable vehicle or the capability to send American astronauts to space. With the National Aeronautics and Space Administration (NASA) out of the RLV business and now only pursuing Expendable Launch Vehicles (ELV), not only did companies within the U.S. start to actively pursue the development of either RLVs or reusable components, but entities around the world began to venture into the reusable market. For example, SpaceX and Blue Origin are developing reusable vehicles and engines. The Indian Space Research Organization is developing a reusable space plane and Airbus is exploring the possibility of reusing its first stage engines and avionics housed in the flyback propulsion unit referred to as the Advanced Expendable Launcher with Innovative engine Economy (Adeline). Even United Launch Alliance (ULA) has announced plans for eventually replacing the Atlas and Delta expendable rockets with a family of RLVs called Vulcan. Reuse can be categorized as either fully reusable, the situation in which the entire vehicle is recovered, or partially reusable such as the National Space Transportation System (NSTS) where only the Space Shuttle, Space Shuttle Main Engines (SSME), and Solid Rocket Boosters (SRB) are reused. With this influx of renewed interest in reusability for space applications, it is imperative that a systematic approach be developed for assessing the reusability of spaceflight hardware. The partially reusable NSTS offered many opportunities to glean lessons learned; however, when it came to efficient operability for reuse the Space Shuttle and its associated hardware fell short primarily because of its two to four-month turnaround time. Although there have been several attempts at designing RLVs in the past with the X-33, Venture Star and Delta Clipper Experimental (DC-X), reusability within the spaceflight arena is still in its infancy. With unlimited resources (namely, time and money), almost any launch vehicle and its associated hardware can be made reusable. However, an endless supply of funds for space exploration is not the case in today's economy for neither government agencies nor their commercial counterparts. Therefore, any organization wanting to be a leader in space exploration and remain competitive in this unforgiving space faring industry must confront shrinking budgets with more cost conscious and efficient designs. Therefore, standards for developing reusable spaceflight hardware need to be established. By having standards available to existing and emerging companies, some of the potential roadblocks and limitations that plagued previous attempts at reuse may be minimized or completely avoided.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-5885 , AIAA Propulsion And Energy Forum and Exposition; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in order to advance the state of the practice. The full participation of the entire U.S. rocket propulsion industrial base is invited and expected at this opportune moment in the continuing advancement of spaceflight technology.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6082 , 2017 AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6107 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2017-4670 , M17-6113 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6123 , AIAA Propulsion and Energy Forum 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6132 , AIAA Propulsion and Energy Forum 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: The First Flight of NASA's Space Launch System will feature 13 CubeSats that will launch into cis-lunar space. Three of these CubeSats are winners of the CubeQuest Challenge, part of NASA's Space Technology Mission Directorate (STMD) Centennial Challenge Program. In order to qualify for launch on EM-1, the winning teams needed to win a series of Ground Tournaments, periodically held since 2015. The final Ground Tournament, GT-4, was held in May 2017, and resulted in the Top 3 selection for the EM-1 launch opportunity. The Challenge now proceeds to the in-space Derbies, where teams must build and test their spacecraft before launch on EM-1. Once in space, they will compete for a variety of Communications and Propulsion-based challenges. This is the first Centennial Challenge to compete in space and is a springboard for future in-space Challenges. In addition, the technologies gained from this challenge will also propel development of deep space CubeSats.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN39563 , AIAA Space 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-26932 , AAS/AIAA Astrodynamics Specialist Conference; Aug 20, 2017 - Aug 24, 2017; Stevenson, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-40423 , AIAA Space 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: NASA's Evolutionary Xenon Thruster (NEXT) is a 7-kW class gridded ion thruster-based propulsion system that was initially developed from 2002 to 2012 under NASAs In-Space Propulsion Technology Program to meet future science mission requirements. In 2015, a contract was awarded to Aerojet Rocketdyne, with subcontractor ZIN Technologies, to design, build and test two NEXT flight thrusters and two power processing units that would be available for use on future NASA science missions. Because an additional goal of this contract is to take steps towards offering NEXT as a commercialized system, it is called the NEXT-Commercial project, or NEXT-C. This paper reviews the capabilities of the NEXT-C system, status of the NEXT-C project, and the forward plan to build, test, and deliver flight hardware in support of future NASA and commercial applications. It also briefly addresses some of the potential applications that could utilize the hardware developed and built by the project.
    Keywords: Spacecraft Propulsion and Power
    Type: IAC-17.C4.4.3 , GRC-E-DAA-TN46431 , International Astronautical Congress; Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: A 1722-hr wear test campaign of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2017-219726 , IEPC-2017-307 , E-19453 , GRC-E-DAA-TN48797 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry-operated, privately financed venture, with NASA as its initial customer, might provide a possible blueprint for future development and operation With industry interested in developing cislunar space and commerce, and competitive forces at work, the timeline for developing this capability could well be accelerated, quicker than any of us can imagine, and just the beginning of things to come.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2017-5272 , GRC-E-DAA-TN46402 , American Institute of Aeronautics and Astronautics (AIAA) Space Forum and Exposition - Space 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6341 , Future In-Space Operations (FISO) Working Group Seminar Series; Nov 02, 2017; West Lafayette, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6291 , AIAA Young Professionals Symposium; Oct 23, 2017 - Oct 24, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: The bulge in the Earth at its equator has been shown to lead to a clustering of natural decays biased to occur towards the equator and away from the orbit's extreme latitudes. Such clustering must be considered when predicting the Expectation of Casualty (Ec) during a natural decay because of the clustering of the human population in the same lower latitudes. This study expands upon prior work, and formalizes the correction that must be made to the calculation of the average exposed population density as a result of this effect. Although a generic equation can be derived from this work to approximate the effects of gravitational and atmospheric perturbations on a final decay, such an equation averages certain important subtleties in achieving a best fit over all conditions. The authors recommend that direct simulation be used to calculate the true Ec for any specific entry as a more accurate method. A generic equation is provided, represented as a function of ballistic number and inclination of the entering spacecraft over the credible range of ballistic numbers.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN39730-1 , International Association for the Advancement of Space Safety (IAASS); Oct 18, 2017 - Oct 20, 2017; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.
    Keywords: Spacecraft Propulsion and Power
    Type: NF1676L-26515 , AIAA SPACE 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-40336 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6092 , National Space & Missile Materials Symposium / Commercial and Government Responsive Access to Space Technology Exchange; Jun 26, 2017 - Jun 29, 2017; Indian Wells, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6018 , Applied Space Environments Conference; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: A hybrid propulsion system is being considered for a potential Mars Ascent Vehicle (MAV) based on its low temperature capability, ability to restart and high performance. The hybrids ability to survive in low and variable temperatures reduces power requirements and therefore system mass. Its ability to restart enables a Single Stage to Orbit (SSTO) design, minimizing system complexity. The hybrids high-performance (approximately 314 s Isp (I (sub sp)) (specific impulse in seconds) leads to a low total Gross Lift Off Mass (GLOM). These advantages set the hybrid design above the alternatives in the system studies completed at JPL (Jet Propulsion Laboratory). However, this solution has the lowest Technology Readiness Level (TRL) of the propulsion options. Therefore, a technology development effort has been undertaken to raise the TRL of the hybrid option and potentially enable its infusion into a future MAV or other in-space application. The culmination of this technology development is a flight demonstration, which is currently in the planning phases for launch in the early 2020s.
    Keywords: Spacecraft Propulsion and Power
    Type: JPL-CL-CL#17-2811 , AIAA Propulsion and Energy Forum and Exposition 2017; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Non-intrusive optical diagnostic imaging was used for the first time to visualize multi-rocket plume-induced reacting base flows to simulate launch vehicle ascent from sea-level to 250,000 ft. In particular, planar laser induced florescence (PLIF) and infrared (IR) imaging were implemented for the first time to visualize and quantify base flow and rocket plume environments from sub-scale, short-duration propulsion models within a shock tunnel facility. This report discusses the successful imaging diagnostic methods for capturing base flow features and dynamics as a function of altitude. Important base flow and plume features were captured with PLIF and IR diagnostics to develop a conceptual base flow physics model. This imaging data specifically provides insight into the Space Launch System vehicle core-stage and Exploration Upper Stage base environments and further validates short-duration ground test techniques and computational modeling.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6080 , Aviation Conference (2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6414 , Space Commerce Conference and Exposition (SpaceCom 2017); Dec 05, 2017 - Dec 07, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-E-DAA-TN47011 , Nevada Space Grant and Nevada NASA EPSCoR Statewide Meeting 2017; Oct 20, 2017; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations, especially for small spacecraft. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7W and 50W of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts, at a much higher mass and stowage efficiency. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, UHF (ultrahigh frequency), S-band, and X-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for more capable multi-element antenna designs such as those needed for spherical coverage and electronically steered phase arrays.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAC-17-C3.4.1 , MSFC-E-DAA-TN46534 , International Astronautical Congress (IAC); Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: A number of valuable conclusions can be drawn from this study. First, knockdown factors for a specific fluid are not constant but instead are dependent on the mode shape, although the largest this variability gets is about 10% for LOX, the densest fluid. The factors decrease the most for lower frequency shapes and less for higher ones. It follows, therefore, that mode number mismatch between air and fluid operation becomes not only possible, but common, as a knockdown factor for a particular mode shape may be higher than for another mode shape. Since this is a function of added mass, the mismatch is more prevalent for higher density fluids, but it initiates even for very low density ones. Another important conclusion reached is that it appears that the basic mode shapes of a structure do not change if it is fully symmetric, which includes its geometry and boundary conditions. There is some indication of small changes in the relative magnitudes within the mode shape. This conclusion is evident in the results from the cantilever rectangular plate and the inducer, which are not symmetric, and the fixed-fixed plate and the annular disk, which are. For non-symmetric structures, though, the mode shapes almost universally change for dense fluids, as shown by the very low MAC calculations. For the inducer in particular, the changes follow a trend of reduced parabolic and sine wavelengths with increasing density. It is critical to recognize the change in mode shape for several reasons. First, model updating with modal test becomes problematic if the shapes change. Second, design to avoid resonance is highly critical on the mode shape for modes other than the primary ones, as resonance is only a factor when the excitation shape matches the mode shape. Finally, application of the modal superposition method of forced response analysis is dependent on the use of accurate mode shapes. A more-refined assessment of the "knockdown" factor values and ranges than any previously reported in the literature for a realistic engineering structure is also presented in this paper. This data is of tremendous benefit for preliminary analysis and design, where a quick estimate is necessary. These results are important not just for rocket engine turbomachinery, but for water pumps and turbines, propellers, and any other structure operating in a heavy fluid with dynamic excitation. The clear avenue for future work for this endeavor is to expand the analytical techniques discussed in the literature to develop analytical expressions and justification for the mode shape changes and associated frequency knockdowns. These expressions must be able to accurately predict the functional relationship to the shapes, which will enable accurate tracing of the mode number from vacuum analysis (or testing in air) to analysis and operation in the intended fluid environment.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5696 , ASME Turbo Expo 2017; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN44353 , AIAA Propulsion and Energy Forum: International Energy Conversion Engineering Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M16-5562 , 2017 American Control Conference; May 24, 2017 - May 26, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-17
    Description: The currently stated exploration plan for NASA includes the possibilities ranging from short (several hour duration) upper stage missions sending astronauts towards the vicinity of the moon to multiyear missions to Mars and even making and liquefying propellant on the surface of Mars. As such, NASA has developed a plan to develop multilayer insulation (MLI) at a level it can be engineered for large space craft and upper stage mission durations between several hours to several days. The Evolvable Cryogenics project has been investigating design details related to the design of large MLI blankets for in-space application. Basic MLI performance for large upper stages is scheduled to be demonstrated in 2018 on the Evolvable Cryogenics projects Structural Heat Intercept, Insulation, and Vibration Evaluation Rig (SHIIVER). Different paths are being pursued for Mars Surface applications and these concepts are much less defined and still being traded.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN40967 , In-Space Chemical Propulsion Technical Interchange Meeting; Apr 04, 2017 - Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-24
    Description: As one of just a few bodies identified in the solar system with a liquid ocean, Europa has become a top priority in the search for life outside of Earth. However, cost estimates for exploring Europa have been prohibitively expensive, with estimates of a NASA Flagship class orbiter and lander approaching $5 billion. ExoTerra's NIMPH offers an affordable solution that can not only land, but return a sample from the surface to Earth. NIMPH combines solar electric propulsion (SEP) technologies being developed for the asteroid redirect mission and microsatellite electronics to reduce the cost of a full sample return mission below $500 million. A key to achieving this order-of-magnitude cost reduction is minimizing the initial mass of the system. The cost of any mission is directly proportional to its mass. By keeping the mission within the constraints of an Atlas V 551 launch vehicle versus an SLS, we can significantly reduce launch costs. To achieve this we reduce the landed mass of the sample return lander, which is the largest multiplier of mission mass, and shrink propellant mass through high efficiency SEP and gravity assists. The NIMPH projects first step in reducing landed mass focuses on development of a micro-In Situ Resource Utilization (micro-ISRU) system. ISRU allows us to minimize landed mass of a sample return mission by converting local ice into propellants. The project reduces the ISRU system to a CubeSat-scale package that weighs just 1.74 kg and consumes just 242 W of power. We estimate that use of this ISRU vs. an identical micro-lander without ISRU reduces fuel mass by 45 kg. As the dry mass of the lander grows for larger missions, these savings scale exponentially. Taking full advantage of the micro-ISRU system requires the development of a micro-liquid oxygen-liquid hydrogen engine. The micro-liquid oxygen-liquid hydrogen engine is tailored for the mission by scaling it to match the scale of the micro-lander and the low gravity of the target moon. We also tailor the engine for a near stoichiometric mixture ratio of 7.5. Most high-performance liquid oxygen-liquid hydrogen engines inject extra liquid hydrogen to lower the average molecular weight of the exhaust, which improves specific impulse. However, this extra liquid hydroden requires additional power and processing time on the surface for the ISRU to create. This increases mission cost, and on missions within high radiation environments such as Europa, increases radiation shielding mass. The resulting engine weighs just 1.36 kg and produces 71.5 newton of thrust at 364 s specific impulse. Finally, the mission reduces landed mass by taking advantage of the SEP modules solar power to beam energy to the surface using a collimated laser. This allows us to replace an 45 kg MMRTG with a 2.5 kg resonant array. By using the combination of ISRU, a liquid oxygen-liquid hydrogen engine, and beamed power, we reduce the initial mass of the lander to just 51.5 kg. When combined with an SEP module to ferry the lander to Europa the initial mission mass is just 6397 kg - low enough to be placed on an Earth escape trajectory using an Atlas V 551 launch vehicle. By comparison, we estimate a duplicate lander using an MMRTG and semi-storable propellants such as liquid oxygen-methane would result in an order of magnitude increase in initial lander mass to 445 kg. Attempting to perform the trajectory with a 450 s liquid oxygen-liquid hydrogen engine would increase initial mass to approximately 135,000 kg. Using an Atlas V 1 U.S. Dollar per kg rate to Earth escape value of $27.7k per kg, just the launch savings are over $3.5 billion.
    Keywords: Spacecraft Propulsion and Power
    Type: HQ-E-DAA-TN39204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6425 , JANNAF Joint Subcommittee Meeting Programmatic and Industrial Base Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Propulsion Systems Hazards; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Exhaust Plume and Signatures; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Combustion; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-13
    Description: NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-3 (TDU-3) has been the subject of extensive technology maturation in preparation for flight system development. Detailed performance, stability, and plume characterization tests of the thruster were performed at NASA GRC's Vacuum Facility 5 (VF-5). The TDU-3 thruster implements a magnetic topology that is identical to TDU-1. The TDU-3 boron nitride silica composite discharge channel material is different than the TDU-1 heritage boron nitride discharge channel material. Performance and stability characterization of the TDU-3 thruster was performed at discharge voltages between 300V and 600V and at discharge currents between 5A and 21.8A. The thruster performance and stability were assessed for varying magnetic field strength, cathode flow fractions between 5% and 9%, varying harness inductance, and for reverse magnet polarity. Performance characterization test results indicate that the TDU-3 thruster performance is in family with the TDU-1 levels. TDU-3's thrust efficiency of 65% and specific impulse of 2,800sec at 600V and 12.5kW exceed performance levels of SOA Hall thrusters. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations (discharge current peak-to-peak and root mean square magnitudes), discharge current waveform power spectral density analysis, and maps of the current-voltage-magnetic field. Stability characterization test results indicate a stability profile similar to TDU-1. Finally, comparison of the TDU-1 and TDU-3 plume profiles found that there were negligible differences in the plasma plume characteristics between the TDU with heritage boron nitride versus the boron nitride silica composite discharge channel.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-392 , GRC-E-DAA-TN46397 , International Electric Propulsion Conference (IEPC 2017); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-13
    Description: In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations.
    Keywords: Spacecraft Propulsion and Power
    Type: NF1676L-27197 , Joint Army-Navy-NASA-Air Force (JANNAF) December 2017 Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Programmatic and Industrial Base (PIB) Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Exhaust Plume and Signatures (EPSS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards (PSHS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Airbreathing Propulsion (APS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Combustion (CS) Joint Subcommittee Meeting; Dec 04, 2017 - Dec 07, 2017; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-13
    Description: The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville with channel walls and a propellant distributor manufactured using 3D printing. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. An overview of the thruster design and transient performance measurements are presented here. Measured thrust ranged from 17.2 millinewtons to 30.4 millinewtons over a discharge power of 280 watts to 520 watts with an anode I (sub SP)(Specific Impulse) range of 870 seconds to 1450 seconds. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-119 , GRC-E-DAA-TN46543 , International Electric Propulsion Conference 2017; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-13
    Description: The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-223 , GRC-E-DAA-TN47185 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-13
    Description: Electric Sail (E-Sail) propulsion systems will enable scientific spacecraft to obtain velocities of up to 10 astronomical units per year without expending any on-board propellant. The E-Sail propulsion is created from the interaction of a spacecraft's positively charged multi-kilometer-length conductor/s with protons that are present in the naturally occurring hypersonic solar wind. The protons are deflected via natural electrostatic repulsion forces from the Debye sheath that is formed around a charged wire in space, and this deflection of protons creates thrust or propulsion in the opposite direction. It is envisioned that this E-Sail propulsion system can provide propulsion throughout the solar system and to the heliosphere and beyond. Consistent with the concept of a "sail," no propellant is needed as electrostatic repulsion interactions between the naturally occurring solar wind protons and a positively charged wire creates the propulsion. The basic principle on which the Electric Sail operates is the exchange of momentum between an "electric sail" and solar wind, which continually flows radially away from the sun at speeds ranging from 300 to 700 kilometers per second. The "sail" consists of an array of long, charged wires which extend radially outward 10 to 30 kilometers from a slowly rotating spacecraft. Momentum is transferred from the solar wind to the array through the deflection of the positively charged solar wind protons by a high voltage potential applied to the wires. The thrust generated by an E-Sail is proportional to the area of the sail, which is given by the product of the total length of the wires and the effective wire diameter. The wire is approximately 0.1 millimeters in diameter. However, the effective diameter is determined by the distance the applied electric potential penetrates into space around the wire (on the order of 10 meters at 1 astronomical unit). As a result, the effective area over which protons are repelled is proportional to the size of the region of electric potential, or the plasma sheath region, surround the wires of the array. A large sheath is, therefore, beneficial to the generation of thrust. However, this benefit must be balanced with the additional fact that electron collection is proportional to sheath size. Electrons collected by the wire array must be injected back into the solar wind in order to maintain the potential on the wires - which requires power. The primary power requirement for E-Sail operation is, therefore, also proportional to sheath size.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5802 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-13
    Description: Brief summary of the decision factors considered and process improvement steps made, to evolve the ESMO debris avoidance maneuver process to a more automated process. Presentation is in response to an action item/question received at a prior MOWG meeting.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN49227 , Constellation Management Operations Working Group (MOWG); Dec 06, 2017 - Dec 08, 2017; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-13
    Description: The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7 meter deployed diameter ADEPT sounding rocket flight experiment named, SR-1. Launch is planned for August 2017. The test will utilize the NASA Flight Opportunities Program sounding rocket platform provided by UP Aerospace to launch SR-1 to an apogee over 100 km and achieve re-entry conditions with a peak velocity near Mach 3. The SR-1 flight experiment will demonstrate most of the primary end-to-end mission stages including: launch in a stowed configuration, separation and deployment in exo-atmospheric conditions, and passive ballistic re-entry of a 70-degree half-angle faceted cone geometry.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN43075 , International Planetary Probe Workshop; Jun 12, 2017 - Jun 16, 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN42321 , Interplanetary CubeSat Conference; May 30, 2017 - May 31, 2017; Cambridge; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-13
    Description: Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload as part of the ESA LISA Pathfinder (LPF) mission, which launched on December 3, 2015. The ST7-DRS payload includes colloid microthrusters as part of a drag-free dynamic control system (DCS) hosted on an integrated avionics unit (IAU) with spacecraft attitude and test mass position provided by the LPF spacecraft computer and the highly sensitive gravitational reference sensor (GRS) as part of the LISA Technology Package (LTP). The objective of the DRS was to validate two technologies: colloid micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free flight control. The CMNT were developed by Busek Co., Inc., in a partnership with NASA Jet Propulsion Laboratory (JPL), and the DCS algorithms and flight software were developed at NASA Goddard Space Flight Center (GSFC). ST7-DRS demonstrated drag-free operation with 10nmHz level precision spacecraft position control along the primary axis of the LTP using eight CMNTs that provided 5-30 N each with 0.1 N precision. The DCS and CMNTs performed as required and as expected from ground test results, meeting all Level 1 requirements based on on-orbit data and analysis. DRS microthrusters operated for 2400 hours in flight during commissioning activities, a 90-day experiment and the extended mission. This mission represents the first validated demonstration of electrospray thrusters in space, providing precision spacecraft control and drag-free operation in a flight environment with applications to future gravitational wave observatories like LISA.
    Keywords: Spacecraft Propulsion and Power
    Type: GSFC-E-DAA-TN47585 , International Electric Propulsion Conference (IEPC) 2017; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-13
    Description: Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale.In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN39680 , International Planetary Probe Workshop; Jun 12, 2017 - Jun 16, 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN46955 , NASA Innovative Advanced Concepts Symposium; Sep 25, 2017 - Sep 27, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-13
    Description: Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-304 , GRC-E-DAA-TN45524 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-13
    Description: The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-028 , GRC-E-DAA-TN45530 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-13
    Description: Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-397 , GRC-E-DAA-TN45510 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-13
    Description: A series of short-duration (200 hour) wear tests were conducted with two Hall Effect Rocket with Magnetic Shielding (HERMeS) technology demonstration units (TDU). Front pole covers, cathode keeper, and discharge channel wear were characterized as a function of discharge voltage, magnetic field strength, and chamber pressure. No discharge channel erosion was observed. Inner pole cover erosion was shown to be a weak function of discharge voltage with most erosion occurring at the lowest value, 300 volts. The TDU-3 keeper electrode eroded with each operating condition, with high magnetic field yielding the greatest erosion rate. The TDU-1 keeper electrode exhibited net deposition suggesting its configuration is more consistent with meeting overall HERMeS service life requirements. Ratios of molybdenum to graphite erosion rates suggests, with high uncertainty, that the sputtering ions are originating downstream of the thruster exit plane, striking the surface with small angles of incidence.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN45507 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-13
    Description: Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for AEPS thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.
    Keywords: Spacecraft Propulsion and Power
    Type: IEPC-2017-537 , GRC-E-DAA-TN45504 , International Electric Propulsion Conference (IEPC); Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-13
    Description: NASA formed the Constellation Program in 2005 to achieve the objectives of maintaining American presence in low-Earth orbit, returning to the moon for purposes of establishing an outpost, and laying the foundation to explore Mars and beyond in the first half of the 21st century. The Exploration Technology Development Program (ETDP) was formulated to address the technology needs to address Constellation architecture decisions. The Propellants and Cryogenic Advanced Development (PCAD) project was tasked with risk mitigation of specific propulsion related technologies to support ETDP. Propulsion systems were identified as critical technologies owing to the high gear-ratio of lunar Mars landers Cryogenic propellants offer performance advantage over storables (NTOMMH) Mass savings translate to greater payload capacity In-situ production of propellant an attractive feature; methane and oxygen identified as possible Martian in-situ propellants New technologies were required to meet more difficult missions High performance LOX/LH2 deep throttle descent engines High performance LOX/LCH4 ascent main and reaction control system (RCS) engines The PCAD project sought to provide those technologies through Reliable ignition pulse RCS Fast start High efficiency engines Stable deep throttling.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN40374 , JANNAF In-Space Chemical Propulsion Technical Interchange (TIM) Meeting; Apr 04, 2017 - Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-13
    Description: Magneto-inertial fusion concepts often use a pulsed high current discharge in a cylindrical coil to generate a rapidly changing axial magnetic field, inducing a counter-propagating current in the conducting outer liner of a centrally aligned cylindrical fusion target. The Lorentz force arising from the axial field and azimuthal liner current rapidly implodes the target radially inward, compressing the fuel to reach fusion conditions.
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN43016 , 2017 NIAC Orientation Meeting; Jun 06, 2017 - Jun 08, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN42920 , 2017 NIAC Orientation Meeting; Jun 06, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-13
    Description: An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5819 , JANNAF Rocket Nozzle Technology (RNTS); May 22, 2017 - May 25, 2017; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-13
    Description: Analytical Mechanics Associates (AMA), in cooperation with NASA Marshall Space Flight Center's (MSFC's) Spacecraft Propulsion Systems Branch, developed and tested a novel propellant tank design that employs an internal piston pressurized with an inert gas to expel propellant to thrusters. During the course of this activity, AMA designed, oversaw fabrication, and delivered to MSFC for testing, a piston propellant tank sized for 3U or larger CubeSats. MSFC conducted liquid expulsion testing using ethylene glycol as a referee fluid to map the tank's performance at different pressures and piston positions. Following the expulsion test campaign, the tank is planned to be integrated into a propulsion system test bed for hot fire tests with a 100mN monopropellant thruster to evaluate the tank's influence on thruster performance when operated in a flight like manner. Described in this paper is a comprehensive summary of how the tanks were designed, built, and tested. The fundamental knowledge gained through the fabrication and testing of these tanks gives evidence that the piston tank design may be scalable to meet the requirements and constraints of other small satellites.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5826 , JANNAF Propulsion Meeting (JPM); May 22, 2017 - May 25, 2017; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5845 , Nuclear Emerging Technologies in Space Conference; Feb 27, 2017 - Mar 02, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5824 , Huntsville Comic - Con 2017; Feb 10, 2017 - Feb 11, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-13
    Description: NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5752 , Planetary Science Vision 2050 Workshop; Feb 27, 2017 - Mar 01, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-13
    Description: Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail for future scientific missions of exploration. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two year follow-on Phase II NIAC award. This paper documents the findings from this three year investigation. An Electric sail propulsion system is a propellant-less and extremely fast propulsion system that takes advantage of the ions that are present in the solar wind to provide very rapid transit speeds whether to deep space or to the inner solar system. Scientific spacecraft could arrive to Pluto in ~5 years, to the boundary of the solar system in ten to twelve years vs. thirty five plus years it took the Voyager spacecraft. The team's recent focused activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers/tethers to enable successful deployment of multiple, multi km length bare tethers, 3) Determining the different missions that can be captured from this revolutionary propulsion system 4) Conceptual designs of spacecraft to reach various destinations whether to the edge of the solar system, or as Heliophysics sentinels around the sun, or to trips to examine a multitude of asteroids These above activities, once demonstrated analytically, will require a technology demonstration mission (~2021 to 2023) to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) could be given the go-ahead. The proposed demonstration mission will require that a small spacecraft must first travel to cis-lunar space as the Electric Sail must be outside of Earth's Magnetic fields to produce thrust. The paper will outline what was done over the past three years from performing various plasma chamber tests to obtain data for the PIC model development, investigation of tether material trades, and conceptual designs of proposed spacecraft.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6054 , Applied Space Environments Conference (2017); May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M17-6061 , 2017 JANNAF/WSE Energetics Research Group Conference; May 22, 2017 - May 26, 2017; Kansas City, MO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-13
    Description: The Orion Crew Module (CM) is nearing completion for the next flight, designated as Exploration Mission 1 (EM-1). For the uncrewed mission, the flight path will take the CM through a Perigee Raise Maneuver (PRM) out to an altitude of approximately 1800 km, followed by a Trans-Lunar Injection burn, a pass through the Van Allen belts then out to the moon for a lunar flyby, a Distant Retrograde Insertion (DRI) burn, a Distant Retrograde Orbit (DRO), a Distant Retrograde Departure (DRD) burn, a second lunar flyby, an Earth Insertion (EI) burn, and finally entry and landing. All of this, with the exception of the DRO associated maneuvers, is similar to the previous Apollo 8 mission in late 1968. In recent discussions, it is now possible that EM-1 will be a crewed mission, and if this happens, the orbit may be quite different from that just described. In this case, the flight path may take the CM on an out and back pass through the Van Allen belts twice, then out to the moon, again passing through the Van Allen belts twice, then finally back home. Even if the current EM-1 mission doesn't end up as a crewed mission, EM-2 and subsequent missions will undoubtedly follow orbital trajectories that offer comparable exposures to heightened vehicle charging effects. Because of this, and regardless of flight path, the CM vehicle will likely experience a wide range of exposures to energetic ions and electrons, essentially covering the gamut between low earth orbit to geosynchronous orbit and beyond. National Aeronautical and Space Administration (NASA) and Lockheed Martin (LM) engineers and scientists have been working to fully understand and characterize the vehicle's immunity level with regard to surface and deep dielectric charging, and the ramifications of that immunity level pertaining to materials and impacts to operational avionics, communications, and navigational systems. This presentation attempts to chronicle these efforts in a summary fashion, and attempts to capture the results of that work as they pertain to the electrical and avionic systems on-board the Orion CM.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-39599 , The Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-5944
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-13
    Description: Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5832 , In-Space Chemical Propulsion Technical Interchange Meeting; Apr 04, 2017 - Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-29
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-39118 , 2017 FIRST Championship Conference; Apr 19, 2017 - Apr 21, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-10
    Description: Conventional mobility elements, such as pneumatic tires, suffer from a number of issues related to reliability. Two of the more prevalent problems are the high likelihood of single point failure owing to puncture (i.e. flat tire), and loss of efficiency due to reduction in tire pressure over time. In order to overcome these limitations, alternative compliant tire designs not requiring pneumatics have been developed. However, although current designs have significantly reduced the aforementioned issues, they tend to have their own set of limitations. First, non-pneumatic tires designed for high load applications often have restricted envelopment capability, making their performance less than optimal, especially on uneven terrain. Second, tires designed with larger envelopment capability tend to suffer from large amounts of plasticity (permanent deformation) or failure (rupture). Both of these limitations are the direct result of the choice of material being used for the design; conventional metals undergo plastic deformation at low strain while elastomer based designs are often too rigid for the localized deformations needed for high envelopment. Recent advancements at the NASA Glenn research center in a unique class of metals know as shape memory alloys (SMAs) has opened the design space for non-pneumatic compliant tire technologies allowing designs to incorporate orders of magnitude more deformation without damage. The work presented herein highlights the advantages of using SMAs as compared to conventional metals. Additionally, the development of a unique SMA compliant tire design capable of carrying up to 8.9 kN (2000 lbf) with reversible, local deformations on the order of the side wall height will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN46918 , International and European-African Regional Conference of the International Society for Terrain-Vehicle Systems (ISTVS) ; Sep 25, 2019 - Sep 27, 2019; Budapest; Hungary
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-09-25
    Description: Small spacecraft play a major role in earth, lunar, planetary, stellar, and interstellar discoveries. As technologies improve, instruments scale down in size, and their advantages in reduced cost and development time continue to attract investment, small satellites1 will play an even more important role. Today, the growth rate of small spacecraft utilization is limited by the availability of affordable launch opportunities.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN42320
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: This NASA Innovative Advanced Concept (NIAC) grant has enabled the research and development of a method for conducting small body gravimetry from a spacecraft, using relative measurements to a set of deployed test-masses. The test-masses are tracked from a host spacecraft, which dispenses them near to the small body's surface. Thanks to this close proximity, the probes' orbits can be highly perturbed, which yields useful gravimetric measurements. The most readily achievable approach for tracking the probes is to use an optical instrument on- board the spacecraft. The probes then need only be reflective to sunlight. This implementation, called optical gravimetry (OpGrav), has the fewest requirements for the host spacecraft and probes.The results of this study indicate that OpGrav is feasible and offers meaningful improvement over existing methods. Parametric studies suggest roughly an order of magnitude improvement in accuracy or asteroid accessibility (how small an asteroid one can measure) over Earth-based Doppler-only mass estimation. This exponentially expands the number of potential near-Earth objects that one could study, which has implications for planetary defense.As a sample mission, we evaluated OpGrav as an added instrument on a main- belt asteroid tour mission. In this case, simulations show that OpGrav would increase the number of asteroid mass estimates from 3 of 9 to 7 of 9. That is, OpGrav has sufficient sensitivity to offer utility in missions for which it is not explicitly designed for.We designed and fabricated a prototype hardware implementation for this concept called the Small-body In-situ Multi-probe Mass Estimation Experiment (SIMMEE). This hardware provides a basis for many inputs into the simulations and grounds the models with physical values. The primary design driver for the hardware is a long life, on the order of five years prior to operation, and a need for high pointing accuracy to enable flybys of the smallest objects.The next steps include further hardware testing and extension of the concept to rendezvous cases. We believe that this concept offers planetary scientists a new and relevant means of better understanding small-bodies.
    Keywords: Spacecraft Design, Testing and Performance
    Type: HQ-E-DAA-TN58797
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-27
    Description: Miniature release mechanisms constrain objects, such as deployables during the launch of space vehicles, such as small satellites and nanosatellites, and enable the release of the objects once a desired destination is reached by the space vehicle. Constraint and release of the objects are achieved by providing a secure threaded interface that may be released by the release mechanisms. The release mechanisms include a housing structure; a release block can include a threaded interface; one or more retracting pins; one or more release springs; a breakable link, such as a plastic link; a cable harness clamp; and a circuit board. The release mechanism can be 0.1875 inches (approximately 4.8 mm) thick.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38175 , Hypervelocity Impact Symposium; Apr 24, 2017 - Apr 28, 2017; Canterbury; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38177 , Hypervelocity Impact Symposium; Apr 24, 2017 - Apr 28, 2017; Canterbury; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The informed design with respect to hypervelocity collisions involving micrometeoroid and orbital debris (MMOD) is influential to the success of space missions. For an orbit comparable to that of the International Space Station, velocities for MMOD can range from 1 to 15 km/s, with an average velocity around 10 km/cu s. The high energy released during collisions at these speeds can result in damage to a spacecraft, or worst-case, loss of the spacecraft, thus outlining the importance of methods to predict the likelihood and extent of damage due to an impact. Through experimental testing and numerical simulations, substantial work has been conducted to better understand the effects of hypervelocity impacts (HVI) on spacecraft systems and shields; however, much of the work has been focused on spherical impacting particles. To improve environment models for the analysis of MMOD, a large-scale satellite break-up test was performed at the Arnold Engineering and Development Complex to better understand the varied impactor geometries that could be generated from a large impact. As a part of the post-experiment analysis, an undertaking to characterize the irregular fragments generated is currently being performed by the University of Florida under the management of NASA's Orbital Debris Program Office at Johnson Space Center (JSC). DebriSat was a representative, modern LEO satellite that was catastrophically broken up in a HVI test. The test chamber was lined with a soft-catch system of foam panels that captured the fragments after impact. Initial predictions put the number of fragments larger than 2mm generated from the HVI at roughly 85,000. The number of fragments thus far extracted from the foam panels has exceeded 100,000, with that number continuously increasing. The shapes of the fragments vary dependent upon the material. Carbon-fiber reinforced polymer pieces, for instance, are abundantly found as thin, flat slivers. The characterization of these fragments with respect to their mass, size, and material composition needs to be summarized in a form that can be used in MMOD analysis. The mechanism that brings these fragment traits into MMOD analysis is through ballistic limit equations (BLE) that have been developed largely for a few types of materials1. As a BLE provides the failure threshold for a shield or spacecraft component based on parameters such as the projectile impact velocity and size, and the target's materials, thickness, and configuration, it is used to design protective shields for spacecraft such as Whipple shields (WS) to an acceptable risk level. The majority of experiments and simulations to test shields and validate BLEs have, heretofore, largely used spheres as the impactor, not properly reflecting the irregular shapes of MMOD. This shortfall has motivated a numerical impact analysis study of HVI involving non-spherical geometries to identify key parameters that environment models should provide.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38198 , Hypervelocity Impact Symposium; Apr 24, 2017 - Apr 28, 2017; Canterbury; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Mars 2020, the next planned U.S. rover mission to land on Mars, is based on the design of the successful 2012 Mars Science Laboratory (MSL) mission. Mars 2020 retains most of the entry, descent, and landing (EDL) sequences of MSL, including the closed-loop entry guidance scheme based on the Apollo guidance algorithm. However, unlike MSL, Mars 2020 will trigger the parachute deployment and descent sequence on range trigger rather than the previously used velocity trigger. This difference will greatly reduce the landing ellipse sizes. Additionally, the relative contribution of each models to the total ellipse sizes have changed greatly due to the switch to range trigger. This paper considers the effect on trajectory dispersions due to changing the trigger schemes and the contributions of these various models to trajectory and EDL performance.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-22928 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38188 , AIAA SciTech 2017 Conference; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: This paper presents the results of a NASA initiated Agency-wide assessment to better characterize the risks and potential mitigation approaches associated with landing human class Entry, Descent, and Landing (EDL) systems on Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. A key focus of this study was to understand the key EDL risks and with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies along with the key near term technology development efforts required and in what environment those technology demonstrations were best suited. The study identified key risks along with advantages to each entry technology. In addition, it was identified that provided the EDL concept of operations (con ops) minimized large scale transition events, there was no technology requirement for a Mars pre-cursor demonstration. Instead, NASA should take a direct path to a human-scale lander.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37782 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37857 , AIAA SciTech 2017 Conference; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6047 , Applied Space Environments Conference; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: MSFC-E-DAA-TN45971 , Thermal and Fluid Analysis Workshop (TFAWS); Aug 21, 2017 - Aug 25, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...