ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Ocean circulation  (163)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (89)
  • American Meteorological Society  (74)
  • Institute of Physics
  • Reed Business Information
  • 1
    Publikationsdatum: 2022-11-27
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1233-1244, https://doi.org/10.1175/jpo-d-21-0223.1.
    Beschreibung: The Sverdrup relation is the backbone of wind-driven circulation theory; it is a simple relation between the meridional transport of the wind-driven circulation in the upper ocean and the wind stress curl. However, the relation is valid for steady circulation only. In this study, a time-dependent Sverdrup relation is postulated, in which the meridional transport in a time-dependent circulation is the sum of the local wind stress curl term and a time-delayed term representing the effect of the eastern boundary condition. As an example, this time-dependent Sverdrup relation is evaluated through its application to the equatorial circulation in the Indian Ocean, using reanalysis data and a reduced gravity model. Close examination reveals that the southward Somali Current occurring during boreal winter is due to the combination of the local wind stress curl in the Arabian Sea and delayed signals representing the time change of layer thickness at the eastern boundary.
    Beschreibung: This work is supported by NSFC (41822602, 41976016, 42005035, 42076021), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB42000000, XDA 20060502), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306), Guangdong Basic and Applied Basic Research Foundation (2021A1515011534), Youth Innovation Promotion Association CAS, ISEE2021ZD01, and LTOZZ2002. The numerical simulation is supported by the High-Performance Computing Division in the South China Sea Institute of Oceanology.
    Beschreibung: 2022-11-27
    Schlagwort(e): Ocean circulation ; Ocean dynamics ; Rossby waves ; Wind stress curl
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-12-16
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(7), (2022): 1415–1430. https://doi.org/10.1175/JPO-D-21-0147.1.
    Beschreibung: Strong subinertial variability near a seamount at the Xisha Islands in the South China Sea was revealed by mooring observations from January 2017 to January 2018. The intraseasonal deep flows presented two significant frequency bands, with periods of 9–20 and 30–120 days, corresponding to topographic Rossby waves (TRWs) and deep eddies, respectively. The TRW and deep eddy signals explained approximately 60% of the kinetic energy of the deep subinertial currents. The TRWs at the Ma, Mb, and Mc moorings had 297, 262, and 274 m vertical trapping lengths, and ∼43, 38, and 55 km wavelengths, respectively. Deep eddies were independent from the upper layer, with the largest temperature anomaly being 〉0.4°C. The generation of the TRWs was induced by mesoscale perturbations in the upper layer. The interaction between the cyclonic–anticyclonic eddy pair and the seamount topography contributed to the generation of deep eddies. Owing to the potential vorticity conservation, the westward-propagating tilted interface across the eddy pair squeezed the deep-water column, thereby giving rise to negative vorticity west of the seamount. The strong front between the eddy pair induced a northward deep flow, thereby generating a strong horizontal velocity shear because of lateral friction and enhanced negative vorticity. Approximately 4 years of observations further confirmed the high occurrence of TRWs and deep eddies. TRWs and deep eddies might be crucial for deep mixing near rough topographies by transferring mesoscale energy to small scales.
    Beschreibung: This work was supported by the National Natural Science Foundation of China (92158204, 91958202, 42076019, 41776036, 91858203), the Open Project Program of State Key Laboratory of Tropical Oceanography (project LTOZZ2001), and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0304).
    Beschreibung: 2022-12-16
    Schlagwort(e): Abyssal circulation ; Ocean circulation ; Ocean dynamics ; Intraseasonal variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-09-15
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(1),(2022): 75–97, https://doi.org/10.1175/JPO-D-21-0099.1.
    Beschreibung: Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale–submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.
    Beschreibung: The OSMOSIS experiment was funded by the U.K. Natural Environment Research Council (NERC) through Grants NE/1019999/1 and NE/101993X/1. ACNG acknowledges the support of the Royal Society and the Wolfson Foundation, and XY that of a China Scholarship Council PhD studentship.
    Schlagwort(e): Ageostrophic circulations ; Dynamics ; Eddies ; Energy transport ; Frontogenesis/frontolysis ; Instability ; Mesoscale processes ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Small scale processes ; Turbulence
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-06-06
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(10), (2021): 3235–3252, https://doi.org/10.1175/JPO-D-20-0288.1.
    Beschreibung: Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f 〉 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.
    Beschreibung: OOI mooring data are based upon work supported by the National Science Foundation under Cooperative Agreement 1743430. S. Zou, A. Bower, and H. Furey gratefully acknowledge the support from the Physical Oceanography Program of the U.S. National Science Foundation Grant OCE-1756361. R.S. Pickart acknowledges support from National Science Foundation Grants OCE-1259618 and OCE-1756361. N. P. Holliday and L. Houpert were supported by NERC programs U.K. OSNAP (NE/K010875) and U.K. OSNAP-Decade (NE/T00858X/1).
    Schlagwort(e): North Atlantic Ocean ; Cyclogenesis/cyclolysis ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-06-03
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(22), (2021): 8971–8987, https://doi.org/10.1175/JCLI-D-20-0610.1.
    Beschreibung: The impact of increasing Greenland freshwater discharge on the subpolar North Atlantic (SPNA) remains unknown as there are uncertainties associated with the time scales of the Greenland freshwater anomaly (GFWA) in the SPNA. Results from numerical simulations tracking GFWA and an analytical approach are employed to estimate the response time, suggesting that a decadal time scale (13 years) is required for the SPNA to adjust for increasing GFWA. Analytical solutions obtained for a long-lasting increase of freshwater discharge show a non-steady-state response of the SPNA with increasing content of the GFWA. In contrast, solutions for a short-lived pulse of freshwater demonstrate different responses of the SPNA with a rapid increase of freshwater in the domain followed by an exponential decay after the pulse has passed. The derived theoretical relation between time scales shows that residence time scales are time dependent for a non-steady-state case and asymptote the response time scale with time. The residence time of the GFWA deduced from Lagrangian experiments is close to and smaller than the response time, in agreement with the theory. The Lagrangian analysis shows dependence of the residence time on the entrance route of the GFWA and on the depth. The fraction of the GFWA exported through Davis Strait has limited impact on the interior basins, whereas the fraction entering the SPNA from the southwest Greenland shelf spreads into the interior regions. In both cases, the residence time of the GFWA increases with depth demonstrating long persistence of the freshwater anomaly in the subsurface layers.
    Beschreibung: D. S. Dukhovskoy and E. P. Chassignet were funded by the DOE (Award DE-SC0014378) and HYCOM NOPP (Award N00014-19-1-2674). The HYCOM-CICE simulations were supported by a grant of computer time from the DoD High-Performance Computing Modernization Program at NRL SSC. G. Platov was funded by the RSF N19-17-00154. P. G. Myers was funded by an NSERC Discovery Grant (Grant RGPIN 04357). A. Proshutinsky was funded by FAMOS project (NSF Grant NSF 14-584).
    Schlagwort(e): North Atlantic Ocean ; Lagrangian circulation/transport ; Ocean circulation ; Differential equations ; Ocean models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-06-03
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(12),(2021): 3663–3678, https://doi.org/10.1175/JPO-D-21-0058.1.
    Beschreibung: The wind-driven exchange through complex ridges and islands between marginal seas and the open ocean is studied using both numerical and analytical models. The models are forced by a steady, spatially uniform northward wind stress intended to represent the large-scale, low-frequency wind patterns typical of the seasonal monsoons in the western Pacific Ocean. There is an eastward surface Ekman transport out of the marginal sea and westward geostrophic inflows into the marginal sea. The interaction between the Ekman transport and an island chain produces strong baroclinic flows along the island boundaries with a vertical depth that scales with the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. The throughflows in the gaps are characterized by maximum transport in the center gap and decreasing transports toward the southern and northern tips of the island chain. An extended island rule theory demonstrates that throughflows are determined by the collective balance between viscosity on the meridional boundaries and the eastern side boundary of the islands. The outflowing transport is balanced primarily by a shallow current that enters the marginal sea along its equatorward boundary. The islands can block some direct exchange and result in a wind-driven overturning cell within the marginal sea, but this is compensated for by eastward zonal jets around the southern and northern tips of the island chain. Topography in the form of a deep slope, a ridge, or shallow shelves around the islands alters the current pathways but ultimately is unable to limit the total wind-driven exchange between the marginal sea and the open ocean.
    Beschreibung: This research is supported in part by the China Scholarship Council (201906330102). H. G. is financially supported by the China Scholarship Council to study at WHOI for 2 years as a guest student. M. A. S. is supported by the National Science Foundation Grant OCE-1922538.
    Schlagwort(e): Ekman pumping/transport ; Ocean circulation ; Topographic effects
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-11-04
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2627-2641, https://doi.org/10.1175/jpo-d-22-0090.1.
    Beschreibung: Changes in dynamic manometric sea level ζm represent mass-related sea level changes associated with ocean circulation and climate. We use twin model experiments to quantify magnitudes and spatiotemporal scales of ζm variability caused by barometric pressure pa loading at long periods (≳1 month) and large scales (≳300km) relevant to Gravity Recovery and Climate Experiment (GRACE) ocean data. Loading by pa drives basin-scale monthly ζm variability with magnitudes as large as a few centimeters. Largest ζm signals occur over abyssal plains, on the shelf, and in marginal seas. Correlation patterns of modeled ζm are determined by continental coasts and H/f contours (H is ocean depth and f is Coriolis parameter). On average, ζm signals forced by pa represent departures of ≲10% and ≲1% from the inverted-barometer effect ζib on monthly and annual periods, respectively. Basic magnitudes, spatial patterns, and spectral behaviors of ζm from the model are consistent with scaling arguments from barotropic potential vorticity conservation. We also compare ζm from the model driven by pa to ζm from GRACE observations. Modeled and observed ζm are significantly correlated across parts of the tropical and extratropical oceans, on shelf and slope regions, and in marginal seas. Ratios of modeled to observed ζm magnitudes are as large as ∼0.2 (largest in the Arctic Ocean) and qualitatively agree with analytical theory for the gain of the transfer function between ζm forced by pa and wind stress. Results demonstrate that pa loading is a secondary but nevertheless important contributor to monthly mass variability from GRACE over the ocean.
    Beschreibung: The authors acknowledge support from the National Aeronautics and Space Administration through the GRACE Follow-On Science Team (Grant 80NSSC20K0728) and the Sea Level Change Team (Grant 80NSSC20K1241). The contribution from I. F. and O. W. represents research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (Grant 80NM0018D0004).
    Schlagwort(e): Barotropic flows ; Large-scale motions ; Ocean circulation ; Planetary waves ; Potential vorticity ; Sea level
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-02-01
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(8), (2022): 1183-1198, https://doi.org/10.1175/jtech-d-21-0068.1.
    Beschreibung: Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(1–10)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.
    Beschreibung: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative ASIRI under Grant N00014-13-1-0451 (SE and AM) and Grant N00014-13-1-0477 (VH and LC). The authors thank the captain and crew of the R/V Roger Revelle, and Andrew Lucas with the Multiscale Ocean Dynamics group at the Scripps Institution for Oceanography for providing the FastCTD data collected in 2015, which was supported by ONR Grant N00014-13-1-0489, as well as Eric D’Asaro for helpful discussions and Lance Braasch for assistance with the drifter dataset. AM and SE further thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support. VH and LC were additionally supported by ONR Grants N00014-15-1-2286, N00014-14-1-0183, N00014-19-1-26-91 and NOAA Global Drifter Program (GDP) Grant NA15OAR4320071.
    Beschreibung: 2023-02-01
    Schlagwort(e): Indian Ocean ; Eddies ; Frontogenesis/frontolysis ; Fronts ; Lagrangian circulation/transport ; Ocean circulation ; Ocean dynamics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-02-01
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(17), (2022): 5465-5482, https://doi.org/10.1175/jcli-d-21-0671.1.
    Beschreibung: Understanding the contribution of ocean circulation to glacial–interglacial climate change is a major focus of paleoceanography. Specifically, many have tried to determine whether the volumes and depths of Antarctic- and North Atlantic–sourced waters in the deep ocean changed at the Last Glacial Maximum (LGM; ∼22–18 kyr BP) when atmospheric pCO2 concentrations were 100 ppm lower than the preindustrial. Measurements of sedimentary geochemical proxies are the primary way that these deep ocean structural changes have been reconstructed. However, the main proxies used to reconstruct LGM Atlantic water mass geometry provide conflicting results as to whether North Atlantic–sourced waters shoaled during the LGM. Despite this, a number of idealized modeling studies have been advanced to describe the physical processes resulting in shoaled North Atlantic waters. This paper aims to critically assess the approaches used to determine LGM Atlantic circulation geometry and lay out best practices for future work. We first compile existing proxy data and paleoclimate model output to deduce the processes responsible for setting the ocean distributions of geochemical proxies in the LGM Atlantic Ocean. We highlight how small-scale mixing processes in the ocean interior can decouple tracer distributions from the large-scale circulation, complicating the straightforward interpretation of geochemical tracers as proxies for water mass structure. Finally, we outline promising paths toward ascertaining the LGM circulation structure more clearly and deeply.
    Beschreibung: S.K.H. was supported by the Investment in Science Fund at WHOI and the John E. and Anne W. Sawyer Endowed Fund in Support of Scientific Staff. F.J.P. was supported by a Stanback Postdoctoral Fellowship at Caltech.
    Beschreibung: 2023-02-01
    Schlagwort(e): Diapycnal mixing ; Meridional overturning circulation ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2491-2506, doi:10.1175/JPO-D-20-0056.1.
    Beschreibung: An idealized two-layer shallow water model is applied to the study of the dynamics of the Arctic Ocean halocline. The model is forced by a surface stress distribution reflective of the observed wind stress pattern and ice motion and by an inflow representing the flow of Pacific Water through Bering Strait. The model reproduces the main elements of the halocline circulation: an anticyclonic Beaufort Gyre in the western basin (representing the Canada Basin), a cyclonic circulation in the eastern basin (representing the Eurasian Basin), and a Transpolar Drift between the two gyres directed from the upwind side of the basin to the downwind side of the basin. Analysis of the potential vorticity budget shows a basin-averaged balance primarily between potential vorticity input at the surface and dissipation at the lateral boundaries. However, advection is a leading-order term not only within the anticyclonic and cyclonic gyres but also between the gyres. This means that the eastern and western basins are dynamically connected through the advection of potential vorticity. Both eddy and mean fluxes play a role in connecting the regions of potential vorticity input at the surface with the opposite gyre and with the viscous boundary layers. These conclusions are based on a series of model runs in which forcing, topography, straits, and the Coriolis parameter were varied.
    Beschreibung: This study was supported by National Science Foundation Grant OPP-1822334. Comments and suggestions from two anonymous referees greatly helped to improve the paper.
    Beschreibung: 2021-02-17
    Schlagwort(e): Eddies ; Ekman pumping/transport ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Shallow-water equations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2022-05-27
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3235–3251, https://doi.org/10.1175/JPO-D-20-0095.1.
    Beschreibung: The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
    Beschreibung: Funding for the study was provided by National Science Foundation (NSF) Grants OCE-1259618, OCE-1756361, and OCE-1558742. The German research cruises were financially supported through various EU Projects (e.g. THOR, NACLIM) and national projects (most recently TRR 181 “Energy Transfer in Atmosphere and Ocean” funded by the German Research Foundation and RACE II “Regional Atlantic Circulation and Global Change” funded by the German Federal Ministry for Education and Research). GWKM acknowledges the support of the Natural Sciences and Engineering Research Council of Canada. LP was supported by NSF Grant OCE-1657870.
    Schlagwort(e): Currents ; Instability ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2022-05-27
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(3), (2021): 955–973, https://doi.org/10.1175/JPO-D-20-0240.1.
    Beschreibung: Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of freshwater enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much freshwater is mixed into the overturning circulation’s deep limb in the present day. To constrain these freshwater pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Freshwater sources are split into oceanic Polar Waters from the Arctic and surface freshwater fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv (1 Sv ≡ 106 m3 s−1) of the total 110 mSv of surface freshwater fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic freshwater outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland.
    Beschreibung: We gratefully acknowledge the U.S. National Science Foundation: this work was supported by Grants OCE-1258823, OCE-1756272, OCE-1948335, and OCE-2038481. L.H.S. thanks the U.S. Norway Fulbright Foundation for the Norwegian Arctic Chair Grant 2019-20 that made the visit to Scripps Institution of Oceanography possible. N.P.H. acknowledges support by the U.K. Natural Environment Research Council (NERC) National Capability program CLASS (NE/R015953/1), and Grants U.K.-OSNAP (NE/K010875/1, NE/K010875/2) and U.K.-OSNAP Decade (NE/T00858X/1). We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6.
    Schlagwort(e): Arctic ; North Atlantic Ocean ; Conservation equations ; Meridional overturning circulation ; Ocean circulation ; Inverse methods
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liang, Y., Kwon, Y., & Frankignoul, C. Autumn Arctic Pacific sea ice dipole as a source of predictability for subsequent spring Barents Sea ice condition. Journal of Climate, 34(2), (2021): 787-804, https://doi.org/10.1175/JCLI-D-20-0172.1.
    Beschreibung: This study uses observational and reanalysis datasets in 1980–2016 to show a close connection between a boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following spring. The September–October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April–May BS sea ice variations (r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have significant prediction skills with 0.54–0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggested to involve positive stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The migration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation–like pattern in the troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase.
    Beschreibung: This study is supported by NSF’s Office of Polar Programs (Grant 1736738). We also acknowledge support by the Blue-Action project (European Union’s Horizon 2020 research and innovation programme, Grant 727852).
    Schlagwort(e): Arctic ; Sea ice ; Atmospheric circulation ; Ocean circulation ; Seasonal forecasting
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(9), (2020): 3845-3862, doi:10.1175/JCLI-D-19-0215.1.
    Beschreibung: The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.
    Beschreibung: The authors gratefully acknowledge support from the Physical Oceanography Program of the U.S. National Science Foundation (Awards OCE-1756143 and OCE-1537136) and the Climate Program Office of the National Oceanic and Atmospheric Administration (Award NA15OAR4310088). Gratitude is extended to Claus Böning and Arne Biastoch who shared ORCA025 output. S. Zou thanks F. Li, M. Buckley, and L. Li for helpful discussions. We also thank three anonymous reviewers for helpful suggestions.
    Schlagwort(e): Deep convection ; Ocean circulation ; Thermocline circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 679-694, doi:10.1175/JPO-D-19-0218.1.
    Beschreibung: The zonally integrated flow in a basin can be separated into the divergent/nondivergent parts, and a uniquely defined meridional overturning circulation (MOC) can be calculated. For a basin with significant volume exchange at zonal open boundaries, this method is competent in removing the components associated with the nonzero source terms due to zonal transports at open boundaries. This method was applied to the zonally integrated flow in the Indian Ocean basin extended all the way to the Antarctic by virtue of the ECCO dataset. The contributions due to two major zonal flow systems at open boundaries, the Indonesian Throughflow (ITF) and the Antarctic Circumpolar Current (ACC), were well separated from the rotational flow component, and a nondivergent overturning circulation pattern was identified. Comparisons with previous studies on the MOC of the Indian Ocean in different seasons showed overall consistency but with refinements in details to the south of the entry of the ITF, reflecting the influence of ITF on the MOC pattern in the domain. Other options of decomposition are also examined.
    Beschreibung: LH was supported by the National Basic Research Program of China through Grant 2019YFA0606703 and “The Fundamental Research Funds of Shandong University” (2019GN051). The authors thank the anonymous reviewers and the editor for their constructive comments. Code availability: The Matlab code that performs the decomposition and produces some figures in this paper is available at https://github.com/lei-han-SDU/IMOC/.
    Beschreibung: 2020-09-02
    Schlagwort(e): Meridional overturning circulation ; Ocean circulation ; Streamfunction
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Beschreibung: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Beschreibung: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Schlagwort(e): Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2781-2797, doi: 10.1175/JPO-D-19-0111.1.
    Beschreibung: To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.
    Beschreibung: We thank Alonso Hernández-Guerra, M. Dolores Pérez-Hernández, and María Casanova-Masjoan for providing the inverse model results from Casanova-Masjoan et al. (2018). The A22 section is part of the WOCE/CLIVAR observing effort, with all data available at http://cchdo.ucsd.edu/. We thank Carl Wunsch, Patrick Heimbach, Chris Hill, and Diana Lees Spiegel for their assistance with the ECCO fields. The state estimates were provided by the ECCO Consortium for Estimating the Circulation and Climate of the Ocean funded by the National Oceanographic Partnership Program (NOPP) and can be downloaded at http://www.ecco-group.org/products.htm. The citable URL for the ECCO version 4 release 2 product is http://hdl.handle.net/1721.1/102062. We are grateful to Joseph Pedlosky and Glenn Flierl for their comments on an earlier version of this work. IALB and JMT were supported financially by U.S. NSF Grants OCE-0726720, 1332667, and 1332834. MS was supported by the U.S. NASA Sea Level Change Team (Contract NNX14AJ51G) and through the ECCO Consortium funding via the Jet Propulsion Laboratory. We thank two anonymous reviewers, whose thoughtful comments led to improvements.
    Beschreibung: 2020-04-17
    Schlagwort(e): North Atlantic Ocean ; Barotropic flows ; Boundary currents ; Ocean circulation ; Gyres ; Vorticity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(24), (2019): 8449-8463, doi: 10.1175/JCLI-D-19-0252.1.
    Beschreibung: A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.
    Beschreibung: MAS was supported by the National Science Foundation under Grant OPP-1822334. Comments and suggestions from Michael Steele, Gianluca Meneghello, and an anonymous reviewer helped to clarify the work.
    Beschreibung: 2020-05-15
    Schlagwort(e): Arctic ; Sea ice ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2), (2020): 455-469, doi:10.1175/JPO-D-19-0190.1.
    Beschreibung: The mechanisms by which time-dependent wind stress anomalies at midlatitudes can force variability in the meridional overturning circulation at low latitudes are explored. It is shown that winds are effective at forcing remote variability in the overturning circulation when forcing periods are near the midlatitude baroclinic Rossby wave basin-crossing time. Remote overturning is required by an imbalance in the midlatitude mass storage and release resulting from the dependence of the Rossby wave phase speed on latitude. A heuristic theory is developed that predicts the strength and frequency dependence of the remote overturning well when compared to a two-layer numerical model. The theory indicates that the variable overturning strength, relative to the anomalous Ekman transport, depends primarily on the ratio of the meridional spatial scale of the anomalous wind stress curl to its latitude. For strongly forced systems, a mean deep western boundary current can also significantly enhance the overturning variability at all latitudes. For sufficiently large thermocline displacements, the deep western boundary current alternates between interior and near-boundary pathways in response to fluctuations in the wind, leading to large anomalies in the volume of North Atlantic Deep Water stored at midlatitudes and in the downstream deep western boundary current transport.
    Beschreibung: MAS and DN were supported by the National Science Foundation under Grant OCE-1634468.
    Beschreibung: 2020-11-10
    Schlagwort(e): Meridional overturning circulation ; Ocean circulation ; Rossby waves ; Thermocline circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Vage, K., Pickart, R. S., Valdimarsson, H., Torres, D. J., & Jonsson, S. The emergence of the North Icelandic Jet and its evolution from northeast Iceland to Denmark Strait. Journal of Physical Oceanography, 49(10), (2019): 2499-2521, doi:10.1175/JPO-D-19-0088.1.
    Beschreibung: The North Icelandic Jet (NIJ) is an important source of dense water to the overflow plume passing through Denmark Strait. The properties, structure, and transport of the NIJ are investigated for the first time along its entire pathway following the continental slope north of Iceland, using 13 hydrographic/velocity surveys of high spatial resolution conducted between 2004 and 2018. The comprehensive dataset reveals that the current originates northeast of Iceland and increases in volume transport by roughly 0.4 Sv (1 Sv ≡ 106 m3 s−1) per 100 km until 300 km upstream of Denmark Strait, at which point the highest transport is reached. The bulk of the NIJ transport is confined to a small area in Θ–S space centered near −0.29° ± 0.16°C in Conservative Temperature and 35.075 ± 0.006 g kg−1 in Absolute Salinity. While the hydrographic properties of this transport mode are not significantly modified along the NIJ’s pathway, the transport estimates vary considerably between and within the surveys. Neither a clear seasonal signal nor a consistent link to atmospheric forcing was found, but barotropic and/or baroclinic instability is likely active in the current. The NIJ displays a double-core structure in roughly 50% of the occupations, with the two cores centered at the 600- and 800-m isobaths, respectively. The transport of overflow water 300 km upstream of Denmark Strait exceeds 1.8 ± 0.3 Sv, which is substantially larger than estimates from a year-long mooring array and hydrographic/velocity surveys closer to the strait, where the NIJ merges with the separated East Greenland Current. This implies a more substantial contribution of the NIJ to the Denmark Strait overflow plume than previously envisaged.
    Beschreibung: Six different research vessels were involved in the collection of the data used in this study: RRS James Clark Ross, R/V Knorr, R/V Bjarni Sæmundsson, R/V Håkon Mosby, NRV Alliance, and R/V Kristine Bonnevie. We thank the captain and crew of each of these vessels for their hard work as well as the many watch standers who have sailed on the cruises and helped collect the measurements. We also thank Frank Bahr for processing the VMADCP data collected on NRV Alliance and Magnús Danielsen for the processing of the hydrographic data collected on R/V Bjarni Sæmundsson. We acknowledge Leah Trafford McRaven for assistance with Fig. 1 and two anonymous reviewers for their helpful comments, which improved the manuscript. Funding for the project was provided by the Bergen Research Foundation Grant BFS2016REK01 (K. Våge and S. Semper), the Norwegian Research Council under Grant Agreement 231647 (K. Våge), and the U.S. National Science Foundation Grants OCE-1259618 and OCE-1756361 (R. S. Pickart and D. J. Torres), as well as OCE-1558742 (R. S. Pickart). The dataset is available on PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.903535.
    Schlagwort(e): Ocean ; Continental shelf/slope ; Ocean circulation ; Transport ; Intermediate waters ; In situ oceanic observations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-26
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2019.
    Beschreibung: Ocean surface transport is at the core of many environmental disasters, including the spread of marine plastic pollution, the Deepwater Horizon oil spill and the Fukushima nuclear contamination. Understanding and predicting flow transport, however, remains a scientific challenge, because it operates on multiple length- and time-scales that are set by the underlying dynamics. Building on the recent emergence of Lagrangian methods, this thesis investigates the present-day abilities to describe and understand the organization of flow transport at the ocean surface, including the abilities to detect the underlying key structures, the regions of stirring and regions of coherence within the flow. Over the past four years, the field of dynamical system theory has adapted several algorithms from unsupervised machine learning for the detection of Lagrangian Coherent Structures (LCS). The robustness and applicability of these tools is yet to be proven, especially for geophysical flows. An updated, parameter-free spectral clustering approach is developed and a noise-based cluster coherence metric is proposed to evaluate the resulting clusters. The method is tested against benchmarks flows of dynamical system theory: the quasi-periodic Bickley jet, the Duffng oscillator and a modified, asymmetric Duffing oscillator. The applicability of this newly developed spectral clustering method, along with several common LCS approaches, such as the Finite-Time Lyapunov Exponent, is tested in several field studies. The focus is on the ability to predict these LCS in submesoscale ocean surface flows, given all the uncertainties of the modeled and observed velocity fields, as well as the sparsity of Lagrangian data. This includes the design and execution of field experiments targeting LCS from predictive models and their subsequent Lagrangian analysis. These experiments took place in Scott Reef, an atoll system in Western Australia, and off the coast of Martha's Vineyard, Massachusetts, two case studies with tidally-driven channel flows. The FTLE and spectral clustering analyses were particularly helpful in describing key transient flow features and how they were impacted by tidal forcing and vertical velocities. This could not have been identified from the Eulerian perspective, showing the utility of the Lagrangian approach in understanding the organization of transport.
    Schlagwort(e): Dissertations, Academic ; Marine pollution ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2127-2140, doi:10.1175/JPO-D-18-0035.1.
    Beschreibung: Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
    Beschreibung: Funding for this project was provided by the National Science Foundation under Grant OCE-1259618.
    Beschreibung: 2019-03-11
    Schlagwort(e): Boundary currents ; Coastal flows ; Instability ; Ocean circulation ; Potential vorticity ; Transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 573-590, doi:10.1175/JPO-D-17-0206.1.
    Beschreibung: Motivated by the proximity of the Northern Recirculation Gyre and the deep western boundary current in the North Atlantic, an idealized model is used to investigate how recirculation gyres and a deep flow along a topographic slope interact. In this two-layer quasigeostrophic model, an unstable jet imposed in the upper layer generates barotropic recirculation gyres. These are maintained by an eddy-mean balance of potential vorticity (PV) in steady state. The authors show that the topographic slope can constrain the northern recirculation gyre meridionally and that the gyre’s adjustment to the slope leads to increased eddy PV fluxes at the base of the slope. When a deep current is present along the topographic slope in the lower layer, these eddy PV fluxes stir the deep current and recirculation gyre waters. Increased proximity to the slope dampens the eddy growth rate within the unstable jet, altering the geometry of recirculation gyre forcing and leading to a decrease in overall eddy PV fluxes. These mechanisms may shape the circulation in the western North Atlantic, with potential feedbacks on the climate system.
    Beschreibung: We gratefully acknowledge an AMS graduate fellowship (IALB) and U.S. National Science Foundation Grants OCE-1332667 and 1332834 (IALB and JMT).
    Beschreibung: 2018-09-06
    Schlagwort(e): Boundary currents ; Meridional overturning circulation ; Mesoscale processes ; Ocean circulation ; Potential vorticity ; Quasigeostrophic models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 739-748, doi:10.1175/JPO-D-17-0089.1.
    Beschreibung: McDougall and Ferrari have estimated the global deep upward diapycnal flow in the boundary layer overlying continental slopes that must balance both downward diapycnal flow in the deep interior and the formation of bottom water around Antarctica. The decrease of perimeter of isopycnal surfaces with depth and the observed decay with height above bottom of turbulent dissipation in the deep ocean play a key role in their estimate. They argue that because the perimeter of seamounts increases with depth, the net effect of mixing around seamounts is to produce net downward diapycnal flow. While this is true along much of a seamount, it is shown here that diapycnal flow of the densest water around the seamount is upward, with buoyancy being transferred from water just above. The same is true for midocean ridges, whose perimeter is constant with depth. It is argued that mixing around seamounts and especially midocean ridges contributes positively to the global deep overturning circulation, reducing the amount of turbulence demanded over the continental slopes to balance the buoyancy budget for the bottom and deep water.
    Beschreibung: This work was supported by National Science Foundation Grant OCE- 1232962.
    Beschreibung: 2018-09-29
    Schlagwort(e): Abyssal circulation ; Boundary currents ; Buoyancy ; Diapycnal mixing ; Mass fluxes/transport ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 643-646, doi:10.1175/JPO-D-17-0240.1.
    Beschreibung: A simple oceanic model is presented for source–sink flow on the β plane to discuss the pathways from source to sink when transport boundary layers have large enough Reynolds numbers to be inertial in their dynamics. A representation of the flow as a Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy-driven circulations in two-dimensional turbulent flows, indicates that even when the source and sink are aligned along the same western boundary the flow must intrude deep into the interior before exiting at the sink. The existence of interior pathways for the flow is thus an intrinsic property of an inertial circulation and is not dependent on particular geographical basin geometry.
    Beschreibung: 2018-09-12
    Schlagwort(e): Abyssal circulation ; Bottom currents ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1831-1848, doi:10.1175/JPO-D-18-0068.1.
    Beschreibung: We present a simplified theory using reduced-gravity equations for North Atlantic Deep Water (NADW) and its variation driven by high-latitude deep-water formation. The theory approximates layer thickness on the eastern boundary with domain-averaged layer thickness and, in tandem with a mass conservation argument, retains fundamental physics for cross-equatorial flows on interannual and longer forcing time scales. Layer thickness anomalies are driven by a time-dependent northern boundary condition that imposes a southward volume flux representative of a variable source of NADW and damped by diapycnal mixing throughout the basin. Moreover, an outflowing southern boundary condition imposes a southward volume flux that generally differs from the volume flux at the northern boundary, giving rise to temporal storage of NADW within the Atlantic basin. Closed form analytic solutions for the amplitude and phase are provided when the variable source of NADW is sinusoidal. We provide a nondimensional analysis that demonstrates that solution behavior is primarily controlled by two parameters that characterize the meridional extent of the southern basin and the width of the basin relative to the equatorial deformation radius. Similar scaling applied to the time-lagged equations of Johnson and Marshall provides a clear connection to their results. Numerical simulations of reduced-gravity equations agree with analytic predictions in linear, turbulent, and diabatic regimes. The theory introduces a simple analytic framework for studying idealized buoyancy- and wind-driven cross-equatorial flows on interannual and longer time scales.
    Beschreibung: This research was supported by the National Science Foundation under Grant OCE- 1634468.
    Beschreibung: 2019-02-15
    Schlagwort(e): North Atlantic Ocean ; Tropics ; Meridional overturning circulation ; Ocean circulation ; Shallow-water equations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Beschreibung: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Beschreibung: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Beschreibung: 2018-10-16
    Schlagwort(e): Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 9881-9901, doi:10.1175/JCLI-D-17-0889.1.
    Beschreibung: The Atlantic meridional overturning circulation and associated poleward heat transport are balanced by northern heat loss to the atmosphere and corresponding water-mass transformation. The circulation of northward-flowing Atlantic Water at the surface and returning overflow water at depth is particularly manifested—and observed—at the Greenland–Scotland Ridge where the water masses are guided through narrow straits. There is, however, a rich variability in the exchange of water masses across the ridge on all time scales. Focusing on seasonal and interannual time scales, and particularly the gateways of the Denmark Strait and between the Faroe Islands and Shetland, we specifically assess to what extent the exchanges of water masses across the Greenland–Scotland Ridge relate to wind forcing. On seasonal time scales, the variance explained of the observed exchanges can largely be related to large-scale wind patterns, and a conceptual model shows how this wind forcing can manifest via a barotropic, cyclonic circulation. On interannual time scales, the wind stress impact is less direct as baroclinic mechanisms gain importance and observations indicate a shift in the overflows from being more barotropically to more baroclinically forced during the observation period. Overall, the observed Greenland–Scotland Ridge exchanges reflect a horizontal (cyclonic) circulation on seasonal time scales, while the interannual variability more represents an overturning circulation.
    Beschreibung: This research was supported by the Research Council of Norway project NORTH (Grant 229763). Additional support for M. A. Spall was provided by National Science Foundation Grant OCE- 1558742, for T. Eldevik and S. Østerhus by the European Union’s Horizon 2020 research and innovation program project Blue-Action (Grant 727852), and for S. Østerhus by the European Framework Programs under Grant Agreement 308299 (NACLIM).
    Schlagwort(e): Ocean circulation ; Thermocline circulation ; Atmosphere-ocean interaction ; North Atlantic Oscillation ; Statistical techniques ; Time series
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2927-2947, doi:10.1175/JPO-D-17-0083.1.
    Beschreibung: Motivated by observations in Hudson shelf valley showing stronger onshore than offshore flows, this study investigates wind-driven flows in idealized shallow shelf valleys. This first part of a two-part sequence focuses on the mechanism of the asymmetrical flow response in a valley to along-shelf winds of opposite directions. Model simulations show that (i) when the wind is in the opposite direction to coastal-trapped wave (CTW) phase propagation, the shelf flow turns onshore in the valley and generates strong up-valley transport and a standing meander on the upstream side (in the sense of CTW phase propagation) of the valley, and (ii) when the wind is in the same direction as CTW phase propagation, the flow forms a symmetric onshore detour pattern over the valley with negligible down-valley transport. Comparison of the modeled upstream meanders in the first scenario with CTW characteristics confirms that the up-valley flow results from CTWs being arrested by the wind-driven shelf flow establishing lee waves. The valley bathymetry generates an initial excessive onshore pressure gradient force that drives the up-valley flow and induces CTW lee waves that sustain the up-valley flow. When the wind-driven shelf flow aligns with CTW phase propagation, the initial disturbance generated in the valley propagates away, allowing the valley flow to adjust to roughly follow isobaths. Because of the similarity in the physical setup, this mechanism of arrested CTWs generating stronger onshore than offshore flow is expected to be applicable to the flow response in slope canyons to along-isobath background flows of opposite directions.
    Beschreibung: WGZ and SJL were supported by the National Science Foundation through GrantOCE1154575.WGZ is also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Beschreibung: 2018-06-08
    Schlagwort(e): Ocean circulation ; Topographic effects ; Transport ; Vertical motion ; Waves, oceanic ; Wind stress
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 339-351, doi:10.1175/JPO-D-16-0165.1.
    Beschreibung: A novel multi-iteration statistical method for studying tracer spreading using drifter data is introduced. The approach allows for the best use of the available drifter data by making use of a simple iterative procedure, which results in the statistically probable map showing the likelihood that a tracer released at some source location would visit different geographical regions, along with the associated arrival travel times. The technique is tested using real drifter data in the North Atlantic. Two examples are considered corresponding to sources in the western and eastern North Atlantic Ocean, that is, Massachusetts Bay–like and Irish Sea–like sources, respectively. In both examples, the method worked well in estimating the statistics of the tracer transport pathways and travel times throughout the entire North Atlantic. The role of eddies versus mean flow is quantified using the same technique, and eddies are shown to significantly broaden the spread of a tracer. The sensitivity of the results to the size of the source domain is investigated and causes for this sensitivity are discussed.
    Beschreibung: This work was supported by the Grant OCE-1356630 from the National Science Foundation (NSF). Rypina also acknowledges NSF Grant OCE-1154641 and NASA Grant NNX14AH29G.
    Beschreibung: 2017-07-31
    Schlagwort(e): Atlantic Ocean ; Mass fluxes/transport ; Ocean circulation ; Trajectories ; Statistics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 633-647, doi:10.1175/JPO-D-16-0089.1.
    Beschreibung: Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.
    Beschreibung: DGE was supported by a Natural Environment Research Council studentship award at the University of Southampton. JMT’s contribution was supported by the U.S. National Science Foundation (Grant OCE-1332667). GF’s contribution was supported by the U.S. National Science Foundation through Grant OCE-0961713 and by the U.S. National Oceanic and Atmospheric Administration through Grant NA10OAR4310135. The contributions of JDZ and AJGN were supported by the NERC Grant ‘‘Climate scale analysis of air and water masses’’ (NE/ K012932/1). ACNG gratefully acknowledges support from the Leverhulme Trust, the Royal Society, and the Wolfson Foundation. LY was supported by NASA Ocean Vector Wind Science Team (OVWST) activities under Grant NNA10AO86G.
    Schlagwort(e): North Atlantic Ocean ; Atmosphere-ocean interaction ; Ekman pumping/transport ; Ocean circulation ; Water masses ; Inverse methods
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-26
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 1982
    Beschreibung: Oceanic fluctuations are dependent on geographical location. Near intense currents, the eddy field is highly energetic and has broad meridional extent. It is likely that the energy arises from instabilities of the intense current. However, the meridional extent of the linearly most unstable modes of such intense jets is much narrower than the observed region of energetic fluctuations. It is proposed here that weaker instabilities, in the linear sense, which are very weakly trapped to the current, may be the dominant waves in the far field. As a preliminary problem, the (barotropic) instability of parallel shear flow on the beta plane is discussed. An infinite zonal flow with a continuous cross-stream velocity gradient is approximated with segments of uniform flow, joined together by segments of uniform potential vorticity. This simplification allows an exact dispersion relation to be found. There are two classes of linearly unstable solutions. One type is trapped to the source of energy and has large growth rates. The second type are weaker instabilities of the shear flow which excite Rossby waves in the far field: the influence of these weaker instabilities extends far beyond that of the most unstable waves. The central focus of the thesis i: the linear stability of thin, twolayer, zonal jets on the beta plane, with both horizontal and vertical shear. The method used for the parallel shear flow is extended to the two-layer flow. Each layer of the jet has uniform velocity in the center, bordered by shear zones with zero potential vorticity gradient. The velocity in each layer outside the jet is constant in latitude. Separate linearly unstable modes arise from horizontal and vertical shear. The energy source for the vertical shear modes is nearly all potential while the source for the horizontal shear modes is both kinetic and potential. The most unstable waves are tightly trapped to the jet, within two or three deformation radii for small but nonzero beta. Rossby waves and baroclinically unstable waves (in the presence of vertical shear) exist outside the jet because of a nonzero potential vorticity gradient there. Weakly growing jet instabilities can force these waves when their phase speeds and wavelengths match. In particular, westward jets and any jets with vertical shear exterior to the jet can radiate in this sense. The radiating modes influence a large region, their decay scales inversely proportional to the growth rate. Two types of radiating instability are found: (1) a subset of the main unstable modes near marginal stability and (2) modes which appear to be destabilized neutral modes. Westward jets have more vigorously unstable radiating modes. Applications of the model are made to the eddy field south of the Gulf Stream, using data from the POLYMODE settings along 55°W and farther into the gyre at MODE. The energy decay scale and the variation of vertical structure with latitude in different frequency bands can be roughly explained by the model. The lower frequency disturbances decay more slowly and become more surface intensified in the far field. These disturbances are identified with the weak, radiating instabilities of the model. The higher frequency disturbances are more trapped and retain their vertical structure as they decay, and are identified with the trapped, strongly unstable modes of the jet.
    Beschreibung: This work was supported by a grant from the National Science Foundation, Office of Atmospheric Science.
    Schlagwort(e): Baroclinicity ; Eddy flux ; Ocean currents ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-26
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Beschreibung: This thesis investigates the evolution of the oceanic lithosphere in a broad sense from formation to subduction, in a focused case at the ridge, and in a focused case proximal to subduction. In general, alteration of the oceanic lithosphere begins at the ridge through focused and diffuse hydrothermal flow, continues off axis through low temperature circulation, and may occur approaching subduction zones as bending related faulting provides fluid pathways. In Chapter 2 I use a dataset of thousands of microearthquakes recorded at the Rainbow massif on the Mid-Atlantic Ridge to characterize the processes which are responsible for the long-term, high-temperature, hydrothermal discharge found hosted in this oceanic core complex. I find that the detachment fault responsible for the uplift of the massif is inactive and that the axial valleys show no evidence for faulting or active magma intrusion. I conclude that the continuous, low-magnitude seismicity located in diffuse pattern in a region with seismic velocities indicating ultramafic host rock suggests that serpentinization may play a role in microearthquake generation but the seismic network was not capable of providing robust focal mechanism solutions to constrain the source characteristics. In Chapter 3 I find that the Juan de Fuca plate, which represents the young/hot end-member of oceanic plates, is lightly hydrated at upper crustal levels except in regions affected by propagator wakes where hydration of lower crust and upper mantle is evident. I conclude that at the subduction zone the plate is nearly dry at upper mantle levels with the majority of water contained in the crust. Finally, in Chapter 4 I examine samples of cretaceous age serpentinite sampled just before subduction at the Puerto Rico Trench. I show that these upper mantle rocks were completely serpentinized under static conditions at the Mid-Atlantic Ridge. Further, they subsequently underwent 100 Ma of seafloor weathering wherein the alteration products of serpentinization themselves continue to be altered. I conclude that complete hydration of the upper mantle is not the end point in the evolution of oceanic lithosphere as it spreads from the axis to subduction.
    Beschreibung: Funding was provided by the National Science Foundation through grants OCE-1029305 and OCE-0961680, the Deep Ocean Exploration Institute - Ocean Ridge Initiative, and by the WHOI Academic Programs office
    Schlagwort(e): Lithosphere ; Ocean circulation ; Earthquakes ; Marcus G. Langseth (Ship) Cruise MGL1305 ; Marcus G. Langseth (Ship) Cruise MGL1211 ; Oceanus (Ship : 1975-) Cruise OC1206
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 1679-1691, doi:10.1175/JTECH-D-16-0162.1.
    Beschreibung: For direction-finding high-frequency (HF) radar systems, the correct separation of backscattered spectral energy due to Bragg resonant waves from that due to more complex double-scattering represents a critical first step toward attaining accurate estimates of surface currents from the range-dependent radar backscatter. Existing methods to identify this “first order” region of the spectra, generally sufficient for lower-frequency radars and low-velocity or low-surface gravity wave conditions, are more likely to fail in higher-frequency systems or locations with more variable current, wave, or noise regimes, leading to elevated velocity errors. An alternative methodology is presented that uses a single and globally relevant smoothing length scale, careful pretreatment of the spectra, and marker-controlled watershed segmentation, an image processing technique, to separate areas of spectral energy due to surface currents from areas of spectral energy due to more complex scattering by the wave field or background noise present. Applied to a number of HF radar datasets with a range of operating frequencies and characteristic issues, the new methodology attains a higher percentage of successful first-order identification, particularly during complex current and wave conditions. As operational radar systems continue to expand to more systematically cover areas of high marine traffic, close approaches to ports and harbors, or offshore energy installations, use of this type of updated methodology will become increasingly important to attain accurate current estimates that serve both research and operational interests.
    Beschreibung: This analysis was supported by internal funds from the Woods Hole Oceanographic Institution.
    Beschreibung: 2018-02-11
    Schlagwort(e): Ocean circulation ; Waves, oceanic ; Data processing ; Radars/Radar observations ; Remote sensing ; Pattern detection
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Beschreibung: The daily heating of the ocean by the sun can create a stably stratified near-surface layer when the winds are slight and solar insolation is strong. This type of shallow stable layer is called a Diurnal Warm Layer (DWL). This thesis examines the physics and dynamics of DWLs from observations of the subtropical North Atlantic Ocean associated with the Salinity Processes in the Upper ocean Regional Study (SPURS-I). Momentum transferred from the atmosphere to the ocean through wind stress becomes trapped within the DWL, generating shear across the layer. During SPURS-I, strong diurnal shear across the DWL was coincident with enhanced turbulent kinetic energy (TKE) dissipation (𝜖, 𝜖 〉 10−5 W/kg) observed from glider microstructure profiles of the near-surface. However, a scale analysis demonstrated that surface forcing, including diurnal shear, could not be the sole mechanism for the enhanced TKE dissipation. High-frequency internal waves (𝜔 ≫ 𝑓) were observed in the upper ocean during the daytime within the DWL. Internal waves are able to transfer energy from the deep ocean into the DWL through the unstratified remnant mixed layer, which is the intervening layer between the DWL and seasonal thermocline. As the strength of the stratification of the DWL increases, so does the shear caused by the tunneling internal waves. The analysis demonstrates that internal waves can generate strong enough shear to cause a shear-induced instability, and are a plausible source of the observed enhanced TKE dissipation. Vertically-varying horizontal transport across the upper ocean occurs because a diurnal current exists within the DWL, but not in the unstratified remnant mixed layer below. Therefore, when a DWL is present, the water within DWL is horizontally transported a different distance than the water below. Coupled with nocturnal convection that mixes the DWL with the unstratified layer at night, this cycle is a mechanism for submesoscale (1-10 km) lateral diffusion across the upper ocean. Estimates of a horizontal diffusion coefficient are similar in magnitude to current estimates of submesoscale diffusion based on observations, and are likely an important source of horizontal diffusion in the upper ocean.
    Beschreibung: Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program and the National Science Foundation under Grant No. OCE-1129646. The collection and analysis of data from the SPURS-I central mooring were supported under National Aeronautics and Space Administration (NASA) Grant No. NNX11AE84G and NNX14AH38G.
    Schlagwort(e): SPURS: Salinity Processes in the Upper Ocean Regional Study ; Ocean circulation ; Ocean waves ; Ocean currents ; Diffusion ; Knorr (Ship : 1970-) Cruise KN209 ; Endeavor (Ship: 1976-) Cruise EN522
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.
    Beschreibung: The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
    Beschreibung: This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.
    Beschreibung: 2016-06-01
    Schlagwort(e): Circulation/ Dynamics ; Abyssal circulation ; Boundary currents ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3011-3029, doi:10.1175/JPO-D-15-0248.1.
    Beschreibung: Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.
    Beschreibung: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 (SFB754) ‘‘Climate–Biogeochemistry Interactions in the Tropical Ocean’’ and through several research cruises with R/V Meteor, R/V Maria S. Merian, andR/VL’Atalante by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B) and SACUS (03G0837A) and by European Union 7th Framework Programme (FP7 2007–13) under Grant Agreement 603521 PREFACE project.
    Schlagwort(e): Atlantic Ocean ; Ocean circulation ; In situ oceanic observations ; Ocean models ; Seasonal cycle ; Tropical variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2016
    Beschreibung: Since the Last Glacial Maximum (LGM, ~ 20,000 years ago) air temperatures warmed, sea level rose roughly 130 meters, and atmospheric concentrations of carbon dioxide increased. This thesis combines global models and paleoceanographic observations to constrain the ocean’s role in storing and transporting heat, salt, and other tracers during this time, with implications for understanding how the modern ocean works and how it might change in the future. • By combining a kinematic ocean model with “upstream” and “downstream” deglacial oxygen isotope time series from benthic and planktonic foraminifera, I show that the data are in agreement with the modern circulation, quantify their power to infer circulation changes, and propose new data locations. • An ocean general circulation model (the MITgcm) constrained to fit LGM sea surface temperature proxy observations reveals colder ocean temperatures, greater sea ice extent, and changes in ocean mixed layer depth, and suggests that some features in the data are not robust. • A sensitivity analysis in the MITgcm demonstrates that changes in winds or in ocean turbulent transport can explain the hypothesis that the boundary between deep Atlantic waters originating from Northern and Southern Hemispheres was shallower at the LGM than it is today.
    Beschreibung: Support for this work came from an MIT Presidential Fellowship, an NSF Graduate Research Fellowship, and grants NASA NNX12AJ93G – Gravity data for ocean circulation and climate studies, NSF OCE-0961713 – Collaborative Research: The Physics and Statistics of Global Sea Level Change, NSF OCE-1060735 – Collaborative Research: Beyond the Instrumental Record - the Ocean Circulation at the last Glacial maximum and the deglacial sequence, and NASA NNX08AR33G – Application of Satellite Altimetry Gravity Winds and in Situ Data to Problems of the Ocean Circulation.
    Schlagwort(e): Global warming ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3263-3278, doi:10.1175/JPO-D-16-0091.1.
    Beschreibung: The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equilibration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the halocline dynamics requires the eddy diffusivity of 300 ± 200 m2 s−1, which is lower than what is used in most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes and the Ekman pumping provide equally important contributions to the FWC variability. However, only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturbations being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in observations as well as in numerical models.
    Beschreibung: GEMacknowledges the support from theHowland Postdoctoral Program Fund at WHOI and the Stanback Fellowship Fund at Caltech.MAS was supported by NSF Grants PLR-1415489 and OCE-1232389. AFT acknowledges support from NASA Award NNN12AA01C.
    Beschreibung: 2017-04-20
    Schlagwort(e): Arctic ; Eddies ; Ekman pumping/transport ; Large-scale motions ; Ocean circulation ; Stability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8574–8584, doi:10.1175/JCLI-D-14-00809.1.
    Beschreibung: The subsurface ocean response to anthropogenic climate forcing remains poorly characterized. From the Coupled Model Intercomparison Project (CMIP), a robust response of the lower thermocline is identified, where the warming is considerably weaker in the subtropics than in the tropics and high latitudes. The lower thermocline change is inversely proportional to the thermocline depth in the present climatology. Ocean general circulation model (OGCM) experiments show that sea surface warming is the dominant forcing for the subtropical gyre change in contrast to natural variability for which wind dominates, and the ocean response is insensitive to the spatial pattern of surface warming. An analysis based on a ventilated thermocline model shows that the pattern of the lower thermocline change can be interpreted in terms of the dynamic response to the strengthened stratification and downward heat mixing. Consequently, the subtropical gyres become intensified at the surface but weakened in the lower thermcline, consistent with results from CMIP experiments.
    Beschreibung: The work was supported by the National Basic Research Program of China (2012CB955600), the National Natural Science Foundation of China (41125019, 41206021), and the U.S. National Science Foundation (AGS 1249145, 1305719).
    Beschreibung: 2016-05-01
    Schlagwort(e): Circulation/ Dynamics ; Ocean circulation ; Physical Meteorology and Climatology ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 966–987, doi:10.1175/JPO-D-14-0110.1.
    Beschreibung: A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.
    Beschreibung: AM was supported by the joint CSIRO–University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. BMS was supported by the Australian Climate Change Science Program, jointly funded by the Department of the Environment and CSIRO. KLPs salary support was provided by Woods Hole Oceanographic Institution bridge support funds.
    Beschreibung: 2015-10-01
    Schlagwort(e): Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Fronts ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2598–2620, doi:10.1175/JPO-D-14-0249.1.
    Beschreibung: Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.
    Beschreibung: WGZ and GGG were supported by the National Science Foundation through Grant OCE-1129125.
    Beschreibung: 2016-04-01
    Schlagwort(e): Circulation/ Dynamics ; Instability ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Fronts ; Models and modeling ; Numerical analysis/modeling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015):1189–1204, doi:10.1175/JPO-D-14-0122.1.
    Beschreibung: Winter outcropping of the Eighteen Degree Water (EDW) and its subsequent dispersion are studied using a ° eddy-resolving simulation of the Family of Linked Atlantic Modeling Experiments (FLAME). Outcropped EDW columns in the model simulations are detected in each winter from 1990 to 1999, and particles are deployed in the center of each outcropped EDW column. Subsequently, the trajectories of these particles are calculated for the following 5 yr. The particles slowly spread away from the outcropping region into the nonoutcropping/subducted EDW region south of ~30°N and eventually to the non-EDW region in the greater subtropical gyre. Approximately 30% of the particles are found in non-EDW waters 1 yr after deployment; after 5 yr, only 25% of the particles are found within EDW. The reoutcropping time is defined as the number of years between when a particle is originally deployed in an outcropping EDW column and when that particle is next found in an outcropping EDW column. Of the particles, 66% are found to reoutcrop as EDW in 1 yr, and less than 5% of the particles outcrop in each of the subsequent 4 yr. While the individual trajectories exhibit significant eddy-like motions, the time scale of reoutcropping is primarily set by the mean circulation. The dominance of reoutcropping in 1 yr suggests that EDW outcropping contributes considerably to the persistence of surface temperature anomalies from one winter to the next, that is, the reemergence of winter sea surface temperature anomalies.
    Beschreibung: We gratefully acknowledge the support from the NSF OCE Physical Oceanography program (NSF OCE-0961090 to Y-OK and J-JP; NSF OCE-0960776 to MSL and SFG; and NSF OCE-1242989 to Y-OK).
    Beschreibung: 2015-10-01
    Schlagwort(e): Circulation/ Dynamics ; Ocean circulation ; Atm/Ocean Structure/ Phenomena ; Water masses
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1410–1425, doi:10.1175/JPO-D-14-0192.1.
    Beschreibung: The west-to-east crossover of boundary currents has been seen in mean circulation schemes from several past models of the Red Sea. This study investigates the mechanisms that produce and control the crossover in an idealized, eddy-resolving numerical model of the Red Sea. The authors also review the observational evidence and derive an analytical estimate for the crossover latitude. The surface buoyancy loss increases northward in the idealized model, and the resultant mean circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In the midbasin, the northward surface flow crosses from the western boundary to the eastern boundary. Numerical experiments with different parameters indicate that the crossover latitude of the boundary currents changes with f0, β, and the meridional gradient of surface buoyancy forcing. In the analytical estimate, which is based on quasigeostrophic, β-plane dynamics, the crossover is predicted to lie at the latitude where the net potential vorticity advection (including an eddy component) is zero. Various terms in the potential vorticity budget can be estimated using a buoyancy budget, a thermal wind balance, and a parameterization of baroclinic instability.
    Beschreibung: This work is supported by Award USA 00002, KSA 00011, and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST), by National Science Foundation Grants OCE0927017, OCE1154641, and OCE85464100, and by the Woods Hole Oceanographic Institution Academic Program Office.
    Beschreibung: 2015-11-01
    Schlagwort(e): Circulation/ Dynamics ; Boundary currents ; Buoyancy ; Ocean circulation ; Ocean dynamics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2806–2819, doi:10.1175/JPO-D-15-0061.1.
    Beschreibung: An eastward-flowing current of a homogeneous fluid with velocity U, contained in a channel of width L, impinges on an island of width of O(L), and the resulting interaction and dynamics are studied for values of the supercriticality parameter, b = βL2/U, both larger and smaller than π2. The former case is subcritical with respect to Rossby waves, and the latter is supercritical. The nature of the flow field depends strongly on b, and in particular, the nature of the flow around the island and the proportion of the flow passing to the north or south of the island are sensitive to b and to the position of the island in the channel. The problem is studied analytically in a relatively simple, nonlinear quasigeostrophic and adiabatic framework and numerically with a shallow-water model that allows a qualitative extension of the results to the equator. Although the issues involved are motivated by the interaction of the Equatorial Undercurrent and the Galapagos Islands, the analysis presented here focuses on the fundamental issue of the distinctive nature of the flow as a function of Rossby wave criticality.
    Beschreibung: Supported by the National Science Foundation Grant OCE-0959381.
    Beschreibung: 2016-05-01
    Schlagwort(e): Circulation/ Dynamics ; Ocean circulation ; Ocean dynamics ; Waves, oceanic
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 3033–3053, doi:10.1175/JPO-D-13-0227.1.
    Beschreibung: The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.
    Beschreibung: This study has been supported by National Science Foundation (OCE0927017 and ARC1107412).
    Beschreibung: 2015-06-01
    Schlagwort(e): Circulation/ Dynamics ; Boundary currents ; Channel flows ; Meridional overturning circulation ; Ocean circulation ; Topographic effects
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 778–791, doi:10.1175/JPO-D-14-0164.1.
    Beschreibung: This study examines anisotropic transport properties of the eddying North Atlantic flow, using an idealized model of the double-gyre oceanic circulation and altimetry-derived velocities. The material transport by the time-dependent flow (quantified by the eddy diffusivity tensor) varies geographically and is anisotropic, that is, it has a well-defined direction of the maximum transport. One component of the time-dependent flow, zonally elongated large-scale transients, is particularly important for the anisotropy, as it corresponds to primarily zonal material transport and long correlation time scales. The importance of these large-scale zonal transients in the material distribution is further confirmed with simulations of idealized color dye tracers, which has implications for parameterizations of the eddy transport in non-eddy-resolving models.
    Beschreibung: IK would like to acknowledge support through the NSF Grant OCE-1154923. IR was supported by the NSF OCE-1154641 and NASA Grant NNX14AH29G.
    Beschreibung: 2015-09-01
    Schlagwort(e): Circulation/ Dynamics ; Eddies ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation ; Models and modeling ; Tracers
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 9359–9376, doi:10.1175/JCLI-D-14-00228.1.
    Beschreibung: Multidecadal variability of the Atlantic meridional overturning circulation (AMOC) is examined based on a comparison of the AMOC streamfunctions in depth and in density space, in a 700-yr present-day control integration of the fully coupled Community Climate System Model, version 3. The commonly used depth-coordinate AMOC primarily exhibits the variability associated with the deep equatorward transport that follows the changes in the Labrador Sea deep water formation. On the other hand, the density-based AMOC emphasizes the variability associated with the subpolar gyre circulation in the upper ocean leading to the changes in the Labrador Sea convection. Combining the two representations indicates that the ~20-yr periodicity of the AMOC variability in the first half of the simulation is primarily due to an ocean-only mode resulting from the coupling of the deep equatorward flow and the upper ocean gyre circulation near the Gulf Stream and North Atlantic Current. In addition, the density-based AMOC reveals a gradual change in the deep ocean associated with cooling and increased density, which is likely responsible for the transition of AMOC variability from strong ~20-yr oscillations to a weaker red noise–like multidecadal variability.
    Beschreibung: Support from the NOAA Climate Program Office (Grant NA10OAR4310202 and NA13OAR4310139) and NSF EaSM2 (OCE1242989) is gratefully acknowledged.
    Beschreibung: 2015-06-15
    Schlagwort(e): North Atlantic Ocean ; Meridional overturning circulation ; Ocean circulation ; Thermocline circulation ; Climate variability ; Multidecadal variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2014
    Beschreibung: This thesis explores the buoyancy-driven circulation in the Red Sea, using a combination of observations, as well as numerical modeling and analytical method. The first part of the thesis investigates the formation mechanism and spreading of Red Sea Overflow Water (RSOW) in the Red Sea. The preconditions required for open-ocean convection, which is suggested to be the formation mechanism of RSOW, are examined. The RSOW is identified and tracked as a layer with minimum potential vorticity and maximum chlorofluorocarbon-12. The pathway of the RSOW is also explored using numerical simulation. If diffusivity is not considered, the production rate of the RSOW is estimated to be 0.63 Sv using Walin’s method. By comparing this 0.63 Sv to the actual RSOW transport at the Strait of Bab el Mandeb, it is implied that the vertical diffusivity is about 3.4 x 10-5m2 s-1 . The second part of the thesis studies buoyancy-forced circulation in an idealized Red Sea. Buoyancy-loss driven circulation in marginal seas is usually dominated by cyclonic boundary currents on f-plane, as suggested by previous observations and numerical modeling. This thesis suggests that by including β-effect and buoyancy loss that increases linearly with latitude, the resultant mean Red Sea circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In mid-basin, the northward surface flow crosses from the western boundary to the eastern boundary. The observational support is also reviewed. The mechanism that controls the crossover of boundary currents is further explored using an ad hoc analytical model based on PV dynamics. This ad hoc analytical model successfully predicts the crossover latitude of boundary currents. It suggests that the competition between advection of planetary vorticity and buoyancy-loss related term determines the crossover latitude. The third part of the thesis investigates three mechanisms that might account for eddy generation in the Red Sea, by conducting a series of numerical experiments. The three mechanisms are: i) baroclinic instability; ii) meridional structure of surface buoyancy losses; iii) cross-basin wind fields.
    Beschreibung: This work is supported by Award Nos. USA 00002, KSA 00011 and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST) , National Science Foundation OCE0927017, and WHOI Academic Program Office.
    Schlagwort(e): Ocean circulation ; Ocean currents ; Aegaeo (Ship) Cruise
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Beschreibung: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Beschreibung: This research was supported in part by NSF Grant OCE Grant 0925061.
    Schlagwort(e): Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Beschreibung: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Beschreibung: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Beschreibung: 2014-09-01
    Schlagwort(e): Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2593–2616, doi:10.1175/JPO-D-13-0120.1.
    Beschreibung: The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
    Beschreibung: NSF support through Awards OCE-1233832, OCE-1232962, and OCE-1048926 is gratefully acknowledged.
    Beschreibung: 2015-04-01
    Schlagwort(e): Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Eddies ; Ocean circulation ; Turbulence ; Physical Meteorology and Climatology ; Isopycnal mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 3596–3618, doi:10.1175/JCLI-D-13-00070.1.
    Beschreibung: Estimates of the recent mean and time varying water mass transformation rates associated with North Atlantic surface-forced overturning are presented. The estimates are derived from heat and freshwater surface fluxes and sea surface temperature fields from six atmospheric reanalyses—the Japanese 25-yr Reanalysis (JRA), the NCEP–NCAR reanalysis (NCEP1), the NCEP–U.S. Department of Energy (DOE) reanalysis (NCEP2), the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-I), the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Reanalysis for Research and Applications (MERRA)—together with sea surface salinity fields from two globally gridded datasets (World Ocean Atlas and Met Office EN3 datasets). The resulting 12 estimates of the 1979–2007 mean surface-forced streamfunction all depict a subpolar cell, with maxima north of 45°N, near σ = 27.5 kg m−3, and a subtropical cell between 20° and 40°N, near σ = 26.1 kg m−3. The mean magnitude of the subpolar cell varies between 12 and 18 Sv (1 Sv ≡ 106 m3 s−1), consistent with estimates of the overturning circulation from subsurface observations. Analysis of the thermal and haline components of the surface density fluxes indicates that large differences in the inferred low-latitude circulation are largely a result of the biases in reanalysis net heat flux fields, which range in the global mean from −13 to 19 W m−2. The different estimates of temporal variability in the subpolar cell are well correlated with each other. This suggests that the uncertainty associated with the choice of reanalysis product does not critically limit the ability of the method to infer the variability in the subpolar overturning. In contrast, the different estimates of subtropical variability are poorly correlated with each other, and only a subset of them captures a significant fraction of the variability in independently estimated North Atlantic Subtropical Mode Water volume.
    Beschreibung: JPG is funded by UK Natural Environment Research Council New Investigator Grant NE/I001654/1. Y-OK was supported by the U.S. National Science Foundation under Grant OCE-0424492. RJB is supported by a fellowship from the UK National Centre for Earth Observation.
    Beschreibung: 2014-11-15
    Schlagwort(e): Atmosphere-ocean interaction ; Meridional overturning circulation ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2498–2523, doi:10.1175/JPO-D-13-0183.1.
    Beschreibung: This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows. It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.
    Beschreibung: This work was supported by the U.S. National Science Foundation.
    Beschreibung: 2015-03-01
    Schlagwort(e): Circulation/ Dynamics ; Ocean circulation ; Rossby waves ; Mathematical and statistical techniques ; Inverse methods ; Variability ; Oceanic variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1996
    Beschreibung: This thesis addresses the question of how a highly energetic eddy field could be generated in the interior of the ocean away from the swift boundary currents. The energy radiation due to the temporal growth of non-trapped (radiating) disturbances in such a boundary current is thought to be one of the main sources for the described variability. The problem of stability of an energetic current, such as the Gulf Stream, is formulated. The study then focuses on the ability of the current to support radiating instabilities capable of significant penetration into the far-field and their development with time. The conventional model of the Gulf Stream as a zonal current is extended to allow the jet axis to make an angle to a latitude circle. The linear stability of such a nonzonal flow, uniform in the along-jet direction on a beta-plane, is first studied. The stability computations are performed for piece-wise constant and continuous velocity profiles. New stability properties of nonzonal jets are discussed. In particular, the destabilizing effect of the meridional tilt of the jet axis is demonstrated. The radiating properties of nonzonal currents are found to be very different from those of zonal currents. In particular, purely zonal flows do not support radiating instabilities, whereas flows with a meridional component are capable of radiating long and slowly growing waves. The nonlinear terms are then included in the consideration and the effects of the nonlinear interactions on the radiating properties of the solution are studied in detail. For these purposes, the efficient numerical code for solving equation for the QG potential vorticity with open boundary conditions of Orlanski's type is constructed. The results show that even fast growing linear solutions, which are trapped during the linear stage of developement, can radiate energy in the nonlinear regime if the basic current is nonzonal. The radiation starts as soon as the initial fast exponential growth significantly slows. The initial trapping of those solutions is caused by their fast temporal growth. The new mechanism for radiation is related to the nonzonality of a current.
    Beschreibung: This work was supported by NSF Grant OCE 9301845.
    Schlagwort(e): Ocean currents ; Ocean circulation ; Rossby waves ; Turbulence ; Eddies ; Electric conductivity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Beschreibung: Studying oceanic eddies is important for understanding and predicting ocean circulation and climate variability. The central focus of this dissertation is the energy exchange between eddies and mean flow and banded structures in the low-frequency component of the eddy field. A combination of a realistic eddy-permitting ocean state estimate and simplified theoretical models is used to address the following specific questions. (1) What are the major spatial characteristics of eddy-mean flow interaction from an energy perspective? Is eddy-mean flow interaction a local process in most ocean regions? (2) The banded structures in the low-frequency eddy field are termed striations. How much oceanic variability is associated with striations? How does the time-mean circulation, for example a subtropical gyre or constant mean flow, influence the origin and characteristics of striations? How much do striations contribute to the energy budget and tracer mixing?
    Beschreibung: This research was supported by the National Aeronautics and Space Administration contracts NNX09AI87G and NNX08AR33G.
    Schlagwort(e): Eddies ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Beschreibung: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Beschreibung: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Beschreibung: 2013-06-01
    Schlagwort(e): Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2013
    Beschreibung: Between 2002 and 2011 a single mooring was maintained in the core of the Pacific Water boundary current in the Alaskan Beaufort Sea near 152° W. Using velocity and hydrographic data from six year-long deployments during this time period, we examine the interannual variability of the current. It is found that the volume, heat, and freshwater transport have all decreased drastically over the decade, by more than 80%. The most striking changes have occurred during the summer months. Using a combination of weather station data, atmospheric reanalysis fields, and concurrent shipboard and mooring data from the Chukchi Sea, we investigate the physical drivers responsible for these changes. It is demonstrated that an increase in summertime easterly winds along the Beaufort slope is the primary reason for the drop in transport. The intensification of the local winds has in turn been driven by a strengthening of the summer Beaufort High in conjunction with a deepening of the summer Aleutian Low. Since the fluxes of mass, heat, and freshwater through Bering Strait have increased over the same time period, this raises the question as to the fate of the Pacific water during recent years and its impacts. We present evidence that more heat has been fluxed directly into the interior basin from Barrow Canyon rather than entering the Beaufort shelfbreak jet, and this is responsible for a significant portion of the increased ice melt in the Pacific sector of the Arctic Ocean.
    Beschreibung: The majority of the data for this project was funded by grant # ARC-0856244 from the O ce of Polar Programs of the National Science Foundation. My time at WHOI was funded by the United States Navy, the National Science Foundation Graduate Research Fellowship Program and the WHOI Academic Programs O ffice.
    Schlagwort(e): Ocean circulation ; Ocean-atmosphere interaction
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1996
    Beschreibung: A convection experiment was done with a rotating rectangular tank as a model of oceanic meridional overturning circulation. Heat flux was fixed at one bottom end of the tank using an electrical heater. Temperature was fixed at the other end using a cooling plate. All other boundaries were insulated. The cross sections of temperature field were made at several locations. In equilibrium, the heat input to the fluid H was the same as the meridional heat flux (heat flux from the source to the sink), so it was possible to find a scaling law relating H to the temperature difference across the tank ΔT and rotation rate f. The experimental result suggests that the meridional heat transport in the experiment was mostly due to geostrophic flows with a minor correction caused by the bottom friction. If there was no friction, the scaling law from the experiment resembles the one verified in part in the numerical model by Bryan and Cox (1967). Flow visualization and temperature sections showed that there were meridional geostrophic currents that transported heat. When the typical values of the North Atlantic are introduced, the geostrophic scaling law predicts meridional heat flux comparable to that estimated in the North Atlantic when the vertical eddy diffusivity of heat is about 1cm2s-1. Naturally, this experiment is a only crude model of the oceanic convective circulation. We do not claim that the geostrophic scaling applies in detail to the oceans, however, it may have some important use in climate modeling. For example, almost all existing box models and two-dimensional numerical models of ocean circulation use a frictional scaling law for buoyancy transport. A box model with the geostrophic scaling law is shown to be more robust to a change in the boundary forcing so that it is less likely to have a thermohaline catastrophic transition under the present conditions. It is also shown that a restoring boundary condition for salinity introduces stability to a thermal mode circulation, unless the restoring time for salinity is several orders of magnitude larger than that for temperature.
    Beschreibung: This study has been funded by NSF grant number OCE92-01464 and Korean Government Overseas Scholarship Grant.
    Schlagwort(e): Heat ; Rotating masses of fluid ; Ocean circulation ; Ocean temperature ; Thermoclines
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Beschreibung: Large-scale thermal forcing and freshwater fluxes play an essential role in setting temperature and salinity in the ocean. A number of recent estimates of the global oceanic freshwater balance as well as the global oceanic surface net heat flux are used to investigate the effects of heat- and freshwater forcing at the ocean surface. Such forcing induces changes in both density and density-compensated temperature and salinity changes (’spice’). The ratio of the relative contributions of haline and thermal forcing in the mixed layer is maintained by large-scale surface fluxes, leading to important consequences for mixing in the ocean interior. In a stratified ocean, mixing processes can be either along lines of constant density (isopycnal) or across those lines (diapycnal). The contribution of these processes to the total mixing rate in the ocean can be estimated from the large-scale forcing by evaluating the production of thermal variance, salinity variance and temperature-salinity covariance. Here, I use new estimates of surface fluxes to evaluate these terms and combine them to generate estimates of the production of density and spice variance under the assumption of a linear equation of state. As a consequence, it is possible to estimate the relative importance of isopycnal and diapycnal mixing in the ocean. While isopycnal and diapycnal processes occur on very different length scales, I find that the surface-driven production of density and spice variance requires an approximate equipartition between isopycnal and diapycnal mixing in the ocean interior. In addition, consideration of the full nonlinear equation of state reveals that surface fluxes require an apparent buoyancy gain (expansion) of the ocean, which allows an estimate of the amount of contraction on mixing due to cabbeling in the ocean interior.
    Beschreibung: The author would like to acknowledge support from the National Aeronautics and Space Administration, grant #NNX12AF59G and the National Science Foundation, grant #OCE-0647949.
    Schlagwort(e): Oceanic mixing ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1996
    Beschreibung: The transformation of potential vorticity within and stability of nonlinear deep western boundary currents in an idealized tropical ocean are studied using a shallowwater model. Observational evidence indicates that the potential vorticity of fluid parcels in deep western boundary currents must change sign as they cross the equator, but this evidence is otherwise unable to clarify the process. A series of numerical experiments investigate this transformation in a rectangular basin straddling the equator. A mass source located in the northwestern corner feeds fluid into the domain where it is constrained to cross the equator to reach a distributed mass sink. Dissipation is included as momentum diffusion. The Reynolds number, defined as the ratio of the mass source per unit depth to the viscosity, determines the nature of the flow, and a critical value, Rec, divides its possible behavior into two regimes. For Re 〈 Rec, the flow is laminar and well described by linear theory. For Re just above the critical value, the flow is time-dependent, with cyclonic eddies forming in the western boundary current near the equator. For still larger Reynolds number, eddies of both signs emerge and form a complicated, interacting network that extends into the basin several deformation radii from the western boundary, as well as north and south of the equator. The eddy field is established as the mechanism for potential vorticity transformation in nonlinear cross-equatorial flow. The analysis of vorticity fluxes follows from the flux-conservative form of the absolute vorticity equation. It is shown that the zonally integrated meridional flux of vorticity across the equator using no slip boundary conditions is virtually zero even in the strongly nonlinear limit suggesting that the eddies are extremely efficient vorticity transfer agents. A decomposition of the vorticity fluxes into components due to mean advection, eddy transport, and friction, reveals the growth with Reynolds number of a turbulent boundary layer that exchanges vorticity between the inertial portion of the boundary current and a frictional sub-layer where modification is straightforward. A linear stability analysis of the shallow-water system in the tropical ocean examines the initial formation of the eddy field. The formulation assumes that the basic state is purely meridional and on a local f-plane. Realistic western boundary current profiles undergo a horizontal shear instability that is partially stabilized by viscosity. Calculations at several latitudes indicate that the instability is enhanced in the tropics where the internal deformation radius is a maximum. The linear stability analysis predicts a length scale of the disturbance, a location for its origin, and a critical Reynolds number that agree well with numerical results.
    Beschreibung: Financial support for this research was provided by NSF grant number OCE- 9115915 and ONR ASSERT grant number N00014-94-1-0844.
    Schlagwort(e): Ocean currents ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2283–2296, doi:10.1175/JPO-D-11-0227.1.
    Beschreibung: The dynamic influence of thermohaline circulation on wind-driven circulation in the South China Sea (SCS) is studied using a simple reduced gravity model, in which the upwelling driven by mixing in the abyssal ocean is treated in terms of an upward pumping distributed at the base of the upper layer. Because of the strong upwelling of deep water, the cyclonic gyre in the northern SCS is weakened, but the anticyclonic gyre in the southern SCS is intensified in summer, while cyclonic gyres in both the southern and northern SCS are weakened in winter. For all seasons, the dynamic influence of thermohaline circulation on wind-driven circulation is larger in the northern SCS than in the southern SCS. Analysis suggests that the upwelling associated with the thermohaline circulation in the deep ocean plays a crucial role in regulating the wind-driven circulation in the upper ocean.
    Beschreibung: G. Wang is supported by the National Science Foundation of China (NSFC Grants 41125019, 40725017, and 40976017).D.Chen is supported by grants from the Ministry of Science and Technology (2010DFA21012), the State Oceanic Administration (201105018), and the NSFC (91128204).
    Beschreibung: 2013-06-01
    Schlagwort(e): Abyssal circulation ; Dynamics ; Ocean circulation ; Upwelling/downwelling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1996
    Beschreibung: The water mass distribution in the southwestern Barents Sea, the thermohaline structure of the western Barents Sea Polar Front, and the formation of local water masses are described based on an analysis of historical hydrographic data and a recent process-oriented field experiment. This study concentrated on the frontal region between Bj0rn0ya and Hopen Island where Arctic water is found on the Spitzbergen Bank and Atlantic Water in the Bear Island Trough and Hopen Trench. Distributions of Atlantic, Arctic, and Polar Front waters are consistent with topographic control of Atlantic water circulation. Seasonal buoyancy forcing disrupts the topographic control in the surface layer, altering the frontal structure, and affecting local water mass formation. In the winter, the topographic control is firmly established and both sides of the front are vertically well-mixed. Winter cooling creates sea-ice over Spitzbergen Bank and convectively formed Modified Atlantic Water in the Bear Island Trough and Hopen Trench. In the summer, heating melts the sea-ice, producing a surface meltwater pool that can cross the polar front, disrupting topographic control and substantially increasing the vertical thermohaline gradients in the frontal region. The meltwater pool produces the largest geostrophic shear in the region.
    Beschreibung: Support for this work was provided by a Department of Defense National Defense Science and Engineering Graduate Fellowship and Office of Naval Research grant N00014- 90-J-1359.
    Schlagwort(e): Ocean circulation ; Oceanic mixing ; Climatic changes
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2013
    Beschreibung: This thesis explores the role that the circulation in the Gulf of Maine (GOM) plays in determining the distribution of dense aggregations of copepods. These aggregations are an important part of the marine ecosystem, especially for endangered North Atlantic right whales. Certain ocean processes may generate dense copepod aggregations, while others may destroy them; this thesis looks at how different characteristics of the GOM circulation fit into these two categories. The first part of the thesis investigates a hypothetical aggregation mechanism in which frontal circulation interacts with copepod behavior to generate a dense patch of copepods. The first two chapters of this thesis address this mechanism in the context of coastal river plumes and salinity fronts. One chapter describes the characteristics and variability of coastal freshwater and salinity fronts using a historical dataset and a realistic numerical model. The seasonal variability of freshwater is tied in part to seasonality in river discharge, while variability on shorter time scales in the frontal position is related to wind stress. Another chapter applies the hypothetical mechanism to idealized river plumes using a suite of numerical models. The structure of the plume and plume-relative circulation change the resulting copepod aggregation from what is expected from the hypothetical mechanism. The second part of the thesis discusses the GOM circulation and how it may eliminate copepod patches. The summertime mean surface circulation and eddy kinetic energy are computed from a Lagrangian drifter dataset and an adaptive technique that allows for higher spatial resolution while also keeping uncertainty low. Eddy diffusivity is also computed over different regions of the GOM in an attempt to quantify the spreading of a patch of copepods, and is found to be lower near the coast where right whales are often found feeding on copepod patches. In the next chapter, a numerical drifter dataset is used to understand how the results of the previous chapter depend upon the quantity of observations. It is found that the uncertainty in estimating eddy diffusivity is tightly coupled to the number of drifters in the calculation.
    Beschreibung: This work was supported by the WHOI Coastal Ocean Institute Graduate Student Fellowship and Student Research Award, the WHOI Academic Programs O ce, the NOAA National Marine Fisheries Service Northeast Fisheries Science Center (NOAA Cooperative Agreement NA09OAR4320129), and the O ce of Naval Research Marine Mammals and Biology Program (Grant N00014-12-1-0208).
    Schlagwort(e): Ocean circulation ; Zooplankton
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 1669–1684, doi:10.1175/JCLI-D-12-00246.1.
    Beschreibung: Climate change west of the Antarctic Peninsula is the most rapid of anywhere in the Southern Hemisphere, with associated changes in the rates and distributions of freshwater inputs to the ocean. Here, results from the first comprehensive survey of oxygen isotopes in seawater in this region are used to quantify spatial patterns of meteoric water (glacial discharge and precipitation) separately from sea ice melt. High levels of meteoric water are found close to the coast, due to orographic effects on precipitation and strong glacial discharge. Concentrations decrease offshore, driving significant southward geostrophic flows (up to ~30 cm s−1). These produce high meteoric water concentrations at the southern end of the sampling grid, where collapse of the Wilkins Ice Shelf may also have contributed. Sea ice melt concentrations are lower than meteoric water and patchier because of the mobile nature of the sea ice itself. Nonetheless, net sea ice production in the northern part of the sampling grid is inferred; combined with net sea ice melt in the south, this indicates an overall southward ice motion. The survey is contextualized temporally using a decade-long series of isotope data from a coastal Antarctic Peninsula site. This shows a temporal decline in meteoric water in the upper ocean, contrary to expectations based on increasing precipitation and accelerating deglaciation. This is driven by the increasing occurrence of deeper winter mixed layers and has potential implications for concentrations of trace metals supplied to the euphotic zone by glacial discharge. As the regional freshwater system evolves, the continuing isotope monitoring described here will elucidate the ongoing impacts on climate and the ecosystem.
    Beschreibung: The Palmer LTER participants acknowledge Award 0823101 from the Organisms and Ecosystems program in NSF OPP
    Beschreibung: 2013-09-01
    Schlagwort(e): Southern Ocean ; Ocean circulation ; Freshwater ; Precipitation ; Snowmelt/icemelt ; Isotopic analysis
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 28 (2011): 1539–1553, doi:10.1175/JTECH-D-11-00001.1.
    Beschreibung: Turbulent Reynolds stresses are now routinely estimated from acoustic Doppler current profiler (ADCP) measurements in estuaries and tidal channels using the variance method, yet biases due to surface gravity waves limit its use in the coastal ocean. Recent modifications to this method, including spatially filtering velocities to isolate the turbulence from wave velocities and fitting a cospectral model to the below-wave band cospectra, have been used to remove this bias. Individually, each modification performed well for the published test datasets, but a comparative analysis over the range of conditions in the coastal ocean has not yet been performed. This work uses ADCP velocity measurements from five previously published coastal ocean and estuarine datasets, which span a range of wave and current conditions as well as instrument configurations, to directly compare methods for estimating stresses in the presence of waves. The computed stresses from each were compared to bottom stress estimates from a quadratic drag law and, where available, estimates of wind stress. These comparisons, along with an analysis of the cospectra, indicated that spectral fitting performs well when the wave climate is wide-banded and/or multidirectional as well as when instrument noise is high. In contrast, spatial filtering performs better when waves are narrow-banded, low frequency, and when wave orbital velocities are strong relative to currents. However, as spatial filtering uses vertically separated velocity bins to remove the wave bias, spectral fitting is able to resolve stresses over a larger fraction of the water column.
    Beschreibung: J. Rosman acknowledges funding from the National Science Foundation (OCE-1061108).
    Schlagwort(e): Coastal flows ; Momentum ; Ocean circulation ; Waves, oceanic ; In situ observations ; Instrumentation/sensors
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012
    Beschreibung: Observations from a three-year field program on the inner shelf south of Martha's Vineyard, MA and a numerical model are used to describe the effect of stratification on inner shelf circulation, transport, and sediment resuspension height. Thermal stratification above the bottom mixed layer is shown to cap the height to which sediment is resuspended. Stratification increases the transport driven by cross-shelf wind stresses, and this effect is larger in the response to offshore winds than onshore winds. However, a one-dimensional view of the dynamics is not sufficient to explain the relationship between circulation and stratification. An idealized, cross-shelf transect in a numerical model (ROMS) is used to isolate the effects of stratification, wind stress magnitude, surface heat flux, cross-shelf density gradient, and wind direction on the inner shelf response to the cross-shelf component of the wind stress. In well mixed and weakly stratified conditions, the cross-shelf density gradient can be used to predict the transport efficiency of the cross-shelf wind stress. In stratified conditions, the presence of an along-shelf wind stress component makes the inner shelf response to cross-shelf wind stress strongly asymmetric.
    Beschreibung: This work was supported through National Science Foundation grant no. OCE-0548961, the WHOI Academic Programs Office, and the WHOI Coastal Ocean Institute.
    Schlagwort(e): Ocean-atmosphere interaction ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012
    Beschreibung: Interactions between the ocean circulation in sub-ice shelf cavities and the overlying ice shelf have received considerable attention in the context of observed changes in flow speeds of marine ice sheets around Antarctica. Modeling these interactions requires parameterizing the turbulent boundary layer processes to infer melt rates from the oceanic state at the ice-ocean interface. Here we explore two such parameterizations in the context of the MIT ocean general circulation model coupled to the z-coordinates ice shelf cavity model of Losch (2008). We investigate both idealized ice shelf cavity geometries as well as a realistic cavity under Pine Island Ice Shelf (PIIS), West Antarctica. Our starting point is a three-equation melt rate parameterization implemented by Losch (2008), which is based on the work of Hellmer and Olbers (1989). In this form, the transfer coefficients for calculating heat and freshwater fluxes are independent of frictional turbulence induced by the proximity of the moving ocean to the fixed ice interface. More recently, Holland and Jenkins (1999) have proposed a parameterization in which the transfer coefficients do depend on the ocean-induced turbulence and are directly coupled to the speed of currents in the ocean mixed layer underneath the ice shelf through a quadratic drag formulation and a bulk drag coefficient. The melt rate parameterization in the MITgcm is augmented to account for this velocity dependence. First, the effect of the augmented formulation is investigated in terms of its impact on melt rates as well as on its feedback on the wider sub-ice shelf circulation. We find that, over a wide range of drag coefficients, velocity-dependent melt rates are more strongly constrained by the distribution of mixed layer currents than by the temperature gradient between the shelf base and underlying ocean, as opposed to velocity-independent melt rates. This leads to large differences in melt rate patterns under PIIS when including versus not including the velocity dependence. In a second time, the modulating effects of tidal currents on melting at the base of PIIS are examined. We find that the temporal variability of velocity-dependent melt rates under tidal forcing is greater than that of velocity-independent melt rates. Our experiments suggest that because tidal currents under PIIS are weak and buoyancy fluxes are strong, tidal mixing is negligible and tidal rectification is restricted to very steep bathymetric features, such as the ice shelf front. Nonetheless, strong tidally-rectified currents at the ice shelf front significantly increase ablation rates there when the formulation of the transfer coefficients includes the velocity dependence. The enhanced melting then feedbacks positively on the rectified currents, which are susceptible to insulate the cavity interior from changes in open ocean conditions.
    Beschreibung: National Science and Engineering Research Council of Canada
    Schlagwort(e): Ocean circulation ; Ocean currents
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 343–349, doi:10.1175/JCLI-D-11-00059.1.
    Beschreibung: The Equatorial Undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. EUC velocity in most global climate models is sluggish relative to observations. Insufficient ocean resolution slows the EUC in the eastern Pacific where nonlinear terms should dominate the zonal momentum balance. A slow EUC in the east creates a bottleneck for the EUC to the west. However, this bottleneck does not impair other major components of the tropical circulation, including upwelling and poleward transport. In most models, upwelling velocity and poleward transport divergence fall within directly estimated uncertainties. Both of these transports play a critical role in a theory for how the tropical Pacific may change under increased radiative forcing, that is, the ocean dynamical thermostat mechanism. These findings suggest that, in the mean, global climate models may not underrepresent the role of equatorial ocean circulation, nor perhaps bias the balance between competing mechanisms for how the tropical Pacific might change in the future. Implications for model improvement under higher resolution are also discussed.
    Beschreibung: KBK gratefully acknowledges the J. Lamar Worzel Assistant Scientist Fund. GCJ is supported by NOAA’s Office of Oceanic and Atmospheric Research. RM gratefully acknowledges the generous support and hospitality of the Divecha Centre for Climate Change and CAOS at IISc, Bangalore, and partial support by NASA PO grants.
    Beschreibung: 2012-07-01
    Schlagwort(e): Tropics ; Ocean circulation ; Ocean dynamics ; Climate models ; Coupled models ; Ocean models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1993
    Beschreibung: Reciprocal acoustic transmissions made in a region just south of the Gulf Stream are analyzed to determine the structure and variability of temperature, current velocity, and vorticity fields at the northern extent of the southern recirculation gyre. For ten months (November, 1988 through August, 1989), a pentagonal array of tomographic transceivers was situated in a region centered at 38°N, 55°W as part of the eastern array of the SYNOP (SYNoptic Ocean Prediction) Experiment. The region of focus is one rich in mesoscale energy, with the influence of local Gulf Stream meandering and cold-core ring activity strikingly evident. Daily-averaged acoustic transmissions yielded travel times which were inverted to obtain estimates of range-averaged temperature and current velocity fields, and area-averaged relative vorticity fields. The acoustically determined estimates are consistent with nearby current meter measurements and satellite infrared imagery. The signature of cold-core rings is clearly evident in the sections. Spectral estimates of the fields are dominated by motions with periodicities ranging from 32-128 days. Second-order statistics, such as eddy kinetic energies, and heat and momentum fluxes, are also estimated. The integrating nature of the tomographic measurement has been exploited to shed some light on the radiation of eddy energy from the Gulf Stream. The Eliassen-Palm flux diagnostic has been applied to an investigation of wave radiation from the Gulf Stream. Results of the diagnosis suggest that the Gulf Stream itself is the source of wave energy radiating into the far field and found in the interior of the North Atlantic subtropical gyre.
    Beschreibung: This research was carried out under Office of Naval Research (ONR) University Research Initiative contract N00014-86-K-0751 and ONR contract N00014- 90-J-1481. Construction of the tomographic instruments was supported by grants and contracts with MIT: National Science Foundation grant OCE 85-12430 and by ONR. The field work was supported by ONR under contract N00014-85-G-0241 (Secretary of the Navy Professorship (C. Wunsch)).
    Schlagwort(e): Ocean circulation ; Tomography
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution March 1989
    Beschreibung: The general theme of this thesis is the study of systematic mathematical techniques for determining the ocean circulation from classical hydrographic data. Two aspects of this theme are analyzed. The first is finding an efficient representation of hydrographic structure so as to make it most useful and informative. The second is application of inverse methods to the data to determine ocean circulation. Both subjects are examined in the North Atlantic Ocean. The efficient representation is examined in terms of empirical orthogonal functions (EOFs) among the variations in vertical hydrographic profiles. The data used are of a new set of high quality hydrography, all obtained in the early 1980s. Common EOFs are examined among temperature, salinity, oxygen, phosphate, silicate, and nitrate. The EOFs identify a fundamental simplicity in the spatial distributions of t hese properties. Although the volume of numbers involved in the raw data is large, the significant degrees of freedom are only six in space and two among the six properties; temperature and salinity are represented by one mode, while the nutrients by another. The modal structure reflects some underlying simplicity in ocean physics. EOFs form a quantitative basis from which models of the ocean's hydrographic structure can be constructed for various degrees of complexities. As for the second aspect, two applications of inverse methods are explored on small regional scales. The first problem addressed concerns the circulation inside a 12° square located in the eastern basin over the axis of the Mediterranean Water tongue. The study is based on an ocean model constructed by mapping the modes identified in the first half of the thesis over the entire North Atlantic Ocean. A combination of box model inverse and β-spiral method is used to determine the geostrophic reference level velocities. The circulation consists of an anticyclonic circulation near the surface, which is part of the eastern half of the wind-driven subtropical gyre. The flow at depth is weak, and is a cyclonic circulation around the core of the Mediterranean Water tongue. In the second inverse problem, we examine a decaying warm-core ring. Observations of a warm-core ring are used to formulate a model for diagnosing the physics of ring change over a two month period. About 30 hydrographic casts and acoustic doppler current measurements are used to generate estimates of an equivalent radially symmetric ring with radial contrasts of stratification, temperature, salinity, azimuthal velocity, angular momentum, and potential vorticity. A series of related models are inverted for the ring circulation and mixing coefficients. The circulation is insensitive to the model details, is well-resolved, and is a radial outflow and upwelling. Eddy coefficients are only partially resolved; determining the mixing with any degree of confidence appears to require a much more elaborate data set than the one available.
    Beschreibung: This research was funded in part by the Office of Naval Research (Secretary of the Navy Chair) and the National Science Foundation under grant OCE 85-21685.
    Schlagwort(e): Ocean circulation ; Hydrography ; Oceanus (Ship : 1975-) Cruise OC133 ; Endeavor (Ship: 1976-) Cruise EN129 ; Knorr (Ship : 1970-) Cruise KN104 ; Atlantis II (Ship : 1963-) Cruise AII109 ; Hudson (Ship) Cruise 82
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 855–868, doi:10.1175/JPO-D-10-05010.1.
    Beschreibung: Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional processes not accounted for in the traditional tidal straining model: 1) along-channel and 2) lateral advection of horizontal gradients in the vertical salinity gradient and 3) tidal asymmetries in the strength of vertical mixing. As a result, cross-sectionally averaged values of the vertical salinity gradient are shown to increase during the flood tide and decrease during the ebb. Only over a limited portion of the cross section does the observed stratification increase during the ebb and decrease during the flood. These observations highlight the three-dimensional nature of estuarine flows and demonstrate that lateral circulation provides an alternate mechanism that allows for the exchange of materials between surface and bottom waters, even when direct turbulent mixing through the pycnocline is prohibited by strong stratification.
    Beschreibung: The funding for this research was obtained from NSF Grant OCE-08-25226.
    Beschreibung: 2012-11-01
    Schlagwort(e): Mixing ; Ocean circulation ; Shear structure/flows ; Transport ; Turbulence
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1989
    Beschreibung: Eighteen months of sea surface height data from the GEOSAT altimeter along collinear subtracks were analyzed for information on the circulation pattern in the Bering Sea. Seventy subtracks from both ascending and descending orbits, with as many as 35 repeat cycles along each subtrack, were analyzed. Orbit errors were removed from the height data using a least-squares fit to a cubic polynomial, weighted by the inverse of the height variance. Addition of the weights decreased contamination of residual height profiles by the large geoid signal. Composite maps of variability along each track revealed patterns of increased variability in the regions of the documented Bering slope current (BSC) and the proposed western boundary current (WBC); however, no evidence was found of the expected bifurcation of the BSC near the Siberian coast. Past observations of tides in the Bering Sea were reviewed along with a local tide model to detect tidal contributions to the mesoscale sea surface height variability. The tidal analysis suggested that residual tides contributed primarily to the longer wavelengths which were removed in the collinear processing. Examination of the Schwiderski tidal correction proved it to be a sensible correction, reducing the height variance by approximately 60%. Finally, using a Gaussian model for the BSC velocity profile, synthetic residual heights were generated and fit to the actual data to produce estimates of absolute surface geostrophic velocity and transport. Comparisons of mean flow, height fluctuations and seasonal trends across the BSC, the WBC and Bering Strait support the hypothesis that the BSC turns north at Cape Navarin into the WBC which, in turn, is capable of supplying a major part of the transport through the Bering Strait.
    Schlagwort(e): Ocean circulation ; Collineation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Ocean Engineer at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1993
    Beschreibung: Travel time perturbations of adiabatic normal modes due to an internal tide and internal mode field in the Barents Sea are examined. A formalism for the travel time perturbation due to a change in sound speed is presented. Internal tide and internal wave amplitude spectra are calculated from Brancker temperature loggers which were deployed on moorings in the Barents Sea during the August 1992 Barents Sea Polar Front Experiment. In particular, the first three internal wave mode amplitudes are estimated from the four Brancker temperature loggers on the southwest mooring of the array. Modal perturbations in acoustic pulse travel time and the travel time covariance are calculated and compared for consistency to a simple ray model. These perturbations are small for the modal arrivals that the vertical acoustic array which was deployed is expected to resolve. The third internal wave mode has the largest impact on the acoustic arrivals, per unit amplitude, but the first internal wave mode dominates the scattering due to having a much larger amplitude overall.
    Schlagwort(e): Internal waves ; Ocean circulation ; Acoustic surface waves
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012
    Beschreibung: This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO2 concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of δ18O and δ13C compiled byMarchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein successfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic δ18O and δ13C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
    Beschreibung: Primary support was provided by a National Defense Science and Engineering Graduate Fellowship and two National Science Foundation awards: Award #OCE-0645936: “Beyond the Instrumental Record: the Case of Circulation at the Last Glacial Maximum” and Award #OCE-1060735: “Collaborative Research: Beyond the Instrumental Record - the Ocean Circulation at the Last Glacial Maximum and the de-Glacial Sequence”. Important secondary support came from the National Ocean Partnership Program and the National Aeronautics and Space Administration via the ECCO effort at MIT.
    Schlagwort(e): Ocean-atmosphere interaction ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution August 1994
    Beschreibung: Ocean modellers seek to understand the circulation of the oceans, or portions thereof, by developing models of the ocean they can solve. This tractability constraint forces ocean modellers to make choices. Naturally, they hope to make intelligent choices, but whenever a new model is being developed or an existing one extended, the issue of tractability lurks. The large-scale, basin-wide, circulation of the oceans can be divided into two components, classified by their driving force. The wind-driven circulation, whose flow occurs mainly above the thermocline, was first explained qualitatively by Stommel (1948) with a simple, elegant analytical model. The other component of the oceans' circulation, the density-driven, or thermohaline circulation, flows below the thermocline. Again, the first simple analytical model for the deep thermohaline flow was proposed by Stommel (1958) and developed by Stommel and Aarons (1959) whose basic ideas underlie even the most recent conceptual models of the large-scale circulation. The details of the thermohaline circulation and its interaction with the wind-driven circulation in a realistic ocean basin is a problem which is not tractable analytically. This has driven ocean modellers interested in this aspect of the oceans' circulation to numerical models: ocean circulation models.
    Schlagwort(e): Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1994
    Beschreibung: This work investigates whether large-scale coherent vortex structures driven by wave-current interaction (Langmuir circulation) are responsible for maintaining the oceanic mixed layer. Langmuir circulations dominate the near-surface vertical transport of momentum and density when the characteristic scale for forcing (defined as the Craik-Leibovich instability parameter γCLS) is stronger than the characteristic scale for diffusive decay γdiff. Since the wave-current forcing is concentrated near the surface both terms depend on the cell geometry. Cells with long wavelengths penetrate more deeply into the water column. These cells grow more slowly than the fastest growing mode for most cases, but always dominate the solution in the absence of Coriolis forces. In the presence of Coriolis forces, the horizontal wavelength and thus the depth of penetration are limited. When a cell geometry is found such that γCLS » γdiff, the current profile produced by small-scale diffusion is unstable to Langmuir cells and the cells replace small-scale diffusion as the dominant vertical transport mechanism for momentum and density. The perturbation crosscell shear is predicted to scale as γCLS. Such a scaling is observed during two field experiments. The observed velocity profile during these experiments is more sheared than predicted by a model which implicitly assumes instantaneous mixing by large eddies, but less sheared than predicted by a model which assumes small-scale mixing by near-isotropic turbulence. The latter profile is unstable to Langmuir cells when waves are present. The inclusion of cells driven by wave-current interaction explains the failure of the mixed layer to restratify on two days with high waves and low wind. Wave-current interaction introduces a small but efficient source of energy for transporting density which goes as the surface stress times the Stokes drift.
    Beschreibung: The Office of Naval Research supported me throughout graduate school, first as an ONR Graduate Fellow. and later as a research assistant under the Surface Waves Processes Program (ONR Grant N00014-90-J-1495).
    Schlagwort(e): Ocean circulation ; Oceanic mixing ; Acania (Ship) Cruise ; Wecoma (Ship) Cruise W
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, February 2012
    Beschreibung: Trace metal cycling is one of many processes that influence ocean ecosystem dynamics. Cobalt, iron, and manganese are redox active trace metal micronutrients with oceanic distributions that are influenced by both biological and abiotic sources and sinks. Their open ocean concentrations range from picomolar to nanomolar, and their bioavailabilities can impact primary production. Understanding the biogeochemical cycling of these hybrid-type metals with an emphasis on cobalt was the focus of this thesis. This was accomplished by determining the dissolved distributions of these metals in oceanic regions that were characterized by different dominant biogeochemistries. A large subsurface plume of dissolved cobalt, iron, and manganese was found in the Eastern South Atlantic. The cause of this plume is a combination of reductive dissolution in coastal sediments, wind-driven upwelling, advection, biological uptake, and remineralization. Additional processes that are discussed as sources of metals to the regions studied during this thesis include isopycnal uplift within cold-core eddies (Hawaii), ice melt (McMurdo Sound, Antarctica), riverine input (Arctic Ocean), and winter mixing (McMurdo Sound). The biological influence on surface ocean distributions of cobalt was apparent by the observation of linear relationships between cobalt and phosphate in mid to low latitudes. The cobalt:phosphate ratios derived from these correlations changed over orders of magnitude, revealing dynamic variability in the utilization, demand, and sources of this micronutrient. Speciation studies suggest that there may be two classes of cobalt binding ligands, and that organic complexation plays an important role in preventing scavenging of cobalt in the ocean. These datasets provided a basis for comparing the biogeochemical cycles of cobalt, iron, and manganese in three oceanic regimes (Hawaii, South Atlantic, McMurdo Sound). The relative rates of scavenging for these metals show environmental variability: in the South Atlantic, cobalt, iron, and manganese were scavenged at very different rates, but in the Ross Sea, mixing and circulation over the shallow sea was fast, scavenging played a minor role, and the cycles of all three metals were coupled. Studying the distributions of these metals in biogeochemically distinct regions is a step toward a better understanding of their oceanic cycles.
    Beschreibung: Funding for this research was provided by the the National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-0732665, OCE-0440840, OCE-0327225), the Center for Microbial Research and Education, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute, WHOI Academic Programs Office, and a Fye Teaching Fellowship.
    Schlagwort(e): Nutrient cycles ; Ocean circulation ; Wecoma (Ship) Cruise W501 ; Wecoma (Ship) Cruise W503 ; Knorr (Ship : 1970-) Cruise KN192 ; Knorr (Ship : 1970-) Cruise KN199 ; Nathaniel B. Palmer (Ship) Cruise NBP0601
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1989
    Beschreibung: The relationship between depth-averaged velocity and bottom stress for wind-driven flow in unstratified coastal waters is examined here. The adequacy of traditional linear and quadratic drag laws is addressed by comparison with a 2 1/2-D model. A 2 1/2-D model is one in which a simplified 1-D depth-resolving model (DRM) is used to provide an estimate of the relationship between the flow and bottom stress at each grid point of a depth-averaged model (DAM). Bottom stress information is passed from the DRM to the DAM in the form of drag tensor with two components: one which scales the flow and one which rotates it. This eliminates the problem of traditional drag laws requiring the flow and bottom stress to be collinear. In addition , the drag tensor field is updated periodically so that the relationship between the velocity and bottom stress can be time-dependent. However, simplifications in the 2 1/2-D model that render it computationally efficient also impose restrictions on the time-scale of resolvable processes. Basically, they must be much longer than the vertical diffusion time scale. Four progressively more complicated scenarios are investigated. The important factors governing the importance of bottom friction in each are found to be 1) non-dimensional surface Ekman depth, u.5/fh where u.s is the surface shear velocity, f is the Coriolis parameter and h is the water depth 2) the non-dimensional bottom roughness, zo/h where zo is the roughness length and 3) the angle between the wind stress and the shoreline. Each has significant influence on the drag law. The drag tensor magnitude, r, and the drag sensor angle, θ are functions of all three, while a drag tensor which scales with the square of the depth-averaged velocity has a magnitude, Cd, that only depends on zo/h. The choice of drag Jaw is found to significantly affect the response of a domain. Spin up times and phase relationships vary between models. In general, the 2 1/2-D model responds more quickly than either a constant r or constant Cd model. Steady-state responses are also affected. The two most significant results are that failure to account for θ in the drag law sometimes leads to substantial errors in estimating the sea surface height and to extremely poor resolution of cross-shore bottom stress. The latter implies that cross-shore near-bottom transport is essentially neglected by traditional DAMs.
    Beschreibung: Financial support during my time in graduate school came from the Woods Hole Oceanographic Institution and grants from the National Science Foundation (OCE84-03249) and the Office of Naval Research (N00014-86-K-0061).
    Schlagwort(e): Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1989
    Beschreibung: This thesis studies mixing and convection in a rectangular basin driven by a specified heat flux at the surface. A numerical model is constructed for this purpose. The main focus of the study is on the density and circulation structure resulting from the thermal forcing. In chapter two, a simple vertical one-dimensional model is developed to examine the mixing processes under a given surface heat flux. In order to simulate strong vertical mixing in the region where stratification is unstable, turbulent processes are modeled by a convective overturning parameterization of eddy viscosity and diffusivity. The results show that the density structure is strongly affected by the convective overturning adjustment as surface cooling prevails, and the resulting density field is nearly depth independent. In chapter three, a more complicated two-dimensional model is constructed to simulate mixing and circulation in a vertical rectangular basin with rigid boundaries. The aspect ratio of the basin ranges from 1 to 0.001 and Rayleigh number from 104 to 2 x 1012. It is found that the circulation pattern is dominated by these two important numbers. The roles of density overturning and density-momentum overturning mixing are further investigated. The results show that the convective overturning not only homogenizes the density field in the unstably stratified region but also contributes to increase the circulation. A crude scale analysis of the system shows that the characteristics of the density and momentum fields from the analysis agree well with the numerical results.
    Schlagwort(e): Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1993
    Beschreibung: An extensive set of new high-quality hydrographic data is assembled in order to determine the mean circulation in the equatorial Pacific, and thus the pathways for cross-equatorial and cross-gyre exchange. Making up the core of the data set are two onetime transpacific zonal sections nominally at 10°N and 14°S. Supplementing these are repeat surveys of the equatorial currents along the 165°E meridian with direct shear measurements, and repeat surveys of the western boundary current at 8°N including direct velocity measurements. The repeat survey data are crucial for obtaining a good estimate of the mean conditions in the face of strong annual and interannual variability of the near-equatorial flow field. A comparison with historical XBT and hydrographic data shows that the interior thermocline transports in the one-time sections are fortuitously representative of the mean conditions. A detailed study of the water mass distribution along the sections is the basis for choosing reference levels for the thermal wind shear in an initial guess circulation field. Using an inverse model, the initial guess circulation is adjusted such that volume, heat and salt arc conserved in a set of subthermocline layers (δΘ 〉 26.7). Cross-isopycnal diffusion and advection are explicitly accounted for in the inverse model, and the diapycnal diffusivity is constrained to be positive, though its value is allowed to vary with depth and location. Net mass conservation constraints are applied to the enclosed volumes of the North Pacific and eastern Pacific, and essentially require that the Ekman divergence be equal to the geostrophic convergence. The Ekman fluxes as estimated from wind-stress climatologies are an important element of the mass budget, and yet are subject to large uncertainties. The model is therefore given the freedom to determine the Ekman fluxes within the range of error of the wind-stresses. The circulation of the coldest waters (Θ 〈 1.2°C) is dominated by the northward flow of Lower Circumpolar Water (LCPW) in a system of narrow western boundary currents. A net transport of 12.1 Sv of LCPW flows across 14°S, 9.6 Sv of which flows into the North Pacific across 10°N. The bulk of the LCPW flux across the equator appears to occur in the denser part of the western boundary current which follows topography directly across the equator. Dissipation in the boundary layer can thus modify the potential vorticity of the fluid and allow it to cross the equator. The circulation of the upper part of the LCPW is dominated by a strong westward jet at the equator which is supplied both by upwelling from below and the recirculation of modified LCPW from the North Pacific. At mid-depth (4.0 〉 Θ 〉 1.2°C) high silica and low oxygen concentrations mark the North Pacific Deep Water (NPDW) which is present in both the North and South Pacific Oceans. Across both 10°N and 14°S, a net of 11 Sv of NPDW flows southward, returning the northward mass flux associated with the LCPW. In contrast to the LCPW, narrow western boundary currents are not present in this layer, and it is not clear how the deep water flows across the equator. Strong zonal jets on and about the equator may be important in allowing mass to cross the equator by increasing the time available for the cross-equatorial diffusion of potential vorticity to act on a fluid parcel. At intermediate depths equatorward advection is suggested by the presence of intermediate water salinity minima formed in the subpolar latitudes: Antarctic Intermediate Water dominates the 4 to 8°C classes south of the equator, while North Pacific Intermediate Water occupies this range north of the equator. Determination of the mean circulation of the intermediate waters is, however, confounded by the large eddies that dominate the geostrophic transport stream function along the onetime zonal sections. The equatorial thermocline is occupied by waters of subtropical origin: the shallow salinity minimum waters and saline Central Water from both the North and South Pacific Ocean. The equator marks the location of a front between northern and southern subtropical gyre waters, except in the lower thermocline where water from the South Pacific subtropical gyre penetrates to about 4°N to feed the Northern Subsurface Countercurrent at 165°E. All of the equatorward flowing thermocline waters are entrained in the eastward equatorial currents which in turn feed the upwelling system in the eastern Pacific. The upwelled waters largely supply the South Equatorial Current in the eastern Pacific, accounting for its large transport compared to that predicted by Sverdrup dynamics. Northward flow across the equator of the upwelled waters in the thermocline or surface layer in the western Pacific is necessary to supply the Ekman flux into the North Pacific. The analysis indicates that the Pacific Ocean does not convert a large amount of abyssal water to thermocline water, as required by several theories of the global thermohaline circulation. In contrast to the Atlantic Ocean, the thermocline circulation in the Pacific appears decoupled from the abyssal overturning, with little upwelling of abyssal waters occurring in either the North Pacific or the equatorial Pacific. The leakage of Pacific water into the Indian Ocean is deduced to be essentially zero, though an error analysis allows a range of 0-8 x 106m3s-1.
    Beschreibung: I was supported by the 1986 Caltex Graduate Women Scholarship, and a NASA Scholarship in Global Change Research.
    Schlagwort(e): Ocean circulation ; Moana Wave (Ship) Cruise MW89
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1994
    Beschreibung: Paleo-tracers such as carbon 13 and cadmium show that the deep Atlantic was enriched in nutrients during the Last Ice Age. The conventionally accepted interpretation of these higher nutrient levels is that a reduction of the rate of formation of nutrient-depleted Lower North Atlantic Deep Water (Lower NADW) allowed nutrient-rich Antarctic Bottom Water (AABW) to push further north during the Last Glacial Maximum (LGM) (Boyle and Keigwin, 1982; 1987; Duplessy et al., 1988). The evidence for this interpretation is re-examined in this work, with an emphasis on the quantitative analysis of the paleo-data. An end-member analysis of the δ13C data indicates a larger volume of AABW and a smaller volume of Lower NADW during the LGM. It is not yet possible, however, to quantify the extent of the volume differences between the modern and the glacial distributions, because the LGM δ13C end-members are poorly known. The second issue examined in this thesis deals with the interpretation of the water mass distribution, inferred from paleo-tracers, in terms of the oceanic circulation. Using a dynamical inverse model of the North Atlantic and a kinematic inverse model of the South Atlantic, it is shown that a tracer distribution corresponding to a significantly reduced volume of Lower NADW does not necessarily correspond to a reduced flux of NADW. Indeed, a circulation almost identical to a modem ocean reference circulation is consistent with the available LGM δ13C and δ18O data A flux of Lower NADW reduced by 50%, though not needed to explain the LGM tracer distribution, is also consistent with the data Thus, the paleo-tracers δ13C and δ18O do not suffice to quantify the flux of NADW in the glacial ocean. The modem ocean circulation is one of many possible circulations consistent with the available δ13C and δ18O data.
    Beschreibung: This research was funded by the National Science Foundation under grant OCE-9205942.
    Schlagwort(e): Ocean circulation ; Radioactive tracers in oceanography ; Endeavor (Ship: 1976-) Cruise EN129
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1993
    Beschreibung: In this thesis, production of dense water that feeds the dense overflows across the Greenland-Scotland Ridge has been considered. A new circulation scheme is developed which is consistent with the water masses, currents and air-sea fluxes in the region, and with the important observation that the dense overflows show little or no seasonal or interannual variability. An inverse box model has been constructed that shows that the new circulation scheme is consistent with conservation statements for mass, heat and salt as well. According to the new circulation scheme the major buoyancy is lost in the North Atlantic Current, which enters the Norwegian Sea between Iceland and Scotland, and flows northward towards the Arctic Ocean and the Barents Sea. The transformation is due to a large net annual heat loss over the North Atlantic Current, combined with a long residence time (2-3 years) and a large surface area. After subduction, one branch of the North Atlantic Current enters the Arctic Ocean, is modified in hydrographic properties into those associated with the Denmark Strait Overflow Waters in the western North Atlantic, exits the Arctic Ocean in the western Fram Strait and flows with the East Greenland Current towards the Denmark Strait Another branch of the North Atlantic Current recirculates directly in the Fram Strait and flows towards the Denmark Strait with the East Greenland Current This branch will not sink to the bottom of the North Atlantic as it is less compressible than the Arctic branch. The third branch of the North Atlantic Current enters the Barents Sea, continues to lose buoyancy, and enters the Arctic Ocean at intermediate depth. This branch exits the Arctic Ocean in the western Fram Strait, circulates around the Greenland Sea, enters the Norwegian Sea, and flows towards the Frer¢-Shetland Channel. The traditional view holds that the major sources of the dense overflows are the Iceland and Greenland gyres, west of the North Atlantic Current. Aside from the finding that the new circulation scheme is more likely in terms of water mass properties, currents etc., one fundamental problem with the old scheme lies with supplying a substantial overflow. There are indications that the production of dense water in the gyres is sensitive to the highly variable surface conditions and that indeed the production tends to shut on and off. The reservoirs in the gyres are so small that they would be drained within a few years if they were to supply the overflows during a shutdown period. Production of dense water within the North Atlantic Current is less sensitive to surface conditions. The density in the gyres is gained at a temperature around freezing, whereas in the North Atlantic Current the density is gained well above freezing. Therefore a freshwater anomaly in the two domains will have different consequences for vertical · overturning: within the North Atlantic Current the freshening can be overcome by further cooling, whereas in the gyres freezing will occur and the vertical overturning will cease. The observed lack of a significant seasonal signal associated with the dense overflows is consistent with the new circulations scheme. The net annual cooling dominates the seasonal oscillation in the atmospheric heat loss for time scales comparable with the residence time of the Atlantic Water within the domain. Thus winter formation of dense water within the North Atlantic Current does not induce a seasonal signal in the transport field of the dense water.
    Beschreibung: Funding for this work was partly provided by a NASA Global Change Fellowship.
    Schlagwort(e): Ocean circulation ; Oceanic mixing ; Water masses ; Knorr (Ship : 1970-) Cruise ; Hudson (Ship) Cruise ; Meteor (Ship) Cruise ; Polarstern (Ship) Cruise
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution July 1993
    Beschreibung: In this thesis, the dynamic role of bottom topography in a β-plane channel is systematically studied in both linear homogeneous and stratified layer models in the presence of either wind stress (Chapters 2, 3, 4, and 6) or buoyancy forcing (Chapter 5). In these studies, the structure of the geostrophic contour plays a fundamental role, and the role of bottom topography is looked at from two different angles. It is shown that blocking all the geostrophic contours leads to two different physical processes in which bottom topographic form drag is generated (Chapters 2, 3 and 4) and enables geostrophic flow in a β-plane channel to support a net cross-channel volume transport (Chapters 5 and 6). It is demonstrated that by blocking all the geostrophic contours in the presence of a sufficiently high ridge, the dynamics of both source-sink and wind driven circulations in a β-plane is similar to that in a dosed basin. First, wind-driven circulation in the inviscid limit is discussed in a linear barotropic channel model in the presence of a bottom ridge. There is a critical height of the ridge, above which all geostrophic contours in the channel are blocked. In the subcritical case, the Sverdrupian balance does not apply and there is no solution in the inviscid limit. In the supercritical case, however, the Sverdrupian balance applies. The form drag is generated through two different physical processes: the through-channel recirculating flow and the Sverdrupian gyre flow. These processes are fundamentally different from the nonlinear Rossby wave drag generation. In this linear model, the presence of a supercritical high ridge is essential in the inviscid limit. With this form drag generation determined, an explicit form for the zonal transport in the channel is obtained, which shows what model parameters determine the through-channel transport. In addition, the model demonstrates that most of the potential vorticity dissipation occurs at the northern boundary where the ridge intersects. The result from the homogeneous channel model in Chapter 2 is then extended to a model whose geometry consists of a zonal channel and two partial meridional barriers along each boundary at the same longitude. Both the model transport and especially the model circulation are significantly affected by the presence of the two meridional barriers. The presence of the northern barrier always leads to a decrease in the transport. The presence of the southern barrier, however, increases the transport for a narrow ridge. The northern barrier only has a localized influence on the circulation pattern, while the southern barrier has a global influence in the channel. Then a multi-layer Q-G model is constructed by assuming that potential vorticity in all subsurface layers is homogenized. The circulation is made up of baroclinic and the barotropic part. The barotropic part is same as that in a corresponding barotropic model, and is solely determined by the wind stress, while the baroclinic part is not directly related to the wind stress. It is determined by the potential vorticity homogenization and lateral boundary conditions. The presence of the stratification does not affect the bottom topographic form drag generation. The interfacial form drag is generated by the stationary eddies. Corresponding to the circulation structure, the zonal through-channel transport associated with the barotropic circulation is determined by the wind stress and bottom topography. The other part associated with the baroclinic circulation, however, is not directly related to the wind stress and it is determined by the background stratification. Based upon the discussion on the geostrophic contour, a simple barotropic model of abyssal circulation in a circumpolar ocean basin is constructed. The presence of a supercritically high ridge is both necessary and sufficient for geostrophic flow in a β-plane channel to support a net cross-channel volume flux. In the presence of a sufficiently high ridge, the classical Stommel & Arons theory applies here, but with significant modifications. The major novelty is that a throughchannel recirculation is generated. Both its strength and direction depend critically upon the model parameters. Then, a schematic picture of the abyssal circulation in a rather idealized Southern Ocean is obtained. The most significant feature is the narrow current along the northern boundary of the circumpolar basin, which feeds the deep western boundary currents of the Indian Ocean and Pacific Ocean and connects all the oceanic basins in the Southern Ocean. Finally, the question of how the northward surface Ekman transport out of the circumpolar ocean is returned is discussed in a two-layer model with an infinitesimally thin surface Ekman layer on top of a homogeneous layer of water in a rather idealized Southern Ocean basin. First, the case with a single subtropical ocean basin is discussed. In the case with a sufficiently high ridge connecting the Antarctic and the meridional barrier, an explicit solution is found. The surface Ekman layer sucks water from the lower layer in the circumpolar basin. This same amount of water flows northward as the surface Ekman drift. It downwells in the subtropical gyre, and is carried to the western boundary layer. From there, the same amount of water flows southward as a western boundary current across the inter-gyre boundary between the circumpolar ocean and the subtropical gyre along the west coast to the southern boundary of the meridional barrier. Then, the same amount of water is carried southward and feeds the water loss to the surface Ekman layer due to the Ekman sucking in the interior circumpolar ocean. The case with multiple subtropical ocean basins such as the Southern Ocean is also discussed. It is demonstrated that the surface Ekman drift drives a strong inter-basin water mass exchange.
    Beschreibung: This thesis was supported by National Science Foundation through grant OCE OCE90-17158. Part of the numerical simulation was performed at NCAR's supercomputer, and was supported by SCD/NCAR.
    Schlagwort(e): Ocean circulation ; Ocean bottom ; Submarine topography
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution February 1994
    Beschreibung: In this work we study motion of a baroclinic upper-ocean eddy over a large-scale topography which simulates a continental slope. We use a quasigeostrophic f-plane approximation with continuous stratification. To study this problem we develop a new numerical technique which we call "semi-lagrangian contour dynamics". This technique resembles the traditional 2-D contour dynamics method but differs significantly from it in the numerical algorithm. In addition to "Lagrangian" moving contours it includes an underlying "Eulerian" regular grid to which vorticity or density fields are interpolated. To study topographic interactions in a continuously stratified model we use density contours at the bottom in a similar manner as vorticity contours are used in the standard contour dynamics. For the case of a localized upper-ocean vortex moving over a sloping bottom the problem becomes computationally 2-dimensional (we need to follow only bottom density contours and the position of the vortex itself) although the physical domain is still 3-dimensional. Results of the numerical model lndicate importance of baroclinic effects in the vortex-topography interaction. After the initial surge of topographic Rossby waves a vortex moves almost steadily due to the interaction with a bottom density anomaly which is created and supported by a vortex itself. This anomaly is equivalent to a region of opposite-signed vorticity with a total circulation exactly compensating that of a vortex. This results in a vertically aligned dipolar structure with the total barotropic component equal to zero. Analytical considerations explaining this effect are presented and formulated in a more general statement which resembles but does not coincide with the "zero angular momentum theorem" of Flierl, Stern and Whitehead, 1983. In such steady translation the centroid of a bottom density anomaly is displaced horizon tally from the center of an upper-ocean vortex so the whole system moves due to this misalignment, which is known as a "he tonic mechanism". Cyclonic vortices go generally upslope, and anticyclones - in a downslope direction. The along-slope component of their motion depends upon the strength of a vortex, curvature of the bottom slope and background flows. When surrounded by a bowl-shaped topography anticyclonic vortices tend to stay near the deepest center of a basin, even resisting ambient flows which advect them outward. Application of this results to various oceanic examples (particularly to the "Shikmona eddy" in the Eastern Meditenanian) is discussed. Our results show that the behavior of a vortex over a sloping bottom differs significantly from its motion on the planetary beta-plane (but with a flat bottom). To explain this difference we introduce the concept of a "wave-breaking regime" relevant for the case of a planetary beta-effect, and a "wave-gliding regime" which characterizes the interaction of an eddy with a topographic slope.
    Beschreibung: This work was supported by the NSF grant #OCE 90-12821.
    Schlagwort(e): Ocean circulation ; Ocean currents ; Ocean bottom ; Eddies
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Beschreibung: Efforts to monitor the ocean for signs of climate change are hampered by ever-present noise, in the form of stochastic ocean variability, and detailed knowledge of the character of this noise is necessary for estimating the significance of apparent trends. Typically, uncertainty estimates are made by a variety of ad hoc methods, often based on numerical model results or the variability of the data set being analyzed. We provide a systematic approach based on the four-dimensional frequency-wavenumber spectrum of low-frequency ocean variability. This thesis presents an empirical model of the spectrum of ocean variability for periods between about 20 days and 15 years and wavelengths of about 200{10,000 km, and describes applications to ocean circulation trend detection, observing system design, and satellite data processing. The horizontal wavenumber-frequency part of the model spectrum is based on satellite altimetry, current meter data, moored temperature records, and shipboard ADCP data. The spectrum is dominated by motions along a "nondispersive line". The observations considered are consistent with a universal ω-2 power law at the high end of the frequency range, but inconsistent with a universal wavenumber power law. The model spectrum is globally varying and accounts for changes in dominant phase speed, period, and wavelength with location. The vertical structure of the model spectrum is based on numerical model results, current meter data, and theoretical considerations. We find that the vertical structure of kinetic energy is surface intensified relative to the simplest theoretical predictions. We present a theory for the interaction of linear Rossby waves with rough topography; rough topography can explain both the observed phase speeds and vertical structure of variability. The improved description of low-frequency ocean variability presented here will serve as a useful tool for future oceanographic studies.
    Beschreibung: This research was supported by NASA under grants NNG06GC28G and NNX08AR33G.
    Schlagwort(e): Ocean-atmosphere interaction ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1995
    Beschreibung: Moored time series from the Coastal Ocean Dynamics Experiment (CODE), Shelf Mixed Layer Experiment (SMILE), Sediment Transport Events over the Shelf and Slope (STRESS) study, and Northern California Coastal Circulation Study (NCCCS) are used to study subtidal cross-shelf circulation over the northern California shelf. The northern California shelf, like much of the United States Pacific coast, is subject to strong wind forcing which exhibits characteristic seasonality. In winter and early spring, it is distinguished by poleward and equatorward fluctuations on time scales of days and by weak monthly means. In summer, it is distinguished by periods of equatorward stress lasting several weeks and by relatively strong monthly means. The intensive winter and spring SMILE and STRESS and summer CODE-2 field programs permit the examination of cross-shelf circulation under both types of wind forcing conditions at a mid-shelf site (~90 m) 6 km from the northern California coast. The primary thesis goal is to examine the applicability of a two-dimensional conceptual model of wind-forced cross-shelf circulation. In this conceptual model, surface and bottom cross-shelf flows are forced by along-shelf wind stress and bottom stress, and interior cross-shelf flow compensates such that the depth-averaged flow is zero. A secondary thesis goal is to use the seasonal coverage of available field programs to gain insight into seasonal variability of cross-shelf circulation on the northern California shelf. To accomplish these goals, the observed subtidal cross-shelf circulation is examined in the context of the winter and spring heat and salt balances, an analytic model of wind-forced cross-shelf circulation, and the spatial scales of subtidal velocity. Mean and fluctuating heat and salt balances estimated between December, 1988 and May, 1989 demonstrate the importance of cross-shelf fluxes and their general consistency with the simple conceptual model. Mean fluxes are consistent with the weak mean equatorward wind stress observed during SMILE. The dominant terms in the fluctuating balances are the cross-shelf fluxes and local changes in heat and salt content. These are well correlated with each other and with the local along-shelf wind stress. The along-shelf heat flux divergence is of secondary importance to the fluctuating heat balance. It is uncorrelated with the along-shelf wind stress, and occurrences when it is strong are interpreted as effects of mesoscale features. To examine the applicability of the wind-forced conceptual model in more detail, a simple analytic model incorporating the assumptions of the conceptual model and observed local wind forcing is compared quantitatively to estimates of surface mixed layer, interior, and bottom mixed layer cross-shelf transport for winter SMILE and STRESS and summer CODE-2 observations. This comparison suggests the model is more suited to the transient wind forcing observed during SMILE and STRESS than to the steady wind forcing observed during CODE-2. For 2-3 day wind events between December, 1988 and February, 1989, the model is well correlated with observed depthdependent (total minus depth-averaged) transports throughout the water column and with total surface mixed layer transports. For 2-3 week wind events between April and July, 1982, the model does not work nearly as well below the surface mixed layer. In the absence of other processes, the locally wind-forced model implies that the wind stress sets the horizontal scales of subtidal velocity. Correlation scales estimated for subtidal along-shelf velocity over the northern California shelf are for all field programs longer than the maximum mooring separation (60 km) and are similar to those of the wind stress. However, along-shelf correlation scales of cross-shelf velocity are shorter than minimum mooring separations for CODE. SMILE and NCCCS time series do resolve along-shelf correlation scales for near surface cross-shelf velocity. During this time, along-shelf correlation scales for near surface cross-shelf velocity vary on a monthly time scale. They are generally long (30 km or more) when correlation with wind stress is high and short (15 km or less) when correlation with wind stress is low. On at least one occasion, short along-shelf correlation scales coincide with the intrusion of an offshore mesoscale feature onto the shelf. Results of the three studies show the two-dimensional model offers some insight into the observed subtidal cross-shelf circulation, particularly in winter. During this time, the heat balance, analytical transport model, and correlation scales all provide evidence that the winter wind-forced circulation is quasi-two-dimensional. Threedimensional variability on the shelf, though important on occasion, does not appear to be wind-driven and may result from the influence of offshore mesoscale features. A quite different story emerges for summer when the simple conceptual model of crossshelf circulation fails to describe adequately subsurface cross-shelf flow. Two useful areas of further investigation may be the non-linear response of cross-shelf velocity to wind forcing and its response to other processes such as remotely generated mesoscale features.
    Beschreibung: In my first year at MIT, Carl Wunsch supported me through NSF grant OCE 88- 23043. At WHOI, I first started work on SMILE with Bob Beardsley under NSF grant OCE 87-16937 and continued working on it with Steve Lentz under NSF grant OCE 91-15713.
    Schlagwort(e): Ocean circulation ; Continental shelf ; Winds
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1995
    Beschreibung: Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set. The picture of the global circulation which emerges from the models IS a complex, turbulent flow. When integrated across ocean basins not one, but two major cells emerge. The first connects an Atlantic overturning cell (estimated at 18± 4x 109 kg s- 1) to the Southern Ocean where the Antarctic Circumpolar Current carries lower deep waters to the Indian and Pacific basins where they are converted to upper deep and intermediate waters before returning to the Atlantic. The second cell connects the Pacific and Indian Basins to the north and south of Australia. In t his cell deep waters pass into the Pacific and return within the Indian Basin as intermediate waters after passing through the Indonesian Passages. The two cells are found to be independent of one another, i.e. within the models, the Indonesian Passages do not represent a significant element in a net global circulation. While there is ample evidence of westward flow around the southern tip of South Africa which would support a "warm" water path scenario, the variability of flow in this region, rich with eddies makes hydrography a poor estimator of the relative strengths of the controversial "warm" and "cold" water paths. All existing estimates of Indonesian Passage throughflow, including the smallest (O x 106 m3 s-1) and the largest (20 x 106 m3 s-1), are consistent with the model constraints. When the Pacific- Indian throughflow is not constrained, the model produces an estimate of 11 ± 14x 109 kg s-1. The model heat flux estimates are both significantly different from zero and quite robust to changes in initial assumptions, with the exception of the choice of wind field. Although in this work it was not possible to compute freshwater fluxes which were significantly different from zero, future inclusion of salinity anomaly constraints along with terms describing vertical diffusion may yet make it possible to compute significant freshwater :flux estimates from hydrography.
    Beschreibung: This research was partially funded by a NASA Global Change Fellowship and was also supported by NASA under contract NAGW-1048 and NSF under contract OCE-9205942.
    Schlagwort(e): Ocean circulation ; Atmospheric circulation ; Ocean-atmosphere interaction ; Thomas G. Thompson (Ship) Cruise ; Moana Wave (Ship) Cruise ; Atlantis II (Ship : 1963-) Cruise AII109 ; Atlantis II (Ship : 1963-) Cruise AII93 ; Charles Darwin (Ship) Cruise ; Oceanus (Ship : 1975-) Cruise OC133 ; Oceanus (Ship : 1975-) Cruise OC338 ; Knorr (Ship : 1970-) Cruise ; Melville (Ship) Cruise
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1995
    Beschreibung: Inverse modeling activities in oceanography have recently been intensified, aided by the oncoming observational data stream of WOCE and the advance of computer power. However, interpretations of inverse model results from climatological hydrographic data are far from simple. This thesis examines the behavior of an inverse model in the WOCE CME (Community Modeling Effort) results where the physics and the parameter values are known. The ultimate hypotheses to be tested are whether the inferred circulations from a climatological hydrographic data set (where limited time means and spatial smoothing are usually used) represent the climatological ocean general circulations, and what the inferred "diffusion" coefficients really are. The inverse model is first tested in a non-eddy resolving numerical GCM ocean. Numerical/scale analyses are used to test whether the inverse model properly represents the GCM ocean. Experiments show how biased answers could result from an incorrect model, and how a correct model must produce the right answers. When the inverse model is applied to the time-mean hydrographic data of an eddy-resolving GCM ocean in the fine grid resolution of the GCM, the estimated horizontal circulation is statistically consistent with the EGCM time means in both patterns and values. Although the flow patterns are similar, the uncertainties for the GCM time means and the inverse model estimates are different. The former are very large, such that the GCM time-mean circulation has no significance in the deep ocean. The latter are much smaller, and with them the estimated circulations are well defined. This is consistent with the concept that ocean motions are very energetic, while variations of tracers (temperature, salinity) are low frequency. The inverse model succeeded in extracting the ocean general circulation from the "climatological" hydrographic data. The estimated vertical velocities are also statistically indistinguishable from the GCM time means. However, significant differences between the estimated "diffusion" coefficients and the EGCM eddy diffusion coefficients are found at certain locations. These discrepancies are attributed to the differences in physics of the inverse model and the EGCM ocean. The "diffusion" coefficients from the inversion parameterize not only the eddy fluxes, but also (part of) the temporal variation and biharmonic terms which are not explicitly included in the inverse model. Given the essentially red spectrum of the ocean, it makes sense to look for smooth solutions. Aliasing due to subsampling on a coarse grid and the effects of spatial smoothing are addressed in the last part of this thesis. It is shown that this aliasing could be greatly reduced by spatial smoothing. The estimated horizontal circulation from the spatially smoothed time-mean EGCM hydrographic data with a coarse grid resolution (2.4° longitude by 2.0° latitude) is generally consistent with the spatially smoothed EGCM time means. Significant differences only occur at some grid points at great depths, where the GCM circulations are very weak. The conclusions of this study are different from some previous studies. These discrepancies are explained in the concluding chapter. Finally, it should be pointed out that the issue of properly representing a GCM ocean by an inverse model is not identical to the issue of represent ing the real ocean by the same inverse model, since the GCM ocean is not identical to the real ocean. Numerical calculations show that both the non-eddy resolving and the eddy-resolving GCM oceans used in this work are evolving towards a statistical equilibrium. In the real ocean, the importance of temporal variation terms in the property conservation equations should also be analyzed when a steady mverse model is applied to a limited time-mean (the climatological) data set.
    Beschreibung: This research was carried out under National Science Foundation grant OCE- 90-04396.
    Schlagwort(e): Oceanic mixing ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 291–305, doi:10.1175/JPO-D-11-043.1.
    Beschreibung: A number of previous observational studies have found that the waters of the deep Pacific Ocean have an age, or elapsed time since contact with the surface, of 700–1000 yr. Numerical models suggest ages twice as old. Here, the authors present an inverse framework to determine the mean age and its upper and lower bounds given Global Ocean Data Analysis Project (GLODAP) radiocarbon observations, and they show that the potential range of ages increases with the number of constituents or sources that are included in the analysis. The inversion requires decomposing the World Ocean into source waters, which is obtained here using the total matrix intercomparison (TMI) method at up to 2° × 2° horizontal resolution with 11 113 surface sources. The authors find that the North Pacific at 2500-m depth can be no younger than 1100 yr old, which is older than some previous observational estimates. Accounting for the broadness of surface regions where waters originate leads to a reservoir-age correction of almost 100 yr smaller than would be estimated with a two or three water-mass decomposition and explains some of the discrepancy with previous observational studies. A best estimate of mean age is also presented using the mixing history along circulation pathways. Subject to the caveats that inference of the mixing history would benefit from further observations and that radiocarbon cannot rule out the presence of extremely old waters from exotic sources, the deep North Pacific waters are 1200–1500 yr old, which is more in line with existing numerical model results.
    Beschreibung: GG is supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. PJH is supported by NSF Award 0960787.
    Beschreibung: 2012-08-01
    Schlagwort(e): North Pacific Ocean ; Mass fluxes/transport ; Ocean circulation ; Tracers ; Optimization ; Variational analysis
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-26
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1991
    Beschreibung: Based on the Levitus atlas, we find that the application of the Montgomery streamfunction to the isopycnal surfaces induces an error which can not be ignored in some regions in the ocean. The error arises from the sloping effect of the specific volume anomaly along isopycnal surfaces. By including the major part of this effect, new streamfunctions, namely the pressure anomaly and main pressure streamfunctions, are suggested for the use in potential density coordinates. By using the newly proposed streamfunction and by including the variations of specific volume anomaly along isopycnal surfaces, the inverse model proposed by Hogg (1987) is modified for increasing accuracy and applied to the Brazil Basin to study the circulation, diffusion and water mass balances. The equations in the model, i.e. the dynamic equation, continuity equation, integrated vorticity equation, and conservation equations for heat, salt and oxygen (in which a consumption sink term is allowed), are written in centered finite difference form with lateral steps of 2 degree latitude and longitude and 8 levels in the vertical. This system of equations with constraints of positive diffusivities and oxygen consumption rates is solved by the inverse method. The results indicate that the circulation in the upper oceans is consistent with previous works, but that in the deep ocean is quite different. In the NADW region, we find a coincidence of the flows with the tongues of water properties. The diffusivities and diapycnal velocities seem stronger in the region near the equator than in the south, with reasonable values. Diffusion plays an important role in the water mass balance. Examples show that similar property fields may results from different processes.
    Schlagwort(e): Ocean circulation ; Oceanic mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-26
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution July 1991
    Beschreibung: Six hydrographic basinwide sections, two in each of the three major ocean basins, are employed in a set of inverse calculations to determine the extent of exchange between the Pacific and Indian Oceans through the Indonesian Archipelago and the net global oceanic heat flux at 30°S. Using a model which combines the data for the South Pacific and South Indian Oceans, it is found that even the largest existing estimates of Indonesian Passage through flow (20 Sv) are consistent with the data. However, the available information cannot limit the extent of the exchange, i.e. both smaller and larger through flows produce physically reasonable circulation patterns. The seasonal and interannual variations which have been found by other investigators and which we are incapable of resolving, lead us to conclude that in the long term mean an estimate of ~10 Sv for the through flow is most reasonable. Globally, at 30°S, we find a net oceanic heat flux of -1.1 ± 1.7 PW, which is not significantly different from zero. It is dominated by a large (〉1 PW) southward heat flux in the Indian Ocean. Large equatorward (~0.8 PW) heat flux values in the South Atlantic Basin are not consistent with our data. We therefore conclude that although our data are consistent with some water following the warm water return path for NADW (Gordon 1986), the cold water path must play the dominant role in the maintenance of the global thermohaline cell associated with the formation process of NADW.
    Schlagwort(e): Ocean temperature ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 1361–1389, doi:10.1175/JCLI-D-11-00091.1.
    Beschreibung: The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
    Beschreibung: NCAR is sponsored by the National Science Foundation. The CCSM is also sponsored by the Department of Energy. SGY was supported by the NOAA Climate Program Office under Climate Variability and Predictability Program Grant NA09OAR4310163.
    Beschreibung: 2012-09-01
    Schlagwort(e): Ocean circulation ; Climate models ; General circulation models ; Ocean models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-26
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1991
    Beschreibung: The oceanic distributions of tritium 3H), 3He, and the chlorofluorocarbons (CFCs) can be used to constrain the time-scales of the major ventilation pathways for an ocean basin such as the North Atlantic. I present a new global model function, developed from a factor analysis of the WMO/IAEA data set, for predicting the spatial and temporal variability of bomb-tritium in precipitation. Model estimates for the atmospheric 3H delivery to the North Atlantic are recomputed and combined with advective 3H input estimates in a budget for the North Atlantic Basin. Key features of the model budget include refined estimates of the 3H vapor flux and southward advection of 3H in the low salinity, surface flow from the Arctic. Arctic tritium sources contribute about half of the observed increase (40%) in the decay corrected tritium inventory from the 1972 GEOSECS program and the 1981 TTO/NAS program. The 3H concentration in the intermediate and deep waters for the sub-polar North Atlantic increased substantially between 1972 and 1981. A time dependent model for the 3H and 3He inflow to the abyssal Atlantic from the Nordic Seas is developed. The 3H and 3He distributions in the abyssal North Atlantic and Deep Western Boundary Current (DWBC) are also presented. A simple model of abyssal circulation is constructed using the model Nordic Seas overflow curves, the observed tracer gradients in the DWBC, and the GEOSECS and TTO tracer inventories for the deep basins. Although the tracer concentrations in the boundary current are rather insensitive to the velocity of the boundary current, they do place bounds on the magnitude of recirculation between the boundary current and the interior. On average, a volume equal to the boundary current transport is entrained/detrained over a length scale of about 5000 km. About half of the overflow water entering the western basin of North Atlantic since the mid-1960's has been mixed into the deep Labrador Sea and subpolar gyre. The effects of tracer surface boundary conditions on thermocline ventilation and oxygen utilization rate estimates are discussed. Tracers that equilibrate rapidly with the atmosphere, such as 3He and the CFCs, have lower apparent ventilation time scales than t racers, such as tritium and radiocarbon, t hat are reset slowly in the surface layer. The results of a simple box-mixing model are compared with tritium and 3He data from a 1979 survey of the eastern subtropical North Atlantic. On shallow density surfaces, the computed tritium ventilation rates are two to three times slower than those for 3He; deeper in the thermocline, the two tracer ventilation rates converge. This trend may be related to the decreasing effectiveness of 3He gas exchange in equilibrating the deeper winter mixed layers of the more northerly isopycnal outcrops. Box models using limited surface exchange tracers (e.g. tritium and 14C) can under predict oxygen utilization rates (OUR) by up to 3 times due to differences between tracer and oxygen boundary conditions while 3He may overestimate OUR by 10- 20%. I present and discuss the distributions of two chlorofluorocarbons (CFCs) in the eastern North Atlantic measured on a 1988 hydrographic cruise between Iceland and the equator. CFC tagged seawater fills the entire sub-polar water column and subtropical thermocline. Measurable CFC levels are found at the ocean bottom as far south as 35°N; the CFC penetration depth shoals to about 750 meters in the tropics. The CFC data are used to illustrate the ventilation time-scales for the water masses in the eas tern basin and to calculate OUR values in the subtropical thermocline. The CFC data in the tropical oxygen minimum off of Africa are significantly lower than the values on similar density surfaces in the subtropics, providing support for the idea that the tropical oxygen minima are controlled primarily by physical rather than biological mechanisms. The evolution of the tropical and subtropical CFC distributions between the 1972-73 TTO/TAS program and the 1988 cruise are also examined. Other features of the CFC data include a clear signal of Labrador Sea Water mid-depth ventilation, a CFC-enriched overflow water boundary current along the Iceland slope, a northward flowing deep boundary current along the eastern margin of the basin, and a mid-depth equatorial plume of upper North Atlantic Deep Water.
    Beschreibung: The work carried out in my thesis has been supported in part by a National Science Foundation Graduate Fellowship and by grants OCE-8615289 and OCE-8800957 from the National Science Foundation.
    Schlagwort(e): Ocean circulation ; Tritium ; Chlorofluorocarbons ; Oceanus (Ship : 1975-) Cruise OC134 ; Oceanus (Ship : 1975-) Cruise OC202
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution March 1988
    Beschreibung: Inverse methods are applied to historical hydrographic data to address two aspects of the general circulation of the Atlantic Ocean. The method allows conservation statements for mass and other properties, along with a variety of other constraints, to be combined in a dynamically consistent way to estimate the absolute velocity field and associated property transports. The method is first used to examine the exchange of mass and heat between the South Atlantic and the neighboring ocean basins. The Antarctic Circumpolar Current (ACC) carries a surplus of intermediate water into the South Atlantic through Drake Passage which is compensated by a surplus of deep and bottom water leaving the basin south of Africa. As a result, the ACC loses .25±.18x1015 W of heat in crossing the Atlantic. At 32°S the meridional flux of heat is .25±.19x1015 W equatorward, consistent in sign but smaller in magnitude than other recent estimates. This heat flux is carried primarily by a meridional overturning cell in which the export of 17 Sv of North Atlantic Deep Water (NADW) is balanced by an equatorward return flow equally split between the surface layers, and the intermediate and bottom water. No "leak" of warm Indian Ocean thermocline water is necessary to account for the equatorward heat flux across 32°S; in fact, a large transfer of warm water from the Indian Ocean to the Atlantic is found to be inconsistent with the present data set. Together these results demonstrate that the Atlantic as a whole acts to convert intermediate water to deep and bottom water, and thus that the global thermohaline cell associated with the formation and export of NADW is closed primarily by a "cold water path," in which deep water leaving the Atlantic ultimately returns as intermediate water entering the basin through Drake Passage. The second problem addressed concerns the circulation and property fluxes across 24°and 36°N in the subtropical North Atlantic. Conservation statements are considered for the nutrients as well as mass, and the nutrients are found to contribute significant information independent of temperature and salinity. Silicate is particularly effective in reducing the indeterminacy of circulation estimates based on mass conservation alone. In turn, the results demonstrate that accurate estimates of the chemical fluxes depend on relatively detailed knowledge of the circulation. The zonal-integral of the circulation consists of an overturning cell at both latitudes, with a net export of 19 Sv of NADW. This cell results in a poleward heat flux of 1.3±.2x1015 Wand an equatorward oxygen flux of 2900±180 kmol S-l across each latitude. The net flux of silicate is also equatorward: 138±38 kmol s-1 and 152±56 kmol s -1 across 36°and 24° N, respectively. However, in contrast to heat and oxygen, the overturning cell is not the only important mechanism responsible for the net silicate transport. A horizontal recirculation consisting of northward flow of silica-rich deep water in the eastern basin balanced by southward flow of low silica water in the western basin results in a significant silicate flux to the north. The net equatorward flux is thus smaller than indicated by the overturning cell alone. The net flux of nitrate across 36°N is n9±35 kmol 8- 1 to the north and is indistinguishable from zero at 24°N (-8±39 kmol 8-1 ), leading to a net divergence of nitrate between these two latitudes. Forcing the system to conserve nitrate leads to an unreasonable circulation. The dominant contribution to the nitrate flux at 36°N results from the correlation of strong northward flow and relatively high nitrate concentrations in the sub-surface waters of the Gulf Stream. The observed nitrate divergence between 24°and 36°N, and convergence north of 36°N, can be accounted for by a shallow cell in which the northward flow of inorganic nitrogen (nitrate) in the Gulf Stream is balanced by a southward flux of dissolved organic nitrogen in the recirculation gyre. Oxidation of the dissolved organic matter during its transit of the subtropical gyre supplies the required source of regenerated nitrate to the Gulf Stream and consumes oxygen, consistent with recent observations of oxygen utilization in the Sargasso Sea.
    Beschreibung: This research was supported by NASA under contract NAG5-534 and NSF under contract OCE-8521685.
    Schlagwort(e): Ocean circulation ; Ocean temperature ; Conrad (Ship) Cruise ; Atlantis II (Ship : 1963-) Cruise AII109
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Beschreibung: A freshwater plume often forms when a river or an estuary discharges water onto the continental shelf. Freshwater plumes are ubiquitous features of the coastal ocean and usually leave a striking signature in the coastal hydrography. The present study combines both hydrographic data and idealized numerical simulations to examine how ambient currents and winds influence the transport and mixing of plume waters. The first portion of the thesis considers the alongshore transport of freshwater using idealized numerical simulations. In the absence of any ambient current, the downstream coastal current only carries a fraction of the discharged fresh water; the remaining fraction recirculates in a continually growing "bulge" of fresh water in the vicinity of the river mouth. The fraction of fresh water transported in the coastal current is dependent on the source conditions at the river mouth. The presence of an ambient current augments the transport in the plume so that its freshwater transport matches the freshwater source. For any ambient current in the same direction as the geostrophic coastal current, the plume will evolve to a steady-state width. A key result is that an external forcing agent is required in order for the entire freshwater volume discharged by a river to be transported as a coastal current. The next section of the thesis addresses the wind-induced advection of a river plume, using hydrographic data collected in the western Gulf of Maine. The observations suggest that the plume's cross-shore structure varies markedly as a function of fluctuations in alongshore wind forcing. Consistent with Ekman dynamics, upwelling favorable winds spread the plume offshore, at times widening it to over 50 km in offshore extent, while downwelling favorable winds narrow the plume width to a few Rossby radii. Near-surface current meters show significant correlations between cross-shore currents and alongshore wind stress, consistent with Ekman theory. Estimates of the terms in the alongshore momentum equation calculated from moored current meter arrays also indicate an approximate Ekman balance within the plume. A significant correlation between alongshore currents and alongshore wind stress suggests that interfacial drag may be important. The final section of the thesis is an investigation of the advection and mixing of a surface-trapped river plume in the presence of an upwelling favorable wind stress, using a three-dimensional model in a simple, rectangular domain. Model simulations demonstrate that the plume thins and is advected offshore by the crossshore Ekman transport. The thinned plume is susceptible to significant mixing due to the vertically sheared horizontal currents. The first order plume response is explained by Ekman dynamics and a Richardson number mixing criterion. Under a sustained wind event, the plume evolves to a quasi-steady, uniform thickness. The rate of mixing slowly decreases for longer times as the stratification in the plume weakens, but mixing persists under a sustained upwelling wind until the plume is destroyed. Mixing is most intense at the seaward plume front due to an Ekman straining mechanism in which the advection of cross-shore salinity gradients balances vertical mixing. The mean mixing rate observed in the plume is consistent with the mixing power law suggested by previous studies of I-D mixing, in spite of the two-dimensional dynamics driving the mixing in the plume.
    Beschreibung: This research was funded by a National Science Foundation graduate fellowship, and Gulf of Maine Regional Marine Research Program grants UM-S227 and UM-S276.
    Schlagwort(e): Oceanic mixing ; Hydrography ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2011
    Beschreibung: Eastern oceanic boundary currents are subject to hydrodynamic instability, generate small scale features that are visible in satellite images and may radiate westward into the interior, where they can be modified by the large-scale circulations. This thesis studies the stability of an eastern boundary current with and without the large-scale flow influence in an idealized framework represented by barotropic quasi-geostrophic dynamics. The linear stability analysis of a meridional current with a continuous velocity profile shows that meridional eastern and western boundary currents support a limited number of radiating modes with long meridional and zonal wavelengths and small growth rates. However, the linearly stable, long radiating modes of an eastern boundary current can become nonlinearly unstable by resonating with short trapped unstable modes. This phenomenon is clearly demonstrated in the weakly nonlinear simulations. Results suggest that linearly stable longwave modes deserve more attention when the radiating instability of a meridional boundary current is considered. A large-scale flow affects the short trapped unstable mode and long radiating mode through different mechanisms. The large-scale flow modifies the structure of the boundary current to stabilize or destabilize the unstable modes, leading to a meridionally localized maximum in the perturbation kinetic energy field. The shortwave mode is accelerated or decelerated by the meridional velocity adjustment of the large-scale flow to have an elongated or a squeezed meridional structure, which is confirmed both in a linear WKB analysis and in nonlinear simulations. The squeezed or elongated unstable mode detunes the nonlinear resonance with the longwave modes, which then become less energetic. These two modes show different meridional structures in kinetic energy field because of the different mechanisms. In spite of the model simplicity, these results can potentially explain the formation of the zonal jets observed in altimeter data, and indicate the influence of the large-scale wind-driven circulation on eastern boundary upwelling systems in the real ocean. Studies with more realistic configurations remain future challenges.
    Schlagwort(e): Meridional overturning circulation ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1999
    Beschreibung: This thesis studies the problems of generation and maintenance of recirculations by Gulf Stream instabilities. Observations show that the horizontal structure of the jet and its recirculations suffer significant changes in time. Here, the role of internal dynamics of the jet is isolated as one of the possible sources of such variability, and the differences between barotropic and baroclinic instabilities are investigated. The problem of recirculation development is considered in a framework of a free spin down of the 2-layer and the 1-layer, zonally symmetric, quasi-geostrophic jets. Linear stability analysis shows that in strongly baroclinic basic flows, eddies are capable of driving recirculations in the lower layer through the residual meridional circulation. In strongly barotropic jets, the linearly most unstable wave simply diffuses the jet. Nonlinear stability analysis indicates that recirculations are robust features of the 2-layer model. The strength of recirculations is a function of the model’s parameters. It increases with a decrease in the value of the nondimensional /3 due to potential vorticity homogenization constrained by enstrophy conservation. The recirculation strength is a non-monotonic function of the baroclinic velocity parameter; it is the strongest for strongly baroclinic basic flows, weakest for flows with intermediate baroclinic structure and of medium strength for strongly barotropic basic flows. Such non-monotonic behavior is the result of two different processes responsible for the recirculation development: linear eddy-mean flow interactions for strongly baroclinic basic flows and strongly nonlinear eddy-eddy and eddy-mean flow interaction for strongly barotropic flows. In the case of the reduced-gravity model, recirculations develop only for infinite deformation raduis. Basic flows with finite deformation radius are only weakly supercritical and therefore produced negligible recirculations after equilibration. The problem of maintenance of the recirculations is coupled to the questions of existence of low frequency variability and of multiple dynamical regimes of a system consisting of a quasi-geostrophic jet and its recirculations. The problem is studied in a framework of a 2-layer or a reduced-gravity colliding jets model which has no windforcing. Instead, it is forced by inflows and outflows through the open boundaries. Oniy the western boundary of the domain is closed, and a free slip boundary condition is used there. The results of the numerical experiments show that when oniy the mechanism of barotropic instability is present, the model has two energy states for a wide range of interfacial friction coefficients. The high energy state is characterized by well-developed recirculations and displays strong variability associated with either large recirculating gyres and a weak eddy field or small recirculations and a strong eddy field. The iow energy state is characterized by large meridional excursions in the separation point and large amplitude, westward propagating meanders that produce strong rings after interacting with the western wall. For physically relevant bottom friction values, the presence of baroclinic in stability in the recirculation regions of the 2-layer model allows for a unique dynamical regime characterized by well-developed recirculations in both layers. The low-frequency variability associated with the regime is weak and is related to meridional shifts in the position of the jet, to wrapping of the recirculations around each other, and to pulsations in their zonal extent. For strong bottom friction, the 2-layer model has only the mechanism of barotropic instability which reduces it to a 1 1/2-layer configuration; the model displays two dynamical regimes and strong low frequency variability in the upper layer, while the lower layer is strongly frictional.
    Beschreibung: Financial support for this research was provided by NSF grant number OCE 9617848.
    Schlagwort(e): Ocean circulation ; Ocean currents
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    facet.materialart.
    Unbekannt
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publikationsdatum: 2022-05-25
    Beschreibung: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1999
    Beschreibung: Today, deep waters produced in the North Atlantic are exported through the western South Atlantic. Antarctic intermediate water AAJW also enters the Atlantic in this region. Circumpolar deep water (CDW) fills the depths below AAIW and above and below northern source waters. A depth transect of cores from 1567-3909 m water depth in the western South Atlantic are ideally located to monitor inter-ocean exchange of deep water, and variations in the relative strength of northern versus southern source water production. Last glacial maximum (LGM) Cd/Ca and δ13C data indicate a nutrient-depleted intermediate-depth water mass. In the mid-depth western South Atlantic, a simple conversion of LGM δ13C data suggests significantly less nutrient enrichment than LGM Cd/Ca ratios, but Cd/Ca and δ13C data can be reconciled when plotted in CdW/δ13C space. Paired LGM Cd/Ca and δ13C data from mid-depth cores suggest increasingly nutrient rich waters below 2000 m, but do not require an increase in Southern Ocean water contribution relative to today. Cd/Ca data suggest no glacial-interglacial change in the hydrography of the deepest waters ofthe region. To maintain relatively low Cd/Ca ratios low nutrients in the deepest western South Atlantic waters, and in CDW in general, during the LGM requires an increased supply ofnutrient-depleted glacial North Atlantic intermediate water (GNA1W) and/or nutrient-depleted glacial Subantarctic surface waters to CDW to balance reduced NADW contribution to CDW. LGM Cd/Ca and δ13C data suggest strong GNA1W influence in the western South Atlantic which in turn implies export of GNAIW from the Atlantic, and entrainment of GNA1W into the Antarctic Circumpolar current.
    Schlagwort(e): Ocean circulation ; Oceanic mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Thesis
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1874–1893, doi:10.1175/2011JPO4604.1.
    Beschreibung: A two-dimensional cross-shelf model of the New England continental shelf and slope is used to investigate the mean cross-shelf and vertical circulation at the shelf break and their seasonal variation. The model temperature and salinity fields are nudged toward climatology. Annual and seasonal mean wind stresses are applied on the surface in separate equilibrium simulations. The along-shelf pressure gradient force associated with the along-shelf sea level tilt is tuned to match the modeled and observed depth-averaged along-shelf velocity. Steady-state model solutions show strong seasonal variation in along-shelf and cross-shelf velocity, with the strongest along-shelf jet and interior onshore flow in winter, consistent with observations. Along-shelf sea level tilt associated with the tuned along-shelf pressure gradient increases shoreward because of decreasing water depth. The along-shelf sea level tilt varies seasonally with the wind and is the strongest in winter and weakest in summer. A persistent upwelling is generated at the shelf break with a maximum strength of 2 m day−1 at 50-m depth in winter. The modeled shelfbreak upwelling differs from the traditional view in that most of the upwelled water is from the upper continental slope instead of from the shelf in the form of a detached bottom boundary layer.
    Beschreibung: WGZ was supported by the Woods Hole Oceanographic Institution postdoctoral scholarship program. GGGandDJMwere supported byONRGrant N-00014- 06-1-0739.
    Schlagwort(e): Ocean circulation ; North Atlantic Ocean
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...