ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-20
    Description: The discovery of thousands of exoplanets is generating increasing interest in the direct imaging and characterization of these planets. Starshade, and eternal occulter, could fly in formation between a telescope and distant star, blocking out the light from the star, and enabling us to focus on the light of any orbiting planets. Recent technology developments in coordination with system design, has added much needed detail to define the technology requirements for a science mission that could launch in the 2020's. This paper address the mechanical architecture, the successful efforts to date, the current state of design for the mechanical system, and upcoming technology efforts.
    Keywords: Instrumentation and Photography
    Type: JPL-CL-16-3122 , SPIE Astronomical Telescopes + Instrumentation 2016; Jun 26, 2016 - Jul 01, 2016; Edinburgh, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: CubeSats have experienced a number of exciting technological advancements in the past several years. However, until recently, there has been very limited development in the area of high gain CubeSat antennas, which are critical for both high data rate communications and radar science. A Ka-band high gain antenna would provide a 10,000 times increase in data communication rates over an X-band patch antenna and a 100 times increase over state-of-the-art S-band parabolic antennas. Because of this, three years ago the Jet Propulsion Laboratory (JPL) initiated a research and technology development effort to advance CubeSat communication capabilities, with one of the key thrusts being the Ka-band parabolic deployable antenna (KaPDA). This antenna started with the ambitious goal of fitting a 42 dB, 0.5 meter, 35 Ghz antenna in a 1.5U canister. This paper discusses the process of taking the antenna from a first prototype to the flight design, how the design successfully met its goals, and lessons learned. A prototype antenna was constructed in early 2015, and then upgraded to an engineering model at the end of 2016. KaPDA will be flying on the RainCube mission, and earth science CubeSat. KaPDA is the second deployable parabolic antenna to fly on a CubeSat, and the first of its kind to operate at Ka-band enabling a number of opportunities for high rate deep space antenna communications and radar science.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-5663 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation is sketched in Figure 2(b) (the figure also shows the tapping tool and where to tap). At this point the fasteners for the PCB are torqued slightly so the PCB can still move. The PCB location is adjusted again with the tapping tool. This process is repeated 3 to 4 times until the final torque is achieved. The oversized mounting holes are then filled with a liquid bonding agent to secure the board in position (not shown in the sketch). A 10- to 30-micron mounting accuracy has been achieved utilizing this method..
    Keywords: Man/System Technology and Life Support
    Type: NPO-47846 , NASA Tech Briefs, July 2012; 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: "Exo-C" is NASA's first community study of a modest aperture space telescope designed for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discover previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. At the study conclusion in 2015, NASA will evaluate it for potential development at the end of this decade. Keywords: Exoplanets, high contrast imaging, optical astronomy, space mission concepts
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN16540
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: CubeSats have experienced a number of exciting technological advancements in the past several years. However, until recently, there has been very limited development in the area of high gain CubeSat antennas, which are critical for both high data rate communications and radar science. A Ka-band high gain antenna would provide a 10,000 times increase in data communication rates over an X-band patch antenna and a 100 times increase over state-of-the-art S-band parabolic antennas. Because of this, three years ago the Jet Propulsion Laboratory (JPL) initiated a research and technology development effort to advance CubeSat communication capabilities, with one of the key thrusts being the Ka-band parabolic deployable antenna (KaPDA). This antenna started with the ambitious goal of fitting a 42 dB, 0.5 meter, 35 Ghz antenna in a 1.5U (10 cm x 10 cm x 17 cm) canister. This paper discusses the process of taking the antenna from a first prototype to the flight design, which is flying on the RainCube mission, and earth science CubeSat. The prototype antenna was constructed in early 2015, and then upgraded to an engineering model at the end of 2016 to compensate for lessons learned. The flight version is currently under construction, and scheduled to be finished in 2016. KaPDA is the second deployable parabolic antenna to fly on a CubeSat, and the first of its kind to operate at Ka-band enabling a number of opportunities for high rate deep space antenna communications and radar science.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-2297 , AIAA SciTech 2017 & Aerospace Sciences Meeting; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...