ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (96)
  • AMS (American Meteorological Society)  (96)
  • 2010-2014  (65)
  • 1990-1994  (31)
  • 1970-1974
Collection
  • Other Sources  (96)
Source
Years
Year
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (9). pp. 2524-2546.
    Publication Date: 2015-05-28
    Description: In this study, the authors discuss two different parameterizations for the effect of mixed layer eddies, one based on ageostrophic linear stability analysis (ALS) and the other one based on a scaling of the potential energy release by eddies (PER). Both parameterizations contradict each other in two aspects. First, they predict different functional relationships between the magnitude of the eddy fluxes and the Richardson number (Ri) related to the background state. Second, they also predict different vertical structure functions for the horizontal eddy fluxes. Numerical simulations for two different configurations and for a large range of different background conditions are used to evaluate the parameterizations. It turns out that PER is better suited to capture the Ri dependency of the magnitude of the eddy fluxes. On the other hand, the vertical structure of the meridional eddy fluxes predicted by ALS is more accurate than that of PER, while the vertical structure of the vertical eddy fluxes is well predicted by both parameterizations. Therefore, this study suggests the use of the magnitude of PER and the vertical structure functions of ALS for an improved parameterization of mixed layer eddy fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 71 (4). pp. 1494-1507.
    Publication Date: 2017-10-24
    Description: Northern Hemisphere stratospheric variability is investigated with respect to chaotic behavior using time series from three different variables extracted from four different reanalysis products and two numerical model runs with different forcing. The time series show red spectra at all frequencies and the probability distribution functions show persistent deviations from a Gaussian distribution. An exception is given by the numerical model forced with perpetual winter conditions—a case that shows more variability and follows a Gaussian distribution, suggesting that the deviation from Gaussianity found in the observations is due to the transition between summer and winter variability. To search for the presence of a chaotic attractor the correlation dimension and entropy, the Lyapunov spectrum, and the associated Kaplan–Yorke dimension are estimated. A finite value of the dimensions can be computed for each variable and data product, with the correlation dimension ranging between 3.0 and 4.0 and the Kaplan–Yorke dimension between 3.3 and 5.5. The correlation entropy varies between 0.6 and 1.1. The model runs show similar values for the correlation and Lyapunov dimensions for both the seasonally forced run and the perpetual-winter run, suggesting that the structure of a possible chaotic attractor is not determined by the seasonality in the forcing, but must be given by other mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 71 (12). pp. 4611-4620.
    Publication Date: 2017-10-24
    Description: Southern Hemisphere (SH) stratospheric variability is investigated with respect to chaotic behavior using time series from three different variables extracted from four different reanalysis products. The results are compared with the same analysis applied to the Northern Hemisphere (NH). The probability density functions (PDFs) for the SH show persistent deviations from a Gaussian distribution. The variability is given by white spectra for low frequencies, a slope of −1 for intermediate frequencies, and −3 slopes for high frequencies. Considering the time series for winter and summer separately, PDFs show a Gaussian distribution and the variability spectra change their slopes, indicating the role of the transition between winter and summer variability in shaping the time series. The correlation (D2) and the Kaplan–Yorke (DKY) dimensions are estimated. A finite value of the dimensions can be computed for each variable and data product, except for the NCEP zonal-mean zonal wind and temperature data, which violate the requirement D2 ≤ DKY, possibly owing to the presence of spurious trends and inconsistencies in the data. The value of D2 ranges between 2.6 and 3.9, while DKY ranges between 3.0 and 4.5. The results show that both D2 and DKY display large variability in their values both for different datasets and for different variables within the same dataset. The variability of the values of D2 and DKY thus leaves open the question about the existence of a low-dimensional attractor or if the finite dimensions of the system are the result of the projection of a larger attractor in a low-dimensional embedding space.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 71 (7). pp. 2674-2694.
    Publication Date: 2017-10-24
    Description: The sensitivities of the Brewer–Dobson circulation (BDC) to different distributions of tropical SST heating are investigated in an idealized aquaplanet model. It is found that an increase in tropical SSTs generally leads to an acceleration of tropical upwelling and an associated reduction in the age of air (AOA) in the polar stratosphere and that the AOA near the subtropical tropopause is correlated with local isentropic mixing of tropospheric air with stratospheric air. The zonal distribution of SST perturbations has a major impact on the vertical and meridional structure of the BDC as compared with other SST characteristics. Zonally localized SST heatings tend to generate a shallow acceleration of the stratospheric residual circulation, enhanced isentropic mixing associated with a weakened stratospheric jet, and a reduction in AOA mostly within the polar vortex. In contrast, SST heatings with a zonally symmetric structure tend to produce a deep strengthening of the stratospheric residual circulation, suppressed isentropic mixing associated with a stronger stratospheric jet, and a decrease of AOA in the entire stratosphere. The shallow versus deep strengthening of the stratospheric residual circulation change has been linked to wave propagation and dissipation in the subtropical lower stratosphere rather than wave generation in the troposphere, and the former can be strongly affected by the vertical position of the subtropical jet. These results suggest that, while the longitudinally localized SST trends under climate change may contribute to the change in the shallow branch of the BDC, the upward shift of the subtropical jet associated with the zonal SST heating can impact the deep branch of the BDC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 71 (2). pp. 566-573.
    Publication Date: 2017-10-24
    Description: The authors test the hypothesis that recent observed trends in surface westerlies in the Southern Hemisphere are directly consequent on observed trends in the timing of stratospheric final warming events. The analysis begins by verifying that final warming events have an impact on tropospheric circulation in a simplified GCM driven by specified equilibrium temperature distributions. Seasonal variations are imposed in the stratosphere only. The model produces qualitatively realistic final warming events whose influence extends down to the surface, much like what has been reported in observational analyses. The authors then go on to study observed trends in surface westerlies composited with respect to the date of final warming events. If the considered hypothesis were correct, these trends would appear to be much weaker when composited with respect to the date of the final warming events. The authors find that this is not the case, and accordingly they conclude that the observed surface changes cannot be attributed simply to this shift toward later final warming events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-04
    Description: Precipitation is highly variable in space and time; hence, rain gauge time series generally exhibit additional random small-scale variability compared to area averages. Therefore, differences between daily precipitation statistics simulated by climate models and gauge observations are generally not only caused by model biases, but also by the corresponding scale gap. Classical bias correction methods, in general, cannot bridge this gap; they do not account for small-scale random variability and may produce artifacts. Here, stochastic model output statistics is proposed as a bias correction framework to explicitly account for random small-scale variability. Daily precipitation simulated by a regional climate model (RCM) is employed to predict the probability distribution of local precipitation. The pairwise correspondence between predictor and predictand required for calibration is ensured by driving the RCM with perfect boundary conditions. Wet day probabilities are described by a logistic regression, and precipitation intensities are described by a mixture model consisting of a gamma distribution for moderate precipitation and a generalized Pareto distribution for extremes. The dependence of the model parameters on simulated precipitation is modeled by a vector generalized linear model. The proposed model effectively corrects systematic biases and correctly represents local-scale random variability for most gauges. Additionally, a simplified model is considered that disregards the separate tail model. This computationally efficient model proves to be a feasible alternative for precipitation up to moderately extreme intensities. The approach sets a new framework for bias correction that combines the advantages of weather generators and RCMs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 95 (2). pp. 293-296.
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (1). pp. 3-23.
    Publication Date: 2018-04-12
    Description: There is an ongoing discussion in the community concerning the wave-averaged momentum equations in the hybrid vertically Lagrangian and horizontally Eulerian (VL) framework and, in particular, the form stress term (representing the residual effect of pressure perturbations) which is thought to restrict the handling of higher order waves in terms of a perturbation expansion. The present study shows that the traditional pressure-based form stress term can be transformed into a set of terms that do not contain any pressure quantities but do contain the time derivative of a wave-induced velocity. This wave-induced velocity is referred to as the pseudomomentum in the VL framework, as it is analogous to the generalized pseudomomentum in Andrews and McIntyre. This enables the second expression for the wave-averaged momentum equations in the VL framework (this time for the development of the total transport velocity minus the VL pseudomomentum) to be derived together with the vortex force. The velocity-based expression of the form stress term also contains the residual effect of the turbulent viscosity, which is useful for understanding the dissipation of wave energy leading to transfer of momentum from waves to circulation. It is found that the concept of the virtual wave stress of Longuet-Higgins is applicable to quite general situations: it does not matter whether there is wind forcing or not, the waves can have slow variations, and the viscosity coefficient can vary in the vertical. These results provide a basis for revisiting the surface boundary condition used in numerical circulation models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (2). pp. 445-463.
    Publication Date: 2020-08-04
    Description: Mooring observations and model simulations point to an instability of the Labrador Current (LC) during winter, with enhanced eddy kinetic energy (EKE) at periods between 2 to 5 days, and much less EKE during other seasons. Linear stability analysis using vertical shear and stratification from the model reveals three dominant modes of instability in the LC: - a balanced interior mode with along-flow wavelengths of about 30–45 km, phase velocities of 0.3 m/s, maximal growth rates of 1 d−1 and surface intensified, but deep reaching amplitudes, - a balanced shallow mode with along-flow wavelengths of about 0.3–1.5 km, about three times larger phase speeds and growth rates, but amplitudes confined to the mixed layer (ML), - and an unbalanced symmetric mode with largest growth rates, vanishing phase speeds and along-flow structure, and very small cross-flow wavelengths, also confined to the ML. Both balanced modes are akin to baroclinic instability, but operate at moderate to small Richardson numbers Ri with much larger growth rates as for the quasi-geostrophic limit of Ri ≫ 1. The interior mode is found to be responsible for the instability of the LC during winter. Weak stratification and enhanced vertical shear due to local buoyancy loss and the advection of convective water masses from the interior result in small Ri within the LC, and to three times larger growth rates of the interior mode in March compared to summer and fall conditions. Both the shallow and the symmetric mode are not resolved by the model, but it is suggested that they might also play an important role for the instability in the LC and for lateral mixing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (2). pp. 482-491.
    Publication Date: 2020-08-04
    Description: Sensible and latent heat fluxes were estimated from turbulence measurements gathered during several Atlantic transects of the R/V Polarstern. The inertial dissipation method was used to analyze the data. Resulting bulk transfer coefficients were then applied to the data from the ship’s meteorological system to get continuous time series of the heat fluxes. Combined to the measured downward solar and longwave radiation fluxes allows for an estimate of the total energy budget at the air-sea interface. Comparing these parameterized energy fluxes to ones based on the COARE 3.0 bulk flux algorithm show very strong agreement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 71 (6). pp. 2264-2279.
    Publication Date: 2020-08-04
    Description: The dynamical origin of the spectral and autocorrelation structure of annular variability in the troposphere is investigated by a deductive approach. Specifically, the structure of the power spectrum and autocorrelation function of the zonal-mean geopotential is analyzed for the case of a quasigeostrophic spherical atmosphere subject to a white noise mechanical forcing applied in a single Hough mode and concentrated at a particular level in the vertical, with vertically uniform Newtonian cooling and Rayleigh drag concentrated at a rigid lower boundary. Analytic expressions for the power spectrum are presented together with expressions for an approximate red noise (i.e., a Lorentzian-shaped) power spectrum. It is found that for an infinitely deep atmosphere the power spectrum can be well approximated by a red noise process for the first few Hough modes (associated with large Rossby heights), provided the distance from the forcing is not larger than about one Rossby height. When a frictional rigid lower boundary is included, however, the approximation is generally bad. The high-frequency part of the power spectrum exhibits near-exponential behavior and the autocorrelation function shows a transition from a rapid decay at short lags to a much slower decay at longer lags, if the thermal and mechanical damping time scales are sufficiently well separated. Since observed annular variability exhibits the same characteristics, the above results lead to the hypothesis that these characteristics may, to some extent, be intrinsic to the linear zonal-mean response problem—although the need for an additional contribution from eddy feedbacks is also implied by the results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 . pp. 2485-2497.
    Publication Date: 2020-08-04
    Description: A representation of an equatorial basin mode excited in a shallow water model for a single high order baroclinic vertical normal mode is used as a simple model for the equatorial deep jets. The model is linearized about both a state of rest and a barotropic mean flow corresponding to the observed Atlantic Equatorial Intermediate Current System. We found that the eastward mean flow associated with the North and South Intermediate Counter Currents (NICC and SICC, respectively) effectively shields the Equator from off-equatorial Rossby waves. The westward propagation of these waves is blocked and focusing on the Equator due to beta dispersion is prevented. This leads to less energetic jets along the Equator. On the other hand, the westward barotropic mean flow along the Equator reduces the gradient of absolute vorticity and hence widens the cross-equatorial structure of the basin mode. Increasing lateral viscosity predominantly affects the width of the basin modes’ Kelvin wave component in the presence of the mean flow while the Rossby wave is confined by the flanking NICC and SICC. Independent of the presence of the mean flow, the application of sufficient lateral mixing also hinders the focusing of off-equatorial Rossby waves, which is hence an unlikely feature of a low-frequency basin mode in the real ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 (7). pp. 2577-2587.
    Publication Date: 2014-10-22
    Description: A decadal change in the character of ENSO was observed around year 2000 toward weaker-amplitude, higher-frequency events with an increased occurrence of central Pacific El Niños. Here these changes are assessed in terms of the Bjerknes stability index (BJ index), which is a measure of the growth rate of ENSO-related SST anomalies. The individual terms of the index are calculated from ocean reanalysis products separately for the time periods 1980–99 and 2000–10. The spread between the products is large, but they show a robust weakening of the thermocline feedback due to a reduced thermocline slope response to anomalous zonal wind stress as well as a weakened wind stress response to eastern equatorial Pacific SST anomalies. These changes are consistent with changes in the background state of the tropical Pacific: cooler mean SST in the eastern and central equatorial Pacific results in reduced convection there together with a westward shift in the ascending branch of the Walker circulation. This shift leads to a weakening in the relationship between eastern Pacific SST and longitudinally averaged equatorial zonal wind stress. Also, despite a steeper mean thermocline slope in the more recent period, the thermocline slope response to wind stress anomalies weakened due to a smaller zonal wind fetch that results from ENSO-related wind anomalies being more confined to the western basin. As a result, the total BJ index is more negative, corresponding to a more strongly damped system in the past decade compared to the 1980s and 1990s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 (4). pp. 1821-1825.
    Publication Date: 2017-08-25
    Description: In his comment, G. Bürger criticizes the conclusion that inflation of trends by quantile mapping is an adverse effect.He assumes that the argument would be ‘‘based on the belief that long-term trends and along with them future climate signals are to be large scale.’’ His line of argument reverts to the so-called inflated regression. Here it is shown, by referring to previous critiques of inflation and standard literature in statistical modeling as well as weather forecasting, that inflation is built upon a wrong understanding of explained versus unexplained variability and prediction versus simulation. It is argued that a sound regressionbased downscaling can in principle introduce systematic local variability in long-term trends, but inflation systematically deteriorates the representation of trends. Furthermore, it is demonstrated that inflation by construction deteriorates weather forecasts and is not able to correctly simulate small-scale spatiotemporal structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (7). pp. 1776-1797.
    Publication Date: 2018-04-12
    Description: The relationship between the Agulhas Current and the Agulhas leakage is not well understood. Here, this is investigated using two basin-scale and two global ocean models, of incrementally increasing resolution. The response of the Agulhas Current is evaluated under a series of sensitivity experiments, in which idealised anomalies, designed to geometrically modulate zonal trade wind stress, are applied across the Indian Ocean basin. The imposed wind stress changes exceed ±2 standard deviations from the annual mean trade winds and, in the case of intensification, are partially representative of recently observed trends. The Agulhas leakage is quantified using complimentary techniques based on Lagrangian virtual floats and Eulerian passive tracer flux. As resolution increases, model behavior converges and the sensitivity of the leakage to Agulhas Current transport anomalies is reduced. In the two eddy-resolving configurations tested, the leakage is insensitive to changes in Agulhas Current transport at 32°S, though substantial eddy kinetic energy anomalies are evident. Consistent with observations, the position of the retroflection remains stable. The decoupling of Agulhas Current variability from the Agulhas leakage suggests that, while correlations between the two may exist, they may not have a clear dynamical basis. It is suggested that present and future Agulhas leakage proxies be considered in the context of potentially transient forcing regimes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 . pp. 9101-9122.
    Publication Date: 2015-11-24
    Description: A surface diurnal warm layer is diagnosed from Seaglider observations, and develops on half the days in the CINDY/DYNAMO Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux (〉 80 W m−2) and low wind speed (〈 6 m s−1), and preferentially in the inactive stage of the Madden–Julian Oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4–5 m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8°C in the afternoon, with a daily mean of 0.2°C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4 W m−2 that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30–50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending towards isothermal conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 (21). pp. 8135-8150.
    Publication Date: 2020-08-04
    Description: Sea surface temperature (SST) anomalies in the eastern equatorial Atlantic are connected to modulations in the strength of the South Atlantic subtropical high-pressure system, referred to as the South Atlantic Anticyclone (SAA). Using ocean and atmosphere reanalysis products we show here that the strength of the SAA from February to May impacts the timing of the cold tongue onset and the intensity of its development in the eastern equatorial Atlantic (EEA) via anomalous tropical wind power. This modulation of the timing and amplitude of the seasonal cold tongue development manifests as anomalous SST events peaking between June and August. The timing and impact of this connection is not completely symmetric for warm and cold events. For cold events, an anomalously strong SAA in February and March leads to positive wind power anomalies from February to June resulting in an early cold tongue onset and subsequent cold SST anomalies in June and July. For warm events the anomalously weak SAA persists until May, generating negative wind power anomalies that lead to a late cold tongue onset as well as a suppression of the cold tongue development and associated warm SST anomalies. Mechanisms by which SAA induced wind power variations south of the equator influence EEA SST are discussed, including ocean adjustment via Rossby and Kelvin wave propagation, meridional advection, and local intraseasonal wind variations
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 31 (1). pp. 181-196.
    Publication Date: 2020-08-04
    Description: We present a detailed quality assessment of a novel underwater sensor for the measurement of CO2 partial pressure (pCO2) based on surface water field deployments carried out between 2008 and 2011. The commercially available sensor, which is based on membrane equilibration and NDIR spectrometry is small and can be integrated into mobile platforms. It is calibrated in water against a proven flow-through pCO2 instrument within a custom-built calibration setup. The aspect of highest concern with respect to achievable data quality of the sensor is the compensation for signal drift inevitably connected to absorption measurements. We use three means to correct for drift effects: (i) a filter correlation or dual-beam setup, (ii) regular zero gas measurements realized automatically within the sensor and (iii) a zero-based transformation of two sensor calibrations flanking the time of sensor deployment. Three sensors were tested against an underway pCO2 system during two major research cruises providing an in situ temperature range from 7.4 to 30.1°C and pCO2 values between 289 and 445 μatm. The average difference between sensor and reference pCO2 was found to be -0.6 ± 3 μatm with a RMSE of 3.7 μatm.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 (3). pp. 977-993.
    Publication Date: 2019-01-08
    Description: Ammassalik in southeast Greenland is known for strong wind events that can reach hurricane intensity and cause severe destruction in the local town. Yet, these winds and their impact on the nearby fjord and shelf region have not been studied in detail. Here, data from two meteorological stations and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) are used to identify and characterize these strong downslope wind events, which are especially pronounced at a major east Greenland fjord, Sermilik Fjord, within Ammassalik. Their local and regional characteristics, their dynamics and their impacts on the regional sea ice cover, and air–sea fluxes are described. Based on a composite of the events it is concluded that wind events last for approximately a day, and seven to eight events occur each winter. Downslope wind events are associated with a deep synoptic-scale cyclone between Iceland and Greenland. During the events, cold dry air is advected down the ice sheet. The downslope flow is accelerated by gravitational acceleration, flow convergence inside the Ammassalik valley, and near the coast by an additional thermal and synoptic-scale pressure gradient acceleration. Wind events are associated with a large buoyancy loss over the Irminger Sea, and it is estimated that they drive one-fifth of the net wintertime loss. Also, the extreme winds drive sea ice out of the fjord and away from the shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 95 (7). S1-S279.
    Publication Date: 2019-07-10
    Description: In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns' around the world. This follows several years dominated by the effects of either La Nina. or El Nino events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earth's surface and through the troposphere. Some regions in the Southern Hemispherehad record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957 At the opposite pole, the Arctic observed its seventh warmest year since record's began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope Of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during Winter across Eurasia were followed by warm Spring temperature anomalies, which, were linked to a new record Eurasian snow cover extent in the May. Minimum sea ice extent in the :Arctic was the sixth lowest since satellite Observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years Antarctica, on the other hand, had above average sea ice extent throughout 2013, with 116 days Of new daily high extent records, inclding a new daily maximum sea ice area of 19.57 million km(2) reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013: The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt Content in near-surface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3,2 mm yr(-1) over the past two decades. A portion of this trend (0.5 mm yr(-1)) has been attributed to natural variability associated with the Pacific decadal oscillation as Well as to ongoing contribution from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical Cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (OS m s(-1)) on 7 November, the highest Wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan at it Made landfall over the central Philippines, an area where sea level is currently at historic highs increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all Continued to increase in 2013. As in previous our years, each of these Major greenhouse gases once again reached historic high Concentrations. In the Arctic carbon dioxide and methane:, Increased at the same rate as:the global increase. These increases are likely due to export from lower latitudes rather than a consequence Of increases in Arctic sources such as thawing permafrost., At Mauna Loa, Hawaii, for the first time since measurement began in 1958, the daily average Mixing ratio Of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th, edition of the State of the Climate series
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 43 (12). pp. 2611-2628.
    Publication Date: 2021-06-17
    Description: The Denmark Strait Overflow (DSO) supplies about one-third of the North Atlantic Deep Water and is critical to global thermohaline circulation. Knowledge of the pathways of DSO through the Irminger Basin and its transformation there is still incomplete, however. The authors deploy over 10 000 Lagrangian particles at the Denmark Strait in a high-resolution ocean model to study these issues. First, the particle trajectories show that the mean position and potential density of dense waters cascading over the Denmark Strait sill evolve consistently with hydrographic observations. These sill particles transit the Irminger Basin to the Spill Jet section (65.25°N) in 5–7 days and to the Angmagssalik section (63.5°N) in 2–3 weeks. Second, the dense water pathways on the continental shelf are consistent with observations and particles released on the shelf in the strait constitute a significant fraction of the dense water particles recorded at the Angmagssalik section within 60 days (~25%). Some particles circulate on the shelf for several weeks before they spill off the shelf break and join the overflow from the sill. Third, there are two places where the water density following particle trajectories decreases rapidly due to intense mixing: to the southwest of the sill and southwest of the Kangerdlugssuaq Trough on the continental slope. After transformation in these places, the overflow particles exhibit a wide range of densities.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 26 (6). pp. 2137-2143.
    Publication Date: 2020-08-04
    Description: Quantile mapping is routinely applied to correct biases of regional climate model simulations compared to observational data. If the observations are of similar resolution as the regional climate model, quantile mapping is a feasible approach. However, if the observations are of much higher resolution, quantile mapping also attempts to bridge this scale mismatch. Here, it is shown for daily precipitation that such quantile mapping-based downscaling is not feasible but introduces similar problems as inflation of perfect prognosis ("prog") downscaling: the spatial and temporal structure of the corrected time series is misrepresented, the drizzle effect for area means is overcorrected, area-mean extremes are overestimated, and trends are affected. To overcome these problems, stochastic bias correction is required.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 43 . pp. 149-164.
    Publication Date: 2018-04-12
    Description: Previous attempts to derive the depth-dependent expression of the radiation stress have lead to a debate concerning (i) the applicability of Mellor’s approach to a sloping bottom, (ii) the introduction of the delta function at the mean sea surface in the later papers by Mellor, and (iii) a wave-induced pressure term derived in several recent studies. The authors use an equation system in vertically Lagrangian and horizontally Eulerian (VL) coordinates suitable for a concise treatment of the surface boundary, and obtain an expression for the depth-dependent radiation stress that is consistent with the vertically-integrated expression given by Longuet-Higgins and Stewart. Concerning (i)-(iii) in the above, the difficulty of handling a sloping bottom disappears when wave-averaged momentum equations in the VL coordinates are written for the development of (not the Lagrangian mean velocity but) the Eulerian mean velocity. There is also no delta function at the sea surface in the expression for the depth-dependent radiation stress. The connection between the wave-induced pressure term in the recent studies and the depth-dependent radiation stress term is easily shown by rewriting the pressure-based form stress term in the thickness-weighted-mean (TWM) momentum equations as a velocity-based term which contains the time derivative of the pseudomomentum in the TWM framework.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-07-04
    Description: The upper ocean, including the biologically productive euphotic zone and the mixed layer, has great relevance for studies of physical, biogeochemical, and ecosystem processes and their interaction. Observing this layer with a continuous presence, sampling many of the relevant variables, and with sufficient vertical resolution, has remained a challenge. Here a system is presented which can be deployed on the top of deep-ocean moorings, with a drive mechanism at depths of 150-200m, which mechanically winches a large sensor float and smaller communications float tethered above it to the surface and back down again, typically twice per day for periods up to 1 year. The sensor float can carry several sizeable sensors, and it has enough buoyancy to reach the near surface and for the communications float to pierce the surface even in the presence of strong currents. The system can survive mooring blow-over to 1000m depth. The battery-powered design is made possible by using a balanced energy-conserving principle. Reliability is enhanced with a drive assembly that employs a single rotating part that has no slip rings or rotating seals. The profiling bodies can break the surface to sample the near-surface layer and to establish satellite communication for data relay or reception of new commands. An inductive pass-through mode allows communication with other mooring components throughout the water column beneath the system. A number of successful demonstration deployments have been completed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 30 . pp. 112-126.
    Publication Date: 2020-08-04
    Description: In recent years, profiling floats, which form the basis of the successful international Argo observatory, are also being considered as platforms for marine biogeochemical research. This study showcases the utility of floats as a novel tool for combined gas measurements of CO2 partial pressure (pCO2) and O2. These float prototypes were equipped with a small-sized and submersible pCO2 sensor and an optode O2 sensor for high resolution measurements in the surface ocean layer. Four consecutive deployments were carried out during Nov. 2010 and June 2011 near the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic. The profiling float performed upcasts every 31 h while measuring pCO2, O2, salinity, temperature and hydrostatic pressure in the upper 200 m of the water column. In order to maintain accuracy, regular pCO2 sensor zeroings at depth and surface, as well as optode measurements in air, were performed for each profile. Through the application of data processing procedures (e.g., time-lag correction) accuracies of float-borne pCO2 measurements were greatly improved (10 – 15 μatm for water column and 5 μatm for surface measurements). O2 measurements yielded an accuracy of 2 μmol kg−1. First results of this pilot study show the possibility of using profiling floats as a platform for detailed and unattended observations of the marine carbon and oxygen cycle dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 26 . pp. 7650-7661.
    Publication Date: 2020-08-04
    Description: The use of a coupled ocean/atmosphere/sea-ice model to hindcast (i.e. historical forecast) recent climate variability is described and illustrated for the cases of the 1976/77 and 1998/99 climate shift events in the Pacific. The initialization is achieved by running the coupled model in partially coupled mode whereby global observed wind stress anomalies are used to drive the ocean/sea-ice component of the coupled model while maintaining the thermodynamic coupling between the ocean/sea-ice and atmosphere components. Here we show that hindcast experiments can successfully capture many features associated with the 1976/77 and 1998/99 climate shifts. For instance, hindcast experiments started from the beginning of 1976 can capture sea surface temperature (SST) warming in the central-eastern equatorial Pacific and the positive phase of the Pacific Decadal Oscillation (PDO) throughout the 9 years following the 1976/77 climate shift, including the deepening of the Aleutian low pressure system. Hindcast experiments started from the beginning of 1998 can also capture part of the anomalous conditions during the 4 years after the 1998/99 climate. We argue that the dynamical adjustment of heat content anomalies that are present in the initial conditions in the tropics is important for the successful hindcast of the two climate shifts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Invertebrate Biology, 132 (4). pp. 386-393.
    Publication Date: 2016-11-01
    Description: One of the most remarkable features of the reproductive systems of eubrachyuran crabs is the presence of specialized organs for sperm storage, the seminal receptacles. Descriptions of seminal receptacle morphology, sperm storage time, sperm retention across molts, and the capacity to store multiple ejaculates from different males can help in understanding crab mating strategies as well as in preventing negative effects of male-biased fisheries of heavily harvested species. Metacarcinus edwardsii is the most harvested crab in Chile, but its reproductive biology is largely unstudied. In this study, the morphology of the seminal receptacles of M. edwardsii is characterized from the macroscopic to the microscopic level, during key points in the reproductive cycle. The receptacles of experimentally mated and wild-caught females were included in this analysis. Metacarcinus edwardsii has ventral-type seminal receptacles that are able to retain sperm after molting, and even after extrusion of the eggs. Stratification of multiple ejaculates is clearly observed. In general, the pattern of sperm storage indicates that populations of this species, like those of other cancrid crabs, could have high resilience to the negative effects of the selective harvest of males, principally because females have a great sperm storage capacity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (1). pp. 202-219.
    Publication Date: 2015-07-24
    Description: The Arctic continental shelf seas hold a globally significant source of freshwater that impacts Arctic Ocean stratification, circulation, and climate. This freshwater can be injected below the surface mixed layer by intense turbulent kinetic energy dissipation events, as resolved by Laptev Sea microstructure observations. The tides provide a major source of energy that can be dissipated and hence drive diapycnal mixing in the Laptev Sea. Multiyear ADCP mooring records from locations across the shelf reveal that semidiurnal tides are dominated by theM2 and S2 constituents, with the largest amplitudes on the outer shelf. Throughoutmost of the shelf, tides are clockwise polarized and sheared by stratification, as characteristic near the M2 critical latitude. Interannual variations of the tidal and shear structures on the inner shelf aremainly determined by the stratification-setting Lena River freshwater plume. In all locations,M2 tides are enhanced under sea ice, and therefore changes in the seasonal ice cover may lead to changes in tides and water column structure. The main conclusions of this study are that (i) tides play a comparatively greater role year-round on the outer shelf relative to the inner shelf; (ii) a sea ice reduction will overall decrease the predictability of the currents, especially on the inner shelf; and (iii) the freshwater distribution directly impacts diapycnal mixing by setting the vertical tidal structure. These combined effects imply that future sea ice loss will increase the variability and vertical mixing of freshwater, particularly on the inner shelf, where the Lena River first enters the Laptev Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 30 . pp. 2820-2837.
    Publication Date: 2014-07-30
    Description: A large number of quantities have to be measured and processed to determine the atmospheric-state variables, which are the actual measurands, from aircraft-based measurements. A great part of the dependencies between these quantities depends on the aerodynamic state of the aircraft. Aircraft-based meteorological measurements, hence, require in-flight calibration. Most operators of research aircraft perform some kind of calibration, but the schemes used and the degree they are documented greatly vary. The flight maneuvers and calculation methods required, however, are published in a number of partly overlapping and partly contradictory publications. Some methods are only presented as a minor issue in publications mainly focused on atmospheric processes and are therefore hard to find. For an aircraft user, it is hence challenging to either perform or verify a calibration because of missing comprehensive guidance. This lack was stated on occasion of the in-flight calibration of the German research aircraft Polar5 carried out for the field experiment Investigation of Katabatic Winds and Polynyas during Summer (IKAPOS). In the present paper, a comprehensive review of the existing literature on this field and a practical guide to the wind calibration of a research aircraft to be used for turbulent flux measurements are given.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 70 (12). pp. 3959-3976.
    Publication Date: 2018-04-16
    Description: Accurate projections of stratospheric ozone are required because ozone changes affect exposure to ultraviolet radiation and tropospheric climate. Unweighted multimodel ensemble-mean (uMMM) projections from chemistry–climate models (CCMs) are commonly used to project ozone in the twenty-first century, when ozone-depleting substances are expected to decline and greenhouse gases are expected to rise. Here, the authors address the question of whether Antarctic total column ozone projections in October given by the uMMM of CCM simulations can be improved by using a process-oriented multiple diagnostic ensemble regression (MDER) method. This method is based on the correlation between simulated future ozone and selected key processes relevant for stratospheric ozone under present-day conditions. The regression model is built using an algorithm that selects those process-oriented diagnostics that explain a significant fraction of the spread in the projected ozone among the CCMs. The regression model with observed diagnostics is then used to predict future ozone and associated uncertainty. The precision of the authors’ method is tested in a pseudoreality; that is, the prediction is validated against an independent CCM projection used to replace unavailable future observations. The tests show that MDER has higher precision than uMMM, suggesting an improvement in the estimate of future Antarctic ozone. The authors’ method projects that Antarctic total ozone will return to 1980 values at around 2055 with the 95% prediction interval ranging from 2035 to 2080. This reduces the range of return dates across the ensemble of CCMs by about a decade and suggests that the earliest simulated return dates are unlikely.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 26 . pp. 7767-7782.
    Publication Date: 2020-08-04
    Description: Evidence is presented for the notion that some contribution to the recent decadal trends observed in the Southern Hemisphere, including the lack of a strong Southern Ocean surface warming, may have originated from longer-term internal centennial variability originating in the Southern Ocean. The existence of such centennial variability is supported by the instrumental sea surface temperatures (SSTs), a multimillennial reconstruction of Tasmanian summer temperatures from tree rings, and a millennial control integration of the Kiel Climate Model (KCM). The model variability was previously shown to be linked to changes in Weddell Sea deep convection. During phases of deep convection the surface Southern Ocean warms, the abyssal Southern Ocean cools, Antarctic sea ice extent retreats, and the low-level atmospheric circulation over the Southern Ocean weakens. After the halt of deep convection the surface Southern Ocean cools, the abyssal Southern Ocean warms, Antarctic sea ice expands, and the low-level atmospheric circulation over the Southern Ocean intensifies, consistent with what has been observed during the recent decades. A strong sensitivity of the time scale to model formulation is noted. In the KCM, the centennial variability is associated with global-average surface air temperature (SAT) changes of the order of a few tenths of a degree per century. The model results thus suggest that internal centennial variability originating in the Southern Ocean should be considered in addition to other internal variability and external forcing when discussing the climate of the twentieth century and projecting that of the twenty-first century.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 70 (7). pp. 2103-2118.
    Publication Date: 2020-08-04
    Description: The wintertime northern annular mode (NAM) at the surface is known to undergo slow intraseasonal variations in association with stratospheric variability, which leads the surface signal by up to several weeks. The relative contributions, however, of potentially relevant stratosphere–troposphere coupling mechanisms are not yet fully understood. In this study the relative roles of (i) the downward effect of the zonal-mean secondary circulation induced by quasigeostrophic (QG) adjustment to stratospheric wave drag and radiative damping and (ii) wave drag local to the troposphere are estimated. For this purpose, a spectral tendency equation of the QG zonal-mean zonal wind is derived and used, in a first step, to obtain the external mechanical forcing that, in the QG framework, drives exactly the observed stratospheric and tropospheric daily NAM. In a second step, the equation is then integrated in time to reconstruct the daily NAM, but with the forcing restricted to either stratospheric or tropospheric levels, each case leaving a characteristic NAM surface signal. The relative roles of the above-mentioned mechanisms are found to be of similar quantitative importance, but to differ in a qualitative sense. The downward effect of stratospheric QG adjustment is responsible for the initiation of the NAM surface signal, whereas subsequently local tropospheric wave drag actively maintains and persists the signal over several weeks. Furthermore, the downward effect of QG adjustment to stratospheric radiative damping is shown to have only a minor impact, compared to that from stratospheric wave drag. The robustness of these conclusions is demonstrated by a sensitivity study with respect to various model parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 43 (10). pp. 2113-2131.
    Publication Date: 2020-08-04
    Description: The Agulhas Current plays a crucial role in the thermohaline circulation through its leakage into the South Atlantic. Under both past and present climates, the trade winds and westerlies could have the ability to modulate the amount of Indian-Atlantic inflow. Compelling arguments have been put forward suggesting that trade winds alone have little impact on the magnitude of Agulhas leakage. Here, employing three ocean models for robust analysis – a global coarse resolution, a regional eddy-permitting and a nested high-resolution eddy-resolving configuration – and systematically altering the position and intensity of the westerly wind belt in a series of sensitivity experiments, it is shown that the westerlies, in particular their intensity, control the leakage. Leakage responds proportionally to the westerlies intensity up to a certain point. Beyond this, through the adjustment of the large-scale circulation, energetic interactions occur between the Agulhas Return Current and the Antarctic Circumpolar Current that result in a state where leakage no longer increases. This adjustment takes place within 1 to 2 decades. Contrary to previous assertions, our results further show that an equatorward (poleward) shift in westerlies increases (decreases) leakage. This occurs due to the redistribution of momentum input by the winds. It is concluded that the reported present-day leakage increase could therefore reflect an unadjusted oceanic response mainly to the strengthening westerlies over the last few decades.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 94 (8). S1-S258.
    Publication Date: 2019-07-09
    Description: For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 43 (4). pp. 805-823.
    Publication Date: 2018-04-12
    Description: Mesoscale anticyclonic eddies in the Irminger Sea are observed using a mooring and a glider. Between 2002 and 2009, the mooring observed 53 anticyclones. Using a kinematic model, objective estimates of eddy length scales and velocity structure are made for 16 eddies. Anticyclones had a mean core diameter of 12 km, and their mean peak observed azimuthal speed was 0.1 m s(-1). They had core salinities and potential temperatures of 34.91-34.98 and 4.488-5.34 degrees C, respectively, making them warm and salty features. These properties represent a typical salinity anomaly of 0.03 and a temperature anomaly of 0.28 degrees C from noneddy values. All eddies had small (〈〈 1) Rossby numbers. In 2006, the glider observed two anticyclones having diameters of about 20 km and peak azimuthal speeds of about 0.3 m s(-1). Similar salinity anomalies were detected throughout the Irminger Sea by floats profiling in anticyclones. Two formation regions for the eddies are identified: one to the west of the Reykjanes Ridge and the other off the East Greenland Irminger Current near Cape Farewell close to the mooring. Observations indicate that eddies formed in the former region are larger than eddies observed at the mooring. A clear increase in eddy salinity is observed between 2002 and 2009. The observed breakup of these eddies in winter implies that they are a source of salt for the central gyre. The anticyclones are similar to those found in both the Labrador Sea and Norwegian Sea, making them a ubiquitous feature of the subpolar North Atlantic basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-03-10
    Description: In this article we address the causes of the large-scale tropical sea level pressure (SLP) changes during climate change. The analysis we present is based on model simulations, observed trends and the seasonal cycle. In all three cases the regional changes of tropospheric temperature (Ttropos) and SLP are strongly related to each other (considerably stronger than (sea) surface temperature and SLP). This relationship basically follows the Bjerknes Circulation Theorem, with relatively low regional SLP where we have relatively high Ttropos and vice versa. A simple physical model suggests a tropical SLP response to horizontally inhomogeneous warming in the tropical Ttropos, with a sensitivity coefficient of about -1.7 hPa/K. This relationship explains a large fraction of observed and predicted changes in the tropical SLP. It is shown that in climate change model simulations the tropospheric land-sea warming contrast is the most significant structure in the regional Ttropos changes relative to the tropical mean changes. Since the land-sea warming contrast exists in the absent of any atmospheric circulation changes it can be argued that the large-scale response of tropical SLP changes is to first order a response to the tropical land-sea warming contrast. Further, as land-sea warming contrast is mostly available moisture dependent, the models predict a stronger warming and decreasing SLP in the drier regions from South America to Africa and a weaker warming and increasing SLP over the wetter Indo-Pacific warm pool region. This suggests an increase in the potential for deep convection conditions over the Atlantic Sector and a decrease over the Indo-Pacific warm pool region in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-03-10
    Description: Variations in eastern Indian Ocean upper-ocean thermal properties are assessed for the period 1970–2004, with a particular focus on asymmetric features related to opposite phases of Indian Ocean Dipole events, using high-resolution ocean model hindcasts. Sensitivity experiments, where atmospheric forcing variability is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large-scale asymmetric behavior in eastern Indian Ocean variability. Years are classified according to eastern Indian Ocean subsurface heat content (HC) as proxy of thermocline variations. Years characterized by anomalous low HC feature a zonal gradient in upper-ocean properties near the equator, while high events have a meridional gradient from the tropics into the subtropics. The spatial and temporal characteristics of the seasonal evolution of HC anomalies for the two cases is distinct, as is the relative contribution from Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop rapidly during austral winter/spring in response to Indian Ocean wind forcing associated with an enhanced southeasterly monsoon driving coastal upwelling and a shoaling thermocline in the east; in contrast, formation of anomalous high eastern Indian Ocean HC is more gradual, with anomalies earlier in the year expanding from the Indonesian Throughflow (ITF) region, initiated by remote Pacific wind forcing and transmitted through the ITF via coastal wave dynamics. Implications for seasonal predictions arise with high HC events offering extended lead times for predicting thermocline variations and upper-ocean properties across the eastern Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    Publication Date: 2022-03-10
    Description: European Polar Low Working Group This workshop summarized the current state of PL research in the Arctic and Antarctic. A couple of related projects are in the planning phase or already funded. The creation of a PL database for the Norwegian Sea in the frame of the Sea Surface Temperature and Altimeter Synergy (STARS) project (http://projects.met.no stars) will provide a valuable resource for future research and, potentially, predictability improvements. The maintenance of this database and the creation of similar databases for other polar areas including satellite and NWP data are highly recommended. There is also a need for free and timely access to satellite data, in particular to SAR data to fill the gap caused by the mission end of Envisat. With the increasing resolution of climate models, mesoscale processes such as polar MCs will have to be considered in international research programs such as the World Climate Research Programme (WCRP) Polar Climate Predictability Initiative and the World Weather Research Programme (WWRP) Polar Predictability Project.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 (5). pp. 824-839.
    Publication Date: 2018-04-12
    Description: The mechanisms involved in setting the annual cycle of the Florida Current transport are revisited using an adjoint model approach. Adjoint sensitivities of the Florida Current transport to wind stress reproduce a realistic seasonal cycle with an amplitude of ~1.2 Sv (1 Sv ≡ 106 m3 s−1). The annual cycle is predominantly determined by wind stress forcing and related coastal upwelling (downwelling) north of the Florida Strait along the shelf off the North American coast. Fast barotropic waves propagate these anomalies southward and reach the Florida Strait within a month, causing an amplitude of ~1 Sv. Long baroclinic planetary Rossby waves originating from the interior are responsible for an amplitude of ~0.8 Sv but have a different phase. The sensitivities corresponding to the first baroclinic mode propagate westward and are highly influenced by topography. Considerable sensitivities are only found west of the Mid-Atlantic Ridge, with maximum values at the western shelf edge. The second baroclinic mode also has an impact on the Florida Current variability, but only when a mean flow is present. A second-mode wave train propagates southwestward from the ocean bottom on the western side of the Mid-Atlantic Ridge between ~36° and 46°N and at Flemish Cap, where the mean flow interacts with topography, to the surface. Other processes such as baroclinic waves along the shelf and local forcing within the Florida Strait are of minor importance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 . pp. 725-747.
    Publication Date: 2018-04-12
    Description: The residual effect of surface gravity waves on mean flows in the upper ocean is investigated using thickness weighted mean (TWM) theory applied in a vertically Lagrangian and horizontally Eulerian coordinate system. Depth-dependent equations for the conservation of volume, momentum, and energy are derived. These equations allow for (i) finite amplitude fluid motions, (ii) the horizontal divergence of currents and (iii) a concise treatment of both the kinematic and viscous boundary conditions at the sea surface. Under the assumptions of steady and monochromatic waves and a uniform turbulent viscosity, the TWM momentum equations are used to illustrate the pressure- and viscosity-induced momentum fluxes through the surface that are implicit in previous studies of the wave-induced modification of the classical Ekman spiral problem. The TWM approach clarifies, in particular, the surface momentum flux associated with the so-called virtual wave stress of Longuet-Higgins. Overall the TWM framework can be regarded as an alternative to the three-dimensional Lagrangian mean framework of Pierson. Moreover the TWM framework can be used to include the residual effect of surface waves in large-scale circulation models. In specific models that carry the TWM velocity appropriate for advecting tracers as their velocity variable, the turbulent viscosity term should be modified so that the viscosity acts only on the Eulerian mean velocity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Invertebrate Biology, 131 (2). pp. 96-109.
    Publication Date: 2016-02-24
    Description: Many aspects of barnacle body form are known to be developmentally plastic. Perhaps the most striking examples of such plasticity occur in their feeding legs and unusually long penises, the sizes and shapes of which can change dramatically and adaptively with changes in conspecific density and local water flow conditions. However, whether variation in overall appendage form is mirrored by structural responses in cuticle and muscle is not known. In order to determine how structural variation underlies phenotypic plasticity in barnacle appendages, we examined barnacles occurring at low and high population densities from one wave-protected and one wave-exposed site. We used histological sectioning and fluorescence microscopy of feeding legs and penises to compare cuticle thickness, muscle thickness, and muscle organization, and artificial penis inflation to compare penis extensibility. We observed striking differences in cuticle thickness, muscle thickness, and muscle organization between sites that differed in water velocity, but we found no clear differences associated with variation in conspecific density. Penis extensibility also did not differ consistently between sites. These results are consistent with an adaptive explanation for much of the remarkable and complex variation in barnacle feeding leg and penis morphology among sites that differ in water velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 25 (12). pp. 4294-4303.
    Publication Date: 2015-01-12
    Description: The tropical Atlantic wind response to El Niño forcing is robust, with weakened northeast trade winds north of the equator and strengthened southeast trade winds along and south of the equator. However, the relationship between sea surface temperature (SST) anomalies in the eastern equatorial Pacific and Atlantic is inconsistent, with El Niño events followed sometimes by warm and other times by cold boreal summer anomalies in the Atlantic cold tongue region. Using observational data and a hindcast simulation of the Nucleus for European Modeling of the Ocean (NEMO) global model at 0.5° resolution (NEMO-ORCA05), this inconsistent SST relationship is shown to be at least partly attributable to a delayed negative feedback in the tropical Atlantic that is active in years with a warm or neutral response in the eastern equatorial Atlantic. In these years, the boreal spring warming in the northern tropical Atlantic that is a typical response to El Niño is pronounced, setting up a strong meridional SST gradient. This leads to a negative wind stress curl anomaly to the north of the equator that generates downwelling Rossby waves. When these waves reach the western boundary, they are reflected into downwelling equatorial Kelvin waves that reach the cold tongue region in late boreal summer to counteract the initial cooling that is due to the boreal winter wind stress response to El Niño. In contrast, this initial cooling persists or is amplified in years in which the boreal spring northern tropical Atlantic warming is weak or absent either because of a positive North Atlantic Oscillation (NAO) phase or an early termination of the Pacific El Niño event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 25 (6). pp. 1827-1846.
    Publication Date: 2017-08-25
    Description: Initial-value predictability measures the degree to which the initial state can influence predictions. In this paper, the initial-value predictability of six atmosphere–ocean general circulation models in the North Pacific and North Atlantic is quantified and contrasted by analyzing long control integrations with time invariant external conditions. Through the application of analog and multivariate linear regression methodologies, average predictability properties are estimated for forecasts initiated from every state on the control trajectories. For basinwide measures of predictability, the influence of the initial state tends to last for roughly a decade in both basins, but this limit varies widely among the models, especially in the North Atlantic. Within each basin, predictability varies regionally by as much as a factor of 10 for a given model, and the locations of highest predictability are different for each model. Model-to-model variations in predictability are also seen in the behavior of prominent intrinsic basin modes. Predictability is primarily determined by the mean of forecast distributions rather than the spread about the mean. Horizontal propagation plays a large role in the evolution of these signals and is therefore a key factor in differentiating the predictability of the various models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 69 . pp. 1824-1840.
    Publication Date: 2018-04-16
    Description: Sudden stratospheric warmings are prominent examples of dynamical wave–mean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a strongly disturbed stratospheric vortex. This work investigates a wide class of supervised learning methods with respect to their ability to classify stratospheric warmings, using temperature anomalies from the Arctic stratosphere and atmospheric forcings such as ENSO, the quasi-biennial oscillation (QBO), and the solar cycle. It is demonstrated that one representative of the supervised learning methods family, namely nonlinear neural networks, is able to reliably classify stratospheric warmings. Within this framework, one can estimate temporal onset, duration, and intensity of stratospheric warming events independently of a particular pressure level. In contrast to classification methods based on the zonal-mean zonal wind, the approach herein distinguishes major, minor, and final warmings. Instead of a binary measure, it provides continuous conditional probabilities for each warming event representing the amount of deviation from an undisturbed polar vortex. Additionally, the statistical importance of the atmospheric factors is estimated. It is shown how marginalized probability distributions can give insights into the interrelationships between external factors. This approach is applied to 40-yr and interim ECMWF (ERA-40/ERA-Interim) and NCEP–NCAR reanalysis data for the period from 1958 through 2010.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 25 (1). pp. 184-206.
    Publication Date: 2017-08-24
    Description: To analyze the probability density distributions of surface turbulent heat fluxes, the authors apply the twoparametric modified Fisher–Tippett (MFT) distribution to the sensible and latent turbulent heat fluxes recomputed from 6-hourly NCEP–NCAR reanalysis state variables for the period from 1948 to 2008. They derived the mean climatology and seasonal cycle of the location and scale parameters of the MFT distribution. Analysis of the parameters of probability distributions identified the areas where similar surface turbulent fluxes are determined by the very different shape of probability density functions. Estimated extreme turbulent heat fluxes amount to 1500–2000 W m22 (for the 99th percentile) and can exceed 2000 W m22 for higher percentiles in the subpolar latitudes and western boundary current regions. Analysis of linear trends and interannual variability in the mean and extreme fluxes shows that the strongest trends in extreme fluxes (more than 15 W m22 decade21) in the western boundary current regions are associated with the changes in the shape of distribution. In many regions changes in extreme fluxes may be different from those for the mean fluxes at interannual and decadal time scales. The correlation between interannual variability of themean and extreme fluxes is relatively low in the tropics, the SouthernOcean, and the Kuroshio Extension region.Analysis of probability distributions in turbulent fluxes has also been used in assessing the impact of sampling errors in theVoluntaryObserving Ship (VOS)-based surface flux climatologies, allowed for the estimation of the impact of sampling in extreme fluxes. Although sampling does not have a visible systematic effect onmean fluxes, sampling uncertainties result in the underestimation of extreme flux values exceeding 100 W m22 in poorly sampled regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 25 (1). pp. 207-221.
    Publication Date: 2014-10-21
    Description: Antarctic Intermediate Water (AAIW) is a dominant Southern Hemisphere water mass that spreads from its formation regions just north of the Antarctic Circumpolar Current (ACC) to at least 20°S in all oceans. This study uses an isopycnal climatology constructed from Argo conductivity–temperature–depth (CTD) profile data to define the current state of the AAIW salinity minimum (its core) and thence compute anomalies of AAIW core pressure, potential temperature, salinity, and potential density since the mid-1970s from ship-based CTD profiles. The results are used to calculate maps of temporal property trends at the AAIW core, where statistically significant strong circumpolar shoaling (30–50 dbar decade−1), warming (0.05°–0.15°C decade−1), and density reductions [up to −0.03 (kg m−3) decade−1] are found. These trends are strongest just north of the ACC in the southeast Pacific and Atlantic Oceans and decrease equatorward. Salinity trends are generally small, with their sign varying regionally. Bottle data are used to extend the AAIW core potential temperature anomaly analysis back to 1925 in the Atlantic and to ~1960 elsewhere. The modern warm AAIW core conditions appear largely unprecedented in the historical record: biennially and zonally binned median AAIW core potential temperatures within each ocean basin are, with the notable exception of the subtropical South Atlantic in the 1950s–70s, 0.2–1°C colder than modern values. Zonally averaged sea surface temperature anomalies around the AAIW formation latitudes in each ocean and sectoral southern annular mode indices are used to put the AAIW core property trends and variations into context.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 93 (7). S1-S282.
    Publication Date: 2019-07-09
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Weather, Climate, and Society, 4 (3). pp. 212-229.
    Publication Date: 2021-03-30
    Description: Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-called guardrails) are defined in terms of global mean temperature, sea level rise, and ocean acidification. A global-mean climate model [the Aggregated Carbon Cycle, Atmospheric Chemistry and Climate Model (ACC2)] is coupled with an economic module [taken from the Dynamic Integrated Climate–Economy Model (DICE)] to conduct a cost-effectiveness analysis to derive CO2 emission pathways that both minimize abatement costs and are compatible with these guardrails. Additionally, the “tolerable windows approach” is used to calculate a range of CO2 emissions paths that obey the guardrails as well as a restriction on mitigation rate. Prospects of meeting the global mean temperature change guardrail (2° and 0.2°C decade−1 relative to preindustrial) depend strongly on assumed values for climate sensitivity: at climate sensitivities 〉3°C the guardrail cannot be attained under any CO2 emissions reduction strategy without mitigation of non-CO2 greenhouse gases. The ocean acidification guardrail (0.2 unit pH decline relative to preindustrial) is less restrictive than the absolute temperature guardrail at climate sensitivities 〉2.5°C but becomes more constraining at lower climate sensitivities. The sea level rise and rate of rise guardrails (1 m and 5 cm decade−1) are substantially less stringent for ice sheet sensitivities derived in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, but they may already be committed to violation if ice sheet sensitivities consistent with semiempirical sea level rise projections are assumed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-03-10
    Description: Historical hydrographic data (1940s–2010) show a distinct cross-slope difference of the lower halocline water (LHW) over the Laptev Sea continental margins. Over the slope, the LHW is on average warmer and saltier by 0.2°C and 0.5 psu, respectively, relative to the off-slope LHW. The LHW temperature time series constructed from the on-slope historical records are related to the temperature of the Atlantic Water (AW) boundary current transporting warm water from the North Atlantic Ocean. In contrast, the on-slope LHW salinity is linked to the sea ice and wind forcing over the potential upstream source region in the Barents and northern Kara Seas, as also indicated by hydrodynamic model results. Over the Laptev Sea continental margin, saltier LHW favors weaker salinity stratification that, in turn, contributes to enhanced vertical mixing with underlying AW.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
  • 51
    Publication Date: 2023-11-08
    Description: The equatorial deep jets (EDJ) are a striking feature of the equatorial ocean circulation. In the Atlantic Ocean, the EDJ are associated with a vertical scale of between 300 and 700 m, a time scale of roughly 4.5 years and upward energy propagation to the surface. It has been found that the meridional width of the EDJ is roughly 1.5 times larger than expected based on their vertical scale. Here we use a shallow water model for a high order baroclinic vertical normal mode to argue that mixing of momentum along isopycnals can explain the enhanced width. A lateral eddy viscosity of 300 m2 s−1 10 is found to be sufficient to account for the width implied by observations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 24 (14). pp. 3345-3557.
    Publication Date: 2019-09-23
    Description: The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, thereby strengthening the inflow of Antarctic Bottom Water into the ocean interior and cooling the deep ocean. If deep waters are too cold, this promotes Antarctic stratification allowing the deep ocean to warm because of the input of North Atlantic Deep Water. A steady-state deep-water temperature is achieved such that the Antarctic surface can barely undergo convection. A two-box model is used to illustrate this feedback loop in its simplest expression and to develop basic concepts, such as the bounds on the operation of this loop. The model illustrates the possible dominating influence of Antarctic upwelling rate and Antarctic freshwater balance on global deep-water temperatures.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-08-14
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 92 (5). pp. 637-640.
    Publication Date: 2019-09-23
    Description: The importance of decadal climate variability (DCV) research is being increasingly recognized, including by the World Climate Research Program (WCRP) and the Intergovernmental Panel on Climate Change (IPCC). An improved understanding of DCV is very important because stakeholders and policymakers want to know the likely climate trajectory for the coming decades for applications to water resources, agriculture, energy, and infrastructure development. Responding to this demand, many climate modeling groups in the United States, Europe, Japan, and elsewhere are gearing up to assess the potential for decadal climate predictions. The magnitudes of regional DCV often exceed those associated with the trends resulting from anthropogenic changes. Therefore, differentiating between the two is also very important for planning, implementation, and national and international treaties.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 41 (11). pp. 2242-2258.
    Publication Date: 2018-04-12
    Description: Simple idealized layered models and primitive equation models show that the meridional gradient of the zonally averaged pressure has no direct relation with the meridional flow. This demonstrates a contradiction in an often-used parameterization in zonally averaged models. The failure of this parameterization reflects the inconsistency between the model of Stommel and Arons and the box model of Stommel, as previously pointed out by Straub. A new closure is proposed. The ocean is divided in two dynamically different regimes: a narrow western boundary layer and an interior ocean; zonally averaged quantities over these regions are considered. In the averaged equations three unknowns appear: the interior zonal pressure difference Delta p(i), the zonal pressure difference Delta p(b) of the boundary layer, and the zonal velocity us at the interface between the two regions. Here Delta p(i) is parameterized using a frictionless vorticity balance, Delta p(b), by the difference of the mean pressure in the interior and western boundary, and u(delta) by the mean zonal velocity of the western boundary layer. Zonally resolved models, a layer model, and a primitive equation model validate the new parameterization by comparing with the respective zonally averaged counterparts. It turns out that the zonally averaged models reproduce well the buoyancy distribution and the meridional flow in the zonally resolved model versions with respect to the mean and time changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-08-24
    Description: Continuous estimates of the oceanic meridional heat transport in the Atlantic are derived from the Rapid Climate Change–Meridional Overturning Circulation (MOC) and Heatflux Array (RAPID–MOCHA) observing system deployed along 26.5°N, for the period from April 2004 to October 2007. The basinwide meridional heat transport (MHT) is derived by combining temperature transports (relative to a common reference) from 1) the Gulf Stream in the Straits of Florida; 2) the western boundary region offshore of Abaco, Bahamas; 3) the Ekman layer [derived from Quick Scatterometer (QuikSCAT) wind stresses]; and 4) the interior ocean monitored by “endpoint” dynamic height moorings. The interior eddy heat transport arising from spatial covariance of the velocity and temperature fields is estimated independently from repeat hydrographic and expendable bathythermograph (XBT) sections and can also be approximated by the array. The results for the 3.5 yr of data thus far available show a mean MHT of 1.33 ± 0.40 PW for 10-day-averaged estimates, on which time scale a basinwide mass balance can be reasonably assumed. The associated MOC strength and variability is 18.5 ± 4.9 Sv (1 Sv ≡ 106 m3 s−1). The continuous heat transport estimates range from a minimum of 0.2 to a maximum of 2.5 PW, with approximately half of the variance caused by Ekman transport changes and half caused by changes in the geostrophic circulation. The data suggest a seasonal cycle of the MHT with a maximum in summer (July–September) and minimum in late winter (March–April), with an annual range of 0.6 PW. A breakdown of the MHT into “overturning” and “gyre” components shows that the overturning component carries 88% of the total heat transport. The overall uncertainty of the annual mean MHT for the 3.5-yr record is 0.14 PW or about 10% of the mean value.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-09-23
    Description: The water mass structure of the Arctic Ocean is remarkable, for its intermediate (depth range ~150–900 m) layer is filled with warm (temperature 〉0°C) and salty water of Atlantic origin (usually called the Atlantic Water, AW). This water is carried into and through the Arctic Ocean by the pan-Arctic boundary current, which moves cyclonically along the basins’ margins (Fig. 1). This system provides the largest input of water, heat, and salt into the Arctic Ocean; the total quantity of heat is substantial, enough to melt the Arctic sea ice cover several times over. By utilizing an extensive archive of recently collected observational data, this study provides a cohesive picture of recent large-scale changes in the AW layer of the Arctic Ocean. These recent observations show the warm pulse of AW that entered the Arctic Ocean in the early 1990s finally reached the Canada Basin during the 2000s. The second warm pulse that entered the Arctic Ocean in the mid-2000s has moved through the Eurasian Basin and is en route downstream. One of the most intriguing results of these observations is the realization of the possibility of uptake of anomalous AW heat by overlying layers, with possible implications for an already-reduced Arctic ice cover.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-03-10
    Description: Vertical mixing in the bottom boundary layer and pycnocline of the Laptev Sea is evaluated from a rapidly sampled 12-h time series of microstructure temperature, conductivity, and shear observations collected under 100% sea ice during October 2008. The bottom boundary turbulent kinetic energy dissipation was observed to be enhanced (ϵ ∼ 10−4 W m−3) beyond background levels (ϵ ∼ 10−6 W m−3), extending up to 10 m above the seabed when simulated tidal currents were directed on slope. Upward heat fluxes into the halocline-class waters along the Laptev Sea seabed peaked at ∼4–8 W m−2, averaging out to ∼2 W m−2 over the 12-h sampling period. In the Laptev Sea pycnocline, an isolated 2-h episode of intense dissipation (ϵ ∼ 10−3 W m−3) and vertical diffusivities was observed that was not due to a localized wind event. Observations from an acoustic Doppler current meter moored in the central Laptev Sea near the M2 critical latitude are consistent with a previous model in which mixing episodes are driven by an enhancement of the pycnocline shear resulting from the alignment of the rotating pycnocline shear vector with the under-ice stress vector. Upward cross-pycnocline heat fluxes from the Arctic halocline peaked at ∼54 W m−2, resulting in a 12-h average of ∼12 W m−2. These results highlight the intermittent nature of Arctic shelf sea mixing processes and how these processes can impact the transformation of Arctic Ocean water masses. The observations also clearly demonstrate that absence or presence of sea ice profoundly affects the availability of near-inertial kinetic energy to drive vertical mixing on the Arctic shelves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 27 (9). pp. 1533-1546.
    Publication Date: 2018-07-04
    Description: The eddy correlation technique is rapidly becoming an established method for resolving dissolved oxygen fluxes in natural aquatic systems. This direct and noninvasive determination of oxygen fluxes close to the sediment by simultaneously measuring the velocity and the dissolved oxygen fluctuations has considerable advantages compared to traditional methods. This paper describes the measurement principle and analyzes the spatial and temporal scales of those fluctuations as a function of turbulence levels. The magnitudes and spectral structure of the expected fluctuations provide the required sensor specifications and define practical boundary conditions for the eddy correlation instrumentation and its deployment. In addition, data analysis and spectral corrections are proposed for the usual nonideal conditions, such as the time shift between the sensor pair and the limited frequency response of the oxygen sensor. The consistency of the eddy correlation measurements in a riverine reservoir has been confirmed—observing a night–day transition from oxygen respiration to net oxygen production, ranging from −20 to +5 mmol m−2 day−1—by comparing two physically independent, eddy correlation instruments deployed side by side. The natural variability of the fluctuations calls for at least ∼1 h of flux data record to achieve a relative accuracy of better than ∼20%. Although various aspects still need improvement, eddy correlation is seen as a promising and soon-to-be widely applied method in natural waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-08-04
    Description: Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-08-04
    Description: Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-08-04
    Description: The Atlantic meridional overturning circulation (AMOC) makes the strongest oceanic contribution to the meridional redistribution of heat. Here, an observation-based, forty-eight-month-long time series of the vertical structure and strength of the AMOC at 26.5°N is presented. From April 2004 to April 2008 the AMOC had a mean strength of 18.7 ±2.1 Sv with fluctuations of 4.8 Sv rms. The best guess of the peak-to-peak amplitude of the AMOC seasonal cycle is 6.7 Sv, with a maximum strength in autumn and a minimum in spring. While seasonality in the AMOC was commonly thought to be dominated by the northward Ekman transport, this study reveals that fluctuations of the geostrophic mid-ocean and Gulf Stream transports of 2.2 Sv and 1.7 Sv rms, respectively, are substantially larger than those of the Ekman component (1.2 Sv rms). A simple model based on linear dynamics suggests that the seasonal cycle is dominated by wind stress curl forcing at the eastern boundary of the Atlantic. Seasonal geostrophic AMOC anomalies might represent an important and previously underestimated component of meridional transport and storage of heat in the subtropical North Atlantic. There is evidence that the seasonal cycle observed here is representative of much longer intervals. Previously, hydrographic snapshot estimates between 1957 and 2004 had suggested a long-term decline of the AMOC by 8 Sv. This study suggests that aliasing of seasonal AMOC anomalies might have accounted for a large part of the inferred slowdown.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 91 (7, S). pp. 66-69.
    Publication Date: 2020-08-13
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-04-12
    Description: Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-08-04
    Description: The 20th century Northern Hemisphere surface climate exhibits a long-term warming trend, largely caused by anthropogenic forcing, and natural decadal climate variability superimposed on it. This study addresses the possible origin and strength of internal decadal climate variability in the Northern Hemisphere during the recent decades. We present results from a set of climate model simulations that suggest natural internal multidecadal climate variability in the North Atlantic-Arctic Sector could have considerably contributed to the Northern Hemisphere surface warming since 1980. Although covering only a few percent of the earth’s surface, the Arctic may have provided the largest share in this. It is hypothesized that a stronger Meridional Overturning Circulation in the Atlantic and the associated increase in northward heat transport enhanced the heat loss from the ocean to the atmosphere in the North Atlantic region, and especially in the North Atlantic portion of the Arctic due to anomalously strong sea ice melt. The model results stress the potential importance of natural internal multidecadal variability originating in the North Atlantic-Arctic Sector in generating inter-decadal climate changes not only on a regional, but possibly also on a hemispheric and even global scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 (10). pp. 2129-2141.
    Publication Date: 2018-04-05
    Description: In this study a scenario is developed of two adjacent Mediterranean Water eddies (meddies) as they were observed merging and drifting through the Iberian Basin. Observations are based on four RAFOS floats (at 850–1050 dbar), two hydrographic surveys (centered roughly at 38°N, 24°W), and trajectories of surface drifters (drogued at 100 m). In April 1991, the meddy A was identified and labeled by surface drifters. During the revisit one month later two meddies were encountered, B1 and B2, in the vicinity of the former meddy A. The coalescence of B1 (subsequently identified as A, one month older) and B2 is inferred from a simple kinematic model describing the observed movement of the RAFOS floats for up to three months after the second CTD survey. The deduced vorticity front, radius ∼15 km, within B1 was of insufficient strength to keep the core waters of B1 isolated and prevent the absorption of B1 by B2. The resulting meddy (B1 + B2) showed a clear near-surface dynamical signal. Its deep root (1800 m) could explain the expulsion from the meddy of the remaining RAFOS float and surface drifter at the time of the meddy's collision with the Josephine Seamount. For the first time, a set of Lagrangian and hydrographic observations give direct evidence that neighboring meddies can merge as predicted by theoretical considerations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 326-344.
    Publication Date: 2018-04-05
    Description: Global mean and eddy fields from a four-year experiment with a 1/6° × 1/5° horizontal resolution implementation of the CME North Atlantic model are presented. The time-averaged wind-driven and thermohaline circulation in the model is compared to the results of a 1/3° × 2/5° model run in very similar configuration. In general, the higher resolution results are found to confirm that the resolution of previous CME experiments is sufficient to describe many features of the large-scale circulation and water mass distribution quite well. While the increased resolution does not lead to large changes in the mean flow patterns, the variability in the model is enhanced significantly. On the other hand, however, not all aspects of the circulation have improved with resolution. The Azores Current Frontal Zone with its variability in the eastern basin is still represented very poorly. Particular attention is also directed toward the unrealistic stationary anticyclones north of Cape Hatteras and in the Gulf of Mexico.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 2306-2320.
    Publication Date: 2018-04-05
    Description: To avoid an explicit simulation of the overflows across the Greenland-Scotland ridge, many models of the large-scale ocean circulation seek to include the net effect of the inflowing dense water masses by restoring temperature and salinity near the ridge to observed conditions. In this paper the authors examine the effect of different datasets for the northern restoring condition in two versions, eddy resolving and non-eddy resolving, of the model of the North and equatorial Atlantic that has been developed in recent years as a Community Modeling Effort for WOCE. It is shown that the use of smoothed climatological fields of temperature and salinity south of the Denmark Strait leads to strong deficiencies in the simulation of the deep flow field in the basin. A switch to actual hydrographic data from the Denmark Strait ignites a rapid dynamic response throughout the North Atlantic, affecting the transport and vertical structure of the deep western boundary current and, by virtue of the JEBAR efffect, the transport of the horizontal gyres. Meridional overturning and northward heat transport too weak in the cases with climatological boundary conditions, increase to more realistic levels in the subtropical North Atlantic. The initial response to switches in the high-latitude thermohaline forcing is mediated by fast waves along the westurn boundary, leading to changes in the deep western boundary current in low latitudes after about two years in the non-eddy-resolving cast. The initial timescale depends on the horizontal grid spacing of the model; in the high-resolution case, the first signal reaches the equator in a few months. The adjustment to a new, dynamic quasi equilibrium involves Kelvin waves along the equator and Rossby wave in the interior and is attained in less than two decades throughout the North Atlantic. It is suggested that these fast dynamic adjustment processes could play an important role in possible fluctuations of the thermohaline circulation, or transitions between different equilibrium states of the coupled ocean–atmosphere system, and may have determined the timescale of the observed climatic transitions before and during the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 7 (10). pp. 1449-1462.
    Publication Date: 2018-07-23
    Description: We have investigated the seasonal cycle and the interannual variability of the tropical Indian Ocean circulation and the Indian summer monsoon simulated by a coupled ocean-atmosphere general circulation model in a 26- year integration. Although the model exhibits significant climate drift, overall, the coupled GCM simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian summer monsoon. The amplitudes of the seasonal changes, however, are underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation, which is partly related to the El Niño/Southern Oscillation phenomenon and the associated changes in the Walker circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface beat flux acts as a negative feedback on the SST anomalies. The interannual variability in monsoon rainfall, simulated by the coupled GCM, is only about half as strong as observed. The reason for this is that the simulated interannual variability in the Indian monsoon appears to be related to internal processes within the atmosphere only. In contrast, an investigation based on observations shows a clear lead-lag relationship between interannual variations in the monsoon rainfall and tropical Pacific SST anomalies. Furthermore, the atmospheric GCM also fails to reproduce this lead-lag relationship between monsoon rainfall and tropical Pacific SST when run in a stand-alone integration with observed SSTs prescribed during the period 1970–1988. These results indicate that important physical processes relating tropical Pacific SST to Indian monsoon rainfall are not adequately modeled in our atmospheric GCM. Monsoon rainfall predictions appear therefore premature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 . pp. 91-107.
    Publication Date: 2020-08-04
    Description: The annual cycle of meridional heat transport in the North and equatorial Atlantic Ocean is studied by means of the high-resolution numerical model that had been developed in recent years as a Community Modeling Effort for the World Ocean Circulation Experiment. Similar to previous model studies, there is a winter maximum in northward heat transport in the equatorial Atlantic and a summer maximum in midlatitudes. The seasonal variation in heat transport in the equatorial Atlantic, with a maximum near 8°N, is associated with the out-of-phase changes in heat content to the north and south of that latitude in connection with the seasonal reversal of the North Equatorial Countercurrent. The amplitude of the heat transport variation at 8°N depends on model resolution: forcing with the monthly mean wind stresses of Hellerman–Rosenstein (HR) gives an annual range of 2.1 PW in the case of a 1/3° meridional grid, and 1.7 PW in the case of a 1° grid, compared to 1.4 PW in a previous 2° model. Forcing with the wind stresses of Isemer–Hasse (IH) gives 2.5 PW in the 1/3° and 2.2 PW in the 1° model case. The annual range of heat transport in the subtropical North Atlantic is much less dependent on resolution but sensitive to the wind stress: it increases from 0.5 PW in the case of HR forcing to almost 0.8 PW with IH forcing. The annual cycle of heat transport can be understood in terms of wind-driven variations in the meridional overturning; variations in horizontal gyre transport have only little effect both in the equatorial and in the subtropical Atlantic. In all model solutions the seasonal variations in the near-surface meridional Ekman transport are associated with deep seasonal overturning cells. The weak shear of the deep response suggests that the large variations in heat transport on seasonal and shorter time scales should be of little consequence for observational estimates of mean oceanic heat transports relying on one-time hydrographic surveys.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 11 (4). pp. 982-993.
    Publication Date: 2019-03-14
    Description: Cicosal sea surface height (SSH) data in the tropical and midlatitude North Atlantic are analyzed with and without water vapor (WV) correction to study the WV influence on along-track SSH anomaly profits, mesoscale SSH variability, wavenumber spectra, and objectively mapped fields of SSH anomaly. Three different WV datasets were used, one from the Fleet Numerical Oceanographic Center (FNOC) model and two from the Special Sensor Microwave/Imager (SSM/I) based on different WV retrieval algorithms. These WV dataset show significant differences, in particular in the tropics. However, the method for deriving SSH anomalies from altimeter height data Alters out much of the WV corrections. The residual WV effect on SSH anomaly is shown to be most significant in the seasonally migrating intertropical convergence zone of the tropical Atlantic: there the SSM/I corrections reduce the along-track mesoscale SSH variability by typically 1–1.5 cm. On seasonal timescales the maximum WV effect in this region is characterized by a 2–3-cm rms difference between SSH anomaly with and without SSM/I WV corrections, whereas FNOC corrections have almost no effect. Inferred seasonal velocity variations in the North Equatorial Countercurrent core (4° – 6°N) in the region of maximum WY influence (30° – 40°W) are reduced by about 20% and 30%, depending on whether SSM/I corrections by Emery or Wentz are used
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 24 (5). pp. 928-948.
    Publication Date: 2018-08-13
    Description: Observations of upper-ocean western boundary current (WBC) transports reveal asymmetries between the Northern and the Southern Hemispheres of the Atlantic Ocean. To find out what mechanism might cause these asymmetries the linearized steady-state vorticity equation is applied to the interior of a layer of constant thickness representing the upper Atlantic Ocean. WBC transports are then required to balance the interior volume flux deficit. The ocean is forced by climatological wind stress at the surface; thermohaline forcing is introduced by vertical motion at the lower boundary. A series of model runs using selected combinations of different basin geometries, wind stress fields, and thermohaline forcing patterns yields the following results: asymmetries of WBC transports cannot be explained by the topography shape of coastlines. The wind stress causes 12 Sv (Sv ≡ 1 × 106 m3 s −1) cross-equatorial transport to the north but it cannot account for the other WBC asymmetries. These can be explained by superimposing a thermohaline flow component to the wind-driven circulation. The best agreement with observations could be obtained from a model run driven by a sinking rate of 20 Sv in the northern North Atlantic and 4 Sv in the Weddell Sea compensated by 15 Sv return flow from other oceans via the Agulhas Current or Drake Passage and uniform upwelling of 9 Sv in the Atlantic. In tropical and subtropical latitudes this run reproduces all observed asymmetries, but in subpolar latitudes the model fails. Further conclusions can be drawn from the model results. (i) Up to 20 Sv northward transport of Antarctic Intermediate Water is needed at about 10°S to explain the difference of modeled transports and observations. For the same reasons an Antilles Current of up to 16 Sv is required. (ii) The major part of the northward heat transport in the North Atlantic has to occur via the tropical countercurrents and the North Equatorial Current. Only less than 7 Sv take the shortest way to the Caribbean via the Guyana Current. (iii) Fifty-six percent of the Florida Straits transport is wind driven.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-08-17
    Description: Accurate measurement of fluctuations in temperature and humidity are needed for determination of the surface evaporation rate and the air-sea sensible heat flux using either the eddy correlation or inertial dissipation method for flux calculations. These measurements are difficult to make over the ocean, and are subject to large errors when sensors are exposed to marine air containing spray droplets. All currently available commercial measurement devices for atmospheric humidity require frequent maintenance. Included in the objectives of the Humidity Exchange over the Sea program were testing and comparison of sensors used for measuring both the fluctuating and mean humidity in the marine atmosphere at high wind speeds and development of techniques for the protection of these sensors against contamination by oceanic aerosols. These sensors and droplet removal techniques are described and comparisons between measurements from several different systems are discussed in this paper. To accomplish these goals, participating groups devised and tested three methods of removing sea spray from the sample airstream. The best performance was given by a rotating semen device, the “spray Ringer.” Several high-frequency temperature and humidity instruments, based on different physical principles, were used in the collaborative field experiment. Temperature and humidity fluctuations were measured with sufficient accuracy inside the spray removal devices using Lyman-α hygrometers and a fast thermocouple psychrometer. Comparison of several types of psychrometers (using electric thermometers) and a Rotronic MP-100 humidity sensor for measuring the mean humidity illustrated the hysteresis of the Rotronic MP-100 device after periods of high relative humidity. Confidence in the readings of the electronic psychrometer was established by in situ calibration with repeated and careful readings of ordinary hand-held Assman psychrometers (based on mercury thermometers). Electronic psychrometer employing platinum resistance thermometers perform very well.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 (8). pp. 1638-1646.
    Publication Date: 2018-03-23
    Description: New light is shed on Worthington's concept of the North Atlantic circulation, postulating the existence of two anticyclonic gyres. This concept, which seems to have been laid to rest in the last decade, has now been reinforced by the results of a simple linear Sverdrup circulation model yielding a band of westward transport all across the North Atlantic at about the Azores latitude. This narrow band is called the Azores Countercurrent (AzCC) and matches the position of westward flow required by Worthington's “northern gyre.” An anomaly in the meridional change of the wind-stress curl in the eastern North Atlantic has been identified as the driving mechanism. A comparison with observations shows that the AzCC is verified in many analyses of historical datasets and synoptic surveys. A lack of the AzCC in other analyses is probably due to missing meridional sections, strong smoothing, and the superimposed Ekman flow close to the sea surface directed to the southeast. The AzCC has not been verified in low-resolution general circulation models applying simplified wind-stress fields and large friction coefficients, but there is evidence for its existence in recent high-resolution models driven by realistic wind stresses. Based on these findings, a new pattern for the wind-driven upper ocean circulation of the midlatitude North Atlantic is presented.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 (11). pp. 2373-2391.
    Publication Date: 2018-03-07
    Description: A sigma-coordinate, primitive equation ocean circulation model is used to explore the problem of the remnant generation of trapped waves about a tall, circular, isolated seamount by an incident oscillatory barotropic current. The numerical solutions are used to extend prior studies into the fully nonlinear regime, and in particular to quantify and interpret the occurrence of residual circulation. Specific attention is also devoted to the dependence of the resonance and rectification mechanisms on stratification, forcing frequency, and choice of subgrid-scale viscous closure. Resonantly generated trapped waves of significant amplitude are found to occur broadly in parameter space; a precise match between the frequency of the imposed incident current and the frequency of the trapped free wave is not necessary to produce substantial excitation of the trapped wave. The maximum amplification factors produced in these numerical solutions, O(100) times the strength of the incident current, are consistent with previous studies. In the presence of nonlinear advection, strong residual currents are produced. The time-mean circulation about the seamount is dominated by a strong bottom-intensified, anticyclonic circulation closely trapped to the seamount. Maximum local time-mean current amplitudes are found to be as large as 37% of the magnitude of the propagating waves. In addition to the strong anticyclonic residual flow, there is a weaker secondary circulation in the vertical-radial plane characterized by downwelling over the top of the seamount at all depths. Maximum vertical downwelling rates of several tens of meters per day occur at the summit of the seamount. The vertical mass flux implied by this systematic downwelling is balanced by a slow radial flux of mass directed outward along the flanks of the seamount. Time-mean budgets for the radial and azimuthal components of momentum show that horizontal eddy fluxes of momentum are responsible for transporting net radial and azimuthal momentum from the far field to the upper flanks of the seamount. There, Coriolis and pressure gradient forces provide the dominant balances in the radial direction. However, the Coriolis force and viscous effects provide the primary balance for the azimuthal component.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 (12). pp. 2667-2682.
    Publication Date: 2018-04-05
    Description: The total transport of Antarctic Bottom Water across the Rio Grande Rise, including the western boundary, the Vema Channel, and the Hunter Channel is estimated from hydrographic measurements across these pathways. The contribution of the Vema Channel is greatest at 3.9 × 106 m3 s−1, which is very close to earlier estimates. The western boundary current contribution is 2.0 × 106 m3 s−1 and that of the Hunter Channel 0.7 × 106 m3 s−1. The lower values outside the Vema Channel are offset by the important source of mass they form to the lower density classes of bottom water. About 40% of the flow is concentrated in the highest density class representing the source of Weddell Sea Deep Water to the Brazil Basin. The flow structure is characterized by horizontal and vertical recirculation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-04-05
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-07-23
    Description: The space-time structure and predictability of the El Niño/Southern Oscillation (ENSO) phenomenon was investigated. Two comprehensive datasets were analyzed by means of an advanced statistical method, one based on observational data and the other on data derived from an extended-range integration performed with a coupled ocean-atmosphere general circulation model. It is shown that a considerable portion of the ENSO-related low-frequency climate variability in both datasets is associated with a cycle involving slow propagation in the equatorial oceanic beat content and the surface wind field. The existence of this cycle implies the ability of climate predictions in the tropics up to lead times of about one year. This is shown by conducting an ensemble of predictions with our coupled general circulation model. For the first time a coupled model of this type was successfully applied to ENSO predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-07-23
    Description: A hybrid coupled model (HCM) of the tropical ocean–atmosphere system is described. The ocean component is a fully nonlinear ocean general circulation model (OGCM). The atmospheric element is a statistical model that specifies wind stress from ocean-model sea surface temperatures (SST). The coupled model demonstrates a chaotic behavior during extended integration that is related to slow changes in the background mean state of the ocean. The HCM also reproduces many of the observed variations in the tropical Pacific ocean-atmosphere system. The physical processes operative in the model together describe a natural mode of climate variability in the tropical Pacific ocean–atmosphere system. The mode is composed of (i) westward-propagating Rossby waves and (ii) an equatorially confined air–sea element that propagates eastward. Additional results showed that the seasonal dependence of the anomalous ocean–atmosphere coupling was vital to the model's ability to both replicate and forecast key features of the tropical Pacific climate system. A series of hindcast and forecast experiments was conducted with the model. It showed real skill in forecasting fall/winter tropical Pacific SST at a lead time of up to 18 months. This skill was largely confined to the central equatorial Pacific, just the region that is most prominent in teleconnections with the Northern Hemisphere during winter. This result suggests the model forecasts of winter SST at leads times of at least 6 months are good enough to be used with atmospheric models (statistical or OGCM) to attempt long-range winter forecasts for the North American continent. This suggestion is confirmed in Part II of this paper.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 6 (1). pp. 5-21.
    Publication Date: 2018-07-23
    Description: A 26-year integration has been performed with a coupled ocean-atmosphere general circulation model (CGCM). The oceanic part resolves all three oceans in the latitude band 70°N–70°S but is dynamically active only between 30°N and 30°S. The atmosphere is represented by a global low-order spectral model. The coupled model was forced by seasonally varying insolation. Although the simulated time-averaged mean conditions in both atmosphere and ocean show significant deviations from the observed climatology, the CGCM realistically simulates the interannual variability in the tropical Pacific. In particular, the CGCM simulates an irregular ENSO with a preferred time scale of about 3 years. The mechanism for the simulated interannual variability in the tropical Pacific is related to both the “delayed action oscillator” and the “slow SST mode.” It therefore appears likely that either both modes can coexist or they degenerate to one mode within certain locations of the parameter space. This hypothesis is also supported by calculations performed with simplified coupled models, in which the atmospheric GCM was replaced by linear steady-state atmosphere models. Further, evidence is found for an eastward migration of zonal wind anomalies over the western Pacific prior to the extremes of the simulated ENSO, indicating a link to circulation systems over Asia. Because an earlier version of the CGCM did not simulate interannual variability in the tropical Pacific, additional experiments with a simplified coupled model have been conducted to study the sensitivity of coupled systems to varying mean oceanic background conditions. It is shown that even modest changes in the background conditions can push the coupled system from one flow regime into another.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 10 (5). pp. 764-773.
    Publication Date: 2020-08-04
    Description: Ocean deep velocity profiles were obtained by lowering a self-contained 153.6-kHz acoustic Doppler current profiler (ADCP) attached to a CTD-rosette sampler. The data were sampled during two Meteor cruises in the western tropical Atlantic. The ADCP depth was determined by integration of the vertical velocity measurements, and the maximum depth of the cast was in good agreement with the CTD depth. Vertical shears were calculated for individual ADCP velocity profiles of 140-300-m range to eliminate the unknown horizontal motion of the instrument package. Subsequent raw shear profiles were then averaged with respect to depth to obtain a mean shear profile and its statistics. Typically, the shear standard deviations were about 10(-3) s-1 when using up and down traces simultaneously. The shear profiles were then vertically integrated to get relative velocity profiles. Different methods were tested to transform the relative velocities into absolute velocity profiles, and the results were compared with Pegasus dropsonde measurements. The best results were obtained by integrating the raw velocities and relative velocities over the duration of the cast and correcting for the ship drift determined from the Global Positioning System. Below 1000-m depth a reduction of the measurement range was observed, which results either from a lack of scatterers or instrumental problems at higher pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 23 . pp. 2182-2200.
    Publication Date: 2020-08-04
    Description: Inertial separation of a western boundary current from an idealized continent is studied in a homogeneous ocean circulation model. A number of processes are identified that either encourage or prevent separation at a coastal promontory in this model. For a single-gyre wind forcing a free-slip boundary condition forces the stream to follow the coastline, whereas the no-slip condition allows separation at a sharp corner. A prescribed countergyre to the north of the stream is not necessary to achieve separation if the no-slip condition is used. "Premature" separation occurs for wind fields that do not extend beyond the latitude of the cape. For a more realistic wind field and coastline two distinct states of the stream are found. At small Reynolds numbers the current fails to separate and develops a stationary anticyclonic meander north of the cape. Stronger currents separate and drive a recirculation in the lee of the continent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (1). pp. 93-104.
    Publication Date: 2018-03-09
    Description: North Atlantic air-sea heat and freshwater flux data from several sources are used to estimate the conversion rate of water from one density to another throughout the range of sea surface density. This cross-isopycnal mass flux varies greatly over the ocean, with a maximum of 32.2 × 106 m3 s−1 at σ = 26.1 kg m−3 (toward greater densities) and a minimum of −7.6 × 106 m3 s−1 (toward lesser densities) at σ = 23.0 kg m−3. The air-sea fluxes force water to accumulate in three density bands: one at the lowest sea surface densities generated by heating; one centered near the density of subtropical mode water; and one spanning subpolar mode water densities. The transfer of water to the highest and lowest densities is balanced by mixing, which returns water to the middle density range, and also by boundary sources or sinks. Integrating the cross-isopycnal flux over all densities gives an annual average sinking of about 9 × 1O6 m3 s−1, which presumably escapes across the equator and must be balanced by a similar inflow. Comparison with estimates from tracer studies suggests that the renewal of tracer characteristics at a given density may occur without the existence of an annual average mass source at that density, because along- and cross-isopycnal mixing can renew a tracer without supplying mass.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (1). pp. 83-92.
    Publication Date: 2018-03-09
    Description: Antarctic Bottom Water flows into the western North Atlantic across the equator, shifting from the western side to the eastern side of the trough between the American continents and the Mid-Atlantic Ridge as it continues north. This is puzzling because such large-scale motion is thought to be controlled by dynamics that disallows an eastern boundary current. Previous explanations for the transposition involve a (necessarily small-scale) density current that changes sides because of the change in sign of rotation across the equator, or a topographic effect that changes the sign of the effective mean vorticity gradient and thus requires an eastern boundary current. Here an alternative explanation for the overall structure of bottom flow is given. A source of mass to a thin bottom layer is assumed to upwell uniformly across its interface into a less dense layer at rest. A simple formula for the magnitude of the upwelling and thickness of the layer is derived that depends on the source strength to the bottom layer. For a strong enough source, the bottom layer thickness is zero along a grounding curve that separates the bottom water from the western boundary and confines it to the east. A band of recirculating interior flow occurs, supplied by an isolated northern and western boundary current. Similar structures appear to exist in the Antarctic Bottom Water of the western North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (11). pp. 1257-1273.
    Publication Date: 2018-03-16
    Description: Results of a three-dimensional primitive equation model are presented simulating turbulent mesoscale motions in the seasonal thermocline on an f plane. The model is based on a hybrid vertical coordinate scheme and conserves isopycnic potential vorticity. Mesoscale turbulence is modeled in terms of an unstable potential vorticity front. The model integration starts from a purely zonal, 60-km-wide geostrophically balanced jet, on which is superimposed a small initial perturbation. The most unstable mode exhibits a wavelength of 85 km and is driven by a mixed type of instability. Characteristic dynamical ingredients of the wave are enhanced cyclonic and anticyclonic relative vorticity in the troughs and the ridges, respectively, due to the curvature of the flow. Vertical motion of up to 10 m d−1 occurring downstream of the ridges (downwelling) and downstream of the troughs (upwelling) is driven by geostrophic advection of relative vorticity. The contrast of static stability across the front is changing during amplification of the instability: in troughs the stability is decreasing whereas in ridges it is increasing. The density field exhibits local anomalies of the isopycnals' depths (bumps) due to the ageostrophic cross-jet advection of potential vorticity streamers wound up in cyclones and anticyclones. Locally, the potential vorticity gradients are enhanced, creating a multiple front structure. The model results support observations and findings of earlier atmospheric and oceanic models. It is emphasized that mesoscale turbulent structures may have a profound influence on primary productivity, mixed-layer, and internal wave dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (4). pp. 421-430.
    Publication Date: 2020-08-04
    Description: In this paper, the historical hydrographic database for the south Indian Ocean is used to investigate (i) the hydrographic boundary between the subtropical gyre and the Antarctic Circumpolar Current (ACC), the subtropical front (STF), and especially (ii) the southern current band of the gyre. A current band of increased zonal speeds in the upper 1000 m is found just north of the STF in the west near South Africa and at the surface STF in the open Indian Ocean until the waters off the coast of Australia are reached. As neither any other investigation of this current nor a name for it are known, the flow has been called the South Indian Ocean Current (SIOC). This name is anologous to the same current band in the South Atlantic Ocean, the South Atlantic Current. The STF is located in the entire south Indian Ocean near 40-degrees-S. The associated current band of increased zonal speeds is the SIOC, which is found at or north of the STF. East of 100-degrees-E the SIOC separates from the STF and continues to the northeast. The zonal flow south of the STF is normally weak and serves to separate the South Indian Ocean and Circumpolar currents. Near Africa the SIOC has a typical volume transport of 60 Sv (1 Sv = 10(6) m3 s-1) in the upper 1000 m relative to deep potential density surfaces of sigma(4) = 45.87 kg m-3 (2800-3500 m) or sigma(2) = 36.94 kg m-3 (1500-2500 m). Near western Australia the SIOC is reduced to about 10 Sv as it turns to the northeast.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 . pp. 732-752.
    Publication Date: 2018-04-05
    Description: Characteristic of the mesoscale variability in the Atlantic Ocean are investigated by analyzing the Geosat altimeter signal between 60°S and 60°N. The rms sea-surface variability for various frequency bands is studied, including the high-frequency eddy-containing band with periods 〈150 days. Wavenumber spectra and spatial eddy characteristics are analyzed over 10° by 10° boxes covering both hemispheres of the Atlantic Ocean. A comparison, with solutions of a high-resolution numerical experiment, developed as the Community Modeling Effort of the World Ocean Circulation Experiment, aids interpretation of the Geosat results in the tropical and subtropical Atlantic and provides a test of the model fluctuating eddy field. Results from Geosat altimetry show a wavenumber dependence close to k1−5 (k1 being the alongtrack wave-number) over almost the entire Atlantic Ocean except for areas in the tropical and subtropical Atlantic where the rms variability in the eddy-containing band is less than 5 cm, that is, not significantly different from the altimeter noise level. Characteristic eddy length scales inferred from Geosat data are linearly related with the deformation radius of the first baroclinic mode over the whole Atlantic Ocean, except for the equatorial regime (10°S to 10°N). The data-model comparison indicates that the high-resolution model with horizontal grid size of ⅓° and ° in latitude and longitude is quite capable of simulating observed eddy characteristics in the tropics and subtropics. In mid- and high latitudes, however, the model fails to simulate the pronounced poleward decrease in eddy scales. This leads to systematic discrepancies between the model and Geosat observation, with model scales being up to 50% larger than deduced from altimetry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (8). pp. 951-962.
    Publication Date: 2018-04-05
    Description: The time history of upper-ocean temperatures in the tropical Pacific has been used as a predictor in a statistical prediction scheme to forecast SST anomalies in this region. The temperature variations were taken from the output of an oceanic general circulation model that was forced by observed winds for the period 1961 to 1985. Since such model data are presently used as initial conditions in prediction experiments with coupled ocean–atmosphere models, it is of particular interest to investigate up to what lead time tropical Pacific SST is predictable without the coupling of an atmosphere model to the ocean model. We compared our results with those obtained by the persistence forecast and with those obtained by using the wind stresses themselves as predictors in a statistical forecast model. It is shown that using the upper ocean temperatures from the ocean model forced by observed winds gives significantly better skills at lead times of 6 to 12 months compared to persistence and to the pure wind-stress model. Off-equatorial heat content anomalies at 5°N are shown to contribute significantly to the predictability at these lead times, while those at 12°N do not.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 (10). pp. 1112-1128.
    Publication Date: 2020-08-04
    Description: The seasonal cycles found in moored current measurements in the equatorial Somali Current region and along the equator between 50° and 60°E are compared with the multilayer Geophysical Fluid Dynamics Laboratory model for the tropical Indian Ocean. The remote forcing of Somali Current transport variations by incident long equatorial waves from the equatorial interior subthermocline region is investigated by analyzing the model velocities of annual and semiannual period. Amplitudes and phases of linear equatorial Rossby and Kelvin waves were least-squares fitted to the model velocities between 5°S and 5°N, 55° and 86°E from 100-m to 1000-m depth. Two cases of wave fits are distinguished: the “free” Kelvin wave case, where the Kelvin waves were fitted independently, and the “reflected” Kelvin wave case, where they were coupled to the Rossby waves by the western boundary condition for a straight slanted (45° to the north) coastline. The wave field velocities explained 70% of the spatial variance in the equatorial model subregion and also compared reasonably well with observed current variations along the equator. At the western boundary, the short-wave alongshore transport due to reflected incident long waves was determined and found to be antisymmetric about the equator. The maximum transport variation for the semiannual period due to the short waves was about 5 × 106 m3 s−1 between 150- and 800-m depth at 3° north and south of the equator. Observational evidence for the western boundary transport variations and the sensitivity to changes in the incident wave field are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 22 . pp. 361-381.
    Publication Date: 2020-08-04
    Description: A primitive equation model of an idealized ocean basin, driven by simple, study wind and buoyancy forcing at the surface, is used to study the dynamics of mesoscale eddies. Model statistics of a six-year integration using a fine grid (1/6° × 0.2°), with reduced coefficients of horizontal friction, are compared to those using a coarser grid (1/3° × 0.4°), but otherwise identical configuration. Eddy generation in both model cases is primarily due to the release of mean potential energy by baroclinic instability. Horizontal Reynolds stresses become significant near the midlatitude jet of the fine-grid case, with a tendency for preferred energy transfers from the eddies to the mean flow. Using the finer resolution, eddy kinetic energy nearly doubles at the surface of the subtropical gyre, and increases by factors of 3–4 over the jet region and in higher latitudes. The spatial characteristics of the mesoscale fluctuations are examined by calculating zonal wavenumber spectra and velocity autocorrelation functions. With the higher resolution, the dominant eddy scale remains approximately the same in the subtropical gyre but decreases by a factor of 2 in the subpolar areas. The wavenumber spectra indicate a strong influence of the model friction in the coarse-grid case, especially in higher latitudes. Using the coarse grid, there is almost no separation between the energetic eddy scale and the scale where friction begins to dominate, leading to steep spectra beyond the cutoff wavenumber. Using the finer resolution an inertial subrange with a k−3 power law begins to emerge in all model regions outside the equatorial belt. Despite the large increase of eddy intensity in the fine-grid model, effects on the mean northward transport of heat are negligible. Strong eddy fluxes of heat across the midlatitude jet are almost exactly compensated by changes of the heat transport due to the mean flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 21 . pp. 1271-1289.
    Publication Date: 2020-08-04
    Description: A high-resolution model of the wind-driven and thermohaline circulation in the North and equatorial Atlantic Ocean is used to study the structure and variability of the boundary current system at 26°N, including the Florida Current, the Antilles Current, and the Deep Western Boundary Current (DWBC). The model was developed by Bryan and Holland as a Community Modeling Effort of the World Ocean Circulation Experiment. Subsequent experiments have been performed at IfM Kiel, with different friction coefficients, and different climatologies of monthly mean wind stress: Hellerman–Rosenstein (HR) and Isemer–Hasse (IH). The southward volume transports in the upper 1000 m of the interior Atlantic, at 26°N, are 25.0 Sv (Sv ≡ 106m3s−1) for HR, and 34.9 Sv for IH forcing, in good agreement with the transport from the integrated Sverdrup balance at this latitude (23.9 Sv for HR, 35.6 Sv for IH). The return flow of this wind-driven transport, plus the southward transport of the DWBC (6–8 Sv), is partitioned between the Florida Current and Antilles Current. With HR forcing, the transport through the Straits of Florida is 23.2 Sv; this increases to 29.1 Sv when the wind stresses of IH are used. The annual variation of the simulated Florida Current is very similar to previous, coarse-resolution models when using the same wind-stress climatology (HR); the annual range (3.4 Sv) obtained with HR forcing is strongly enhanced (6.3 Sv) with IH forcing. The meridional heat transport at 26°N, zonally integrated across the basin, is in phase with the Florida Current; its annual range increases from 0.44 PW (HR) to 0.80 PW (IH). The annual signal east of the Bahamas is masked by strong transport fluctuations on a time scale of O(100 days), caused by an instability of the Antilles Current. By averaging over several model years, an annual cycle is extracted, which is in phase with the wind stress curl over the western part of the basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 4 (5). pp. 487-515.
    Publication Date: 2018-07-23
    Description: Two extended integrations of general circulation models (GCMs) are examined to determine the physical processes operating during an ENSO cycle. The first integration is from the Hamburg version of the ECMWF T21 atmospheric model forced with observed global sea surface temperatures (SST) over the period 1970–85. The second integration is from a Max Planck Institut model of the tropical Pacific forced by observed wind stress for the same period. Both integrations produce key observed features of the tropical ocean-atmosphere system during the 1970–85 period. The atmospheric model results show an eastward propagation of information from the western to eastern Pacific along the equator, although this signal is somewhat weaker than observed. The Laplacian of SST largely drives the surface wind field convergence and hence determines the position of large scale precipitation-condensation heating. This statement is valid only in the near-equatorial zone. Air-sea heat exchange is important in the planetary boundary layer in forcing the wind field convergence but not so important to the main troposphere, which is heated largely by condensation heating. The monopole response seen in the atmosphere above about 500 mb is due to a combination of factors, the most important being adiabatic heating associated with subsidence and tropic-wide variations in precipitation. The models show the role of air-sea heat exchange in the ocean heat balance in the wave guide is one of dissipation/damping. Total air-sea heat exchange is well represented by a simple Newtonian cooling parameterization in the near-equatorial region. In the wave guide, advection dominates the oceanic heat balance with meridional advection being numerically the most important in all regions except right on the equator. The meridional term is largely explained by local Ekman dynamics that generally overwhelm other processes in the regions of significant wind stress. The principal element in this advection term is the anomalous meridional current acting on the climatological mean meridional SST gradient. The eastward motion of the anomalies seen in both models is driven primarily by the ocean. The wind stress associated with the SST anomalies forces an equatorial convergence of heat and mass in the ocean. Outside the region of significant wind forcing, the mass source leads to a convergent geostrophic flow, which drives the meridional heat flux and causes warming to the east of the main wind anomaly. West of the main anomaly the wind and geostrophic divergence cause advective cooling. The result is that the main SST anomaly appears to move eastward. Since the direct SST forcing drives the anomalous wind, surface wind convergence, and associated precipitation, these fields are seen also to move eastward.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-08-04
    Description: The monthly mean wind stress climatology of Hellerman and Rosenstein (HR) is compared with the climatology of Isemer and Hasse (IH), which represents a version of the Bunker atlas (BU) for the North Atlantic based on revised parameterizations. The drag coefficients adopted by IH are 21% smaller than the values of BU and HR, and the calculation of wind speed from marine estimates of Beaufort force (Bft) is based on a revised Beaufort equivalent scale similar to the scientific scale recommended by WMO. The latter choice significantly increases wind speed below Bft 8, and effectively counteracts the reduction of the drag coefficients. Comparing the IH stresses with HR reveals substantially enhanced magnitudes in the trade wind region throughout the year. At 15°N the mean easterly stress increases from about 0.9 (HR) to about 1.2 dyn cm−1 (IH). Annual mean differences are smaller in the region of the westerlies. In winter, the effect due to the reduced drag coefficient dominates and leads to smaller stress values in IH; during summer season the revision of the Beaufort equivalents is more effective and leads to increased stresses. Implications of the different wind stress climatologies for forcing the large-scale ocean circulation are discussed by means of the Sverdrup transport streamfunction (ψs): Throughout the subtropical gyre a significant intensification of ψs takes place with IH. At 27°N, differences of more than 10 Sv (1 Sv ≡ 106 m3 s−1) are found near the western boundary. Differences in the seasonality of ψs are more pronounced in near-equatorial regions where IH increase the amplitude of the annual cycle by about 50%. An eddy-resolving model of the North Atlantic circulation is used to examine the effect of the different wind stresses on the seasonal cycle of the Florida Current. The transport predicted by the numerical model is in much better agreement with observations when the circulation is forced by IH than by HR, regarding both the annual mean (29.1 Sv vs 23.2 Sv) and the seasonal range (6.3 Sv vs 3.4 Sv).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 8 (5). pp. 669-676.
    Publication Date: 2020-08-04
    Description: A low-cost underwater sound recorder has been developed and tested. It is designed to receive signals from sound sources that serve as navigation aids for RAFOS floats. This moored version of the RAFOS float (MAFOS) can monitor sound sources over many months and several hundred kilometers. It thus improves RAFOS navigation accuracy by enabling corrections for potential long-term clock drifts of the sound sources. MAFOS can also provide information on the local variation in the speed of sound due to natural hydrographic variability. In a first test, this usefulness has been proven and a warm, salty inhomogenity that traveled through a sound-source mooring array in the Iberian Basin has been observed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 20 (6). pp. 846-859.
    Publication Date: 2020-08-04
    Description: In this paper we use the historical hydrographic data base for the South Atlantic Ocean to investigate (i) the hydrographic boundary between the subtropical gyre and the Antarctic Circumpolar Current (ACC), the Sub-tropical Front (STF), and (ii) the southern current band of the gyre, which is called the South Atlantic Current (SAC). The STF begins in the west in the Brazil-Falkland (Malvinas) confluence zone, but at locations at and west of 45°W this front is often coincident with the Brazil Current front. East of 45°W the STF appears to be a distinct feature to at least the region south of Africa, whereupon it continues into the Indian Ocean. The associated current band of increased zonal speed is the SAC, which, except for one instance, is found at or north of the surface STF until Indian Ocean water from the Agulhas retroflection is reached. A reversal of baroclinicity in the STF is observed south of a highly saline Agulhas ring, causing the SAC to separate from the STF and turn north into the Benguela Current. Zonal flow south of the STF is generally weak and serves to separate the South Atlantic and circumpolar currents. In the Argentine Basin, the SAC has a typical volume transport of 30 Sv (1 Sv = 106m3s−1) in the upper 1000 m relative to a deep potential density surface (σ4 = 45.87 kg m−3), and can be as high as 37 Sv. It is thus comparable to, or stronger than, the Brazil Current. In the Cape Basin, the transport of the SAC is reduced to about 15 SY before it turns north to feed the Benguela Current. In late 1983 this flow was joined by about 8 Sv of water from the Agulhas Current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-07-23
    Description: The ECMWF-T21 atmospheric GCM is forced by observed near-global SST from January 1970 to December 1985. Its response in low level winds and surface wind stress over the Pacific Ocean is compared with various observations. The time dependent SST clearly induces a Southern Oscillation (SO) in the model run which is apparent in the time series of all variables considered. The phase of the GCM SO is as observed, but its low frequency variance is too weak and is mainly confined to the western Pacific. Because of the GCM's use as the atmospheric component in a coupled ocean-atmosphere model, the response of an equatorial oceanic primitive equation model to both the modeled and observed wind stress is examined. The ocean model responds to the full observed wind stress forcing in a manner almost identical to that when it is forced by the first two low frequency EOFs of the observations only. These first two EOFs describe a regular eastward propagation of the SO signal from the western Pacific to the central Pacific within about a year. The ocean model's response to the modeled wind stress is too weak and similar to the response when the observed forcing is truncated to the first EOF only. In other words, the observed SO appears as a sequence of propagating patterns but the simulated SO as a standing oscillation. The nature of the deviation of the simulated wind stress from observations is analyzed by means of Model Output Statistics (MOS). It is shown that a MOS-corrected simulated wind stress, if used to force an ocean GCM, leads to a significant enhancement of low frequency SST variance, which is most pronounced in the western Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...