ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.
    Keywords: Aerospace Medicine
    Type: Acta astronautica (ISSN 0094-5765); Volume 49; 3-10; 289-312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: One geometry currently under consideration for the Aeroassist Flight Experiment (AFE) vehicle is composed of several segments of simple general conics: an ellipsoidal nose tangent to an elliptical cone and a base skirt with the base plane raked relative to the body axis. An analytic representation for the body coordinates and first and second partial derivatives of this configuration has been developed. Equations are given which define the body radius and partial derivatives for a prescribed axial and circumferential position on the vehicle. The results for a sample case are tabulated and presented graphically.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-TM-87714 , NAS 1.15:87714
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An approximate axisymmetric method has been developed which can reliably calculate nonequilibrium fully viscous hypersonic flows over blunt-nosed bodies. By substituting Maslen's second-order pressure expression for the normal momentum equation, a simplified form of the viscous shock layer (VSL) equations is obtained. This approach can solve both the subsonic and supersonic regions of the shock layer without a starting solution for the shock shape. This procedure is significantly faster than the parabolized Navier-Stokes and VSL solvers and would be useful in a preliminary design environment. Solutions have been generated for air flows over several analytic body shapes. Surface heat transfer and pressure predictions are comparable to VSL results. Computed heating rates are in good agreement with experimental data. The present technique generates its own shock shape as part of its solution, and therefore could be used to provide more accurate initial shock shapes for higher-order procedures which require starting solutions.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-0498
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: It is pointed out that preliminary design and optimization studies for new aerospace vehicles require techniques which can calculate aerodynamic heating rates accurately and efficiently. The method employed to calculate the flow field depends to a large extent on the shape of the vehicle, Mach number, Reynolds number, and Knudsen number. In the case of the aero-assisted orbital transfer vehicle (AOTV), a substantial portion of the flight will be in the transitional regime between continuum and free molecule flow. The present paper discusses some approximate methods which have been used to calculate heating rates on high-speed vehicles. Attention is given to the stagnation point and leading edges, the downstream region, the axisymmetric analog, laminar and turbulent heating rates, transition heating rates, gas models, and three-dimensional applications.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 85-0906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The scientific objective of the Mars Surveyor Program 2005 mission is to return Mars rock, soil, and atmospheric samples to Earth for detailed analysis. The present investigation focuses on design of Mars Ascent Vehicle for this mission. Aerodynamic, aerothermodynamic, and trajectory design considerations are addressed to assess the ascent configuration, determine aerodynamic stability, characterize thermal protection system requirements, and ascertain the required system mass. Aerodynamic analysis reveals a subsonic static instability with the baseline configuration; however, stability augmentation options are proposed to mitigate this problem. The ascent aerothermodynamic environment is shown to be benign (on the order of the sea-level boiling point of water on Earth). As a result of these low thermal and pressure loads, a lightweight, low rigidity material can be employed as the aftbody aerodynamic shroud. The required nominal MAV lift-off mass is 426 kg for a December 2006 equatorial launch into a 300-km circular orbit with 30-degree inclination. Off-nominal aerodynamic and atmospheric conditions are shown to increase this liftoff mass by approximately 10%. Through performance of these analyses, the Mars Ascent Vehicle is deemed feasible with respect to the current mission mass and size constraints.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 98-2850 , 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; Jun 15, 1998 - Jun 18, 1998; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.
    Keywords: Aerodynamics
    Type: NF1676L-16189 , 22nd AIAA Aerodynamic Decelerator Systems Technology Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-11508 , 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar; May 23, 2011 - May 26, 2011; Dublin; Ireland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15-meter HIAD. In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current manufacturing and testing that addressing these challenges.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN30768 , International Planetary Probe Workshop (IPPW 2016); Jun 13, 2016 - Jun 17, 2016; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has been selected for a Technology Demonstration Mission under the Science and Technology Mission Directorate. HIADs are an enabling technology that can facilitate atmospheric entry of heavy payloads to planets such as Earth and Mars using a deployable aeroshell. The deployable nature of the HIAD technology allows it to overcome the size constraints imposed on current rigid aeroshell entry systems. This permits use of larger aeroshells resulting in increased entry system performance (e.g. higher payload mass and/or volume, higher landing altitude at Mars). The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) is currently scheduled for mid-2021. LOFTID will be launched out of Vandenberg Air Force Base as a secondary payload on an expendable launch vehicle. The flight test will employ a 6m diameter, 70 degree sphere-cone aeroshell and will provide invaluable high-energy orbital re-entry flight data. This data will be essential in supporting the HIAD team to mature the technology to diameters of 10m and greater. Aeroshells of this scale will address near-term commercial applications and potential future NASA missions. LOFTID will incorporate an extensive instrumentation suite totaling over 150 science measurements. This will include thermocouples, heat flux sensors, IR cameras, and a radiometer to characterize the aeroheating environment and aeroshell thermal response. An inertial measurement unit (IMU), GPS, and flush air data system will be included in order to reconstruct the flown trajectory and aerodynamic characteristics. Loadcells will be used to measure the HIAD structural loading, and HD cameras will be mounted on the aft segment looking at the aeroshell to monitor structural response. In addition to the primary instrumentation suite, a new fiber optic sensing system will be used to measure nose temperatures as a technology demonstration. The LOFTID instrumentation suites leverages Agency-wide expertise, with hardware development occurring at Ames Research Center, Langley Research Center, Marshall Space Flight Center and Armstrong Flight Research Center. This presentation will discuss the measurement objectives for the LOFTID mission, and the extensive instrumentation suite that has been selected to capture the HIAD's performance during the high-energy orbital re-entry flight test.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN53510 , International Planetary Probe Workshop; Jun 11, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...