ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
  • Elsevier  (72)
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Key Features. Written by a global group of contributors with backgrounds ranging from philosopher to geo-practitioner, providing a balance of voices. Includes case studies, showing where experts have gone wrong and where key organizations have ignored facts, wanting assessments favorable to their agendas. Provides a much needed basis for discussion to guide scientists to consider their responsibilities and to improve communication with the public. Description. Edited by two experts in the area, Geoethics: Ethical Challenges and Case Studies in Earth Sciences addresses a range of topics surrounding the concept of ethics in geoscience, making it an important reference for any Earth scientist with a growing concern for sustainable development and social responsibility. This book will provide the reader with some obvious and some hidden information you need for understanding where experts have not served the public, what more could have been done to reach and serve the public and the ethical issues surrounding the Earth Sciences, from a global perspective. Table of contents. Section 1: Introduction Section 2: Philosophical reflections Section 3: The ethics of practice Section 4: Man made hazards Section 5: Natural hazards Section 6: Exploitation of resources Section 7: Low income and indigenous communities Section 8: Geoscience community
    Description: Published
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 4A. Clima e Oceani
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: Geoethics ; Philosophy ; Natural hazards ; Man made hazards ; Georesources ; Low income countries ; Geoscience community ; Communication ; Geoeducation ; Natural risks ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Spaceborne remote sensing techniques and numerical simulations have been combined in a web-GIS framework (LAV@HAZARD) to evaluate lava flow hazard in real time. By using the HOTSAT satellite thermal monitoring system to estimate time-varying TADR (time averaged discharge rate) and the MAGFLOW physicsbased model to simulate lava flow paths, the LAV@HAZARD platform allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We used LAV@HAZARD during the 2008–2009 lava flow-forming eruption at Mt Etna (Sicily, Italy). We measured the temporal variation in thermal emission (up to four times per hour) during the entire duration of the eruption using SEVIRI and MODIS data. The time-series of radiative power allowed us to identify six diverse thermal phases each related to different dynamic volcanic processes and associated with different TADRs and lava flow emplacement conditions. Satellite-derived estimates of lava discharge rates were computed and integrated for the whole period of the eruption (almost 14 months), showing that a lava volume of between 32 and 61 million cubic meters was erupted of which about 2/3 was emplaced during the first 4 months. These time-varying discharge rates were then used to drive MAGFLOW simulations to chart the spread of lava as a function of time. TADRs were sufficiently low (b30 m3/s) that no lava flows were capable of flowing any great distance so that they did not pose a hazard to vulnerable (agricultural and urban) areas on the flanks of Etna.
    Description: Published
    Description: 197-207
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano Infrared remote sensing Numerical simulation GIS Lava hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigated the relationship between the occurrence of earthquakes along the main volcano-tectonic structures and periods of volcanic unrest at Mt Etna. We focused our study on the Pernicana Fault System (PFS), one of the most outstanding tectonic structures delineating the northern border of the sliding eastern flank of Etna volcano. During recent decades several flank eruptions have occurred at Mt Etna and sometimes PFS released seismicity before the eruptive events, while in other cases there have been earthquakes that did not precede any eruption. To highlight a possible relation between PFS ruptures and volcanic unrest, we took into account the most energetic earthquakes (M ≥ 3.5) occurring in the last three decades (1980-2010), and considered the volcano deformation sources previously inferred by inverting geodetic data recorded during the several flank eruptions in this time interval. The estimates of stress redistribution on the PFS due to different volcano sources, such as the magma storage, the dike intrusions and the sliding eastern flank, were studied by implementing 3D numerical models that also consider the presence of topography and medium heterogeneity. Our results show that the pressurization of an intermediate storage and the traction exerted by the eastern flank sliding contribute to the seismicity along the PFS even without preceding an immediate eruption. Instead, the seismicity along the PFS related to the intrusions inside the northern sector of the volcano would represent a potential early-warning for an impending eruption at Mt Etna.
    Description: Published
    Description: 127-136
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; volcano-tectonic faults ; volcano sources and stress ; stress field change ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.
    Description: Published
    Description: 27-39
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow field ; lava flow simulation ; Digital elevation model ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-26
    Description: The volcano–hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-toneutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17–28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2– 30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (b0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid AS springs (Aq. 2) have parallel profile with total REE concentration from 9 to 98 μg/l. The highest REE concentration (207 μg/l) is observed in slightly acid shallow cold Ca-SO4 ground waters draining fresh and old pyroclastic deposits rich in magmatic anhydrite. It is suggested that the main mechanism controlling the concentration of REE in waters of El Chichón is the acidity. As low pH results from the shallow oxidation of H2S contained in hydrothermal vapors, REE distribution in thermal waters reflects the dissolution of volcanic rocks close to the surface or lake sediments as is the case for the crater lake.
    Description: -
    Description: Published
    Description: 55-66
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeochemistry ; geothermal systems ; Sr isotopes ; REE ; El Chichón Volcano ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-07
    Description: no abstract
    Description: Published
    Description: 245
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: volcanic eruption ; aircraft ; volcanic plumes ; ash clouds ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Volcanic ash fallout associated with renewal of explosive activity at Colima, represents a serious threat to the surrounding urbanized area. Here we assess the tephra fallout hazard associated with a Plinian eruption scenario. The eruptive history of Volcán de Colima shows that Plinian eruptions occur approximately every 100 years and the last eruption, the 1913, represents the largest historic eruption of this volcano. We used the last eruption as a reference to discuss volcanic hazard and risk scenarios connected with ash fallout. Tephra fallout deposits are modeled using HAZMAP, a model based on a semi-analytical solution of the advection– diffusion–sedimentation equation for volcanic particles. Based on a statistical study of wind profiles at Colima region, we first reconstructed ash loading maps and then computed ground load probability maps for different seasons. The obtained results show that a Plinian eruptive scenario at Volcán de Colima, could seriously damage more than 10 small towns and ranches, and potentially affect big cities located at tens of kilometers from the eruptive center. The probability maps obtained are aimed to give support to the risk mitigation strategies.
    Description: Published
    Description: 12-22
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic tephra fallout ; Colima ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: A better understanding of degassing processes at open-vent basaltic volcanoes requires collection of new datasets of H2O–CO2–SO2 volcanic gas plume compositions, which acquisition has long been hampered by technical limitations. Here, we use the MultiGAS technique to provide the best-documented record of gas plume discharges from Stromboli volcano to date. We show that Stromboli's gases are dominated by H2O (48–98 mol%; mean, 80%), and by CO2 (2–50 mol%; mean, 17%) and SO2 (0.2–14 mol%; mean, 3%). The significant temporal variability in our dataset reflects the dynamic nature of degassing process during Strombolian activity; which we explore by interpreting our gas measurements in tandem with the melt inclusion record of pre-eruptive dissolved volatile abundances, and with the results of an equilibrium saturation model. Comparison between natural (volcanic gas and melt inclusion) and modelled compositions is used to propose a degassing mechanism for Stromboli volcano, which suggests surface gas discharges are mixtures of CO2-rich gas bubbles supplied from the deep (〉 4 km) plumbing system, and gases released from degassing of dissolved volatiles in the magma filling the upper conduits. The proposed mixing mechanism offers a viable and general model to account for composition of gas discharges at all volcanoes for which petrologic evidence of CO2 fluxing exists. A combined volcanic gas-melt inclusion-modelling approach, as used in this paper, provides key constraints on degassing processes, and should thus be pursued further.
    Description: Published
    Description: 195-204
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic degassing ; Stromboli ; volcanic gases ; CO2 fluxing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We performed a quantitative hazard assessment to determine the potential impacts of volcanic tephra fall on human health and infrastructure in the vicinity of Mt. Etna (Italy). Using the numerical model VOL-CALPUFF, we explored the dynamics of long-lasting weak plume eruptions and their effects on the surrounding region. Input data are based on credible estimates of the main parameters characterising the expected events as derived from the historically observed and reconstructed explosive record of Mt. Etna. Monte Carlo techniques are used to capture the effects on estimates of finer ash concentration and total ground deposition due to volcanological uncertainties and meteorological variability. Numerical simulations compute the likelihoods of experiencing critical 10-μm volcanic particle (VP10) concentrations in ambient air and tephra ground deposition at various populated locations around the volcano, including the city of Catania, and at key infrastructure, such as airports and main roads. Results show how the towns and infrastructure on the east side of the volcano are significantly more exposed to ash-related hazards than those on the west side, in accordance with wind statistics. Simulation outcomes also illustrate how, at the sites analysed, the amount of deposited particulate matter is proportional to the intensity (i.e. mass flow rate) of the event whereas predicted values of VP10 concentrations are significantly larger for smaller events due to the reduced dispersal of low altitude plumes. The use of a simple re-mobilization model highlights the fact that particle re-suspension needs to be considered in the estimation of VP10 values. Our findings can be used to inform civil protection agencies responsible for mitigating tephra fall impacts to human health, road transport and aviation safety.
    Description: Published
    Description: 85-96
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic ash ; hazard assessment ; VP10 exposure ; numerical simulation ; VOL-CALPUFF ; Mt. Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The detailed analysis of stratigraphy allowed the reconstruction of the complex volcanic history of La Fossa di Vulcano. An eruptive activity mainly driven by superficial phreatomagmatic explosions emerged. A statistical analysis of the pyroclastic Successions led to the identification of dilute pyroclastic density currents (base surges) as the most recurrent events, followed by fallout of dense ballistic blocks. The scale of events is related to the amount of magma involved in each explosion. Events involving about 1 millioncm3 of magma occurred during recent eruptions. They led to the formation of hundreds of meters thick dilute pyroclastic density currents, moving down the volcano slope at velocities exceeding 50 m/s. The dispersion of density currents affected the whole Vulcano Porto area, the Vulcanello area. They also overrode the Fossa Caldera's rim, spreading over the Piano area. For the aim of hazard assessment, deposits from La Fossa Cone and La Fossa Caldera were studied in detail, to depict the eruptive scenarios at short-term and at long-term. By means of physical models that make use of deposit particle features, the impact parameters have been calculated. They are dynamic pressure and particle volumetric concentration of density currents, and impact energy of ballistic blocks. A quantitative hazard map, based on these impact parameters, is presented. It could be useful for territory planning and for the calculation of the expected damage.
    Description: In press
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: hazard, ; stratigraphy, ; physical modelling ; volcanic history ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Mt. Vesuvius, Italy, is regarded as one of the world's most dangerous volcanoes because of the potential for vast numbers of people to be affected by the renewal of volcanic activity; more than 600 000 people live within 10 km of the summit alone. Vesuvius has been quiescent since 1944 and with continued dormancy, the more likely it is that the next eruption will be explosive. At that point, wide-spread concern is likely over the potential health hazard of the ash, away from the zone of primary volcanic hazards. Analyses of the mineralogical and geochemical characteristics of ash provide us with critical information on the potential toxicity of the particles, for example, whether particles are sufficiently small to enter the lungs and whether the particles have reactive properties which could trigger disease. Rapid assessment of these characteristics allows real-time decision making on hazard mitigation issues (e.g. distribution of dust masks) and allows considered judgement on whether to embark on major medical/toxicological studies. The study presented here is the first time that the potential respiratory health hazard of ash from Vesuvius volcano has been considered and allows planning for future eruption scenarios. Twenty-one ash samples, representing the range of eruption styles at Vesuvius, were collected and analysed. The results demonstrate that the physical processes of fragmentation play an important role in determining the grain size and, therefore, hazard, of the ash. Here, the finest samples derive from the interaction of magma and water during the final, phreatomagmatic phases of plinian and subplinian eruptions ( 16 vol.% 〈4 µm material), while the low-intensity explosivity activity, associated with lava effusion, produces coarse ash posing a lesser hazard. The quantity of material found in the different health-pertinent fractions is strongly correlated, allowing prediction of these fractions where only coarser sieve data are available. Since Vesuvius produces silica under-saturated products, ‘free’ crystalline silica in the ash does not pose a significant health hazard (〈 2 wt.% cristobalite and 〈3 wt.% quartz). Surface tests showed that the capability of the ash to generate the highly-reactive hydroxyl free radical varies considerably amongst samples, with available surface iron correlating well with reactivity potential.
    Description: Published
    Description: 222-232
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; volcano ; health ; mineralogy ; ash ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: We studied the shape of the most regular-shaped stratovolcanoes of the world to mathematically define the form of the ideal stratovolcano. Based on the Shuttle Radar Topographic Mission data we selected 19 of the most circular and symmetrical volcanoes, which incidentally all belong to subduction-related arcs surrounding the Pacific. The selection of volcanoes benefitted from the introduction of a new definition of circularity which is more robust than previous definitions, being independent of the erosional dissection of the cone. Our study on the shape of stratovolcanoes was based on the analysis of the radial elevation profiles of each volcano. The lower half section of the volcanoes is always well fitted by a logarithmic curve, while the upper half section is not, and falls into two groups: it is fitted either by a line (“C-type”, conical upper part) or by a parabolic arc (“P-type”, parabolic/concave upper part). A quantitative discrimination between these groups is obtained by fitting their upper slope with a linear function: C-type volcanoes show small, whereas P-type volcanoes show significant negative angular coefficient. The proposed threshold between the two groups is − 50 × 10− 4°/m. Chemical composition of eruptive products indicates higher SiO2 and/or higher H2O content for C-type volcanoes, which could imply a higher incidence of mildly explosive (e.g. strombolian) eruptions. We propose that this higher explosivity is responsible for forming the constant uppermost slopes by the deposition of ballistic tephra and its subsequent stabilisation at a constant angle. By contrast, P-type volcanoes are characterized by a smaller SiO2 and H2O content, which can be responsible for a higher incidence of effusive events and/or a lower incidence of upper flank-forming (i.e. mild) explosive eruptions. Therefore, the concave upper flanks of these volcanoes may be shaped typically by lava flows. Based on this hypothesis, we propose that the morphometric analysis of the elevation profile of stratovolcanoes can provide insights into their dominant eruptive style.
    Description: Published
    Description: 171-181
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: stratovolcano ; SRTM ; shape analysis ; elevation profile ; circularity ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I examine and discuss the alternative hypothesis that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions are used to show that Stromboli's feeding magma may originally contain as much as 2 wt.% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (≥60 at 10 km depth below the vents, compared to ∼7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt–gas mixture until the volcano–crust interface (∼3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (such as the volcano–crust interface) where the gasrich aphyric basalt interacts with the unerupted crystal-rich and viscous magma drained back from the volcano conduits. Gas pressure build-up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli's paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.
    Description: Published
    Description: 363–374
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: basaltic volcanoes ; magma degassing ; explosive paroxysms ; CO2 ; gas bubbles ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-04-07
    Description: During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate Ṁ, duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus Ṁ yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (〉 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's 1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.
    Description: Published
    Description: 10-21
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic eruption ; aircraft ; volcanic plumes ; ash clouds ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-06-15
    Description: No eruption, no caldera collapse, and no landslide can take place in a volcano unless its state of stress is suitable for the associated type of rock failure. The state of stress, in turn, results in deformation, and both stress and deformation depend on the mechanical properties of the rocks that constitute the volcano. Understanding stress and deformation in volcanoes is thus of fundamental importance for understanding unrest periods and for accurate forecasting volcano failure, such as may result in large-scale lateral and vertical collapses and eruptions.
    Description: Published
    Description: 1-3
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: stress, deformation, volcano tectonics, physical propertie of volcanic rocks ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Basaltic 'a'ā lava flows often demonstrate compound morphology, consisting of many juxtaposed and superposed flow units. Following observations made during the 2001 eruption of Mt. Etna, Sicily, we examine the processes that can result from the superposition of flow units, when the underlying units are sufficiently young to have immature crusts and deformable cores. During this eruption, we observed that the emplacement of new surface flow units may reactivate older, underlying units by squeezing the still-hot flow core away from the site of loading. Here, we illustrate three different styles of reactivation that depend on the time elapsed between the emplacement of the two flow units, hence the rheological contrast between them. For relatively long time intervals (2 to 15 days), and consequently significant rheological contrasts, superposition can pressurise the underlying flow unit, leading to crustal rupture and the subsequent extrusion of a small volume of high yield strength lava. Following shorter intervals (1 to 2 days), the increased pressure caused by superposition can result in renewed, slow advance of the underlying immature flow unit front. On timescales of 〈 1 day, where there is little rheological contrast between the two units, the thin intervening crust can be disrupted during superposition, allowing mixing of the flow cores, large-scale reactivation of both units, and widespread channel drainage. This mechanism may explain the presence of drained channels in flows that are known to have been cooling-limited, contrary to the usual interpretation of drainage as an indicator of volume-limited behaviour. Because the remobilisation of previously stagnant lava can occur swiftly and unexpectedly, it may pose a significant hazard during the emplacement of compound flows. Constant monitoring of flow development to identify areas where superposition is occurring is therefore recommended, as this may allow potentially hazardous rapid drainage events to be forecast. Reactivation processes should also be borne in mind when reconstructing the emplacement of old lava flow fields, as failure to recognise their effects may result in the misinterpretation of features such as drained channels.
    Description: The work was funded by NERC studentship NER/S/A2005/13681 and grant NE/F018010/1.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Etna ; flow unit ; compound flow ; superposition ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I propose instead that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions with the magma sulphur content are used to show that Stromboli’s feeding magma originally may contain as much as 2 wt% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (60 at 10 km depth below the vents, compared to ~7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt-gas mixture until about the volcano-crust interface (~3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (the volcano-crust interface) where the gas-rich aphyric basalt interacts with the unerupted crystal-rich, viscous magma drained back from the volcano conduits. Gas pressure build up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli’s paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: explosive paroxysms ; CO2-rich gas ; basaltic volcanoes ; gas bubbles ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: We present here a new hypothesis to explain the high mobility of same rapid mass movements of rock fragments. We suggest that oscillations of flows with a quasi-rigid plug can result in reduction of their apparent coefficient of friction. This coefficient is computed as the ratio between drop in elevation and horizontal distance of travel. In our model, the effective friction during a downhill journay is a combination of the friction forces acting on the plug during the ascending and descending parts of its slope-normal oscillations. As a consequence of oscillations, the decreased contact with ground surface reduces the apparent coefficent of friction. Channel lateral surfaces can also support a portion of plug weight giving another contribution in the reduction of this coefficient. The support of lateral surfaces requires a relatively narrow channel such as a gully or the presence of levees whereas the reduced basal contact can be important also in larger channels that do not provide lateral support. We suggest that slope-normal oscillations are generated by ground asperities. The true coefficent of friction are larger than the apparent one because they account energetically for the oscillations that reduce basal contact. Thus we can say that our model is able to explain long runout distances as long as the energy dissipated by oscillations is accounted for by the true coefficents of friction that enter the calculations. Field and experimental investigation of several ideas discussed in this paper constitutes important aspects of future research that will improve the understanding of granular flows mobility.
    Description: Published
    Description: 23-32
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: pyroclastic flows ; rock avalanches ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991–1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.
    Description: Published
    Description: 16-26
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: lava flow ; mitigation action ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) and Global Position System (GPS) are applied to investigate the most recent surface deformation of the Campi Flegrei caldera. The PSInSAR analysis, based on SAR data acquired by ERS-1/2 sensors during the 1992–2001 time interval and by the Radarsat sensor during 2003–2007, identifies displacement patterns over wide areas with high spatial resolution. GPS data acquired by the Neapolitan Volcanic Continuous GPS network provide detailed ground velocity information of specific sites. The satellite-derived data allow us to characterize the deformation pattern that affected the Campi Flegrei caldera during two recent subsidence (1992–1999) and uplift (2005– 2006) phases. PSInSAR results show the re-activation of the caldera ring-faults, intra-caldera faults, and eruptive fissures. We discuss the results in the light of the available volcanological, structural and geophysical data and propose a relationship between the structures activated during the recent unrest episodes and those responsible for the recent (b3.8–4 ka) volcanism. The combined interpretation of the collected data show that (a) the caldera consists of two sectors separated by a N–S striking faulting zone and (b) the intra-caldera NW–SE faults and eruptive fissures in the central-eastern sector re-activated during the studied unrest episodes and represent possible pathways for the ascent of magma and/or gas to the surface. In this sector, maximum horizontal strain, recent volcanism (3.8–4 ka), active degassing and seismicity concentrate. The fault re-activation is related to the dynamics of the caldera and not to tectonic stress. The deformation fields of the uplift and subsidence episodes are consistent with hydrothermal processes and degassing from a magmatic reservoir that is significantly smaller than the large (∼40 km3) magma chamber responsible for the caldera formation. We provide evidence that the monitoring of the horizontal and vertical components of deformation improves the identification of active, aseismic faults. Accordingly, we suggest that future ground deformation models should include the re-activation of the detected structures.
    Description: This study has been supported by the TELLUS project (Telerilevamento Laboratori Unità di Supporto), which has been developed in the framework of the PODIS project (Progetto Operativo Difesa Suolo) of the Ministero dell'Ambiente e per la Tutela del Territorio e del Mare,and has been funded by the European Union QCS 2000–2006 PONATAS, by INGV-Osservatorio Vesuviano, and by 'Creep' IYPE-UNESCO project.
    Description: Published
    Description: 2373-2383
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: restricted
    Keywords: PSInSAR ; Fault re-activation ; Campi Flegrei ; Caldera ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: The multi-parametric permanent system (tilt and GPS networks, robotized geodetic station) for monitoring ground deformation at Stromboli volcano was set up in the 1990s and later greatly improved during the effusive event of 2002–2003. Unlike other volcanoes, e.g. Mt. Etna, the magnitude of ground deformation signals of Stromboli is very small and through the entire period of operation of the monitoring system, only two major episodes of deformation, in 1994–1995 and 2000, which did not lead to an eruption but rather pure intrusion, were measured. Similarly to the 2002–2003 eruption, no important deformations were detected in the months before the 2007 eruption. However, unlike the 2002–2003 eruption, GPS and tilt stations recorded a continuous deflation during the entire 2007 eruption, which allowed us to infer a vertical elongated prolate ellipsoidal source, centered below the summit craters at depth of about 2.8 km b.s.l. Due to its geometry and position, this source simulates an elongated plumbing system connecting the deeper LP magma storage (depth from 5 to 10 km) with the HP shallower storage (0.8–3 km), both previously identified by petrologic and geochemical studies. This result represents the first contribution of geophysics to the definition of the plumbing system of Stromboli at intermediate depth. Finally, no deformation due to the plumbing system was measured for a long time after the end of the eruption. Meanwhile, the new terrestrial geodetic monitoring system installed within the Sciara del Fuoco, on the lava fan formed during the eruption, indicated that during the first months after the end of the eruption the ground velocity progressively decreased in time, suggesting that part of the deformation was due to the thermal contraction of the lava flow.
    Description: Published
    Description: 172-181
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Ground Deformation ; source modelling ; flank instability ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-03
    Description: Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.
    Description: Published
    Description: 148-160
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Pyroclastic density currents ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Eruptions are fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: Partly fundedwith DPC-INGVfunds (LAVAProject).
    Description: Published
    Description: 67–77
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveals a southward motion of the upper southern part of the volcano, driven by a NNW–SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 78–86
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: stress release ; dike ; volcano-tectonics ; flank instability ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: The Campi Flegrei caldera is an active and restless volcano in the densely inhabited Neapolitan area of southern Italy. Because of the very high value (lives, properties, infrastructures, etc.) exposed to potential volcanic hazards, it is one of the areas at highest volcanic risk on Earth. In such a situation we have made an attempt to contribute to assessment of its volcanic hazards by providing a quantitative probabilistic longterm forecast of style and size of the next eruption. We have evaluated the most relevant physical parameters of the 22 explosive eruptions of the Campi Flegrei caldera over the past 5 ka. This time span has been taken as the reference period for volcanic hazards assessment on the basis of the volcanic and deformation history of the caldera. The evaluated parameters include dispersal, volume and density of the pyroclastic deposits, volume of erupted magma, total erupted mass, and eruption magnitude. The obtained results permit a size classification of the explosive eruptions, which are grouped into three sizes: small, medium, and large. On the basis of the reconstructed eruption dynamics, we have considered a type event(s) representative of each size class and hypothesized the style of the next event. An effusive eruption will likely generate a dome or very small lava flows, while an explosive event of any size very probably will produce particles fallout and flowage of pyroclastic density currents. Using a Bayesian inference procedure, we have assigned a conditional probability of occurrence to each of the eruption size classes. A small-size explosive eruption is the most likely event with a probability of about 60%; a large-size explosive eruption is the least likely event with a probability of about 4%; a medium-size explosive eruption has a probability of occurrence of about 25%; an effusive eruption has about 11% probability of occurrence.
    Description: Published
    Description: 265–276
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic hazards assessment ; eruption size ; eruption style ; Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: A dyke conduit has been shown to be a realistic model for the shallow magmatic feeder system for the dome forming eruption at Soufrière Hills Volcano, Montserrat. Here we use a three-dimensional Finite Element model to examine the ground deformation that can be expected due to the pressurization of a dyke conduit. We find that the generated deformation has a bilateral symmetry with nearly no displacement in the direction of dyke strike, and a maximal ground deformation about 1 km away from the vent in the perpendicular direction. Resultant surface deformation is mainly triggered by the upper part of the feeder system, where the dyke opens into a cylindrical conduit. We apply our deformation model to investigate tilt data collected in 1997 in order to infer the orientation of the dyke. We obtain a best-fit for a NNW–SSE trending dyke, which matches observations of the ground displacement field obtained by differential GPS and the alignment of main structural geologic features of southern Montserrat.
    Description: Published
    Description: 87–95
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Soufrière Hills Volcano ; Dyke conduit ; Finite Element Model ; Ground deformation ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-11-16
    Description: The MAGFLOW cellular automata model was able to fairly accurately reproduce the time of the lava flow advance during the 2006 Etna eruption leading to very plausible flow predictions. MAGFLOW is intended for use in emergency response situations during an eruption to quickly forecast the lava flow path over some time interval from the immediate future to a long-time forecast. Major discrepancies between the observed and simulated paths occurred in the early phase of the 2006 eruption due to an underestimation of the initial flow rate, and at the time of the overlapping with the 2004-2005 lava flow. Very good representations of the areas likely to be inundated by lava flows were obtained when we adopt a time-varying effusion rate and include the 2004-2005 lava flow field in the Digital Elevation Model (DEM) of topography.
    Description: Published
    Description: 1050-1060
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Lava Flow ; Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: Determining consistent sets of vent conditions for next expected eruptions at Vesuvius is crucial for the simulation of the sub-aerial processes originating the volcanic hazard and the eruption impact. Herewerefer to the expected eruptive scales and conditions defined in the frame of the EC Exploris project, and simulate the dynamics of magma ascent along the volcanic conduit for sub-steady phases of next eruptions characterized by intensities of the Violent Strombolian (VS), Sub-Plinian 2 (SP2), and Sub-Plinian 1 (SP1) scale. Sets of conditions for the simulations are determined on the basis of the bulk of knowledge on the past history of Vesuvius [Cioni, R., Bertagnini, A., Santacroce, R., Andronico, D., Explosive activity and eruption scenarios at Somma–Vesuvius (Italy): towards a new classification scheme. Journal of Volcanology and Geothermal Research, this issue.]. Volatile contents (H2O and CO2) are parameterized in order to account for the uncertainty in their expected amounts for a next eruption. In all cases the flow in the conduit is found to be choked, with velocities at the conduit exit or vent corresponding to the sonic velocity in the two-phase non-equilibrium magmatic mixture. Conduit diameters and vent mixture densities are found to display minimum overlapping between the different eruptive scales, while exit gas and particle velocities, as well as vent pressures, largely overlap. Vent diameters vary from as low as about 5 m for VS eruptions, to 35–55 m for the most violent SP1 eruption scale. Vent pressures can be as low as less than 1 MPa for the lowest volatile content employed of 2 wt.% H2O and no CO2, to 7–8 MPa for highest volatile contents of 5 wt.% H2O and 2 wt.% CO2 and large eruptive scales. Gas and particle velocities at the vent range from 100–250 m/s, with a tendency to decrease, and to increase the mechanical decoupling between the phases, with increasing eruptive scale. Except for velocities, all relevant vent quantities are more sensitive to the volatile content of the discharged magma for the highest eruptive scales considered.
    Description: Published
    Description: 359-365
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; Numerical simulations ; Vent conditions ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Disasters from explosive volcanic eruptions are infrequent and experience in emergency planning and mitigation for such events remains limited. The need for urgently developing more robust methods for risk assessment and decision making in volcanic crises has become increasingly apparent as world populations continue to expand in areas of active explosive volcanism. Nowhere is this more challenging than at Vesuvius, Italy, with hundreds of thousands of people living on the flanks of one of the most dangerous volcanoes in the world. We describe how a new paradigm, evidence-based volcanology, has been applied in EXPLORIS to contribute to crisis planning and management for when the volcano enters its next state of unrest, as well as in long-term land-use planning. The analytical approach we adopted enumerates and quantifies all the processes and effects of the eruptive hazards of the volcano known to influence risk, a scientific challenge that combines field data on the vulnerability of the built environment and humans in past volcanic disasters with theoretical research on the state of the volcano, and including evidence from the field on previous eruptions as well as numerical simulation modelling of eruptive processes. Formal probabilistic reasoning under uncertainty and a decision analysis approach have provided the basis for the development of an event tree for a future range of eruption types with probability paths and hypothetical casualty outcomes for risk assessment. The most likely future eruption scenarios for emergency planning were derived from the event tree and elaborated upon from the geological and historical record. Modelling the impacts in these scenarios and quantifying the consequences for the circumvesuvian area provide realistic assessments for disaster planning and for showing the potential risk–benefit of mitigation measures, the main one being timely evacuation, but include for consideration protecting buildings against dilute, low dynamic pressure surges, and temporary roof supports in the most vulnerable buildings, as well as hardening infrastructure and lifelines. This innovative work suggests that risk-based methods could have an important role in crisis management at cities on volcanoes and small volcanic islands.
    Description: Published
    Description: 454-473
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: planning ; emergency ; volcano ; eruption ; mitigation ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Historical sources have recorded earthquake shocks, their effects and difficulties that local inhabitants experienced before the AD 79 Pompeii eruption. Archaeological studies pointed out the effects of such seismicity, and have also evidenced that several water crises were occurring at Pompeii in that period. Indeed numerous sources show that, at the time of eruption, and probably some time before, the civic aqueduct, having ceased to be supplied by the regional one, was out of order and that a new one was being built. Since Roman aqueducts were usually built with a recommended minimum mean slope of 20 cm/km and Pompeii's aqueduct sloped from the nearby Apennines toward the town, this slope could have been easily cancelled by uplift that occurred in the area even if this was only moderate. For the crustal deformations a volcanic origin is proposed and a point source model is used to explain the observations. Simple analysis of the available data suggests that the ground deformations were caused by a b2 km3 volumetric change at a depth of ∼8 km that happened over the course of several decades.
    Description: Published
    Description: 959–970
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; ground deformation ; seismicity ; stress changes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: We present here a new hypothesis to explain the high mobility of same rapid mass movements of rock fragments. We suggest that oscillations of flows with a quasi-rigid plug can result in reduction of their apparent coefficient of friction. This coefficient is computed as the ratio between drop in elevation and horizontal distance of travel. In our model, the effective friction during a downhill journey is a combination of the friction forces acting on the plug during the ascending and descending parts of its slope-normal oscillations. As a consequence of oscillations, the decreased contact with ground surface reduces the apparent coefficient of friction. Channel lateral surfaces can also support a portion of plug weight giving another contribution in the reduction of this coefficient. The support of lateral surfaces requires a relatively narrow channel such as a gully or the presence of levees whereas the reduced basal contact can be important also in larger channels that do not provide lateral support. We suggest that slope-normal oscillations are generated by ground asperities. The true coefficients of friction are larger than the apparent one because they account energetically for the oscillations that reduce basal contact. Thus we can say that our model is able to explain long runout distances as long as the energy dissipated by oscillations is accounted for by the true coefficients of friction that enter the calculations. Field and experimental investigation of the several ideas discussed in this paper constitutes important aspects of future research that will improve the understanding of granular flows mobility.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pyroclastic flows ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: On 27 February 2007, two NE–SW and NNW–SSE dike-fed effusive vents opened to the North (at 650 and 400 m above sea level, asl) of the summit craters at Stromboli, forming a fissure parallel to the inner walls of the Sciara del Fuoco (SdF) sector collapse depression. The formation of these vents was soon followed by rapid subsidence of the summit crater area. This partly obstructed the central conduit, temporarily choking the fissure and increasing the deformation of the upper part of SdF. The reactivation of the NNW–SSE vent and the opening of a new vent located at 500 m asl, fed by a second dike, released the internal pressure and surface deformation ceased. The eruption then continued again from the 400 m vent, after a summit explosion on 15 March, until ending in early April after a progressive decrease of magma output. Repeated NE–SW dike intrusions have occurred in recent years, close to the upper SE limit of the SdF. In that zone, named Bastimento, the eruptive fractures traced the discontinuities that borders the SdF, increasing the risk of triggering new sector collapse. Whereas the NE–SW trending structures lie along the regional volcanostructural trend of the Aeolian arc through Stromboli, the NNW–SSE vents are oblique to this trend and may be controlled by the anomalous stress field within the unstable flank of the SdF. Another fundamental aspect of the 2007 eruption is the collapse of the central conduit, due to the rapid and deep magma drainage linked to the opening of the 400 m vent. The intrusion of dikes and development of flank vents during the 2007 eruption could possibly have triggered catastrophic landslides and related tsunami or eruptive paroxysms, but the opening of new effusive vents released the internal pressures, diminishing the hazard.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: 2007 Stromboli eruption ; Dike-fed vent ; Volcano-Tectonics ; Conduit collapse ; Flank instability ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: During an eruption at the Bocca Nuova, one of the summit craters of Mt. Etna, in October-November 1999 a part of the crater floor near its WNW rim was uplifted to form a dome-shaped feature that consisted of older lava and pyroclastics filling the crater. This endogenous dome grew rapidly over the crater rim, thus being perched precariously over the steep outer slope of the Bocca Nuova, and near-continuous collapse of its steep flanks generated swiftly moving pyroclastic avalanches over a period of several hours. These avalanches advanced at speeds of 10-20 m s-1 and extended up to 0.7 km from their source on top of lavas emplaced immediately before. Their deposits were subsequently covered by lava flows that issued from vents below the front of the dome and from the Bocca Nuova itself. Growth of the dome was caused by the vertical intrusion of magma in the marginal W part of the crater, which deformed and uplifted previously emplaced, still hot and plastically deformable eruptive products filling the crater. The resulting avalanches had all characteristics of pyroclastic flows spawned by collapse of unstable flanks of lava domes, but in this case the magma involved was of mafic (hawaiitic) composition and would have, under normal circumstances, produced fluid lava flows. The formation of the dome and the generation of the pyroclastic avalanches owe their occurrence to the rheological properties of the eruptive products filling the crater, which were transformed into the dome, and to the morphological configuration of the Bocca Nuova and its surroundings. The density contrast between successive erupted products may also have played a role. Although events of this type are to be considered exceptional at Etna, their recurrence might represent a serious hazard to visitors to the summit area.
    Description: Published
    Description: 115-128
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Bocca Nuova ; endogenous lava dome ; pyroclastic avalanches ; magma ascent ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Published
    Description: 393-416
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: hydrothermal fluids ; unrest ; modeling ; caldera ; monitoring ; volcanic hazard ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: No Abstract
    Description: Published
    Description: V-IX
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Rischio Vulcanico ; Exploris ; Vulcani esplosivi ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: Intrusive degassing and recycling of degassed and dense magma at depth have been proposed for a long time at Stromboli. The brief explosive event that occurred at the summit craters on 9 January 2005 threw out bombs and lapilli that could be good candidates to illustrate recycling of shallow degassed magma at depth. We present an extensive data set on both the textures and the mineral, bulk rock and glassy matrix chemistry of the “9 Jan” products. The latter have the common shoshonitic–basaltic bulk composition of lavas and scoriae issued from typical strombolian activity. In contrast they differ by the heterogeneous chemistry of their matrix glasses and their crystal textures that testify to crystal dissolution event(s) just prior magma crystallization upon ascent and eruption. Comparison between mineral paragenesis of the natural products and experimental phase equilibria suggest water-induced magma re-equilibration. We propose that mineral dissolution is related to water enrichment of the recycled degassed magma, via differential gas bubble transfer and to some extents its physical mixing with volatile-rich magma blobs. However, all these features illustrate transient processes. Even though evidence of mineral dissolution is ubiquitous at Stromboli, its effect on the bulk magma chemistry is minor because of the subtle interplay between mineral dissolution and crystallization in magmas having comparable bulk chemistry.
    Description: Published
    Description: 325-336
    Description: JCR Journal
    Description: reserved
    Keywords: mineral dissolution ; magma chemistry ; volatiles ; trace elements ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: Eruptions are often fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection–diffusion–sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection–diffusion–sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.
    Description: Published
    Description: 366–377
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic ash fallout ; volcanic hazard ; computer model ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; basaltic explosive activity ; ash-rich jet and plume ; tachylite ; sideromelane ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: More than 600000 people are exposed to volcanic risk in the urban areas near the volcano,Vesuvius, and may need to be evacuated if there is renewed volcanic activity. The success of a future evacuation will strongly depend on the level of risk perception and preparedness of the at-risk communities during the current period of quiescence. The volcanic risk perception and preparedness of young people is of particular importance because hazard education programs in schools have been shown to increase the clarity of risk perception and students often share their knowledge with their parents. In order to evaluate young people's risk perception and preparedness for a volcanic crisis, a multiple choice questionnaire was distributed to 400 high-school students in three municipalities located close to the volcano. The overall results suggest that despite a 60-year period of quiescence at Vesuvius, the interviewed students have an accurate perception of the level of volcanic risk. On the other hand, the respondents demonstrate a clear lack of understanding of volcanic processes and their related hazards.Also, the interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). The latter result suggests that in comparisonwith volcanic crises in other regions, during a future eruption ofVesuvius, theremay not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to improve the accuracy of risk perception of youth in local communities.
    Description: Published
    Description: 229-243
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: risk perception ; disasters ; evacuation plan ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: The 2D Cellular Automata model, MAGFLOW, simulates lava flows and an algorithm based on the Monte Carlo approach solves the anisotropic flow direction problem. The model was applied to reproduce a lava flow formed during the 2001 Etna eruption. This eruption provided the opportunity to verify the ability of MAGFLOW to simulate the path of lava flows. made possible due to the availability of the necessary data for both modeling and subsequent validation. MAGFLOW reproduced quite accurately the spread of flow. A good agreement was highlighted between the simulated and observed length on steep slopes, whereas the area covered by the lava flow tends to be overestimated. The major inconsistencies found in the comparison between simulated and observed lava flow due to neglecting the effects of ephemeral vent formation.
    Description: Published
    Description: 1465-1471
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava Flow Simulation ; Etna Volcano ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: Tephra fallout constitutes a serious threat to communities around active volcanoes. Reliable short-term 13 forecasts represent a valuable aid for scientists and civil authorities to mitigate the effects of fallout on the 14 surrounding areas during an episode of crisis. We present a platform-independent automatic procedure with Q1 15 the aim to daily forecast transport and deposition of volcanic particles. The procedure builds on a series of 16 programs and interfaces that automate the data flow and the execution and subsequent postprocess of fallout 17 models. Firstly, the procedure downloads regional meteorological forecasts for the area and time interval of 18 interest, filters and converts data from its native format, and runs the CALMET diagnostic model to obtain the 19 wind field and other micro-meteorological variables on a finer local-scale 3-D grid defined by the user. 20 Secondly, it assesses the distribution of mass along the eruptive column, commonly by means of the radial 21 averaged buoyant plume equations depending on the prognostic wind field and on the conditions at the vent 22 (granulometry, mass flow rate, etc). All these data serve as input for the fallout models. The initial version of 23 the procedure includes only two Eulerian models, HAZMAP and FALL3D, the latter available as serial and 24 parallel implementations. However, the procedure is designed to incorporate easily other models in a near 25 future with minor modifications on the model source code. The last step is to postprocess the outcomes of 26 models to obtain maps written in standard file formats. These maps contain plots of relevant quantities such 27 as predicted ground load, expected deposit thickness and, for the case of or 3-D models, concentration on air 28 or flight safety concentration thresholds
    Description: Published
    Description: 767-777
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Tephra fallout ; volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: A new proposal for the classification of Somma-Vesuvius (SV) explosive activity is presented, based on a critical revision of a large set of published and unpublished stratigraphic, compositional, and physical volcanology data on the products of the past 20,000 years of activity. The new database is used to discuss the general behaviour of the volcano in terms of frequency, magnitude and intensity of the events, as well as of the length of the repose time which preceded each eruption. Several different types of eruption are recognized, each characterised by specific physical eruptive parameters: plinian, subplinian (further subdivided in subplinian I and subplinian II), violent strombolian, ash emission events. For each eruption type, a complex scenario is described, with phases of different style, duration, magnitude and intensity occurring during the course of the eruption itself. The name given to each eruption type is derived from the style of the most representative part of the eruption (in terms of duration or volume). On the whole, the magnitude (expressed as the volume of erupted magma) of the past SV eruptions has been roughly decreasing with time while, starting from 3900 years BP, their frequency has been increasing. The eruption intensity, expressed as the estimated magma discharge rate (MDR) continuously increases with increasing magnitude from strombolian to plinian eruptions, the most voluminous plinian events being, however, characterised by a lower MDR than the smaller ones. The length of the “apparent” repose preceding an eruption (the difference in age between one deposit and that immediately on top of it) appears clearly correlated with magnitude for the most intense eruptions (plinian and subplinian I), while this correlation is poorer for eruptions of intermediate size (from violent strombolian to subplinian II). These exhibit a large variability in magnitude, intensity and eruption style for a range of repose time varying from dozens to hundreds of years, then including the current duration of Vesuvius quiescence. By reckoning with the whole range of possibilities that a next unrest at Vesuvius implies, the set of presented eruption scenarios can be useful both for developing a probabilistic approach to hazard assessment and depicting a range of impact scenarios. The scenario for high-intensity events had been already well defined since 1995, in order to redact the emergency plan of the National Department of Civil Defence. Conversely, it is now clear that the impact on the territory of long-lasting, although low-intensity, eruptions (subplinian II, violent strombolian, ash emission activity) can be relevant especially in terms of economic costs. A larger consideration of this type of activity at Vesuvius can be important especially for the aspects of emergency planning and risk reduction.
    Description: Published
    Description: 331-346
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Explosive eruption ; Eruption scenario ; Volcanic history ; Somma-Vesuvius ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: A volcanic risk perception study of the population residing near Vesuvius was carried out between May and July, 2006. A total of 3600 questionnaires with 45 items were distributed to students, their parents and the general population. The largest number of surveys (2812) were distributed in the 18 towns of the Red Zone, the area nearest to the volcano that is exposed to pyroclastic flow hazards and whose 550,000 residents, according to the civil protection emergency plan (in operation since 1995), should be evacuated in case of an eruption crisis. The remaining 788 questionnaires were distributed in 3 additional towns and 3 neighborhoods of Naples, all within the Yellow Zone, which is an area exposed to pyroclastic fallout hazards. A total of 2655 surveys were returned, resulting in a response rate of 73.7%. Results indicated that people have a realistic view of the risk: they think that an eruption is likely, that it will have serious consequences for their towns and for themselves and their families and they are quite worried about the threat. However, several other social, economic, and security-related issues were listed as a problem more often than Vesuvius. The study also demonstrated a widespread lack of knowledge about the emergency plan, a lack of confidence in the plan's success and in public officials and low feelings of self-efficacy. People want to be more deeply involved in public discussions with scientists and civil protection officials on emergency planning and individual preparedness measures. It is clear from the results that a major education-information effort is still needed to improve the public's knowledge, confidence and self-efficacy, thereby improving their collective and individual capability to positively face a future volcanic emergency.
    Description: Published
    Description: 244–258
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic risk perception ; Vesuvius ; confidence on emergency plan and public officials ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: Probabilistic characterizations of possible future eruptive scenarios at Vesuvius volcano are elaborated and organized within a risk-based framework. In the EXPLORIS project, a wide variety of topics relating to this basic problem have been pursued: updates of historical data, reinterpretation of previous geological field data and the collection of new fieldwork results, the development of novel numerical modelling codes and of risk assessment techniques have all been completed. To achieve coherence, many diverse strands of evidence had to be unified within a formalised structure, and linked together by expert knowledge. For this purpose, a Vesuvius ‘Event Tree’ (ET) was created to summarise in a numerical-graphical form, at different levels of detail, all the relative likelihoods relating to the genesis and style of eruption, development and nature of volcanic hazards, and the probabilities of occurrence of different volcanic risks in the next eruption crisis. The Event Tree formulation provides a logical pathway connecting generic probabilistic hazard assessment to quantitative risk evaluation. In order to achieve a complete parameterization for this all-inclusive approach, exhaustive hazard and risk models were needed, quantified with comprehensive uncertainty distributions for all factors involved, rather than simple ‘best-estimate’ or nominal values. Thus, a structured expert elicitation procedure was implemented to complement more traditional data analysis and interpretative approaches. The structure of the Vesuvius Event Tree is presented, and some of the data analysis findings and elicitation outcomes that have provided initial indicative probability distributions to be associated with each of its branches are summarized. The Event Tree extends from initiating volcanic eruption events and hazards right through to human impact and infrastructure consequences, with the complete tree and its parameterisation forming a quantitative synoptic framework for comprehensive hazard evaluation and mapping of risk impacts. The organization of the Event Tree allows easy updating, as and when new information becomes available
    Description: Published
    Description: 397-415
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; volcanic hazard ; volcanic risk ; probabilistic risk assessment ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-03
    Description: Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.
    Description: In press
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Pyroclastic density currents ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-03-19
    Description: FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of 8 volcanic ash. The model solves the advection-diffusion-sedimentation (ADS) equa- 9 tion on a structured terrain-following grid using a second-order Finite Differences 10 (FD) explicit scheme. Different parameterizations for the eddy diffusivity tensor 11 and for the particle terminal settling velocities can be used. The code, written 12 in FORTRAN 90, is available in both serial and parallel versions for Windows and 13 Unix/Linux/Mac X Operating Systems (OS). A series of pre- and post-process util- 14 ity programs and OS-dependent scripts to launch them are also included in the 15 FALL3D distribution package. Although the model has been designed to forecast 16 volcanic ash concentration in the atmosphere and ash loading at ground, it can also 17 be used to model the transport of any kind of airborne solid particles. The model 18 inputs are meteorological data, topography, grain-size distribution, shape and den- 19 sity of particles, and mass rate of particle injected into the atmosphere. Optionally, 20 FALL3D can be coupled with the output of the meteorological processor CALMET, a 21 diagnostic model which generates 3-D time-dependent zero-divergence wind fields 22 from mesoscale forecasts incorporating local terrain effects. The FALL3D model can 23 be a tool for short-term ash deposition forecasting and for volcanic fallout hazard 24 assessment. As an example, an application to the 22 July 1998 Etna eruption is also 25 presented.
    Description: Published
    Description: 1334–1342
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; fallout ; computational model ; FORTRAN code ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-02-24
    Description: Tephra layers from archaeological sites in southern Italy and eastern Europe stratigraphically associated with cultural levels containing Early Upper Palaeolithic industry were analysed. The results confirm the occurrence of the Campanian Ignimbrite tephra (CI; ca. 40 cal ka BP) at Castelcivita Cave (southern Italy), Temnata Cave (Bulgaria) and in the Kostenki–Borshchevo area of the Russian Plain. This tephra, originated from the largest eruption of the Phlegrean Field caldera, represents the widest volcanic deposit and one of the most important temporal/stratigraphic markers of western Eurasia. At Paglicci Cave and lesser sites in the Apulia region we recognise a chemically and texturally different tephra, which lithologically, chronologically and chemically matches the physical and chemical characteristics of the Plinian eruption of Codola; a poorly known Late Pleistocene explosive event from the Neapolitan volcanoes, likely Somma–Vesuvius. For this latter, we propose a preliminary age estimate of ca. 33 cal ka BP and a correlation to the widespread C-10 marine tephra of the central Mediterranean. The stratigraphic position of both CI and Codola tephra layers at Castelcivita and Paglicci help date the first and the last documented appearance of Early Upper Palaeolithic industries of southern Italy to ca. 41–40 and 33 cal ka BP, respectively, or between two interstadial oscillations of the Monticchio pollen record – to which the CI and Codola tephras are physically correlated – corresponding to the Greenland interstadials 10–9 and 5. In eastern Europe, the stratigraphic and chronometric data seem to indicate an earlier appearance of the Early Upper Palaeolithic industries, which would predate of two millennia at least the overlying CI tephra. The tephrostratigraphic correlation indicates that in both regions the innovations connected with the so-called Early Upper Palaeolithic – encompassing subsistence strategy and stone tool technology – appeared and evolved during one of the most unstable climatic phases of the Last Glacial period. On this basis, the marked environmental unpredictability characterising this time-span is seen as a potential ecological factor involved in the cultural changes observed.
    Description: Published
    Description: 208–226
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Campanian Ignimbrite ; Early Upper Palaeolithic ; Codola Plinian eruption ; south-eastern Europe ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-09-20
    Description: Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the complex dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial radial propagation of the PDCs since it ignores azimuthal flows produced by real topographies that therefore need to be simulated in fully 3D conditions.
    Description: Published
    Description: 378-396
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; pyroclastic density current ; column collapse ; numerical simulation ; 3D modelling ; hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-11-30
    Description: Auckland, New Zealand is unique in being a metropolitan area built on an active volcanic field. Despite the small size and intensity of Auckland eruptions, the risk from tephra fall is high because of the high density of buildings and lifelines. The nature of this threat can be evaluated by comparisons with historical Strombolian and Hawaiian eruptions, which have occurred in non-populated areas. Cone-building phases of such eruptions are typically protracted, i.e., weeks to months in duration, prolonging the period during which emergency managers will have to fine tune mitigation for numerous parameters such as fluctuations in intensity and wind shifts. Rapid cone growth during future eruptions will define a region of some 30 to 100 ha where complete destruction will occur on a time scale of hours. The cost of this destruction is likely to range between NZ$200M and NZ$1.4B (ca. US$130M to US$900M). Beyond this, we have modeled the cumulative long-term effect of the build-up of a downwind blanket of lapilli and ash by estimating accumulation rates for three phases of the 1959 Kīlauea Iki eruption in Hawaii. The effect of changing wind direction was evaluated using low-level wind data from Auckland. These results show that intervals between 4 and 100 h will lapse before onset of significant damage to buildings.
    Description: Published
    Description: 138-149
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: tephra hazard ; Auckland volcanic field ; cone growth ; tephra fall ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: This paper deals with the problem of seismicity at Mt. Vesuvius with a view to providing an estimation of the maximum expected earthquake. Integrated analysis of both historical and current seismicity as well as the geological conditions of Vesuvius and the surrounding areas show that seismogenetic structures may fall within the crater axis and at the boundaries of the volcanic complex. While activation of the whole seismogenetic volume detected by seismicity in the past 30 years would indicate a total seismic moment of Mo = 7.1E+ 15 Nm for a magnitude M = 4.5, knowledge of the area's geological structure suggests faulting surfaces of about 32 km2 with an associated magnitude of M = 5.4. The areas of maximum expected damage differ according to the orientation of the hypothesized structure. Analysis of geological and geophysical data and the damage associated to the AD 62 earthquake shows that the prevailing directions in the faulting planes are NE–SW in the eastern sector of the volcanic complex, and roughly WNW–ESE in the southern part of the volcano along the coast. Comparison of instrumental seismicity and historical data reveals two significantly different energy levels: a lower earthquake level with Mmax = 4.5, corresponding to current seismicity and that which accompanied volcanic activity in the eruptive period from 1631–1944; an upper level with Mmax = 5.4, represented by the AD 62 earthquake. The two levels correspond to two stress states and different seismogenetic structures.
    Description: Published
    Description: 139-149
    Description: 3.6. Fisica del vulcanismo
    Description: 3.10. Sismologia storica e archeosismologia
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Vesuvius ; seismic hazard ; historical seismicity ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Accepted
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: hydrothermal activity ; caldera unrest ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: Compositional, textural and experimental data on products from explosive and effusive eruptions of Neapolitan volcanoes (Campi Flegrei and Somma-Vesuvio) allow us to constrain degassing and fragmentation conditions during eruptions of alkaline magmas. Significant differences in compositional and textural features have been recognized between lavas, scoria and pumice resulting respectively from effusive, moderately and extremely explosive eruptions. Pumice samples have highly-vesicular glassy matrix, low microlite number density and moderate to high water content. Crystal Size Distributions (CSD) are steep with high intercept values; the narrow microlite size range indicates single nucleation event. Scoria products are characterized by moderate vesicularity and water content. They have high number density of microlites which are bimodal in size. CSD show distinct inflections that are explained as two crystal populations growing in distinct time. Lava samples generally have low vesicularities, moderate to high microcrystalline groundmass and low glass water content. The comparison between textural and compositional features of natural rocks with samples obtained by decompression experiments allows us to conclude that degassing processes during magma ascent occurs in near-equilibrium conditions even at high decompression rate. Moderate to long magma rise times, calculated in the order of a few days, produce opendegassing responsible formoderately explosive to effusive activity. Shortmagma rise times, calculated in the order of a fewhours, result in closed-system degassing that allow explosive fragmentation when the volume of growing bubble reaches a fixed threshold. Vesicularity and water content measured on matrix glass of pumice indicate that this process occurs at pressure of 10–30 MPa. In these conditions, degassing, fragmentation and in turn the eruptive style is strongly influenced by initial conditions in themagma chamber (volatile content, temperature, pressure) instead of decompression rate, in contrast with that observed for rhyolitic melts. These differences have important consequences in terms of volcanic hazards and risk. The low-viscosity alkaline magma is able tomaintain efficient degassing even during the final stage of magma ascent, favoring, in the case of closed-system, fragmentation and explosive activity.
    Description: Published
    Description: 164-181
    Description: reserved
    Keywords: Campi Flegrei and Somma-Vesuvio ; explosive eruptions ; vesiculation ; crystallization ; degassing ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1319445 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: The 2D Cellular Automata model, MAGFLOW, simulates lava flows and an algorithm based on the Monte Carlo approach solves the anisotropic flow direction problem. The model was applied to reproduce a lava flow formed during the 2001 Etna eruption. This eruption provided the opportunity to verify the ability of MAGFLOW to simulate the path of lava flows which was made possible due to the availability of the necessary data for both modeling and subsequent validation. MAGFLOW reproduced quite accurately the spread of flow. A good agreement was highlighted between the simulated and observed length on steep slopes, whereas the area covered by the lava flow tends to be overestimated. The major inconsistencies found in the comparison between simulated and observed lava flow due to neglecting the effects of ephemeral vent formation.
    Description: Published
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Lava flow ; Etna volcano ; Numerical simulation ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: The results of a detailed stratigraphic study, carried out in the areas located to the east and south-west of Mt. Epomeo at Ischia, are presented and compared with those of previous geological, archaeological and historical investigations to show the relationships among caldera resurgence, volcanism and slope instability in the past 5.5 ka. Resurgence at Ischia began at about 30 ka B.P. and occurred through intermittent uplifting and tectonic quietness phases. During the past 5.5 ka reactivation of faults and related volcanic activity was accompanied by emplacement of deposits generated by surface gravitational movements. These deposits were generated in four main phases, dated between 5.5 and 2.9 ka, around 2.9 ka, between 2.6 and 2.3 ka, and between 2.3 and 1.9 ka, respectively. Deposits formed by gravitational movements preceded and followed the emplacement of volcanic rocks, testifying that slope instability was induced by vertical movements, which also activated and/or reactivated faults and fractures that fed volcanism. The results of this study therefore suggest that, although slope failure can occur as a consequence of a variety of factors, resurgence has to be considered a factor inducing a particularly intense slope instability. Resurgence is accompanied by activation of faults and renewal of volcanism, causing oversteepening of the slopes and generating seismicity that could trigger surface gravitational movements. Furthermore, the availability of large amount of loose material, rapidly accumulated along the slopes during eruptions, favors landslide generation.
    Description: Published
    Description: 148–165
    Description: reserved
    Keywords: Slope instability ; Volcanism ; Volcano-tectonism ; Resurgent calderas ; Ischia ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1454013 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: The rationale of lava flow deviation is to prevent major damage, and, among the possible techniques, the opening of the flow leve¤es has often been demonstrated to be suitable and reliable. The best way to open the leve¤es in the right point, in order to obtain the required effect, is to produce an explosion in situ, and it is then necessary to map with the highest precision the temperature field inside the leve¤es, in order to design a safe and successful intervention. The leve¤es are formed by lava flows due to their non-Newtonian rheology, where the shear stress is lower than the yield stress. The leve¤es then cool and solidify due to heat loss into the atmosphere. In this work we present analytical solutions of the steady-state heat conduction problem in a leve¤e using the method of conformal mapping for simple geometrical shapes of the levee cross-section (triangular or square). Numerical solutions are obtained with a finite element code for more complex, realistic geometries.
    Description: Published
    Description: 241-251
    Description: open
    Keywords: steady-state temperature ; lava flow ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 768398 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: Preceded by four days of intense seismicity and marked ground deformation, a new eruption of Mt. Etna started on 17 July and lasted until 9 August 2001. It produced lava emission and strombolian and phreatomagmatic activity from four different main vents located on a complex fracture system extendingfrom the southeast summit cone for about 4.5 km southwards, from 3000 to 2100 m elevation (a.s.l.). The lava emitted from the lowest vent cut up an important road on the volcano and destroyed other rural roads and a few isolated country houses. Its front descended southwards to about 4 km distance from the villages of Nicolosi and Belpasso. A plan of intervention, including diversion and retainingbarriers and possibly lava flow interruption, was prepared but not activated because the flow front stopped as a consequence of a decrease in the effusion rate. Extensive interventions were carried out in order to protect some important tourist facilities of the Sapienza and Mts. Silvestri zones (1900 m elevation) from being destroyed by the lava emitted from vents located at 2700 m and 2550 m elevation. Thirteen earthen barriers (with a maximum length of 370 m, height of 10^12 m, base width of 15 m and volume of 25 000 m3) were built to divert the lava flow away from the facilities towards a path implyingconsiderably less damage. Most of the barriers were oriented diagonally (110^135‡) to the direction of the flow. They were made of loose material excavated nearby and worked very nicely, resistingthe thrust of the lava without any difficulty. After the interventions carried out on Mt. Etna in 1983 and in 1991^1992, those of 2001 confirm that earthen barriers can be very effective in controlling lava flows.
    Description: Elsevier
    Description: Published
    Description: 231-243
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: lava flow control; earthen barriers; Mt; Etna 2001 eruption ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: We review the main results, with several new analyses, obtained in recent times about the structure, present dynamics and hazard evaluation at Somma–Vesuvius volcanic complex. We present a global review and interpretation of structural features, both at local and regional scale, constrained both by seismic and petrological data. The local structure of Somma–Vesuvius is reviewed in three depth ranges, shallow, intermediate and deep. The shallow velocity structure is inferred by the joint inversion of shot and local earthquake arrival time data. The main feature pointed out at shallow depth is a high velocity anomaly at the crater axis, extending down to about 5 km of depth. Such an anomaly, first observed at Vesuvius, seems to be common to many other volcanoes. It can be interpreted in terms of the presence of solidified residual magma in the shallow conduits, accumulated in last eruptive cycles. The local seismicity is strongly clustered around this anomaly, due to the focusing effect of the rigidity contrast. The seismic occurrence appears as a result of the superposition of a background level, mainly due to gravitational instability of the Vesuvius cone, and of intense activity episodes, which possibly reflect episodic internal activity. Two main zones of magma accumulation in the upper crust are evidenced by the joint interpretation of seismic and petrological data. The first one, located in the depth range 4–6 km, is mainly constrained by the crystallisation depth of phonolitic magmas which fed Plinian and sub-Plinian eruptions; the second one, around 11–15 km of depth, is mainly constrained by reflected–converted seismic waves, and in agreement with crystallization depths inferred for the moderate eruptions. The study of the deep structure, performed by regional tomography with teleseisms, further points out magma roots at higher depths (15–30 km). An additional result for the deep structure, studied at regional scale and very important for geodynamic interpretations of the Tyrrhenian volcanisms, has been the evidence for a subducting slab under the Apennines, in an area where previous models hypothesised a slab window. New original studies of crystal growth (phenocrystals and microlites) on the eruptive products allow to infer typical times of magma rising from such reservoirs, which appear very low, on the order of minutes to tens of minutes. Static deformation at this volcano, in the last 30 yr, has been detected by the joint use of levelling, GPS and DIFSAR techniques. It indicates subsidence, very concentrated in the crater area and in a narrow strip all around the volcanic edifice, with maximum rates less than 0.01 m/yr. Static deformation in the crater area appears in agreement with the mechanism of gravitational instability generating local volcanotectonic seismicity, while the peculiar pattern around the volcanic edifice is probably due to the combination of extensional stress and volcanic loading, generating a ring normal fault-like structure. While the key results about structure and dynamics help to define pre-eruptive scenarios, a new probabilistic procedure to combine volcanological data and computer simulations has been used, in this paper, to build hazard maps giving the probability, at each location in the area, to be hit by a pyroclastic flow or to experience a destructive fall-out deposit. The review and new results of this work give then the first complete picture of the state of the art in our knowledge about Somma–Vesuvius volcano.
    Description: Published
    Description: 73-111
    Description: reserved
    Keywords: volcano structure ; volcano dynamics ; volcanic hazard ; Mount Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2882868 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: A new parallel code for the simulation of the transient, 3D dispersal of volcanic particles in the atmosphere is presented. The model equations, describing the multiphase flow dynamics of gas and solid pyroclasts ejected from the volcanic vent during explosive eruptions, are solved by a finite-volume discretization scheme and a pressure-based iterative non-linear solver suited to compressible multiphase flows. The solution of the multiphase equation set is computationally so demanding that the simulation of the transient 3D dynamics of eruptive columns would not be cost-effective on a single workstation. The new code has been parallelized by adopting an ad hoc domain partitioning scheme that enforces the load balancing in the presence of a large number of topographic blocking-cells. An optimized communication layer has been built over the Message-Passing Interface. It is shown that the present code has a remarkable efficiency on several high-performance platforms and makes it possible, for the first time, to simulate fully 3D eruptive scenarios on realistic volcano topography.
    Description: Published
    Description: 541-560
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Message passing interface ; Computational fluid dynamics ; Multiphase flow ; Explosive eruption ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-01-16
    Description: On April 5, 2003, Stromboli volcano (Italy) produced the most violent explosion of the past 50 years. The event was exceptionally well documented thanks to the presence on the island of several scientists and a large number of instruments deployed over the preceding months to monitor the effusive eruption that began in December 2002. Integration of visual documentation, deposit features and geophysical data allowed an accurate reconstruction of the explosive event and its dynamics. The eruption consisted of a 8-min long explosive event which evolved through four phases whose timing was precisely recorded by an infrared thermometer located about 450 m from the summit crater. Phases 2 and 3 lasted 39 and 42 s, respectively. Both had an impulsive character, were responsible for ejecting almost the entire mass of the pyroclastic products. Phases 1 and 4 represented, respectively, a short-lived precursory event and a waning tale. During Phase 2, meter-sized ballistic blocks were launched with velocities of 170 m/s to altitudes of up to 1400 m above the craters. These fell on the volcano flanks and on the village of Ginostra, about 2 km distant from the vent. A vertical jet rose above the craters which developed to feed a convective plume that reached a height of up to 4 km. The calculated mass of the Phase 2 fallout deposit and mass discharge rate were 1.1–1.4×108 kg and 2.8– 3.6×106 kg/s, respectively. During Phase 3 a scoria flow deposit, with an estimated volume of 0.9–1.1×104 m3, was erupted from the same vent that fed the ongoing sustained lava flow. The average mass discharge rate for this phase was 2.5–3.1×105 kg/s. Products emitted during Phases 2 and 3 consisted of lithic and fresh magmatic material in similar proportions. The juvenile fraction consisted of a deep-originated, almost aphyric, highly vesicular pumice mingled with a shallow-derived, crystal-rich, moderately vesicular scoria. Similarities with the eruption dynamics of other historical paroxysms at Stromboli makes the April 5, 2003 explosion representative of these highly energetic events that constitute the most hazardous volcanic phenomena at Stromboli volcano.
    Description: Published
    Description: 594-606
    Description: JCR Journal
    Description: reserved
    Keywords: stromboli ; Thermal monitoring; paroxysm ; explosive dynamics ; ballistic ejecta ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: We describe a numerical simulation of both concentrated and dilute gravity-driven pyroclastic flows on a digital topographic model of the Campi Flegrei volcanic field. Families of numerical flows are generated by sampling a multi-dimensional matrix of vent coordinates, flow properties and dynamical parameters within a wide range of values. Hazard maps are constructed from the data base of simulated flows, using a mixed deterministic^statistical approach. The set of probable vents covers the area of recent eruptions. Results show the key role of topography in controlling the flow dispersion. The maximum hazard appears to be the NE sector of the caldera. Flows in the eastern sector, including the city of Naples, are shown to be efficiently hindered by the Posillipo and Camaldoli hills at the caldera borders, thus reducing the hazard. The results represent the first physically based estimate of hazard from pyroclastic flows in this densely populated area, and can be used for civil defence purposes.
    Description: Published
    Description: 1-14
    Description: partially_open
    Keywords: Campi flegrei ; calderas ; pyroclastic flows ; hazard maps ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 966713 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: The structure and shape of collapses and resurgences is often controlled by pre-existing discontinuities, such as normal faults in rift zones. In order to study the role of extensional structures on collapse and resurgence, we used analogue models. Dry sand simulated the brittle crust; silicone, located at the base of the sand-pack, simulated magma. In the experiments, regional extension pre-dated collapse or resurgence, forming normal faults in a grabenlike structure; the graben was filled with additional sand, simulating post-rift deposits. A piston then moved the silicone downward or upward, inducing collapse or resurgence within the previously deformed sand. The collapses showed an ellipticity (length of minor axis/length of major axis) between 0.8 and 0.9, with the major axis parallel to the extension direction. The partial reactivation of the pre-existing normal faults was observed during the development of the caldera reverse faults, which, conversely to what was expected (from experiments without preexisting extension), became partly inward dipping. Resurgence showed an elongation of the uplifted part, with the main axis perpendicular to the extension direction. At depth, pre-existing normal faults were partly reactivated by the reverse faults formed during resurgence; these locally became outward dipping normal faults. A total reactivation of pre-existing faults was also observed during resurgence. The experiments suggest that the observed elongation of calderas and resurgences is the result of the reactivation of pre-existing structures during differential uplift. Such a reactivation is mainly related to the loss in the coefficient of friction of the sand. The results suggest that elliptic calderas and resurgences in nature may develop even from circular magma chambers.
    Description: Published
    Description: 199-217
    Description: partially_open
    Keywords: Extensional structures ; Caldera ; Resurgence ; Analogue models ; Reactivation ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 487 bytes
    Format: 1345163 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high CO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol) with an appreciable content of H2S (0.8). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February-March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8/25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.
    Description: - GNV funded research project Gas Hazard of Colli Albani
    Description: Published
    Description: 81^94
    Description: partially_open
    Keywords: Colli Albani ; CO2 flux ; H2S ; gas hazard ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 660932 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: This survey proposes a new approach to identify buried caldera boundaries of a volcanic cone, combining (1) a systematic elliptic Fourier functions (EFF) analysis on the contour lines based on the external shape of the edifice with (2) self-potential (SP) measurements on volcano flanks. The methodology of this approach is to investigate the relationships between (1) vertical morphological changes inferred from EFF analysis and (2) lateral lithological transition inside the edifice inferred from SP/elevation gradients. The application of these methods on Misti volcano in southern Peru displays a very good correlation. The three main boundaries evidenced by hierarchical cluster analysis on the contour lines coincide with the two main boundaries characterised by SP signal and with a secondary SP signature related with a summit caldera. In order to explain these results showing a very good correlation between morphologic and lithologic changes as function of elevation, caldera boundaries have been suggested. The latter would be located at an average elevation of (1) 4350–4400 m, (2) 4950–5000 m, and (3) 5500– 5550 m. For the lowest boundary in elevation, the coincidence with the lateral extension of the hydrothermal system inferred from SP measurements suggests that caldera walls act as a barrier for lateral extension of hydrothermal systems. In the summit area, the highest boundary has been related with the summit caldera, inferred by a secondary SP minimum and geological evidence.
    Description: - Institut de Recherche pour le Développement (IRD) - Instituto Geofisico del Peru´ (IGP).
    Description: Published
    Description: 283– 297
    Description: partially_open
    Keywords: caldera ; elliptic Fourier functions ; geomorphology ; self-potential ; Misti volcano ; Peru ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 756700 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: The role of sector collapse in the generation of catastrophic volcanigenic tsunami has become well understood only recently, in part because of the problems in the preservation and recognition of tsunami deposits. Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128] modeled a tsunami produced by the c. 5,000 years BP collapse of the Sciara del Fuoco on the island volcano Stromboli. Although deposits associated with this event are generally lacking on the island, volcaniclastic breccias on the SE side of the island extending to an elevation above 120 m a.s.l. may have been generated by this tsunami. Deposits above 100 m are dominated by coarse breccias comprising disorganized, poorly sorted, nonbedded, angular to subangular lava blocks in a matrix of finer pyroclastic debris. These breccias are interpreted as a water-induced mass flow, possibly a noncohesive debris flow, generated as colluvial material on steep slopes was remobilized by the return flow of the tsunami wave, the run-up of which reached an elevation exceeding 120 m a.s.l. Finer breccias of subrounded to rounded lava blocks cropping out at 15 m a.s.l. are similar to modern high-energy beach deposits and are interpreted as beach material redeposited by the advancing tsunami wave. The location of these deposits matches the predicted location of the maximum tsunami wave amplitude as calculated by modeling studies of Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128]. Whereas the identification and modeling of paleo-tsunami events is typically based on the observation of the sedimentary deposits of the tsunami run-up, return flow may be equally or more important in controlling patterns of sedimentation.
    Description: Published
    Description: 329-340
    Description: partially_open
    Keywords: tsunami ; flank collapse ; landslide ; run-up ; return flow ; debris flow ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 626245 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: Mount Etna produced two significant eruptions in 2001 and 2002–2003, which we have analysed using geological, seismic and deformation data. These eruptions showed some similarities, such as the activating of two magmatic plumbing systems (central–lateral and eccentric), but they differed in their triggering mechanisms. While the 2001 eruption was largely the result of the emplacement of a N–S eccentric dike (independent from the central conduits) consistent with E–W regional extension, the 2002–2003 eruption occurred in response to a major flank slip on the eastern and southeastern sides of the volcano. This is demonstrated by the spatial and temporal distribution of seismicity and deformation preceding and accompanying the two eruptions. During the months prior to the 2001 eruption, most epicenters were concentrated on the southern flank, at depths of 5–15 km below sea level. During the 4 days before the eruption, earthquake hypocenters migrated to shallower levels (from 5 km bsl. upward) indicating the emplacement of the eccentric dike. This is confirmed by the patterns of ground fracturing observed in the field and deformation documented by electronic distance measurements (EDM). In contrast, the months before the 2002–2003 eruption were characterised by shallower seismicity, mainly concentrated along the active faults bordering the slipping flank sector. Flank slip accelerated in September 2002 and a second, more vigorous acceleration of flank slip occurred on 26–27 October 2002, accompanying the opening of eruptive vents. The very short (2 h) seismic crisis preceding the onset of eruptive activity stands in neat contrast with the 4 days of intense seismicity before the 2001 eruption. Subsequently, flank slip-deformation extended all over the eastern and southeastern flanks of the volcano, causing serious damage in this sector. The events of 2001–2003 can be seen as a continuous chain of intimately interacting processes including regional tectonics, magma accumulation and eruption, and flank instability. In this scenario the 2001 eruption led to increased flank instability that subsequently accelerated and culminated with the massive flank slip, which in turn facilitated the 2002–2003 eruption. This sequence of events points to a long-term feedback mechanism between magmatism and flank instability at Etna.
    Description: Published
    Description: 235-255
    Description: partially_open
    Keywords: eruption triggering ; central–lateral vs. eccentric eruptions ; flank instability and slip ; volcano-tectonics ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 4829142 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.
    Description: Published
    Description: 1^18
    Description: partially_open
    Keywords: Stromboli ; hydrothermal system ; self-potential ; soil gas ; carbon dioxide ; Aeolian islands ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1106054 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...