ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (13,134)
  • Aerospace Medicine
  • Astrophysics
  • Fluid Mechanics and Thermodynamics
  • 1
    Publication Date: 2019-08-01
    Description: The InSight spacecraft was proposed to be a build-to-print copy of the Phoenix vehicle due to the knowledge that the lander payload would be similar and the trajectory would be similar. However, the InSight aerothermal analysts, based on tests performed in CO2 during the Mars Science Laboratory mission (MSL) and completion of Russian databases, considered radiative heat flux to the aftbody from the wake for the first time for a US Mars mission. The combined convective and radiative heat flux was used to determine if the as-flown Phoenix thermal protection system (TPS) design would be sufficient for InSight. All analyses showed that the design would be adequate. Once the InSight lander was successfully delivered to Mars on November 26, 2018, work began to reconstruct the atmosphere and trajectory in order to evaluate the aerothermal environments that were actually encountered by the spacecraft and to compare them to the design environments.The best estimated trajectory (BET) reconstructed for the InSight atmospheric entry fell between the two trajectories considered for the design, when looking at the velocity versus altitude values. The maximum heat rate design trajectory (MHR) flew at a higher velocity and the maximum heat load design trajectory (MHL) flew at a lower velocity than the BET. For TPS sizing, the MHL trajectory drove the design. Reconstruction has shown that the BET flew for a shorter time than either of the design environments, hence total heat load on the vehicle should have been less than used in design. Utilizing the BET, both DPLR and LAURA were first run to analyze the convective heating on the vehicle with no angle of attack. Both codes were run with axisymmetric, laminar flow in radiative equilibrium and vibrational non-equilibrium with a surface emissivity of 0.8. Eight species Mitcheltree chemistry was assumed with CO2, CO, N2, O2, NO, C, N, and O. Both codes agreed within 1% on the forebody and had the expected differences on the aftbody. The NEQAIR and HARA codes were used to analyze the radiative heating on the vehicle using full spherical ray-tracing. The codes agreed within 5% on most aftbody points of interest.The LAURA code was then used to evaluate the conditions at angle of attack at the peak heating and peak pressure times. Boundary layer properties were investigated to confirm that the flow over the forebody was laminar for the flight.Comparisons of the aerothermal heating determined for the reconstructed trajectory to the design trajectories showed that the as-flown conditions were less severe than design
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN69598 , AIAA SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-22
    Description: TESS launched 18 April 2018 to conduct a two-year, near all-sky survey for at least 50 small, nearby exoplanets for which masses can be ascertained and whose atmospheres can be characterized by ground- and space-based follow-on observations. TESS has completed its survey of the southern hemisphere and begun its survey of the northern hemisphere, identifying 〉1000 candidate exoplanets and unveiling a plethora of exciting non-exoplanet astrophysics results, such as asteroseismology, asteroids, and supernova. The TESS Science Processing Operations Center (SPOC) processes the data downlinked every two weeks to generate a range of data products hosted at the Mikulski Archive for Space Telescopes (MAST). For each sector (~1 month) of observations, the SPOC calibrates the image data for both 30-min Full Frame Images (FFIs) and up to 20,000 pre-selected 2-min target star postage stamps. Data products for the 2-min targets include simple aperture photometry and systematic error-corrected flux time series. The SPOC also conducts searches for transiting exoplanets in the 2-min data for each sector and generates Data Validation time series and associated reports for each transit-like feature identified in the search. Multi-sector searches for exoplanets are conducted periodically to discover longer period planets, including those in the James Webb Continuous Viewing Zone (CVZ), which are observed for up to one year. Starting with Sector 8, scattered light from the Earth and Moon contaminated significant portions of the data in each orbit. We have developed algorithms for automated identification of the scattered light features at the individual target level. Previously, data for all stars on a CCD affected by scattered light were manually excluded. The automated flagging will allow us to retain significantly more data for stars that are not affected by the scattered light even though it is occurring elsewhere on the CCD. We also discuss enhancements to the SPOC pipeline and the newly available FFI light curves. The TESS Mission is funded by NASA's Science Mission Directorate as an Astrophysics Explorer Mission.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN76812 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-21
    Description: Habitable Exoplanet Observatory Mission (HabEx) will image & spectroscopically characterize planetary systems in the habitable zone around nearby sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by a 150 to 1700 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable telescope. The baseline HabEx telescope is a 4-m off-axis unobscured three-mirror-anastigmatic design with diffraction limited performance at 400 nm and wavefront stability of picometers per mK. These specifications are driven by science requirements. STOP (structural thermal optical performance) analysis predicts that the baseline telescopes opto-mechanical design meets its specified performance tolerances.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN75627 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-18
    Description: A new, spectrally-resolved, Rayleigh scattering setup at NASA Ames is further developed to measure fluctuations in velocity and temperature. Using a combination of a continuous-wave laser, a stabilized Fabry-Perot interferometer (FPI), an EMCCD camera, and a photo-multiplier tube, the setup was demonstrated to provide fairly accurate measurements of time-averaged velocity, temperature, density and spectrum of density fluctuations in a high-speed free jet (Panda & White, 2018). This paper describes further progress in fast measurement of the Rayleigh-Brillouin spectrum via a 16-anode linear-array of photo-multiplier tube and a multi-channel, photo-electron counter. Rayleigh scattered light from a 0.4mm long probe volume was directly imaged through the FPI and was imaged on the linear array. Synchronous photo-electron counting over a series of short, contiguous gates provided time-evolution of the fringes at a 10 kHz sampling rate. Sample spectra collected from a Mach 0.98 jet show spectral content floating on high noise-floor. Efforts to collect longer time series of data and different schemes of extracting velocity and temperature information are now in progress.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2020-0300 , ARC-E-DAA-TN76183 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-15
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN76756 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-15
    Description: A study was undertaken to investigate the CO & soot emissions generated by a partially-fueled 9- element LDI (Lean-Direct Injection) combustor configuration operating in the idle range of jet engine conditions. In order to perform the CFD analysis, several existing soot/chemistry models were implemented into the OpenNCC (Open National Combustion Code). The calculations were based on a Reynolds-Averaged Navier Stokes (RANS) simulation with standard k-epsilon turbulence model, a 62- species jet-a/air chemistry, a 2-equation soot model, & a Lagrangian spray solver. A separate transport equation was solved for all individual species involved in jet-a/air combustion. In the test LDI configuration we examined, only five of the nine injectors were fueled with the major pilot injector operating at an equivalence ratio of near one and the other four main injectors operating at an equivalence ratio near 0.55. The calculations helped to identify several reasons behind the soot & CO formation in different regions of the combustor. The predicted results were compared with the reported experimental data on soot mass concentration (SMC) & emissions index of CO (EICO). The experimental results showed that an increase in either T3 and/or F/A ratio lead to a reduction in both EICO & SMC. The predicted results were found to be in reasonable agreement. However, the predicted EICO differed substantially in one test condition associated with higher F/A ratio.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2020-2088 , GRC-E-DAA-TN75696 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-24
    Description: In this work we examine a multigrid preconditioning approach in the context of a high- order tensor-product discontinuous-Galerkin spectral-element solver. We couple multigrid ideas together with memory lean and efficient tensor-product preconditioned matrix-free smoothers. Block ILU(0)-preconditioned GMRES smoothers are employed on the coarsest spaces. The performance is evaluated on nonlinear problems arising from unsteady scale- resolving solutions of the Navier-Stokes equations: separated low-Mach unsteady ow over an airfoil from laminar to turbulent ow. A reduction in the number of ne space iterations is observed, which proves the efficiency of the approach in terms of preconditioning the linear systems, however this gain was not reflected in the CPU time. Finally, the preconditioner is successfully applied to problems characterized by stiff source terms such as the set of RANS equations, where the simple tensor product preconditioner fails. Theoretical justification about the findings is reported and future work is outlined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN76312 , AIAA SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-23
    Description: Favorable indications of massive quantities of water on Mars have initiated studies of potential changes to human Mars missions. Using a technique known as a Rodriguez Well to melt the ice, store the resulting water in a subsurface ice cavity until needed, and then pump water to the surface for use is one potential means to effect these changes. A computer simulation of the Rodriguez Well in a terrestrial environment is one of the engineering tools being used to characterize the performance of this type of well on Mars. An experiment at the NASA Johnson Space Center is gathering data for convective heat transfer and evaporation rates at Mars surface conditions so that this computer simulation can be properly modified to predict performance on Mars. While quantitative results await processing, tests have indicated that a pool of water can be maintained at 1C to 2 C while at Mars surface temperatures and pressures.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN74283 , International Conference on Mars Polar Science and Exploration; Jan 13, 2020 - Jan 17, 2020; Tierr del Fuego; Argentina
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-18
    Description: Heatshield design for spacecraft entering the atmosphere of Mars may be affected by the presence of atmospheric dust. Particle impacts with sufficient kinetic energy can cause spallation damage to the heatshield that must be estimated. The dust environment in terms of particle size distribution and number density can be inferred from ground-based or atmospheric observations at Mars. Using a Lagrangian approach, the particle trajectories through the shock layer can be computed using a set of coupled ordinary differential equations. The dust particles are small enough that non-continuum effects must be accounted for when computing the drag coefficient and heat transfer to the particle surface. Surface damage correlations for impact crater diameter and penetration depth are presented for fused-silica, AVCOAT, Shuttle tiles, cork, and Norcoat Lige. The cork and Norcoat Lige correlations are new and were developed in this study. The modeling equations presented in this paper are applied to compute the heatshield erosion due to dust particle impacts on the ExoMars Schiaparelli entry capsule during dust storm conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN76672 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-17
    Description: Heatshield design for spacecraft entering the atmosphere of Mars may be affected by the presence of atmospheric dust. Particle impacts with sufficient kinetic energy can cause spallation damage to the heatshield that must be estimated. The dust environment in terms of particle size distribution and number density can be inferred from ground-based or atmospheric observations at Mars. Using a Lagrangian approach, the particle trajectories through the shock layer can be computed using a set of coupled ordinary differential equations. The dust particles are small enough that non-continuum effects must be accounted for when computing the drag coefficient and heat transfer to the particle surface. Surface damage correlations for impact crater diameter and penetration depth are presented for fused-silica, AVCOAT, Shuttle tiles, cork, and Norcoat Lige. The cork and Norcoat Lige correlations are new and were developed in this study. The modeling equations presented in this paper are applied to compute the heatshield erosion due to dust particle impacts on the ExoMars Schiaparelli entry capsule during dust storm conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2020-0254 , ARC-E-DAA-TN75805 , AIAA Scitech 2020 Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-01-17
    Description: The Mars Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft, which successfully touched down on the planet surface on November 26, 2018, was proposed as a near build-to-print copy of the Mars Phoenix vehicle to reduce the overall cost and risk of the mission. Since the lander payload and the atmospheric entry trajectory were similar enough to those of the Phoenix mission, it was expected that the Phoenix thermal protection material thickness would be sufficient to withstand the entry heat load. However, allowances were made for increasing the heatshield thickness because the planned spacecraft arrival date coincided with the Mars dust storm season. The aftbody Thermal Protection System (TPS) components were not expected to change. In a first for a US Mars mission, the aerothermal environments for InSight included estimates of radiative heat flux to the aftbody from the wake. The combined convective and radiative heat fluxes were used to determine if the as-flown Phoenix thermal protection system (TPS) design would be sufficient for InSight. Although the radiative heat fluxes on the aftbody were predicted to be comparable to, or even higher than the local convective heat fluxes, all analyses of the aftbody TPS showed that the design would still be adequate. Aerothermal environments were computed for the vehicle from post-flight reconstruction of the atmosphere and trajectory and compared.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN76667 , AIAA SciTech 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-01-16
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN76707 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-05-08
    Description: An historical look at exploration medicine, upcoming missions and medical challenges, risk and spaceflight events, getting the medicine into the engineering system
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN67135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: Using an updated collision model, we conduct a suite of high-resolution N-body integrations to probe the relationship between giant planet mass and terrestrial planet formation and system architecture. We vary the mass of the planets that reside at Jupiter's and Saturn's orbit and examine the effects on the interior terrestrial system.We find that massive giant planets are more likely to eject material from the outer edge of the terrestrial disc and produce terrestrial planets that are on smaller, more circular orbits. We do not find a strong correlation between exterior giant planet mass and the number of Earth analogues (analogous in mass and semi-major axis) produced in the system. These results allow us to make predictions on the nature of terrestrial planets orbiting distant Sun-like star systems that harbour giant planet companions on long orbits - systems that will be a priority for NASA's upcoming Wide-Field Infrared Survey Telescope (WFIRST) mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN69989 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-8711); 485; 1; 541–549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: Prolonged microgravity exposure disrupts natural bone remodeling processes and can lead to a significant loss of bone strength, increasing injury risk during missions and placing astronauts at a greater risk of bone fracture later in life. Resistance-based exercise during missions is used to combat bone loss, but current exercise countermeasures do not completely mitigate the effects of microgravity. To address this concern, we present work to develop a personalizable, site-specific computational modeling toolchain of bone remodeling dynamics to understand and estimate changes in volumetric bone mineral density (BMD) in response to microgravity-induced bone unloading and in-flight exercise. The toolchain is evaluated against data collected from subjects in a 70-day bedrest study and is found to provide insight into the amount of exercise stimulus needed to minimize bone loss, quantitatively predicting post-study volumetric BMD of control subjects who did not perform exercise, and qualitatively predicting the effects of exercise. Results suggest that, with additional data, the toolchain could be improved to aid in developing customized in-flight exercise regimens and predict exercise effectiveness.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN68133 , E-19552-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-05-21
    Description: Recent advances in laboratory spectroscopy lead to the claim of ionized Buckminsterfullerene (C60(+)) as the carrier of two diffuse interstellar bands (DIBs) in the near-infrared. However, irrefutable identication of interstellar C60(+) requires a match between the wavelengths and the expected strengths of all absorption features detectable in the laboratory and in space. Here we present Hubble Space Telescope (HST) spectra of the region covering the C60(+) 9348, 9365, 9428, and 9577 absorption bands toward seven heavily reddened stars. We focus in particular on searching for the weaker laboratory C60(+) bands, the very presence of which has been a matter for recent debate. Using the novel STIS-scanning technique to obtain ultra-high signal-to-noise spectra without contamination from telluric absorption that aficted previous ground-based observations, we obtained reliable detections of the (weak) 9365, 9428 and (strong) 9577 C60(+) bands. The band wavelengths and strength ratios are sufciently similar to those determined in the latest laboratory experiments that we consider this the rst robust identication of the 9428 band, and a conclusive conrmation of interstellar C60(+).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68405 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 875; 2; L28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-05-24
    Description: This article discusses the use of numerical optimization procedures to aid in the calibration of turbulence model coefficients. Such methods would increase the rigor and repeatability of the calibration procedure by requiring clearly defined and objective optimization metrics, and could be used to identify unique combinations of coefficient values for specific flow problems. The approach is applied to the re-calibration of an explicit algebraic Reynolds stress model for the incompressible planar mixing layer using the Nelder-Mead simplex algorithm and a micro-genetic algorithm with minimally imposed constraints. Three composite fitness functions, each based upon the error in the mixing layer growth rate and the normal and shear components of the Reynolds stresses, are investigated. The results demonstrate a significant improvement in the target objectives through the adjustment of three pressure-strain coefficients. Adjustments of additional coefficients provide little further benefit. Issues regarding the effectiveness of the fitness functions and the efficiency of the optimization algorithms are also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220163 , E-19680 , GRC-E-DAA-TN65018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-05-24
    Description: This manual describes the installation and execution of FUN3D (Fully-UNstructured three-dimensional CFD (Computational Fluid Dynamics) code) version 13.5, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220271 , L-21013 , NF1676L-32825
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-05-22
    Description: We present recent high time resolution observations from an oblique (43 deg) shock crossing from the Magnetospheric Multiscale mission. Short-duration bursts between 10 and 100 ms of ion acoustic waves are observed in this event alongside a persistent reflected ion population. High time resolution (150 ms) particle measurements show strongly varying ion distributions between successive measurements, implying that they are bursty and impulsive by nature. Such signatures are consistent with ion bursts that are impulsively reflected at various points within the shock. We find that, after instability analysis using a Fried-Conte dispersion solver, the insertion of dispersive ion bursts into an already stable ion distribution can lead to wave growth in the ion acoustic mode for short durations of time. We find that impulsively reflected ions are a plausible mechanism for ion acoustic wave growth in the terrestrial bow shock and, furthermore, suggest that wave growth can lead to a small but measurable momentum exchange between the solar wind ions and the reflected population.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68433 , Journal of Geophysical Research: Space Physics (e-ISSN 2169-9402); 124; 3; 1855-1865
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-29
    Description: We explore the relation between the star formation rate (SFR) surface density (integration of SFR) and the interstellar gas pressure for nearby compact starburst galaxies. The sample consists of 17 green peas and 19 Lyman break analogs (LBAs). Green peas are nearby analogs of Ly alpha emitters at high redshift and LBAs are nearby analogs of Lyman break galaxies at high redshift. We measure the sizes of green peas using Hubble Space Telescope Cosmic Origins Spectrograph near-UV images with a spatial resolution of approximately 0.05 arcsec. We estimate the gas thermal pressure in H II regions by P equals N (sub total)Tk (sub B) approximately or equal to 2n (sub e)Tk (sub B). The electron density is derived using the [S II] doublet at 6716,6731 Angstroms and the temperature is calculated from the [O III] lines. The correlation is characterized by the integration of SFR equals 2.40 times 10 (sup -3) times solar mass per year per square kiloparsec times ((P divided by k (sub B)) divided by (10 ( sup 4) per cubic centimeter times K)) times (sup 1.33). Green peas and LBAs have high integration of SFR up to 1.2 solar masses per year per square kiloparsec and high thermal pressure in the H II region up to P divided by k (sub B) approximating 10 (sup 7.2) K cubic centimeters. These values are at the highest end of the range seen in nearby starburst galaxies. The high gas pressure and the correlation are in agreement with those found instar-forming galaxies at redshift approximating 2.5. These extreme pressures are shown to be responsible for driving galactic winds in nearby starbursts. These outflows may be crucial in enabling Ly alpha and Lyman-continuum to escape.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN67881 , Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 872; 2; 146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-28
    Description: We present Keplerian orbit solutions for the mutual orbits of 17 transneptunian binary systems (TNBs). For ten of them, the orbit had not previously been known: 60458 2000 CM (sub 114), 119979 2002 WC (sub 19), 160091 2000 OL (sub 67), 160256 2002 PD (sub 149), 469514 2003 QA (sub 91), 469705 Kagara, 508788 2000 CQ (sub 114), 508869 2002 VT (sub 130), 1999 RT (sub 214), and 2002 XH (sub 91). Seven more are systems where the size, shape, and period of the orbit had been published, but new observations have now eliminated the sky plane mirror ambiguity in its orientation: 90482 Orcus, 120347 Salacia-Actaea, 1998 WW (sub 31), 1999 OJ (sub 4), 2000 QL (sub 251), 2001 XR (sub 254), and 2003 TJ (sub 58). The dynamical masses we obtain from TNB mutual orbits can be combined with estimates of the objects' sizes from thermal observations or stellar occultations to estimate their bulk densities. The Kagara system is currently undergoing mutual events in which one component casts its shadow upon the other and/or obstructs the view of the other. Such events provide valuable opportunities for further characterization of the system. Combining our new orbits with previously published orbits yields a sample of 35 binary orbits with known orientations that can provide important clues about the environment in which outer solar system planetesimals formed, as well as their subsequent evolutionary history. Among the relatively tight binaries, with semimajor axes less than about 5 percent of their Hill radii, prograde mutual orbits vastly outnumber retrograde orbits. This imbalance is not attributable to any known observational bias. We suggest that this distribution could be the signature of planetesimal formation through gravitational collapse of local density enhancements such as caused by the streaming instability. Wider binaries, with semimajor axes greater than 5 percent of their Hill radii, are somewhat more evenly distributed between prograde and retrograde orbits, but with mutual orbits that are aligned or anti-aligned with their heliocentric orbits. This pattern could perhaps result from Kozai-Lidov cycles coupled with tidal evolution eliminating high inclination wide binaries.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68830 , Icarus (ISSN 0019-1035) (e-ISSN 1090-2643)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-02
    Description: We derive direct-measurement gas-phase metallicities of 7.4 〈 12 + log(O/H) 〈 8.4 for 14 low-mass emission- line galaxies at 0.3 〈 z 〈 0.8 identied in the Faint Infrared Grism Survey. We use deep slitless G102 grism spectroscopy of the Hubble Ultra Deep Field, dispersing light from all objects in the eld at wavelengths between 0.85 and 1.15 m. We run an automatic search routine on these spectra to robustly identify 71 emission-line sources, using archival data from Very Large Telescope (VLT)/Multi-Unit Spectroscopic Explorer (MUSE) to measure additional lines and conrm redshifts. We identify 14 objects with 0.3 〈 z 〈 0.8 with measurable [O III] 4363 emission lines in matching VLT/MUSE spectra. For these galaxies, we derive direct electron-temperature gas-phase metallicities with a range of 7.4 〈 12 + log(O/H) 〈 8.4. With matching stellar masses in the range of 10(exp 7.9) Solar Mass 〈 M(sub *) 〈 10(exp 10.4) Solar Mass, we construct a massmetallicity (MZ) relation and nd that the relation is offset to lower metallicities compared to metallicities derived from alternative methods (e.g., R(sub 23), O3N2, N2O2) and continuum selected samples. Using star formation rates derived from the H emission line, we calculate our galaxies position on the Fundamental Metallicity Relation, where we also nd an offset toward lower metallicities. This demonstrates that this emission-line-selected sample probes objects of low stellar masses but even lower metallicities than many comparable surveys. We detect a trend suggesting galaxies with higher Specic Star Formation (SSFR) are more likely to have lower metallicity. This could be due to cold accretion of metal-poor gas that drives star formation, or could be because outows of metal-rich stellar winds and SNe ejecta are more common in galaxies with higher SSFR.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68614 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 874; 2; 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-02
    Description: The gas metallicity of galaxies is often estimated using strong emission lines such as the optical lines of [O iii] and [O ii]. The most common measure is "R23," defined as ([O ii]3726, 3729 + [O iii]4959,5007)/H. Most calibrations for these strong-line metallicity indicators are for continuum selected galaxies. We report a new empirical calibration of R23 for extreme emission-line galaxies using a large sample of about 800 star-forming green pea galaxies with reliable Te -based gas-phase metallicity measurements. This sample is assembled from Sloan Digital Sky Survey (SDSS) Data Release 13 with the equivalent width of the line [O iii]5007 〉 300 or the equivalent width of the line H 〉 100 in the redshift range 0.011 〈 z 〈 0.411. For galaxies with strong emission lines and large ionization parameter (which manifests as log [O iii]4959,5007/[O ii]3726,3729 0.6), R23 monotonically increases with log(O/H) and the double-value degeneracy is broken. Our calibration provides metallicity estimates that are accurate to within ~0.14 dex in this regime. Many previous R23 calibrations are found to have bias and large scatter for extreme emission-line galaxies. We give formulae and plots to directly convert R23 and [O iii]4959,5007/[O ii]3726,3729 to log(O/H). Since green peas are best nearby analogs of high-redshift Ly emitting galaxies, the new calibration offers a good way to estimate the metallicities of both extreme emission-line galaxies and high-redshift Ly emitting galaxies. We also report on 15 galaxies with metallicities less than 1/12 solar, with the lowest metallicities being 12+log(O/H) = 7.25 and 7.26.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN67882 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 872; 2; 145
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-05-11
    Description: A computational fluid dynamics code has been developed for large-eddy simulations (LES) of turbulent flow. The code uses high-order of accuracy and high-resolution numerical methods to minimize solution error and maximize the resolution of the turbulent structures. Spatial discretization is performed using explicit central differencing. The central differencing schemes in the code include 2nd- to 12th-order standard central difference methods as well as 7-, 9-, 11- and 13-point dispersion relation preserving schemes. Solution filtering and high-order shock capturing are included for stability. Time discretization is performed using multistage Runge-Kutta methods that are up to 4th order accurate. Several options are available to model turbulence including: Baldwin-Lomax and Spalart-Allmaras Reynolds-averaged Navier-Stokes turbulence models, and Smagorinsky, Dynamic Smagorinsky and Vreman sub-grid scale models for LES. This report presents the theory behind the numerical and physical models used in the code and provides a user's manual to the operation of the code.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220192 , GRC-E-DAA-TN67540
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-05-18
    Description: We describe an approach to build an x-ray mirror assembly that can meet Lynxs requirements of high-angular resolution, large effective area, light weight, short production schedule, and low-production cost. Adopting a modular hierarchy, the assembly is composed of 37,492 mirror segments, each of which measures 100 mm 100 mm 0.5 mm. These segments are integrated into 611 modules, which are individually tested and qualified to meet both science performance and spaceflight environment requirements before they in turn are integrated into 12 metashells. The 12 metashells are then integrated to form the mirror assembly. This approach combines the latest precision polishing technology and the monocrystalline silicon material to fabricate the thin and lightweight mirror segments. Because of the use of commercially available equipment and material and because of its highly modular and hierarchical building-up process, this approach is highly amenable to automation and mass production to maximize production throughput and to minimize production schedule and cost. As of fall 2018, the basic elements of this approach, including substrate fabrication, coating, alignment, and bonding, have been validated by the successful building and testing of single-pair mirror modules. In the next few years, the many steps of the approach will be refined and perfected by repeatedly building and testing mirror modules containing progressively more mirror segments to fully meet science performance, spaceflight environments, as well as programmatic requirements of the Lynx mission and other proposed missions, such as AXIS.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68353 , Journal of Astronomical Telescopes, Instruments, and Systems; 5; 2; 021012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-31
    Description: Alpha Centauri AB system contains the closest Sun-like stars to the Sun, by a large margin (factor of 2.4). Thus, they are important targets for the search of Earth-like planets. A critical question is whether such planets can exist in the system, and what their expected occurrence rate is. This paper surveys the current knowledge of occurrence rates, limits from nondetections, constraints from observations, and dynamical stability simulations, in order to answer this question.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN69636 , AbSciCon 2019; Jun 24, 2019 - Jun 28, 2019; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-26
    Description: This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 9 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN69031
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-26
    Description: This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 10 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics.
    Keywords: Astrophysics
    Type: NASA/TM-2019-220220 , ARC-E-DAA-TN69634
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-20
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSFC-E-DAA-TN69842-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-20
    Description: The Predictive Thermal Control (PTC) technology development project is a multiyear effort initiated in Fiscal Year (FY) 2017, to mature the Technology Readiness Level (TRL) of critical technologies required to enable ultra-thermally-stable telescopes for exoplanet science. A key PTC partner is Harris Corporation (Rochester NY).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSFC-E-DAA-TN69842-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-20
    Description: Enabled by the Fermi Large Area Telescope, we now know young and recycled pulsars fill the gamma-ray sky, and we are beginning to understand their emission mechanism and their distribution throughout the Galaxy. However, key questions remain: Is there a large population of pulsars near the Galactic center? Why do the most energetic pulsars shine so brightly in MeV gamma rays but not always at GeV energies? What is the source and nature of the pair plasma in pulsar magnetospheres, and what role does the polar cap accelerator play? Addressing these questions calls for a sensitive, wide-field MeV telescope, which can detect the population of MeV-peaked pulsars hinted at by Fermi and hard X-ray telescopes and characterize their spectral shape and polarization.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN69835
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-03
    Description: The processes leading to the formation of planets; the extreme physics occurring near the event horizon of black holes; detailed studies of exoplanets through spectral-spatial mapping: new and unique insights into the physical processes involved across nearly the whole gamut of astrophysics await discovery at small angular scales. The fine spatial resolution needed to explore these processes, however, lies beyond the capabilities of current astronomical facilities and nearly all proposed future facilities. Interferometers can crack this angular resolution problem, and space-based interferometry missions promise to explore entirely new regions of scientific phase space, providing unique new insights into the physical processes lurking at small angular scales.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70915
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-03
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN68066 , Aerospace Medicine Association Annual Scientific Meeting; May 05, 2019 - May 09, 2019; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-01
    Description: Experiments are being conducted in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to quantify the effects on turbulent convective heat transfer of surface roughness representative of a new class of 3D woven thermal protection system mRough-wall turbulent heat transfer measurements were obtained on ballistic-range models in hypersonic flight in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility. Each model had three different surface textures on segments of the conic frustum: smooth wall, sand roughness, and a pattern roughness, thus providing smooth-wall and sand-roughness reference data for each test. The pattern roughness was representative of a woven thermal protection system material developed by NASA's Heatshield for Extreme Entry Environment Technology project. The tests were conducted at launch speeds of 3.2 km/s in air at 0.15 atm. Roughness Reynolds numbers, k+, ranged for 12 to 70 for the sand roughness, and as high as 200 for the pattern roughness. Boundary-layer parameters required for calculating k+ were evaluated using computational fluid dynamics simulations. The effects of pattern roughness are generally characterized by an equivalent sand roughness determined with a correlation developed from experimental data obtained on specifically-designed roughness patterns that do not necessarily resemble real TPS materials. Two sand roughness correlations were examined: Dirling and van Rij, et al. Both gave good agreement with the measured heat-flux augmentation for the two larger pattern roughness heights tested, but not for the smallest height tested. It has yet to be determined whether this difference is due to limitations in the experimental approach, or due to limits in the correlations used. Future experiments are planned that will include roughness patterns more like those used in developing the equivalent sand roughness correlations.aterials being developed by NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Data were simultaneously obtained on sand-grain roughened surfaces and smooth surfaces, which can be compared with previously obtained data. Results are presented in this extended abstract for one roughness pattern. The full paper will include results from three roughness patterns representing virgin HEEET, nominal turbulent ablated HEEET, and twice the roughness of nominal turbulent ablated HEEET. Results will be used to compare with commonly used equivalent sand grain roughness correlations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN69052 , AIAA Aviation Forum 2019; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN64281 , Meeting of the American Astronomical Society; Jan 06, 2019 - Jan 10, 2019; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN64478 , American Astornomical Society (AAS) Meeting; Jan 06, 2019 - Jan 10, 2019; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-20
    Description: We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) has three key science drivers: (1) measuring the spin distribution of accreting black holes, (2) understanding the equation of state of dense matter, and (3) exploring the properties of the precursors and electromagnetic counterparts of gravitational wave sources. To perform these science investigations, STROBE-X comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. The STROBE-X mission concept is a rapidly repointable observatory in low-Earth orbit, similar to RXTE or Swift, and will be presented to the 2020 Astrophysics Decadal Survey for consideration as a probe-class mission.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN64215 , Meeting of the American Astronomical Society (AAS); Jan 06, 2019 - Jan 10, 2019; Seattle,WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Energetic particles in our own galaxy, galactic cosmic rays (GCRs), engage in a complex interplay with the interstellar medium and magnetic fields in the galaxy, giving rise to many of its key characteristics. For instance, GCRs act in concert with galactic magnetic fields to support its disk against its own weight. GCR ionization and heating are essential ingredients in promoting and regulating the formation of stars and protostellar disks. GCR ionization also drives astrochemistry, leading to the build up of complex molecules in the interstellar medium. GCR transport throughout the galaxy generates and maintains turbulence in the interstellar medium, alters its multi-phase structure, and amplifies magnetic fields. GCRs could even launch galactic winds that enrich the circumgalactic medium and alter the structure and evolution of galactic disks. As crucial as they are for many of the varied phenomena in our galaxy, there is still much we do not understand about GCRs. While they have been linked to supernova remnants (SNRs), it remains unclear whether these objects can fully account for their entire population, particularly at the lower (approximately less than 1 GeV per nucleon) and higher (~PeV) ends of the spectrum. In fact, it is entirely possible that the SNRs that have been found to accelerate CRs merely re-accelerate them, leaving the origins of the original GCRs a mystery. The conditions for particle acceleration that make SNRs compelling source candidates are also likely to be present in sources such as protostellar jets, superbubbles, and colliding wind binaries (CWBs), but we have yet to ascertain their roles in producing GCRs. For that matter, key details of diffusive shock acceleration (DSA) have yet to be revealed, and it remains to be seen whether DSA can adequately explain particle acceleration in the cosmos. This White Paper is the first of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. For the case of GCRs, MeV astronomy will: 1) Search for fresh acceleration of GCRs in SNRs; 2) Test the DSA process, particularly in SNRs and CWBs; 3) Search for signs of CR acceleration in protostellar jets and superbubbles.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66970
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-20
    Description: The Kepler Mission launched in June 2009 to commence NASA's first mission to search for potentially habitable, Earth-size planets orbiting Sun-like stars. Kepler discovered explanets via the transit method: searching for minute (100 ppm) drops in brightness lasting 1 - 13 hours corresponding to occasions where the planet crosses the face of its host star from Kepler's point of view. The exquisite precision required to carry out the Kepler mission (20 ppm in 6.5 hours) pushed astronomical time series analysis to the limits, and motivated the development of novel algorithmic approaches. Transit signatures of rocky planets are often dwarfed by the intrinsic stellar variability, which is not white noise, and often is non-stationary, and by instrumental systematic effects, which can include transients and electronic artifacts. Surmounting this challenging regime of weak, temporally compact, periodic signals in observation noise with strong systematics and other sources of variability motivated the development of 1) an overcomplete, non-decimated, wavelet-based matched filter to jointly estimate the properties of the non-stationary, non-white observation noise process, and 2) a multi-scale, maximum a posteriori (msMAP) approach to identifying and removing instrumental systematic effects. After over nine years of observations, the Kepler spacecraft finally ran out of fuel in November 2018, ending its data collection activities. Over 2300 planets were discovered by Kepler in its primary mission, and over 355 have been discovered by K2, the repurposed mission that followed Kepler's primary mission after the loss of a second reaction wheel in May 2013. We have ported the Kepler science pipeline for the Transiting Exoplanet Survey Satellite (TESS) Mission, which began science observations in July 2019, and report initial results and performance of the modified science pipeline.The Kepler and TESS Missions are supported by NASA's Science Mission Directorate.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN63583 , Astronomical Time Series 2019 (NCTS 37182-19); Jan 21, 2019 - Jan 24, 2019; Heidelberg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-20
    Description: Studying the physical processes occurring in the region just above the magnetic polesof strongly magnetized, accreting binary neutron stars is essential to our understanding of stellarand binary system evolution. Perhaps more importantly, it provides us with a natural laboratoryfor studying the physics of high temperature and density plasmas exposed to extreme radiation,gravitational, and magnetic fields. Observations over the past decade have shed new light on themanner in which plasma falling at near the speed of light onto a neutron star surface is halted. Recentadvances in modeling these processes have resulted in direct measurement of the magnetic fieldsand plasma properties. On the other hand, numerous physical processes have been identified thatchallenge our current picture of how the accretion process onto neutron stars works. Observationand theory are our essential tools in this regime because the extreme conditions cannot be duplicatedon Earth. This white paper gives an overview of the current theory, the outstanding theoreticaland observational challenges, and the importance of addressing them in contemporary astrophysicsresearch.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66958
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-20
    Description: One of the most notable developments since the 2010 Decadal Survey is the addition of gravitationalwaves (GW) to the astronomers' suite of tools for understanding the Universe. LIGO's2015 detection of gravitational waves (Abbott et al. 2016) from the merger of a pair of black holesroughly 30 times the mass of our Sun garnered tremendous excitement from both the public andthe scientific community and raised interesting questions as to the origin of such systems. To datea total of 11 confirmed detections have been announced, including the first GW signals from themerger of neutron stars in 2017 seen by LIGO and Virgo (Abbott et al. 2017). That event wasassociated with a gamma ray burst; the subsequent kilonovae and afterglow was perhaps the mostthoroughly-observed astronomical event of all time (Abbott et al. 2017b). In the coming decades,with continued investment, the ground-based network will continue to improve in both the numberand sensitivity of detectors at high frequencies, pulsar timing arrays such as NANOGrav willuncover stochastic sources of gravitational waves and then single sources at low frequencies, andLISA will begin to probe the mid-frequency band from space. In this white paper, we presenta broad outline of the scientific impact of these facilities in the coming decade and the 2030s,emphasizing the ways in which
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66963
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: Over the last 5 years, the Heatshield for Extreme Entry Environment Technology (HEEET) project has been working to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. A key aspect of the project has been the development of the manufacturing and integration processes/procedures necessary to build a heat shield utilizing the HEEET 3D-woven material. This has culminated in the building of a 1-meter diameter Engineering Test Unit (ETU) representative of what would be used for a Saturn probe. The present talk provides an overview of recent testing of NASA's Heatshield for Extreme Entry Environment Technology (HEEET) 3D Woven TPS. Under the current program, the ETU has been subjected to Thermal and Mechanical loads typical of deep space mission to Saturn. Thermal testing of HEEET coupons has performance up to 4,500 watts per centimeter squared at 5 atmospheres stagnation pressure and successful shear performance up to 3000 pascals at 1,650 watts per centimeter squared at 2.6 atmospheres pressure.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN65177 , National Space & Missile Materials Joint Symposium (NSMMS 2019); Jun 24, 2019 - Jun 27, 2019; Henderson, NV; United States|Commercial and Government Responsive Access to Space Technology Exchange Joint Symposium (CRASTE 2019); Jun 24, 2019 - Jun 27, 2019; Henderson, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-20
    Description: Laser Rayleigh scattering was used to investigate clusters in the free-stream flow at Arnold Engineering Development Centers Tunnel 9 (T9). The facility was run at Mach-14, with a pure-N2 flow medium, and at several total pressures and temperatures. Using an excimer laser operating at 248 nm, the Rayleigh instrument imaged scattering from the focused laser beam in the free-stream. As a wind-tunnel flow is accelerated, it cools and approaches the condensation boundary. As a precursor to condensation, small clusters of molecules are first formed, but the individual clusters are too small to be spatially resolved in typical images of the beam. Thus clusters effectively add a spatially smooth background signal to the pure diatomic-molecule Rayleigh signal. The main result of the present work is that clustering was not significant. After correcting for interference by small particles imbedded in the T9 flow, cluster scattering was unobservable or smaller than one standard deviation (1-sigma) of the uncertainties for almost all tunnel runs. The total light scattering level was measured to be 1.05 +/- 0.15 (1-sigma) of the expected diatomic scattering, when averaged over the entire usable data set. This result included flow conditions that were supercooled to temperatures of ~ 20 K, about 25 K below the condensation limit of ~ 45 K. Thus the Mach-14 nozzle flow is essentially cluster-free for many supercooled conditions that might be used to extend the facility operating range to larger Reynolds numbers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220259 , L-21001 , NF1676L-32466
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN64284 , American Astronomical Society Meeting; Jan 06, 2019 - Jan 10, 2019; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-20
    Description: Low-frequency gravitational-wave astronomy can perform precision tests of general relativity and probe fundamental physics in a regime previously inaccessible. A space-based detector will be a formidable tool to explore gravity's role in the cosmos, potentially telling us if and where Einstein's theory fails and providing clues about some of the greatest mysteries in physics and astronomy, such as dark matter and the origin of the Universe.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN67178 , GSFC-E-DAA-TN66949
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-20
    Description: Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs)from supermassive black hole binaries (SMBHBs). With continued observations of a large sampleof millisecond pulsars, PTAs will reach this major milestone within the next decade. Already,SMBHB candidates are being identied by electromagnetic surveys in ever-increasing numbers;upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumentalin identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) obser-vations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with theirhost galaxies, the dynamical interactions between binaries and their galactic environments, and thefundamental physics of accretion. Multi-messenger observations can also make SMBHBs `standardsirens' for cosmological distance measurements out to z ~ 0.5 LIGO has already ushered in break-through insights in our knowledge of black holes. The multi-messenger detection of SMBHBs withPTAs will be a breakthrough in the years 2020-2030 and beyond, and prepare us for LISA to helpcomplete our views of black hole demographics and evolution at higher redshifts.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66951
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-20
    Description: LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. Thestrong gravity which powers the variety of GW sources in this band is also crucial in a numberof important astrophysical processes at the current frontiers of astronomy. These range fromthe beginning of structure formation in the early universe, through the origin and cosmic evolutionof massive black holes in concert with their galactic environments, to the evolution ofstellar remnant binaries in the Milky Way and in nearby galaxies. These processes and theirassociated populations also drive current and future observations across the electromagnetic(EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincidentEM+GW observations, or indirect multimessenger studies. We argue that for the UScommunity to fully capitalize on the opportunities from the LISA mission, the US efforts shouldbe accompanied by a coordinated and sustained program of multi-disciplinary science investment,following the GW data through to its impact on broad areas of astrophysics. Supportfor LISA-related multimessenger observers and theorists should be sized appropriately for aflagship observatory and may be coordinated through a dedicated mHz GW research center.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66947
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Mission, landing and recovery operations for the Orion crew module involve reentry into the Earth's atmosphere and the deployment of three Nomex parachutes to slow the descent before landing along the west coast of the United States. Orion may have residual fuel (hydrazine, N2H4) or coolant (ammonia, NH3) on board which are both highly toxic to crew in the event of exposure. These risks were evaluated using a first principles analysis approach through fluid dynamics modeling. Plume calculations were first performed with the ANSYS Fluent computational fluid dynamics code. Data were then extracted at locations relevant to crew safety such as the snorkel fan inlet and the egress hatch. Mixing calculations were performed to quantify exposure concentrations within the crew bay before and during egress and departure. Finally, results included herein were used to inform the Orion post-landing Concept of Operations (ConOps) so that strategies could be formulated to maintain crew safety in the event of the loss of fuel or coolant.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN62706 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-20
    Description: During instrument-level or spacecraft-level ground testing, heat pipes may be placed in reflux mode, with condenser above evaporator. A liquid pool will form at the bottom of the heat pipe. If heat is applied to a site below the surface of the liquid pool in a vertical heat pipe, the heat pipe can work properly under reflux mode. A superheat is required for startup. If heat is applied to a site above the liquid pool, the heat pipe is not expected to work unless additional heat is applied to the liquid pool to provide the needed flow circulation. There are many reason to minimize the additional heater power. An experimental investigation was conducted to study the heat pipe behavior under this configuration.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN66142 , Spacecraft Thermal Control Workshop; Mar 26, 2019 - Mar 28, 2019; Torrance, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-20
    Description: This paper looks at the key programmatic and technical drivers of the James Webb Space Telescope and assesses ways to building more cost-effective telescopes in the future. The paper evaluates the top level programmatics for JWST along with the key technical drivers from design through integration and testing. Actual data and metrics from JWST are studied to identify what ultimately drove cost on JWST. Finally, the paper assesses areas where applying lessons learned can reduce costs on future observatories and will provide better insights into critical areas to optimize for cost.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN65820
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-20
    Description: The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Within our own galaxy, we have seen that energetic particles engage in a complex interplay with the galactic environment and even drive many of its key characteristics (for more information, see the first white paper in this series). On cosmological scales, the energetic particles supplied by the jets of active galactic nuclei (AGN) are an important source of energy for the intracluster and intergalactic media, providing a mechanism for regulating star formation and black hole growth and cultivating galaxy evolution (AGN feedback). Gamma-ray burst (GRB) afterglows encode information about their circumburst environment, which has implications for massive stellar winds during previous epochs over the stellar lifecycle. As such, GRB afterglows provide a means for studying very high-redshift galaxies since GRBs can be detected even if their host galaxy cannot. It has even been suggest that GRB could be used to measure cosmological distance scales if they could be shown to be standard candles. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. Despite the enormous progress in particle-in-cell and magnetohydrodynamic simulations, we have yet to pinpoint the processes involved in jet formation and collimation and the conditions under which they can occur. For that matter, we have yet to identify the mechanism(s) through which the jet accelerates energetic particles is it the commonly invoked diffusive shock acceleration process or is another mechanism, such as magnetic reconnection, required? Do AGNs and GRBs accelerate hadrons, and if so, do they accelerate them to ultra-high energies and are there high-energy neutrinos associated with them? MeV gamma-ray astronomy, enabled by technological advances that will be realized in the coming decade, will provide a unique and indispensable perspective on the persistent mysteries of the energetic universe. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. Specifically, MeV astronomy will: 1. Determine whether AGNs accelerate CRs to ultra-high energies; 2. Provide the missing pieces for the physics of the GRB prompt emission; 3. Measure magnetization in cosmic accelerators and search for acceleration via reconnection.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66972
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-20
    Description: In this report we have catalogued the flow regimes observed in microgravity, summarized correlations for the pressure drop and rate of heat transfer that are commonly used, and discuss the validation of a few correlations from available experimental results. Two-phase flow through some specific components such as bends, tees, filters and pumps are discussed from a physical perspective to guide the designer on how reduced gravity might affect their performance. Phase separation in zero gravity is addressed through the behavior and basic design concepts for devices based on passive centrifugal action, capillary forces, gas extraction through a membrane installed in a channel wall and the use of a syringe with a perforated piston to remove bubbles from small liquid volumes. We address the common instabilities that develop in flow loops owing exclusively to the two-phase nature of the flow, e.g., Ledinegg instability and concentration waves. Finally we briefly review flow metering and gauging; two-phase flow through porous media, where pressure drop and flow regime map correlations in zero-g are a current research topic; and basic operation principles of heat pipes and capillary pumped loops.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220147 , E-19668 , GRC-E-DAA-TN65638
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: In preparation for the 2020 Decadal Survey in Astronomy and Astrophysics, NASA commissioned the study of four large mission concepts: the Large UV/Optical/Infrared Surveyor (LUVOIR), the Habitable Exoplanet Imager (HabEx), the far-infrared surveyor Origins Space Telescope (OST), and the X-ray surveyor Lynx. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives for LUVOIR that include the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the exchange of matter between galaxies, star and planet formation, and the remote sensing of Solar System objects. The LUVOIR Study Office, located at NASA's Goddard Space Flight Center (GSFC), is developing two mission concepts to achieve the science objectives. LUVOIR-A is a 15-meter segmented-aperture observatory that would be launched in an 8.4-m extended fairing on the Space Launch System (SLS) Block 2 configuration. LUVOIR-B is an 8-meter unobscured segmented aperture telescope that fits in a smaller, conventional 5-meter fairing, but still requires the lift capacity of the SLS Block 1B Cargo vehicle. Both concepts include a suite of serviceable instruments: the Extreme Coronagraph for Living Planetary Systems (ECLIPS), an optical/near-infrared coronagraph capable of delivering 10 (sup minus10) contrast at inner working angles as small as 2 lambda divided by D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100-400 nanometer) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-NIR imager. LUVOIR-A also has a fourth instrument, Pollux, a high-resolution UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). This paper provides an overview of the LUVIOR science objectives, design drivers, and mission concepts.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN65070 , IEEE Aerospace Conference (AeroConf 2019); 2ý9 Mar. 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-20
    Description: The purpose of this testing is to characterize the ISSI IS46DR16640B-25DBA25 parameter degradation for total dose response. This tests purpose is to evaluate and compare lot date codes for sensitivity. In the test, the device is exposed to both low dose and high dose rate (HDR) irradiations using gamma radiation. Device parameters such as leakage currents, quantity of upset bits or addresses, and overall chip and die health are investigated to determine which lot is more robust. These parameters directly affect the functionality of the memory within a system and may determine thresholds necessary to mitigate failure.
    Keywords: Aerospace Medicine
    Type: GSFC-E-DAA-TN65272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-20
    Description: When is it advantageous to assemble telescopes in space rather than deploying them from launch vehicle fairings? This question forms the crux of the objectives of a NASA study we have been conducting in collaboration with colleagues from different NASA centers, industry and academia. In this study, we have engaged a broad cross section of experts from the various fields of optics engineering, that is, telescope design and instrument design, structure and thermal engineering, robotics, launch system engineering, orbital mechanics, integration and testing, astrophysics, and NASA programmatics among others. Initial efforts began with a quick review of the current state of art of the component technologies that contribute towards an in-space assembled telescope. Then, leveraging the collective expertise of the diverse group of experts, we formulated a reference telescope design and attempted to develop a baseline approach to modularize the telescope into components amenable for robotic assembly. The group identified different trades associated with modularization and also developed a set of criteria to discern between the different options as revealed by the trades. Based on the modularization of the telescope, we will assess the impact of various launch vehicles, orbits for assembly and operation, robotic systems and operational approaches, and other related variables. From this, a concept to assemble the reference telescope in space from modular components will be developed. Based on this concept, and definition of the modules, we will develop a mission lifecycle plan for an assembled telescope over different phases of preliminary design, detailed design, assembly-test-and-integration, and in space operations. The mission lifecycle plan will be used to evaluate cost and risk implications of in-space assembly toward answering our fundamental question of the advantages, if any, of assembling a telescope in space as compared to self-deployment. In this paper, we summarize the objectives of the study, a review of the status of the underlying component technologies, a description of the methodology, including three different multi-day technical interchange meetings (TIMs), summary of findings from the TIMs and other related activities. In addition, a detailed description of the various factors that impact in-space assembly, their interplay and criteria for discerning among them, a preliminary description of the life cycle plan, including the test and integration plan, and initial observations on cost and risk implications will be included in the paper.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN58571 , International Conference for Aerospace Experts, Academics, Military Personnel, and Industry Leaders; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64700 , NASA Human Research Program Investigatorsý Workshop 2019; Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64701 , NASA Human Research Program Investigatorsý Workshop 2019; Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64784 , NASA Human Research Program Investigatorsý Workshop (HRP IWS 2019); Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-26
    Description: This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 12 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics.
    Keywords: Astrophysics
    Type: NASA/TM-2019-220297 , ARC-E-DAA-TN71061
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-20
    Description: Current turbulence models, such as those employed in Reynolds-averaged Navier-Stokes CFD, are unable to reliably predict the onset and extent of the three-dimensional separated flow that typically occurs in wing-fuselage junctions. To critically assess, as well as to improve upon, existing turbulence models, experimental validation-quality flow-field data in the junction region is needed. In this report, we present an overview of experimental measurements on a wing-fuselage junction model that addresses this need. The experimental measurements were performed in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The model was a full-span wing-fuselage body that was configured with truncated DLR-F6 wings, both with and without leading-edge extensions at the wing root. The model was tested at a fixed chord Reynolds number of 2.4 million, and angles-of-attack ranging from -10 degrees to +10 degrees were considered. Flow-field measurements were performed with a pair of miniature laser Doppler velocimetry (LDV) probes that were housed inside the model and attached to three-axis traverse systems. One LDV probe was used to measure the separated flow field in the trailing-edge junction region. The other LDV probe was alternately used to measure the flow field in the leading-edge region of the wing and to measure the incoming fuselage boundary layer well upstream of the leading edge. Both LDV probes provided measurements from which all three mean velocity components, all six independent components of the Reynolds-stress tensor, and all ten independent components of the velocity triple products were calculated. In addition to the flow-field measurements, static and dynamic pressures were measured at selected locations on the wings and fuselage of the model, infrared imaging was used to characterize boundary-layer transition, oil-flow visualization was used to visualize the separated flow in the leading- and trailing-edge regions of the wing, and unsteady shear stress was measured at limited locations using capacitive shear-stress sensors. Sample results from the measurement techniques employed during the test are presented and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220286 , NF1676L-33264
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-20
    Description: The InSight Mars Lander successfully landed on the surface on November 26, 2018. This poster will describe the methodologies and margins used in developing the aerothermal environments for design of the thermal protection systems (TPS), as well as a prediction of as-flown environments based on the best estimated trajectory. The InSight mission spacecraft design approach included the effects of radiant heat flux to the aft body from the wake for the first time on a US Mars Mission, due to overwhelming evidence in ground testing for the European ExoMars mission (2009/2010) [1] and 2010 tests in the Electric Arc Shock Tube (EAST) facility [2]. The radiant energy on an aftbody was also recently confirmed via measurement on the Schiaparelli mission [3]. In addition, the InSight mission expected to enter the Mars atmosphere during the dust storm season, so the heatshield TPS was designed to accommodate the extra recession due to the potential dust impact. This poster will compare the predicted aerothermal environments using the reconstructed best estimated trajectory to the design environments. Design Approach: The InSight spacecraft was planned to be a near-design-to-print copy of the Phoenix spacecraft. The determination of the heatshield TPS requirements was approached as if it was a new design due to the new requirement of flying through a dust storm. The baseline for aftbody was build-to-print, and all analyses focused on ensuring adequate margin. This proved to be a challenge because the Phoenix aftbody was designed to withstand only convective heating and the InSight aftbody was evaluated for both convective and radiative heating. Aerothermal environments were predicted using the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data Parallel Line Relaxation (DPLR) CFD codes, and the Nonequilibrium Radiative Transport and Spectra Program (NEQAIR) utilizing bounding design trajectories derived from Monte Carlo analyses from the Program to Optimize Simulated Trajectories II (POST2). In all cases, super-catalytic flowfields were assigned to ensure the most conservative heating results. Two trajectories were evaluated: 1) the trajectory with the maximum heat flux was utilized to determine the flowfield characteristics and the viability of the selection of TPS materials; and 2) the trajectory with the maximum heat load was used to determine the required thicknesses of the TPS materials. Evaluation of the MEDLI data [4], along with ground test data [5] led to the determination of whether or not the flow would transition from laminar to turbulent on the heatshield, which also determined the TPS sizing location for the heatshield. Aerothermal margins were added for the convective heating and developed for the radiative heating. TPS material sizing was determined with the Reaction Kinetic Ablation Program (REKAP) and the Fully Implicit Ablation and Thermal Analysis program (FIAT) using a three-branched approach to account for aerothermal, material response, and material properties uncertainties. In addition, the heatshield recession was augmented by an analysis of the effect of entry through a potential dusty atmosphere using a methodology developed in References [6] and [7]. These analyses resulted in an increase to the Phoenix heatshield TPS thickness. Reconstruction Efforts: Once the best estimated trajectory is reconstructed by the team, the LAURA/HARA (High-Temperature Aerothermo-dynamic Radiation model) and DPLR/NEQAIR code pairs will be used to predict the as-flown aerothermal conditions. In these runs, fully-catalytic flowfields will be assigned because it is a more physically accurate description of the chemistry in the flow. Once again, determination of the onset of turbulence on the heatshield will be evaluated. The as-flown aerothermal environments will then be compared to the design environments.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN66480 , International Planetary Probe Workshop - 2019; Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN66387 , Joint Astronomy Colliquium; Mar 15, 2019; Garching; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-20
    Description: In preparation for the 2020 Decadal Survey in Astronomy and Astrophysics, NASA commissioned the study of four large mission concepts: the Large UV/Optical/Infrared Surveyor (LUVOIR), the Habitable Exoplanet Imager (HabEx), the far-infrared surveyor Origins Space Telescope (OST), and the X-ray surveyor Lynx. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives for LUVOIR that include the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the exchange of matter between galaxies, star and planet formation, and the remote sensing of Solar System objects. The LUVOIR Study Office, located at NASA's Goddard Space Flight Center (GSFC), is developing two mission concepts to achieve the science objectives. LUVOIR-A is a 15-meter segmented-aperture observatory that would be launched in an 8.4-meter extended fairing on the Space Launch System (SLS) Block 2 configuration. LUVOIR-B is an 8-meter unobscured segmented aperture telescope that fits in a smaller, conventional 5-meter fairing, but still requires the lift capacity of the SLS Block 1B Cargo vehicle. Both concepts include a suite of serviceable instruments: the Extreme Coronagraph for Living Planetary Systems (ECLIPS), an optical/near-infrared coronagraph capable of delivering 10 (sup minus 10) contrast at inner working angles as small as 2 lambda divided by D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100-400 nanometer) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-NIR imager. LUVOIR-A also has a fourth instrument, Pollux, a high-resolution UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). This paper provides an overview of the LUVIOR science objectives, design drivers, and mission concepts.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66256 , IEEE Aerospace Conference (AeroConf 2019); 2ý9 Mar. 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64704 , NASA Human Research Program Investigatorsý Workshop 2019; Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-20
    Description: Goals of Stability Studies: Identify medications that are stable under real and simulated space conditions, especially deep space radiation; Identify medications that are potent and safe after their expiration dates; Ultimately provide a safe and effective formulary for exploratory spaceflight missions. ExMC: Exploration Medical Capabilities.
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64578 , NASA Human Research Program Investigatorsý Workshop (HRP IWS 2019); Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-20
    Description: Space Biology and Human Research Projects Integrated Proposal to use the JAXA MARS facility to be presented to JAXA and JAXA investigator audience at JAXA Kibo Utilization Symposium and OP3 negotiation for 2019 ISS rodent mission. Slides present a pictorial overview of the proposed science and analysis techniques desired from the US investigator team. Prior published data form a recent collaboration with JAXA is also mentioned.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN64815 , JAXA Kibo Utilization Symposium; Feb 13, 2019; Tokyo, Japan; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-26
    Description: We propose a high precision calibration scheme for a Mid-IR Exoplanet Spectrometer. This new technology will enable high-precision transmission, emission, and phase curve spectroscopy for the characterization of exoplanets in and near the habitable zone, enabling the detection of biosignatures in rocky planets around the nearest M dwarfs.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN71014
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-25
    Description: The Accepted Medical Conditions List (AMCL) is a product designed to provide a traceable, repeatable, evidence-based consensus process for scoping the medical capability needs for future design reference missions (DRMs) and upcoming programs. These include a Mars transit DRM and a shorter duration cis-lunar DRM. The development of a baseline AMCL by the Exploration Medical Capability (ExMC) Element will assist the effort to identify high priority medical capabilities for inclusion in mission and vehicle planning and provide traceable and documented clinical needs to the Systems Engineering teams tasked with requirements development and design work.
    Keywords: Aerospace Medicine
    Type: NASA/TM-2019-220299 , JSC-E-DAA-TN69936
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-20
    Description: Orbital spaceflight perturbs the human immune system significantly; Natural Killer (NK) and T-lymphocyte (T) cell functions are most susceptible to spaceflight-induced impairment. This loss of function may manifest in persistent latent virus reactivation (CMV, EBV, VZV), which does occur at a higher frequency in astronauts compared to earthlings.
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64744 , NASA Human Research Program Investigatorsý Workshop 2019; Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64738 , NASA Human Research Program Investigatorsý Workshop (HRP IWS 2019); Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-20
    Description: - Medical System Content Development - 2019: Develop clinical content to inform medical system design; Iterate on content with wider ExMC (Exploration Medical Capability) team; Capture processes used to perform these tasks. - Using model content to inform system design - SME (Subject Matter Expert) collaboration to refine systems using clinical content.
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64736 , NASA Human Research Program Investigatorsý Workshop (HRP IWS 2019); Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN64737 , NASA Human Research Program Investigators'' Workshop; Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-17
    Description: Abstract and not the Final document is attached. Low Lunar orbit presents a unique thermal environment with high planetary and high solar IR requirements. Orion requires a phase change material heat exchanger (PCM HX) to act as a supplemental heat rejection device (SHReD) during this orbit. As a result, Orion currently uses a PCMHX to meet heat rejection demands in low lunar orbit. This PCM HX weighs 145 lbs, a significant amount of weight on the Crew Module Adaptor. To reduce this weight, a new PCM HX and phase change material is being proposed. This new PCM HX, constructed by Mezzo technologies, was originally designed as a water based PCM HX but is now be repurposed for phase change materials with transition temperatures in Orion's set points and different freeze front propagations. Mezzo's PCM HX utilizes micro tubes which greatly increase the overall heat transfer efficiency allowing for a compact design and significant weight savings. A new phase change material is also being proposed which has a higher latent heat of fusion as well as a higher density. This paper investigates the design, testing, and analysis done on the new Mezzo PCM HX as well as the corresponding phase change material.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN62557 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Computational ice shapes were generated on the boundary layer ingesting engine nacelle of the D8 Double Bubble aircraft. The computations were generated using LEWICE3D, a well-known CFD icing post processor. A 50-bin global drop diameter discretization was used to capture the collection efficiency due to the direct impingement of water onto the engine nacelle. These discrete results were superposed in a weighted fashion to generate six drop size distributions that span the Appendix C and O regimes. Due to the presence of upstream geometries, i.e. the fuselage nose, the trajectories of the water drops are highly complex. Since the ice shapes are significantly correlated with the collection efficiency, the upstream fuselage nose has a significant impact on the ice accretion on the engine nacelle. These complex trajectories are caused by the ballistic nature of the particles and are thus exacerbated as particle size increases. Shadowzones are generated on the engine nacelle, and due to the curvature of the nose of the aircraft the shadowzone boundary moves from lower inboard to upper outboard as particle size increases. The largest particle impinging one the engine nacelle from the 50-bin discretization was the 47 um drop diameter. As a result, the MVD greater than 40 um Appendix O conditions were characterized by extremely low collection efficiency on the engine nacelle for these direct impingement simulations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN66779 , International Conference on Icing of Aircraft, Engines, and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN67843 , Aerospace Medical Association (AsMA) Annual Scientific Meeting; May 05, 2019 - May 09, 2019; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Context: Recently, The American College of Graduate Medical Education (ACGME) has included the medical decision making as a core competency in several specialties. To date, the ability to demonstrate and measure a pedagogical evolution of medical judgment in a medical education program has been limited. Objective: In this study we hope to examine differences in medical decision making ability of different physicians across their various stages of post-graduate hierarchy. Method: Physcians spanning a wide spectrum of scientific disciplines were recruited for three catagories: administrative physicians(AP) representing physcians with the most experience but mostly practice administratively; resident physicians completing their postgraduate medical training (RP) and seasoned attending physicians with mastery level experience (MP). Participants completed four medical simulations focused on abdominal pain: cholecystitis (CH) and renal colic(RC) and chest pain; Cardiac ischemia (STEMI) and pneumothorax (PX). Simulation were ordered randomly so that there was no systematic bias due to learning or to fatigue. The Medical judgment metric (MJM) was used to evaluate medical decision-making. Results: There were no significant differences between the AP, RP, and MP groups in the gender, race, ethnicity, education, and baseline heart rate. There was a significant (p=0.002) interaction effect for simulation time and RP group, 6.2 minutes (+/-1.58); MP group, 8.7 minutes (+/-2.46); and AP group, 10.3 minutes (+/-2.78). The RC MJM scores were significantly (P=0.10) worse in the AP group 12.3 (+/-2.66) then the RP 14.7(+/-1.15) and MP17.7 (+/-1.15) groups. In every simulation, the AP group MJM scores were worse on average (no significantly) compared to the MP and RP groups. The AP group was significantly (P=0.040) less likely to stabilize the subject in the RC simulation than MP and RP groups. Conclusion: There remains significant variability in the medical education and skill retention influences medical decision making throughout a physician's career.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN67606 , Educating Leaders 2019: The AACOM Annual Conference; Apr 10, 2019 - Apr 12, 2019; Washington D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN68705 , ONR-NAVSEA Undersea Medicine Program Review; May 14, 2019 - May 16, 2019; Durham, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Infrared (IR) observations of core collapse supernovae (CCSNe) have been used to infer the mass of dust that has formed in their ejecta. A plot of inferred dust masses versus supernova (SN) ages shows a trend of increasing dust mass with time, spanning a few decades of observations. This trend has been interpreted as evidence for the slow and gradual formation of dust in CCSNe. Observationally, the trend exhibits a t (sup 2) behavior, exactly what is expected from an expanding optically-thick ejecta. In this case, the observed dust resides in the IR-thin "photosphere" of the ejecta, and constitutes only a fraction of the total dust mass. We therefore propose that dust formation proceeds very rapidly, condensing most available refractory elements within two years after the explosion. At early epochs, only a fraction of the dust emission escapes the ejecta accounting for the low observed dust mass. The ejecta's entire dust content is unveiled only a few decades after the explosion, with the gradual decrease in its IR opacity. Corroborating evidence for this picture includes the early depletions of refractory elements in the ejecta of SN1987A and the appearance of a silicate emission band around day 300 in SN2004et.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN65775 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 871; 2; L33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: As part of the LUVOIR splinter session at the 234th Meeting of the American Astronomical Society, this talk will present an overview of the LUVOIR concept designs. The second portion of the talk will address recommendations made by the LUVOIR science and technology definition team on project management lessons learned.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN69464 , Meeting of the American Astronomical Society; Jun 09, 2019 - Jun 13, 2019; St. Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: Radiative heating computations are performed for high speed lunar return experiments conducted in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The nonequilibrium radiative transport equations are solved via NASA's in-house radiation code NEQAIR using flow field input from US3D flow solver. The post-shock flow properties for the 10 km/s Earth entry conditions are computed using the stagnation line of a blunt-body and a full facility CFD (Computational Fluid Dynamics) simulation of the EAST shock tube. The shocked gas in the blunt-body flow achieves a thermochemical equilibrium away from the shock front whereas EAST flow exhibits a nonequilibrium behavior due to strong viscous dissipation of the shock by boundary layer. The full-tube flow calculations capture the influence of the boundary layer on the shocked gas state and provide a realistic fluid dynamic input for the radiative predictions. The integrated radiance behind the shock is calculated in NEQAIR for wavelength regimes from Vacuum-UltraViolet (VUV) to InfraRed (IR), which are pertinent to the emission characteristics of high enthalpy shock waves in air. These radiance profiles are validated against corresponding EAST shots. The full-tube simulations successfully predict a sharp radiance peak at the shock front which gets smeared in the test data due to the spatial resolution in the measurements. The full facility based radiance behind the shock shows a slightly better match with the test data in the VUV and Red spectral regions, as compared to that from a blunt-body based predictions. The UV radiance is very similar for both geometries and under-predicts the test behavior. The IR test data matches better with the blunt-body based predictions where the full-tube simulations show a significant over-prediction.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN57169 , AIAA SciTech Forum & Exposition (SciTech 2019); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: Numerical investigations of the flowfield inside NASA Ames' Electric Arc Shock Tube have been performed. The focus is to simulate the experiments designed to reproduce shock layer radiation layer relevant to Earth re-entry conditions. This paper assess the current computational capability in simulating time-accurate unsteady nonequilibrium flows in the presence of strong shock waves with state-of-the-art physical models. The technical approach is described with preliminary results presented for one specific flow condition. It was found that the axisymmetric source term generates a numerical instability that appears as shock bending. This instability is time dependent which greatly affects the shock speed. Post-shock conditions are discussed and compared to CEA equilibrium prediction and good agreement was obtained close to the test-section and just behind the shock.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN64558 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW)candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations ofGW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about theastrophysical source, and in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here weinvestigate low-significance GWcandidates from the O1 compact binary coalescence searches using the Fermi Gamma-Ray Burst Monitor (GBM), leveraging its all sky and broad energy coverage. Candidates are ranked and compared tobackground to measure the significance. Those with false alarm rates (FARs) of less than 105 Hz (about one per day,yielding a total of 81 candidates) are used as the search sample for gamma-ray follow-up. No GW candidates werefound to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. Inaddition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resultingGBM events, the two with the lowest FARs were the gamma-ray transient GW150914-GBM presented in Connaughtonet al. and a solar flare in chance coincidence with a GW candidate.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN65077 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 871; 90
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-18
    Description: Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and airborne particles. Quantification of spacecraft indoor aerosols will increase our understanding of crew exposure and cabin cleanliness. Aerosols on the International Space Station (ISS) have been sampled and brought back to Earth for analysis to characterize the airborne particulate matter in the cabin. Microscopic analyses have been performed to determine morphology and particle size information, and Energy Dispersive X-ray Spectroscopy (EDS) provides information on the chemical elements present in the particles. With the use of IntelliSEM software for computer-controlled scanning electron microscopy (CCSEM), this data provides particle size distribution information and statistics on particle materials. Many of the particles collected were made up of multiple elements and had uncommon morphologies compared to typical indoor aerosols on Earth. These characteristics are thought to be from unique formation mechanisms in the microgravity environment. Several notable particle types are examined further in this work. Bromine-containing particles and cadmium-containing particles are discussed as they constitute a health hazard to crew members. Humans in indoor living and working spaces are typically the single largest particle emission source, and this was observed in the sampled aerosols in ISS as well.
    Keywords: Aerospace Medicine
    Type: ICES-2019-246 , GRC-E-DAA-TN67302 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-03
    Description: The HEEET project was conceived to develop a heatshield with a high performance ablative thermal protection material that can withstand the extreme entry environment produced as a result of rapid deceleration during high speed entry into Venus, Saturn, Uranus or higher speed entry into Earth's atmosphere. Successful maturation of HEEET supports future New Frontiers and Discovery AO's, as well as Flagship and directed missions in the longer term. In addition, HEEET has the potential to evolve and to support re-entry to Earth, for missions such as Mars Sample Return.The primary goal of the HEEET Project was to develop an ablative TPS heat-shield based on woven TPS technology to Technology Readiness Level (TRL) 6. Key evidence to support the TRL evaluation includes: Demonstration of reproducible manufacturing of a dual layer material over a range of thicknesses and integrated on to a heatshield engineering test unit at a scale that is applicable to near term Discovery as the highest priority and future NF missions as secondary priority set of missions. Demonstration of predictable and stable performance of the dual layer TPS over a range of entry environments that are applicable to near term Discovery and NF missions of interest to SMD.Includes completion of coupon arc jet and laser testing and development of a mid-fidelity thermal response model that correlates with test results. Demonstration of flight heatshield system design for a range of sizes and loads that are relevant to near term Discovery and NF missions of interest to SMD. Includes completion of structural testing to validate analytic thermal/structural models and development of a material property database. Includes structural testing of a ~1m Engineering Test Unit under relevant entry loads.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN70346 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-03
    Description: We calculate the sensitivity of space-based cosmic neutrino detection from transient sources in the context of the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission using Target- of-Opportunity (ToO) observations. POEMMA uses two spacecraft each with a large Schmidt telescope to simultaneously view the optical signals generated by extensive air showers (EASs). POEMMA is designed for both ultrahigh-energy cosmic ray and very-high-energy neutrino measurements. POEMMA has significant neutrino sensitivity starting in the 10 PeV decade via measurements of Cherenkov signals from upward-moving EASs initiated by tau neutrinos interacting in the Earth. For ToO observations, POEMMA uses the ability to quickly repoint (90 in 500 seconds) each of the two spacecraft to the direction of the transient source. POEMMA EAS measurements are performed during astronomical night, leading to different observational constraints for short- and long-duration bursts. For short-bursts of order 10(exp 3) s, POEMMA will increase the sensitivity of existing experiments (e.g., IceCube and the Pierre Auger Observatory) by up to two orders of magnitude. For long-duration bursts on the scale of 10(exp 56) s, the full celestial sky is available and the average neutrino sensitivity will be increased by up to a factor of 50, reaching the desired level to probe model predictions of transient neutrino sources (e.g., of blazer flares as well as both black hole-black hole and neutron star-neutron star mergers). POEMMAs neutrino sensitivity to various models of transient neutrino sources are detailed. Altogether, our results demonstrate better sensitivity to ToO neutrino sources from the space-based POEMMA experiment compared to current ground-based experiments, and more importantly, demonstrate unique full-sky coverage for ToO neutrino sources.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70896
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-03
    Description: This paper reports computational analyses and flow characterization studies in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using a wedge model placed in a free jet downstream of new 9-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. Both the nozzle and wedge model were specifically designed for testing in the new Laser-Enhanced Arc-jet Facility. Data were obtained using stagnation calorimeters and wedge models placed downstream of the nozzle exit. Two instrumented wedge calibration plates were used: one water-cooled and the other RCG-coated tile plate. Experimental surveys of arc-jet test flow with pitot and heat flux probes were also performed at three arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested, and comparisons with the experimental measurements. By taking into account nonuniform total enthalpy and mass flux profiles at the nozzle inlet as well as the expansion waves emanating from the nozzle exit and their effects on the model flowfields, these simulations approximately reproduce the probe survey data and predict the wedge model surface pressure and heat flux measurements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN68962 , AIAA & ASME Joint Thermophysics and Heat Transfer Conference; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-02
    Description: We study electronpositron pair production in polar caps of energetic pulsars to determine the maximum multiplicity of pair plasma a pulsar can produce under the most favorable conditions. This paper complements and updates our study of pair cascades presented in Timokhin & Harding (2015) with a more accurate treatment of the effects of ultrastrong B approximately greater than 3 x 10 (exp 12) G magnetic fields and emission processes of primary and secondary particles. We include pairs produced by curvature and synchrotron radiation photons as well as resonant Compton-scattered photons. We develop a semianalytical model of electronpositron cascades that can efficiently simulate pair cascades with an arbitrary number of microphysical processes and use it to explore cascade properties for a wide range of pulsar parameters. We argue that the maximum cascade multiplicity cannot exceed approximately a few x 10 (exp 5) and that the multiplicity has a rather weak dependence on pulsar period. The highest multiplicity is achieved in pulsars with magnetic field 4 x 10 (exp 12) is approximately greater than B is approximately greater than 10 (exp 13) G and hot surfaces, with T is approximately greater than 10 (exp 6)K. We also derive analytical expressions for several physical quantities relevant for electromagnetic cascade in pulsars, which may be useful in future works on pulsar cascades, including the upper limit on cascade multiplicity and various approximations for the parameter , the exponential factor in the expression for photon attenuation in strong magnetic fields.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68627 , Astrophysical Journal; 871; 1; 25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-31
    Description: This study compares squat and deadlift exercises performed with two different loading configurations: 1) on a novel single-cable resistance exercise countermeasure device (ECD) for spaceflight and 2) with free weights. The results compare joint kinematics and kinetics between different loading configurations for each exercise, and also between the two exercises for each loading configuration. Single-cable versions of the squat (using a harness) and deadlift (using a T-bar) performed on the Hybrid Ultimate Lifting Kit (HULK) ECD have significantly different sagittal plane joint angle kinematics (both peak angle and range of motion) as well as joint kinetics (both peak joint moment and joint impulse) vs. their free weight equivalents at the same load. Differences also exist in hip abduction and rotation. Overall, the single-cable configurations tend to reduce peak joint angles, ranges of motion, peak joint moment and joint impulse vs. free weights. A notable exception is the lumbar joint, which is more heavily loaded for single-cable squats vs. free weight squats. This may have implications for both training benefit and possible risk of injury. Deadlift and squat exercises work the lower body musculature in different ways, with the deadlift emphasizing hip and lumbar extension and the squat emphasizing knee extension. Based on these findings, we would advocate the use of both movements in the exercise prescriptions of astronaut crews on deep-space missions.
    Keywords: Aerospace Medicine
    Type: NASA/TM-2019-219723 , GRC-E-DAA-TN65332
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-31
    Description: The Cosmic SImulation Chamber (COSmIC) facility was developed at NASA Ames to study, in the laboratory, neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions representative of interstellar, circumstellar and planetary environments. COSmIC is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to highsensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy and fluorescence spectroscopy systems operating in the UV-Visible range, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS). We will present recent advances that were achieved in laboratory astrophysics using COSmIC. These include advances in the domain of the diffuse interstellar bands (DIBs) and in the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows and planetary atmospheres. An extension of the spectral response of the facility into the infrared (IR) range is in progress with the addition of a high-resolution near-IR to mid-IR CRDS system that will allow to further investigate cosmic molecules and grains with COSmIC. Acquisition of laser induced fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs are also planned. Preliminary results in these fronts will presented and the implications of the on-going studies for astronomy will be addressed.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN68757 , Meeting of the American Astronomical Society; Jun 09, 2019 - Jun 13, 2019; St. Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-31
    Description: No abstract available
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70837 , International Children's Continence Society (ICCS) 2019 Annual Congress; Sep 12, 2019 - Sep 14, 2019; Gdansk; Poland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-31
    Description: Micro-Spec is a direct-detection spectrometer which integrates all the components of a diffraction-grating spectrometer onto a 10-sq.cm chip through the use of superconducting microstrip transmission lines on a single- crystal silicon substrate. The second generation of Micro-Spec is being designed to operate with a spectral re- solution of at least 512 in the far-infrared and submillimeter (420540 GHz, 714555 m) wavelength range, a band of interest for NASA's experiment for cryogenic large-aperture intensity mapping called EXCLAIM. EXCLAIM will be a balloon-borne telescope that is being designed to map the emission of redshifted carbon monoxide and singly-ionized carbon lines over a redshift range 0 〈 z 〈 3.5 and it will be the first demonstration of the Micro-Spec technology in a space-like environment. This work reviews the status of the Micro-Spec design for the EXCLAIM telescope, with emphasis on the spectrometer's two-dimensional diffractive region, through which light of different wavelengths is focused on kinetic inductance detectors along the instrument focal plane. An optimization process is used to generate a geometrical configuration of the diffractive region that satisfies l range and performance. An initial optical design optimized for n terms of geometric layout, spectral purity and efficiency.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70840 , Acta Astronautica (ISSN 0094-5765); 162; 155-159
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-31
    Description: A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 gigahertz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 microK-arcminutes noise and 15 arcseconds resolution at 150 gigahertz), CMB-HD (Cosmic Microwave Background - Henry Draper catalog entry) will enable major advances. It will allow 1) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k approximately equal to 10 h per megaparsec), which probes dark matter particle properties. It will also allow 2) measurements of the thermal and kinetic Sunyaev-Zeldovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field, which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3) ruling out or detecting any new, light (less than 0.1 electronvolts), thermal particles, which could potentially be the dark matter, and 4) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5) monitor the transient sky by mapping the full observing region every few days, which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6) provide a census of planets, dwarf planets, and asteroids in the outer Solar System, and 7) enable the detection of exo-Oort clouds around other solar systems, shedding light on planet formation. The combination of CMB-HD with contemporary ground and space-based experiments will also provide powerful synergies. CMB-HD will deliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopes will field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey will be made publicly available, with usability and accessibility a priority.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-30
    Description: We present the first spatially resolved analysis of rest-frame optical and UV (UltraViolet) imaging and spectroscopy for a lensed galaxy at z equals 2.39 hosting a Seyfert active galactic nucleus (AGN). Proximity to a natural guide star has enabled observations with high signal-to-noise ratio using Very Large Telescope SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) plus adaptive optics (AO) of rest-frame optical diagnostic emission lines, which exhibit an underlying broad component with full width at half maximum approximately 700 kilometers per second in both the Balmer and forbidden lines. Measured line ratios place the outflow robustly in the region of the ionization diagnostic diagrams associated with AGNs. This unique opportunity - combining gravitational lensing, AO guiding, redshift, and AGN activity - allows for a magnified view of two main tracers of the physical conditions and structure of the interstellar medium in a star-forming galaxy hosting a weak AGN at Cosmic Noon. By analyzing the spatial extent and morphology of the Lyman alpha spectral line and dust-corrected Hydrogen spectral line emission, disentangling the effects of star formation and AGN ionization on each tracer, and comparing the AGN-induced mass outflow rate to the host star formation rate, we find that the AGN does not significantly impact the star formation within its host galaxy.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70867 , Astrophysics Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 875; 2; 102
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-30
    Description: The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique ``Lobster-eye'' imaging soft X-ray optics that allow an approximately 1600-degrees-squared Field of View (FoV); a high sensitivity, 1-degree-squared FoV soft X-ray telescope; a 1-degree-squared FoV Infrared telescope with bandpass 0.6 to 3 microns; and a set of 8 NaI gamma-ray detectors. TAP's most exciting capability will be the observation of tens per year of X-ray and Infrared counterparts of gravitational waves (GWs) involving stellar-mass black holes and neutron stars detected by LIGO (Laser Interferometer Gravitational-Wave Observatory ) / Virgo / KAGRA (Kamioka (Japan) Gravitational Wave Detector) / LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA (Laser Interferometer Space Antenna) and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70871
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-30
    Description: TESS (Transiting Exoplanet Survey Satellite) launched on 18-4-2018 to conduct a two-year, near all-sky survey for at least 50 nearby exoplanets for which masses can be obtained. TESS just completed surveying the southern hemisphere, identifying hundreds of candidate exoplanet systems and unveiling a plethora of exciting non-exoplanet astrophysics results, such as asteroseismology, asteroids, and supernova. The TESS Science Processing Operations Center (SPOC) at NASA Ames Research Center processes the image data downlinked from TESS every two weeks to generate a variety of data products hosted at the Mikulski Archive for Space Telescopes (MAST). For each approximately 1-month sector, the SPOC calibrates the image data for both 30-minute Full Frame Images (FFIs) and up to 20,000 pre-selected 2-minute target star postage stamps. Simple aperture photometry and systematic error-corrected flux-time series are generated for the 2-minute data. The data products also include co-trending basis vectors (CBVs) and calibration files, such as the Pixel Response Functions (PRF). The archival files are modeled after Kepler's for ease of use, and include Target Pixel Files (TPFs) containing original and calibrated 2-minute image data, Light Curve files (LCs) containing the photometric time series for each 2-minute target, as well as the Data Validation products. New products derived from the FFIs include light curves for the 2-minute targets and CBVs. The TESS Mission is funded by NASA's Science Mission Directorate as an Astrophysics Explorer Mission.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN71156 , TESS (Transiting Exoplanet Survey Satellite) Asteroseismic Science Consortium 5/Kepler Asteroseismic Science Consortium 12 (TASC5/KASC12) Workshop; Jul 22, 2019 - Jul 26, 2019; Cambridge, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-27
    Description: Our understanding of the universe has changed drastically over the past 30 years. With the launch of NASA Ames' Kepler spacecraft in 2009, remarkable progress has been made in discovering planets orbiting other stars. Recent innovations in astronomy enable us to pursue one of humanity's greatest questions; Are we alone in the Universe? From the Kepler Mission to NASA's Transiting Exoplanet Survey Satellite (TESS), vast data collection with new telescopes will revolutionize the fields of asteroseismology and exoplanetary science. Dr. Jon Jenkins showcases the accomplishments of the Kepler Mission, the new discoveries being made by the TESS, and describes the future of exoplanet research.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN70221 , Using the immune System to Treat Cancer; Jul 18, 2019; Palo Alto, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN70650 , IAU Symposium 354 Solar and Stellar Magnetic Fields: Origins and Manifestations; Jun 30, 2019 - Jul 06, 2019; Copiapo; Chile
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-24
    Description: This collection of photographic highlights covers the past 25 years of international collaboration in human space flight. Beginning in 1993, the international community came together to develop the medical systems for an international space station. Initially, this collaboration was bilateral in support of the Shuttle / Mir Space Station (Phase 1). However, the framework that was established to serve as the medical authority structure provided a foundation for the multilateral boards and panel, which were codified in the memoranda of understanding. The Multilateral Medical Policy Board, the Multilateral Space Medicine Board, and the Multilateral Medical Operations Panel were developed in a collegial and mutually beneficial environment by the men and women of the space agencies of Canada, Europe, Japan, Russia, and the United States. This collection of photographs from official and personal collections captures the spirit and collegiality to which we have grown accustomed. They are also presented to commemorate the integrity, professionalism, tenacity, and dedication to human space exploration consistently demonstrated by individuals involved in this amazing effort.
    Keywords: Aerospace Medicine
    Type: HQ-E-DAA-TN68033 , NASA-SP-2018-0641
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-21
    Description: Recently, heat transfer correlations based on liquid nitrogen (LN2) and liquid hydrogen (LH2) pipe quenching data were developed to improve the predictive accuracy of lumped node codes like SINDA/FLUINT and the Generalized Fluid System Simulation Program (GFSSP). After implementing these correlations into both programs, updated model runs showed strong improvement in LN2 pipe chilldown modeling but only modest improvement in LH2 modeling. Due to large differences in thermal and fluid properties between the two fluids, results indicated a need to develop a separate set of LH2-only correlations to improve the accuracy of the simulations. This paper presents a new set of two-phase convection heat transfer correlations based on LH2 pipe quenching data. A correlation to predict the bulk vapor temperature was developed after analysis showed that high amounts of thermal nonequilibrium of the liquid and vapor phases occurred during film boiling of LH2. Implemented in a numerical model, the new correlations achieve a mean absolute error of 19.5 K in the predicted wall temperature when compared to recent LH2 pipe chilldown data, an improvement of 40% over recent GFSSP predictions. This correlation set can be implemented in simulations of the transient LH2 chilldown process. Such simulations are useful for predicting the chilldown time and boil-off mass of LH2 for applications such as the transfer of LH2 from a ground storage tank to the rocket vehicle propellant tank, or through a rocket engine feedline during engine startup.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN70773 , 2019 Space Cryogenics Workshop; Jul 17, 2019 - Jul 19, 2019; Southbury, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-21
    Description: Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better modeling approaches for these turbulent flow fields where accurate calculation of turbulent heat flux is important. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity as well as the mean temperature and root mean square (rms) temperatures in a film cooling flow field. In addition to off-body flow field measurements, infrared thermography (IR) and thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures (up to TR = 2.7) and Mach numbers (up to M0.9), across a 30.48 cm long plate equipped with three patches of 45 small (~1 mm) diameter cooling holes arranged in a staggered configuration. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 14 axial stations were collected in the same flows. Only a subset of the data collected in the test program is included in this Part I report and are available from the NASA STI office. The final portion of the data will be published in a future report, Part II, along with CFD predictions of the complex cooling film flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220227/PART1 , GRC-E-DAA-TN69722 , E-19711
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...