ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-07-20
    Beschreibung: Time histories of pressure fluctuations on a generic, hammerhead space vehicle model were measured using unsteady Pressure-Sensitive Paint (uPSP). The test was conducted in the 11-foot transonic wind tunnel of NASA Ames Research Center over a Mach number range of 0.6 M 1.2, and angles of attack of -4 4. The model was coated with a porous binder and PtTFPP-based porous polymer paint. An elaborate system of four high-speed cameras, and forty LED lamps was used for image acquisition. Various steps for image registration, reduction of shot noise, photogrammetry procedure to map images from the four cameras on a grid for the model, and finally a calibration procedure to convert the measured fluctuations in light intensity to fluctuating pressure, are discussed in the paper. The calibration process using a set of unsteady pressure sensors mounted on the model, was found to overcome some of the inherent problems of the fast response paint, such as rapid photo-degradation, non-linearity in pressure response, and significant temperature sensitivity. Comparison of spectra of pressure fluctuations between UPSP and pressure sensors demonstrated the ability of the paint to faithfully follow fluctuations up to 10 kHz, the maximum attempted. It was also found that the camera bit-depth and the illumination level limited the lowest measurable levels of pressure fluctuations to around 140dB. The large data set exposed various critical transonic flow physics not seen before, such as a coupling of the shock motion on the Payload Fairing (PF) with the separated flow region on the upper stage of the launch vehicle, and upstream convection of pressure fluctuation on PF at certain Mach numbers. The data also confirmed the expectation of a general lowering of the coefficient of pressure fluctuation with Mach number. The availability of the data set on a dense, regularly-spaced, surface grid allowed for the calculation of wavenumber-frequency (k-) spectra via straightforward applications of Fourier transform. The k- spectra were compared for the separated flow regions on the Second Stage, and the shock-boundary layer interactions on PF. The former showed self-similarity with Mach number while the latter was distinctly different, and confirmed the upstream propagation of pressure fluctuations. The k- spectra were dominated by the convected fluctuations; the acoustic domain was not discernable. These data, valuable for the vibro-acoustics analysis of aerospace vehicles, are believed to be the first obtained for the transonic flight regime, and pave the path for application on production models of aerospace vehicles.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN37737 , AIAA SciTech Forum 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...