ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 550 - Earth sciences  (6,204)
  • Meteorology and Climatology  (2,454)
  • Superfluidity and superconductivity  (2,190)
  • Chemical Engineering
  • Space Sciences (General)
  • 2015-2019  (4,014)
  • 2005-2009  (8,208)
Collection
Language
Years
Year
  • 1
    Publication Date: 2019-05-21
    Description: Transport from the Northern Hemisphere (NH) midlatitudes to the Arctic plays a crucial role in determining the abundance of trace gases and aerosols that are important to Arctic climate via impacts on radiation and chemistry. Here we examine this transport using an idealized tracer with a fixed lifetime and predominantly midlatitude land-based sources in models participating in the Chemistry Climate Model Initiative (CCMI). We show that there is a 25%-45% difference in the Arctic concentrations of this tracer among the models. This spread is correlated with the spread in the location of the Pacific jet, as well as the spread in the location of the Hadley Cell (HC) edge, which varies consistently with jet latitude. Our results suggest that it is likely that the HC-related zonal-mean meridional transport rather than the jet-related eddy mixing is the major contributor to the inter-model spread in the transport of land-based tracers into the Arctic. Specifically, in models with a more northern jet, the HC generally extends further north and the tracer source region is mostly covered by surface southward flow associated with the lower branch of the HC, resulting in less efficient transport poleward to the Arctic. During boreal summer, there are poleward biases in jet location in free-running models, and these models likely underestimate the rate of transport into the Arctic. Models using specified dynamics do not have biases in the jet location, but do have biases in the surface meridional flow, which may result in differences in transport into the Arctic. In addition to the land-based tracer, the midlatitude-to-Arctic transport is further examined by another idealized tracer with zonally uniform sources. With equal sources from both land and ocean, the inter-model spread of this zonally uniform tracer is more related to variations in parameterized convection over oceans rather than variations in HC extent, particularly during boreal winter. This suggests that transport of land-based and oceanic tracers or aerosols towards the Arctic differs in pathways and therefore their corresponding inter-model variabilities result from different physical processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68258 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 8; 5511-5528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-29
    Description: We present the case for the presence of complex organic molecules, such as amino acids and nucleobases, formed by abiotic processes on the surface and in near-subsurface regions of Pluto. Pluto's surface is tinted with a range of non-ice substances with colors ranging from light yellow to red to dark brown; the colors match those of laboratory organic residues called tholins. Tholins are broadly characterized as complex, macromolecular organic solids consisting of a network of aromatic structures connected by aliphatic bridging units (e.g., Imanaka et al.,2004; Materese et al.,2014, 2015). The synthesis of tholins in planetary atmospheres and in surface ices has been explored in numerous laboratory experiments, and both gas- and solid-phase varieties are found on Pluto. A third variety of tholins, exposed at a site of tectonic surface fracturing called Virgil Fossae, appears to have come from a reservoir in the subsurface. Eruptions of tholin-laden liquid H2O from a subsurface aqueous repository appear to have covered portions of Virgil Fossae and its surroundings with a uniquely colored deposit (D.P. Cruikshank, personal communication) that is geographically correlated with an exposure of H2O ice that includes spectroscopically detected NH3 (C.M. Dalle Ore, personal communication). The subsurface organic material could have been derived from presolar or solar nebula processes, or might have formed in situ. Photolysis and radiolysis of a mixture of ices relevant to Pluto's surface composition (N2, CH4, CO) have produced strongly colored, complex organics with a significant aromatic content having a high degree of nitrogen substitution similar to the aromatic heterocycles pyrimidine and purine (Materese et al.,2014, 2015; Cruikshank et al.,2016). Experiments with pyrimidines and purines frozen in H2O-NH3 ice resulted in the formation of numerous nucleobases, including the biologically relevant guanine, cytosine, adenine, uracil, and thymine (Materese et al.,2017). The red material associated with the H2O ice may contain nucleobases resulting from energetic processing on Pluto's surface or in the interior. Some other Kuiper Belt objects also exhibit red colors similar to those found on Pluto and may therefore carry similar inventories of complex organic materials. The widespread and ubiquitous nature of similarly complex organic materials observed in a variety of astronomical settings drives the need for additional laboratory and modeling efforts to explain the origin and evolution of organic molecules. Pluto observations reveal complex organics on a small body that remains close to its place of origin in the outermost regions of the Solar System.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN68660 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 19; 7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-05-08
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN68128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-29
    Description: Spacecraft surface charging during geomagnetically disturbed times is one of the most important causes of satellite anomalies. Predicting the surface charging environment is one prevalent task of the geospace environment models. Therefore, the Geospace Environment Modeling (GEM) Focus Group "Inner Magnetosphere Crossenergy/Population Interactions" initiated a communitywide challenge study to assess the capability of several inner magnetosphere ring current models in determining surface charging environment for the Van Allen Probes orbits during the 17 March 2013 storm event. The integrated electron flux between 10 and 50 keV is used as the metrics. Various skill scores are applied to quantitatively measure the modeling performance against observations. Results indicate that no model consistently perform the best in all of the skill scores or for both satellites. We find that from these simulations the ring current model with observational flux boundary condition and Weimer electric potential driver generally reproduces the most realistic flux level around the spacecraft. A simple and weaker VollandStern electric field is not capable of effectively transporting the same plasma at the boundary toward the Earth. On the other hand, if the ring current model solves the electric field selfconsistently and obtains similar strength and pattern in the equatorial plane as the Weimer model, the boundary condition plays another crucial role in determining the electron flux level in the inner region. When the boundary flux spectra based on magnetohydrodynamics (MHD) model/empirical model deviate from the shape or magnitude of the observed distribution function, the simulation produces poor skill scores along Van Allen Probes orbits.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN70222 , Space Weather (ISSN 1539-4956) (e-ISSN 1542-7390); 17; 2; 299-3012
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-29
    Description: We analyze the atmospheric processes that explain the large changes in radiative feed-backs between the two latest climate configurations of the Hadley Centre Global Environmental model. We use a large set of atmosphere-only climate-change simulations (amip and amip-p4K) to separate the contributions to the differences in feedback parameter from all the atmospheric model developments between the two latest model configurations. We show that the differences are mostly driven by changes in the shortwave cloud radiative feedback in the midlatitudes, mainly over the Southern Ocean. Two new schemes explain most of the differences: the introduction of a new aerosol scheme; and the development of a new mixed-phase cloud scheme. Both schemes reduce the strength of the pre-existing shortwave negative cloud feedback in the midlatitudes. The new aerosol scheme dampens a strong aerosol-cloud interaction, and it also suppresses a negative clear-sky shortwave feedback. The mixed-phase scheme increases the amount of cloud liquid water path (LWP) in the present-day, thereby reducing the radiative effciency of the increase of LWP in the warmer climate. It also enhances a strong, pre-existing, positive cloud fraction feedback. We assess the realism of the changes by comparing present-day simulations against observations, and discuss avenues that could help constrain the relevant processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70134 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-15
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M19-7317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-25
    Description: The association between climate variability and episodic events, such as the antecedent moisture conditions prior to wildfire or the cooling following volcanic eruptions, is commonly assessed using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically calculated as the average climate conditions prior to and following all event years or their deviation from climatology. However, the magnitude and significance of the inferred climate association may be sensitive to the selection or omission of individual key years, potentially resulting in a biased assessment of the relationship between these events and climate. Here we describe and test a modified double-bootstrap SEA that generates multiple unique draws of the key years and evaluates the sign, magnitude, and significance of event-climate relationships within a probabilistic framework. This multiple resampling helps quantify multiple uncertainties inherent in conventional applications of SEA within dendrochronology and paleoclimatology. We demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire events in the western United States. Finally, we make our Matlab and R code available to be adapted for future SEA applications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68850 , Dendrochronologia (ISSN 1125-7865); 55; 119-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-02
    Description: GPM (Global Precipitation Measurement) Products. Includes information on these two programs that integrate GPM data: Multi-Radar/Multi-Sensor (MRMS) and Integrated Multi-satellitE Retrievals for GPM (IMERG).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71369 , Weather and Air Quality Forecasting Applications Workshop; Jul 22, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-23
    Description: The water vapor is a relevant greenhouse gas in the Earth's climate system, and satellite products become one of the most effective way to characterize and monitor the columnar water vapor (CWV) content at global scale. Recently, a new product (MCD19) was released as part of MODIS (Moderate Resolution Imaging Spectroradiometer) Collection 6 (C6). This operational product from the Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm includes a high 1-kilometer resolution CWV retrievals. This study presents the first global validation of MAIAC C6 CWV obtained from MODIS MCD19A2 product. This evaluation was performed using Aerosol Robotic Network (AERONET) observations at 265 sites (2000-2017). Overall, the results show a good agreement between MAIAC/AERONET CWV retrievals, with correlation coefficient higher than 0.95 and RMS (Root Mean Square) error lower than 0.250 centimeters. The binned error analysis revealed an underestimation (approximately 10 percent) of Aqua CWV retrievals with negative bias for CWV higher than 3.0 centimeters. In contrast, Terra CWV retrievals show a slope of regression close to unity and a low mean bias of 0.075 centimeters. While the accuracy is relatively similar between 1.0 and 5.0 centimeters for both sensor products, Terra dataset is more reliable for applications in humid tropical areas (less than 5.0 centimeters). The expected error was defined as plus or minus 15 percent, with less than 68 percent of retrievals falling within this envelope. However, the accuracy is regionally dependent, and lower error should be expected in some regions, such as South America and Oceania. Since MODIS instruments have exceeded their design lifetime, time series analysis was also presented for both sensor products. The temporal analysis revealed a systematic offset of global average between Terra and Aqua CWV records. We also found an upward trend (approximately 0.2 centimeters per decade) in Terra CWV retrievals, while Aqua CWV retrievals remain stable over time. The sensor degradation influences the ability to detect climate signals, and this study indicates the need for revisiting calibration of the MODIS bands 17-19, mainly for Terra instrument, to assure the quality of the MODIS water vapor product. Finally, this study presents a comprehensive validation analysis of MAIAC CWV over land, raising the understanding of its overall quality.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68951 , Atmospheric Research (ISSN 0169-8095 ); 225; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-11
    Description: While the increase of computer power mobilizes a part of the community towards models with explicit convection or based on machine learning, we review the part of the literature dedicated to convective parameterization development for large-scale forecast and climate models. Recent findings: Many developments are underway to overcome endemic limitations of traditional convective parameterizations, either in unified or multi-object frameworks: scale-aware and stochastic approaches, new prognostic equations or representations of new components such as cold pools. Understanding their impact on the emergent properties of a model remains challenging, due to subsequent tuning of parameters and the limited understanding given by traditional metrics. Summary: Further effort still needs to be dedicated to the representation of the life cycle of convective systems, in particular their mesoscale organization and associated cloud cover. The development of more process-oriented metrics based on new observations is also needed to help quantify model improvement and better understand the mechanisms of climate change.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68302 , Current Climate Change Reports; 5; 2; 95-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-20
    Description: The Atmospheric Infrared Sounder (AIRS) is the hyperspectral infrared sounder onboard NASA's Aqua satellite, launched in 2002. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the Aqua AIRS mission and the subsequent Suomi-National Polar-orbiting Partnership Cross-track Infrared Sounder (CrIS) mission. The Planetary Boundary Layer (PBL) Height is a new variable added in the AIRS Version 6 support product. It is derived based on gradients of the retrieved atmospheric thermodynamic profile, and gives the pressure at the top of PBL over the ocean. The GES DISC also provides services for the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product generated by the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system. The monthly PBL Height variable has been available in the Giovanni system, which is a Web-based application developed by the GES DISC providing a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. In this work, we will present the monthly PBL Height data from AIRS and MERRA-2 and the services to support data intercomparison, such as access, plotting, subsetting, re-gridding, and generation of a multi-year monthly mean. We will also show intercomparison results, and evaluate whether (over the ocean) AIRS can observe PBL features similar to the reanalysis product at monthly and longer-term scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65014 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: Emission sources of trace gases and aerosol particles in the South American (SA)and African (Af) continents have a strong seasonal and space variability associated with the extensive vegetation fires activities. In both continents, during the austral winter, the fires affect mainly tropical forest and savannah-type biomes and are mostly associated with deforestation and agricultural/pasture land management. Smoke aerosol particles, on average, contribute to at least 90% of the total aerosol optical depth (AOD) in the visible spectrum in the case of the South America regional smoke. Smoke aerosols also act as cloud condensation nuclei affecting cloud microphysics properties and therefore, changing the radiation budget, hydrological cycle and global circulation patterns over disturbed areas (Kaufman, 1995; Rosenfeld, 1999; Andreae,et al., 2004; Koren et al., 2004, Zhang, 2008; Ott et al., 2010; Randles et al., 2013). This study aims to evaluate and quantify the impact of including a comprehensive emission field of biomass burning aerosol on the performance of a seasonal climate forecast system, not only regarding the AOD itself but mainly on the meteorological state variable (e.g., precipitation and temperature). To address the questions put above, we designed two numerical experiments: 1- named"AERO_CTL" which applies the Quick Fire Emissions Dataset (QFED) emissions estimated with intra-diurnal variation (hereafter, BBE), and 2- named "AERO_CLM" where the sourcee mission is based on a climatology of the QFED emissions, with only monthly variation(hereafter, BBCLIM). Hindcast simulations were produced using the Goddard Earth ObservingSystem global circulation model, version 5, sub-seasonal to seasonal (GEOS5-S2S) system with a nominal spatial resolution of 56km (Rienecker et al., 2008). In both experiments, the aerosol feedbacks from cloud developments and radiation interactions were accounted. The two experiments consisted of 4 members each and ran from June to November spanning over the years 2000 to 2015. Model performance was evaluated by calculating statistical metrics on the mean area of SA and Af. Our results demonstrated that the skill model in predicting AOD is significantly improve when BBE source emission is applied over SA, but not over the Afcontinent. Over SA, the correlation between the AERO_CTL model configuration and MERRA-2 is 0.93 (R2= 0.86, RMS=0.02, BIAS=0.01), while the AERO_CLM model presents a value of0.81 (R2= 0.65, RMS=0.04, BIAS=0.06). However, the AERO_CTL experiment better represents the inter-annual variability of the AOS in both regions. The gain of the skill in predicting the AOD by the AERO_CTL experiment is also seen in some meteorological variables. We observed an increase in the model skill in predicting the 2-meter temperature and precipitation of up to 0.3 for the AERO_CTL experiment in comparison to the AERO_CLM. AERO_CLM. According to the analyzed hindcast, we inferred that representing the BBE more realistically implies in a significant gain of skills in the seasonal climate forecasting over SA and Af continents.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64697 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: We developed and implemented a simple representation of a cold pool in the Grell-Freitas (GF) convection parameterization. The cold pool parameterization is based on the observation that convective-scale downdrafts produce a local deficit of the moist static energy (MSE). This information is advected and becoming downwind available to trigger and intensify new convection. The cold pool is dissipated by a simple exponential decay using a lifetime of a few hours, or by interacting with the underneath surface by exchanging latent and sensible heat fluxes. Preliminary results show some improvement of the simulation of the diurnal cycle of the precipitation over the land, mainly during the nighttime.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64710 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (milli-seconds for O1D to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a chemistry model. We have investigated a machine learning approach to emulate the chemistry instead of solving the differential equations numerically. From a one-month simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry. This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, etc. We discuss speed and accuracy of our approach, and highlight some potential future directions for improving it.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67517 , European Geosciences Union General Assembly (EGU); Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-20
    Description: Analysis of multispectral (red-green-blue, RGB) satellite image composites can be used to improve understanding of thermodynamic and / or dynamic features associated with the development of significant weather events (cyclones, hurricanes, intense convection, turbulence, etc.) The enhanced water vapor imaging capabilities of the Advanced Baseline Imager on GOES-16 and GOES-17 satellites provide a unique opportunity to demonstrate this capability through a comparison of the Air Mass (AM) and Differential Water Vapor (DWV) RGB image products for several case studies.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64361 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN64201 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64237 , Annual Meeting of the American Meteorological Society; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M19-7202 , University of South Alabama Presentation; Mar 04, 2019; Mobile, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN66608 , Planetarium Program at the Von Braun Astronomical Society (VBAS); Mar 16, 2019; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-20
    Description: What: Thermal moonquakes are small amplitude events that are produced by diurnal temperature changes. Why: Finding the locations of thermal moonquakes will lead to information about lunar surface processes. Where: Apollo 17 Lunar Seismic Profiling Experiment (LSPE) is able to locate thermal moonquake unlike Apollo 12-16. The primary science goal was an active source experiment to study the detailed structure of the lunar crust using 8 explosive packages (EPs). The secondary science goal was to passively listen for lunar seismic activity.
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN66731 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN66650
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory Curiosity rover arrived at Mars in August 2012 with a primary goal of characterizing the habitability of ancient and modern environments. Curiosity landed in Gale crater to study a sequence of ~3.5 Ga old sedimentary rocks that, based on orbital visible/near-infrared reflectance spectra, contain secondary minerals that suggest deposition and/or alteration in liquid water. The sedimentary sequence that comprises the lower slopes of Mount Sharp within Gale crater may preserve a dramatic shift on early Mars from a relatively warm and wet climate to a cold and dry climate based on a transition from smectite-bearing strata to sulfate-bearing strata. The rover is equipped with cameras and geochemical and mineralogical instruments to examine the sedimentology and identify compositional changes within the stratigraphy. These observations provide information about variations in depositional and diagenetic environments over time. The Chemistry and Mineralogy (CheMin) instrument is one of two internal laboratories on Curiosity and includes a transmission X-ray diffractometer (XRD) and X-ray fluorescence (XRF) spectrometer with a Co-K source. CheMin measures loose sediment samples scooped from the surface and drilled rock powders. The XRD provides quantitative mineralogy of scooped and drilled samples to a detection limit of ~1 wt.%. Curiosity has traversed 〉20 km since landing and has primarily been exploring the site of a predominantly ancient lake environment fed by groundwater and streams emanating from the crater rim. Results from CheMin demonstrate an incredible diversity in the mineralogy of fluvio-lacustrine rocks that signify variations in source rock composition, sediment transport mechanisms, and depositional and diagenetic fluid chemistry. Abundant trioctahedral smectite and magnetite at the base of the section may have formed from low-salinity pore waters with a circumneutral pH within lake sediments. A transition to dioctahedral smectite, hematite, and Ca-sulfate going up section suggests a change to more saline and oxidative aqueous conditions within the lake waters themselves and/or within diagenetic fluids. The primary minerals detected in fluvio-lacustrine samples by CheMin also suggest diversity in the igneous source regions for the sediments, where abundant pyroxene and plagioclase in most samples suggest a basaltic protolith, but sanidine and pyroxene in one sample may have been sourced from a potassic trachyte, and tridymite and sanidine in another sample may have been transported from a rhyolitic source. Crystal chemistry of major phases in each sample have been calculated from refined unit-cell parameters, providing further constraints on aqueous alteration processes and igneous protoliths for the sediments. Perhaps one of the biggest mysteries revealed by the CheMin instrument is the high abundance of X-ray amorphous materials (15 to 73 wt.%) in all samples measured to date. X-ray amorphous materials were detected by CheMin based on the observation of broad humps in XRD patterns. How these materials formed, their composition, and why they persist near the martian surface remain a topic of debate. The sedimentology and composition of the rocks analyzed by Curiosity demonstrate that habitable environments persisted intermittently on the surface or in the subsurface of Gale crater for perhaps more than a billion years.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN68597 , Mineralogical Society of America Centennial (1919-2019) Symposium; Jun 20, 2019 - Jun 21, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64174 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64396 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-20
    Description: Conclusions: GLM (Geostationary Lightning Mapper) flash rates were 2 to 5 times lower than LMA (Lightning Mapping Array) in an Alabama supercell that was tracked using a combination of GLM flash initiation density and VIL (Vertically Integrated Liquid); Since most lightning was initiating at 8-9 kilometers (and not at low levels) according to LMA, flash height does not appear to be a primary factor in low GLM flash rates; When (LMA-GLM) flash rate differences were largest, the LMA observed flash areas were relatively small (and vice versa); Flash size may be a primary factor in low GLM flash rates due to detectability and/or flash clustering issues with small flashes within the coarse 8 kilometers by 8 kilometers resolution; High cloud liquid water droplet concentrations were inferred indirectly from riming necessary for large radar MESH (Maximum Expected Size of Hail), VIL and hail/graupel volumes. High cloud water droplet concentrations in supercells may decrease GLM detection efficiency due to optical extinction of near IR (near Infrared) emitted by lightning as it moves through cloud; Despite large flash rate differences, GLM & LMA lightning jumps during robust supercell generally agreed with each other and radar trends in HID (Radar Reflectivity and Hydrometeor Identification), MESH and VIL.However, more LMA jumps (than GLM) in developing supercell and more GLM jumps (than LMA) in weak to decaying supercell. Future work: improve GLM tracking.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64184 , AMS 2019-1018 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN63728 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-20
    Description: We propose a novel Bayesian Monte Carlo Integration (BMCI) technique to retrieve the profiles of temperature, water vapor, and cloud liquid/ice water content from microwave cloudy measurements in the presence of tropical cyclones (TC). These retrievals then can either be directly used by meteorologists to analyze the structure of TCs or be assimilated into numerical models to provide accurate initial conditions for the NWP (Numerical Weather Prediction) models. The BMCI technique is applied to the data from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) and Global Precipitation Measurement (GPM) Microwave Imager (GMI). The retrieved profiles are then assimilated into Hurricane WRF (Weather Research and Forecasting) using the GSI (Gridpoint Statistical Interpolation) data assimilation system.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66775 , Meteorology, Ocean Engineering and Marine Sciences Seminar; Apr 17, 2019; Melborne, FL; United States|University of Maryland Departmental Seminar Series: AOSC 494: Atmospheric and Oceanic Science Seminar; Mar 14, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: The Habitable Exoplanet Observatory Mission (HabEx) will image and spectroscopically characterize planetary systems in the habitable zone around nearby sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable telescope. The baseline HabEx telescope is a 4-m off-axis unobscured three-mirror-anastigmatic design with diffraction limited performance at 400 nm and wavefront stability of picometers per mK. These specifications are driven by science requirements. STOP (structural thermal optical performance) analysis predicts that the baseline telescopes opto-mechanical design meets its specified performance tolerances.
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN67198 , The Space Astrophysics Landscape for the 2020s and Beyond; Apr 01, 2019 - Apr 03, 2019; Potomac, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: In recent years, several commercial companies have proposed telecommunications constellations consisting of hundreds to thousands of 100-to-300-kg class spacecraft in low Earth orbit (LEO, the region below 2000-km altitude). If deployed, such large constellations (LCs) will dramatically change the landscape of satellite operations in LEO. From the large number of spacecraft and large amount of mass involved, it is clear that the deployment, operations, and frequent de-orbit and replenishment of the proposed LCs could significantly contribute to the existing orbital debris problem. To better understand the nature of the problem, the NASA Orbital Debris Program Office (ODPO) recently completed a parametric study on LCs. The objective was to quantify the potential negative debris-generation effects from LCs to the LEO environment and provide recommendations for mitigation measures. The tool used for the LC study was the ODPOs LEO-to-GEO Environment Debris (LEGEND) numerical simulation model, which has been used for various mitigation and remediation studies in the past. For the LC study, more than 300 scenarios based on different user-specified assumptions and parameters were defined. Selected results from key scenarios are summarized in this paper.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN62753 , International Symposium on Space Technology and Science; Jun 15, 2019 - Jun 21, 2019; Fukui; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (henceforth AACO) is responsible for receiving and curating all of NASAs extraterrestrial samples, current and future (as per NASA Policy Directive (NPD) 7100.10E Curation of Extraterrestrial Materials). As such, the AACO coordinates sample capture, containment, and transportation to the curation facility as well as documents, preserves, prepares, and distributes all of the samples within NASAs astromaterial collections for research, education, and public outreach. Since the lunar rock and soil samples returned during the Apollo Program, NASAs first Class V Restricted Earth Return Missions, the AACO curates six other astromaterials collections. Lessons learned from each collection and respective missions (e.g. Apollo, Genesis, Stardust) as well as advancements in science and technology have informed the AACOs plan for acquiring and curating Martian samples. Given the nature of the collection, a mobile and modular facility is recommended. The two broad requirements a Mars sample facility must maintain are: 1) the ability to contain the samples to protect the public from exposure of an unknown unknown biological agent and 2) ensure the scientific integrity of the samples are maintained (while maximizing scientific outcome). Although Apollo samples were eventually deemed safe and released to the scientific community for evaluation, there is no guarantee that this will be the case for Martian samples. Therefore, the facility in which the samples will be contained and investigated must be modular and able to accommodate an array of instrumentation that could be highly variable depending on the initial scientific outcomes. Furthermore, in order to facilitate proper sample capture and containment upon landing as well as sample distribution to other laboratories with proper containment, a mobile facility is a valuable investment.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN67664 , AGU General Assembly; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64526 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67432 , NASA Atmospheric Infrared Sounder (AIRS) Spring Science Team Meeting 2019; Apr 03, 2019 - Apr 05, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64336 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-20
    Description: Outline: Collaborative Partners; What is the Geostationary Lightning Mapper (GLM)?; Initial observations (Density Products); Lightning safety with GLM; The 30-minute lightning hazard product; Goal - Basic understanding of and how to use the lightning hazard product.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64243 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN66424 , European Geosciences Union (EGU) General Assembly 2019; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-20
    Description: The surfaces of airless bodies, such as 101955 Bennu, are vulnerable to micrometeoroids, high-energy particles, and solar wind particles. As a result, material on the surface of these bodies experience physical and chemical changes that are collectively known as space weathering. Space weathering processes result in the production of sub-micronsized particles called submicroscopic particles. There are two types of submicroscopic particles, nanophase (〈33 nm in size) and microphase particles (〉33 nm in size). Studies of lunar samples show that nanophase particles occur within the glassy rims that surround grains and agglutinates. In contrast, microphase iron particles occur only within agglutinates. Another important difference between these two particles is that nanophase and microphase particles affect visible to near-infrared reflectance spectra differently. From lunar samples, the presence of nanophase particles in a regolith causes the regoliths reflectance spectrum to darken and redden, whereas the presence of microphase particles in a regolith causes it to only darken. In addition, the reflectance spectra of submicroscopic particle-bearing regolith exhibit weakened absorptions and spectral features. Lantz et al. (2018) found that these particles also affect spectral curvature [8]. By taking advantage of these spectral characteristics, with global spectral data, it is possible to model the nanophase and microphase particle abundances across a planetary surface resulting in the production of global space weathering maps.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN66091 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67155 , Workshop on Predictability, Dynamics and Applications Research Using the TIGGE and S2S Ensembles; Apr 02, 2019 - Apr 05, 2019; Reading; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: The chondrule regions generally regarded to be most susceptible to aqueous alteration are mesostasis and Fe-Ni metal nodules. In CMs, studies of mesostasis have successfully placed contraints into their asteroidal histories. Unlike CM mesostasis, only a few studies of CR mesostasis are currently available [e.g. 1-4]. Here we study the effects aqueous alteration can have on the texture, composition, and mineralogy of CR chondrule mesostasis from 9 Antarctic CR chondrites: EET 92062,5, EET 96259,13, GRA 95229,77, GRO 95577,61 LAP 02342,44, LAP 04516,4, LAP 04720,16 and MIL 07525,7 and MIL 090001,2, generously provided by the U.S. Antarctic Meteorite Collection. To our knowledge, this is the first detailed TEM and compositional study of differences between chondrule setting in CR mesostasis. Based on these data, we place constraints on the degree to which these CRs record aqueous alteration.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN66394 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: The Astromaterials Curation Division at NASAs Johnson Space Center houses seven sample collections stored in separate clean rooms to avoid cross-contamination. Prior to receiving new sample collections from carbon rich asteroids, we instituted a monitoring program to characterize the microbial ecology of these labs and to understand how organisms could interact with and potentially contaminate current and future collections. Methods: Beginning in Oct. 2017 we sampled the Meteorite (ISO 7 equivalent) and Pristine Lunar (ISO 5 equivalent) labs on a monthly basis. Surface samples were collected using dry swabs. Air samples were collected using an impactor style air sampler. Cultivable organisms were identified and characterized. Aliquots of each sample were also preserved for DNA sequencing. For each sampling event recovery rate was calculated as the percentage of samples showing microbial growth1. Fungal colonies were selected for amino acid extraction and analysis via Ultra- Performance Liquid Chromatography with Fluorescence Detection and Mass Spectrometry.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN69080 , AbSciCon 2019; Jun 24, 2019 - Jun 28, 2019; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-20
    Description: Exploration Mission 2 (EM-2) will be NASAs first manned flight on the Space Launch System (SLS) and Orion Spacecraft. The mission has been changed from an SLS Block 1B configuration to Block 1. This change has necessitated a reexamination of the flight profile to determine what changes must be made in order to accommodate the reduced launch vehicle performance on the Block 1. Launch availability and orbital debris risk will be traded to find the best flight profile for both SLS and Orion.
    Keywords: Space Sciences (General)
    Type: AAS 19-331 , M18-7136-1 , AAS/AIAA Space Flight Mechanics Meeting; Jan 13, 2019 - Jan 17, 2019; Ka''anapali, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-20
    Description: The Astromaterials Research and Exploration Science Division at JSC is responsible for the curation of extraterrestrial samples from NASA's past, present and future sample return missions. These samples provide data that help scientists better understand the history and evolution of our Solar System. Our mission is to preserve, protect, and distribute samples for research by the present and future scientific community.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN66646
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN66665
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-20
    Description: Data from LRO has formed a corner-stone in our understanding of many fundamental aspects of lunar geology. However, as LRO approaches its 10th year of lunar discovery, key questions about volcanic, tectonic, and interior processes and composition still re-main.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN66679 , Lunar and Planetary Science Conference (LPSC 50); Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-20
    Description: Glacialinterglacial variations in CO2 (exp) and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (〉40N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66093 , Proceedings of the National Academy of Sciences; 116; 11; 4822-4827
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-20
    Description: Data quality looks better than Suomi-NPP (Suomi National Polar-orbiting Partnership): similar biases. Smaller standard deviation of first guess departures and diagnosed observation errors. Weaker striping signal than Suomi-NPP ATMS (Advanced Technology Microwave Sounder). Improved first guess fits to: temperature observations (AMSU-A (Advanced Microwave Sounding Unit-A), CrIS (Cross-track Infrared Sounder), GPSRO (Global Positioning System Radio Occultation)); Humidity observations (MHS (Microwave Humidity Sounder), GEO CSRs (Geostationary Orbit Clear Sky Radiances)). Indicates improved accuracy of short range temperature and humidity forecasts. Neutral to slightly positive forecast scores.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66556 , Annual Meeting Global Space-based Inter-Calibration System (GSICS 2019); Mar 04, 2019 - Mar 08, 2019; Frascati; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-20
    Description: At the NASA Goddard Earth Sciences (GES) Data and Information Service Center (DISC), we have archived and distributed more than 2,400 Earth science data products, from different missions or projects containing more than 100 M data files/granules with a total volume size nearly 2 PB that broadly serve user needs in science areas such as Atmospheric Composition, Water & Energy Cycles and Climate Variability. To date, GES DISC has developed many pertinent services to facilitate the usage of data products by our research communities, represented by approximately 24,000 registered users. We are facing the big data with increasingly archival volume and data types, moreover, we also encounter increasing users' demands and the demands are more diversified. It is still a challenge for us to better understand exactly what our users' needs are, even after developing more than 70 services, including well-known online tools such as Giovanni and MERRA subsetter. In this presentation, we will try to address how we can accommodate the users' needs from two applicational user communities, Air Quality and Wind Energy, from data or service discovery to guide them properly utilize the data and services to fit their needs.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65771 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: NASA's Space Communications and Navigation (SCaN) program is creating an operational optical communications network to complement its current radio frequency (RF) networks. NASA is currently planning for a new optical communications relay node in geostationary (GEO) orbit to be commissioned in 2025, developed by NASA's Goddard Space Flight Center (GSFC), as evolved from Goddard's Laser Communications Relay Demonstration (LCRD) GEO relay payload that will launch in 2019. The Next Generation optical relay node will serve as an initial element in a larger optical networking constellation that will consist of Government and commercial, and international relays. NASA's nodes will aggregate traffic at data rates of up to 10 Gigabits per second (Gbps) from users on the Earth's surface and up through suborbital, LEO, MEO, GEO, cislunar and even out to Earth-Sun Lagrange (1.25 Mkm) distances. Users that require low-latency will be serviced with an onboard complementary Ka-band downlink service. The next generation network will deploy 〉 100 Gbps space-to-ground links and also optical crosslinks between nodes to allow for user traffic backhaul to minimize ground station location constraints.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN66267 , International Conference for Aerospace Experts, Academics, Military Personnel, and Industry Leaders; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-20
    Description: Oral presentation will discuss the history of the ISS, ongoing research in space, and the plans for Gateway.
    Keywords: Space Sciences (General)
    Type: KSC-E-DAA-TN65901 , Annual STEM Journey; Mar 02, 2019; Cape Cod, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64434 , American Meteorological Society Conference; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-20
    Description: Observational data are essential for Earth science research and applications. Traditional ground-based observations suffer from many limitations (e.g. costly deployment). As a result, data are often sparse and inconsistent, especially over vast oceans that cover nearly 71% of the Earth's surface, and for remote continents. Precipitation is one of the important physical parameters in the global hydrological cycle and other disciplines. Each year, severe floods and droughts happen in different parts of the world and cause significant damage to the economy, as well as human casualties (e.g. Hurricane Katrina, the Dust Bowl). Accurate and timely precipitation observations and predictions are important for research and applications. However, ground-based precipitation observations are quite limited, especially in remote and mountainous regions. Since the satellite era began, satellite-based precipitation products have gained popularity in Earth science research, applications, and education. Accessing satellite products can be a daunting task to many users, especially those who do not have prior experience or knowledge with satellite data. Recognizing this obstacle, the NASA Goddard Earth Sciences and Data and Information Services Center (GES DISC), home to data archives for the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM), has developed data services including an online visualization and analysis tool, Giovanni (the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), enabling users at different levels to access, explore, and evaluate NASA satellite-based data products without downloading either data and software, or requiring coding. Currently, global and regional precipitation products from different satellite missions (TRMM, GPM) and projects (e.g. the Modern Era Retrospective-analysis for Research and Applications Version 2 (MERRA-2), and the North American Land Data Assimilation System (NLDAS)), ranging from half-hourly to monthly temporal resolution, are available in Giovanni. There are over 1900 variables in Giovanni, covering measurements in precipitation, hydrology, atmospheric dynamics, atmospheric chemistry, etc. In this poster presentation, we will provide a live demonstration of Giovanni and its latest development, including precipitation-related variables, and new basic features such as polar projections. The session will also provide a Q&A opportunity for attendees.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64638 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-20
    Description: The Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to data archives of the NASA-JAXA Global Precipitation Measurement (GPM), the Tropical Rainfall Measuring Mission (TRMM), and other NASA missions and projects. To maximize the use of NASA data products in scientific research and applications as well as for societal benefits, we provide data and information services that make datasets easy to find and use through simplification of data access for users at all levels around the world. Over the years, user-friendly data services have been developed at GES DISC, including data subsetting, format conversion, online visualization and analysis (i.e. Giovanni), user support system, etc. We routinely analyze questions, feedback, and use cases from users and algorithm developers around the world as well as best practices and new technology to improve existing services and formulate new data services. Interaction between users and algorithm developers is an important process for identifying issues in products, collecting user requirements, and improving product quality and usability. Staff members regularly communicate with algorithm developers with user questions and concerns through conferences and workshops. We publish peer-reviewed papers and articles in major Earth science journals and book chapters to describe NASA global and regional precipitation datasets and services with examples. News articles about GPM and TRMM datasets associated with significant events are regularly posted in the GES DISC Web portal and social media. We also actively participate in training activities. In this presentation, we present our latest activities about GPM and TRMM data services, data/service metrics, and future plans at GES DISC.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64656 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-20
    Description: High latitude weather forecasts, on scales ranging from mesoscale to synoptic, present difficulties due, in part, to the sparsity of conventional observations. In addition, the prevalence of extended low-level stratus cloud cover limits the use of infrared data, which are operationally assimilated only in areas unaffected by clouds. Use of cloud-cleared AIRS (Atmospheric Infrared Sounder) radiances (AIRS CCR), allows the assimilation of infrared information in cloudy regions, permitting data ingestion in regions usually undersampled. This study explores the sensitivity of planetary boundary layer height and related atmospheric dynamics to the assimilation of these data in the Goddard Earth Observing System (GEOS, version 5) data assimilation and forecast system during the boreal fall 2014 season using observing system experiments (OSEs). Examined here are comparisons between the current, operational approach of assimilating AIRS clear-sky radiances against the assimilation of CCR. Assimilation of hyperspectral infrared information from AIRS over the Arctic region slightly modifies the lower midtropospheric temperature structure, which in turn contributes to adjustments in geopotential height, affecting the baroclinic instability properties over the entire hemisphere and explaining the overall improvement in global forecast skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64778 , Arctic Year of Polar Prediction (YOPP) Science Workshop; Jan 14, 2019 - Jan 16, 2019; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: The Fertile Crescent, its hilly flanks and surrounding drylands has been a critical region for studying how climate has influenced societal change, and this review focuses on the region over the last 20,000 years. The complex social, economic, and environmental landscapes in the region today are not new phenomena and understanding their interactions requires a nuanced, multidisciplinary understanding of the past. This review builds on a history of collaboration between the social and natural palaeoscience disciplines. We provide a multidisciplinary, multiscalar perspective on the relevance of past climate, environmental, and archaeological research in assessing present day vulnerabilities and risks for the populations of southwest Asia. We discuss the complexity of palaeoclimatic data interpretation, particularly in relation to hydrology, and provide an overview of key time periods of palaeoclimatic interest. We discuss the critical role that vegetation plays in the humanclimateenvironment nexus and discuss the implications of the available palaeoclimate and archaeological data, and their interpretation, for palaeonarratives of the region, both climatically and socially. We also provide an overview of how modelling can improve our understanding of past climate impacts and associated change in risk to societies. We conclude by looking to future work, and identify themes of scale and seasonality as still requiring further focus. We suggest that by appreciating a given locale's place in the regional hydroscape, be it an archaeological site or palaeoenvironmental archive, more robust links to climate can be made where appropriate and interpretations drawn will demand the resolution of factors acting across multiple scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65528 , WIREs Water; 6; 2; e1330
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-20
    Description: The goal of the Mars Science Laboratory (MSL), Curiosity Rover mission is to determine if Gale Crater, Mars ever had a habitable environment and to search for evidence of extinct microbial life. Gale Crater is ~155 km wide with a layered central mound (~5 km high). The Curiosity rover has traversed ~20 km from the crater floor up 350 m to the lower slopes of the central mound for over 2200 Martian solar days (sols). Curiosity's instruments have evaluated the geochemistry and mineralogy of regolith fines, eolian sediments, and sedimentary rocks to assess Gale Crater's aqueous alteration history. Results indicate that Gale Crater surface material have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN65167 , SCSC 681 SEMINAR; Jan 30, 2019; College Station, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M18-7128 , Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64453 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-25
    Description: Following over 3 decades of gradual but uneven increases in sea ice coverage, the yearly average Antarctic sea ice extents reached a record high of 12.8 by 10 (sup 6) square kilometers in 2014, followed by a decline so precipitous that they reached their lowest value in the 40-year 1979-2018 satellite multichannel passive-microwave record, 10.7 by 10 (sup 6) square kilometers, in 2017. In contrast, it took the Arctic sea ice cover a full 3 decades to register a loss that great in yearly average ice extents. Still, when considering the 40-year record as a whole, the Antarctic sea ice continues to have a positive overall trend in yearly average ice extents, although at 11,300 plus or minus 5,300 square kilometers per year, this trend is only 50 percent of the trend for 1979-2014, before the precipitous decline. Four of the 5 sectors into which the Antarctic sea ice cover is divided all also have 40-year positive trends that are well reduced from their 2014-2017 values. The one anomalous sector in this regard,the Bellingshausen/Amundsen Seas, has a 40-year negative trend, with the yearly average ice extents decreasing overall in the first 3 decades, reaching a minimum in 2007, and exhibiting an overall upward trend since 2007 (i.e., reflecting a reversal in the opposite direction from the other 4 sectors and the Antarctic sea ice cover as a whole).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70817 , PNAS (Proceedings of the National Academy of Sciences) (ISSN 0027-8424) (e-ISSN 1091-6490); 116 ; 29 ; 14414-14423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-23
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN70548 , CALCON Technical Meeting; Jun 17, 2019 - Jun 20, 2019; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64212 , American Meteorological society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-20
    Description: GMAO Sub/Seasonal prediction system (S2S) has recently been upgraded. A complete set (1981-2016) of 9-months hindcasts for the previous and current versions (S2S-1.0 and S2S-2.1 respectively) allows for the evaluation of the forecast skill and a study of various characteristics of the ensemble forecasts in particular. We compared the intra-seasonal, interannual and intra-ensemble SST variability of the two systems against the observed. Focusing on the ENSO SST indices, we analyzed the consistency of the forecasts ensembles by studying rank histograms and comparing the ensemble spread with the standard error of the estimate.The S2S-2.1 ensemble appears to be more consistent with observations in Nio1+2 region compared to S2S-1.0, while in the central equatorial Pacific ocean this measure is comparably good for both systems. The S2S-1.0 system tends to be under dispersive, while the new system is under dispersive only at very short lead times, but tends to be over dispersive at long leads and for forecasts verifying in spring in Nio 3.4 region.Overall, the new system has greater skill in predicting ENSO. The evaluation techniques tested here will be applied for testing of the next generation sub/seasonal forecast system under development.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64576 , American Astronomical Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64477 , Annual Meeting of the American Meteorological Society; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64370 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67174 , Science Theme Meeting: Career Day for the Science and Tech Program, Eleanor Roosevelt High School; Mar 14, 2019; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-20
    Description: Hydrogen in nominally anhydrous minerals (NAMs) in meteorites provides insight to mantle sources of indigenous water on differentiated bodies: e.g. Peslier et al. 2017 [1], including Mars [2-4]. However, all meteorite samples, including Martian shergottites, record impact events as fractures, deformation, silicate darkening, shock melt veins and pockets, etc. The effect of shock on hydrogen in NAMs is poorly constrained, and must be understood prior to using these data to infer planetary indigenous water. Here we present water contents and D/H ratios (calculated as dD, i.e. the variation of the D/H ratio relative to a standard, in this case sea water "SMOW") in pyroxene, olivine and maskelynite in the olivine-phyric shergottite Larkman Nunatak 06319 (LAR 06319) as a function of proximity to impact melt. While the results suggest impact may have a role in fractionating H isotopes, the magmatic signature of H2O in Mars can be preserved in some pyroxene.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN64821 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-20
    Description: Water, in the form of structurally bound hydrogen in the crystal lattice of nominally anhydrous minerals (NAMs), strongly influences many important physical processes on terrestrial planets and planetary objects. Water enhances the rates of plastic deformation and controls the degree of partial melting in silicate rocks, which influences the generation of melt and therefore the nature of planetary volcanism. Water has also been experimentally demonstrated to influence the nature of lattice preferred orientation in deformed aggregates, and thus may be important in the interpretation of seismic anisotropy data collected from planetary bodies, such as from the current InSight mission on Mars. Therefore, much attention has been focused on characterizing the distribution and concentration of water in the planets and rocky bodies of our solar system.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN64819 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-20
    Description: Exploration Mission 2 (EM-2) will be NASAs first manned flight on the Space Launch System (SLS) and Orion Spacecraft. The mission has been changed from an SLS Block 1B configuration to Block 1. This change has necessitated a reexamination of the flight profile to determine what changes must be made in order to accommodate the reduced launch vehicle performance on the Block 1. Launch availability and orbital debris risk will be traded to find the best flight profile for both SLS and Orion.
    Keywords: Space Sciences (General)
    Type: M18-7136-2 , AAS/AIAA Space Flight Mechanics Meeting; Jan 13, 2019 - Jan 17, 2019; Ka''anapali, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-20
    Description: The NASA Curiosity rover has encountered both ancient and modern dune deposits within Gale crater. The modern dunes are actively migrating across the surface within the Bagnold Dune field of which Curiosity conducted analysis campaigns at two different localities. Variations in mafic-felsic mineral abundances between these two sites have been related to the aeolian mineral sorting regime for basaltic environments identified on the Earth which become preferentially enriched in olivine relative to plagioclase feldspar with increasing distance from the source. This aeolian mineral sorting regime for basaltic minerals has also been inferred for Mars from orbital data. The aim of this study is to investigate whether this aeolian mafic-felsic mineral sorting trend has left a geochemical signature in the ancient dune deposits preserved within the Stimson formation. The Stimson formation unconformably overlies the Murray formation and consists of thickly laminated, cross-bedded sandstone. Stimson outcrops have a variable thickness up to 5 meters covering a total area of 17 square kilometers. A dry, aeolian origin was determined for this sandstone due to the high sphericity and roundness of the grains, uniform bimodal grain size distribution (250-710 microns), and 1-meter-thick cross-beds. Identifying the geochemical signature of mineral sorting can provide insights about the paleo-net sediment transport direction of the dunes and prevailing wind direction at the time of deposition.
    Keywords: Space Sciences (General)
    Type: LPI Contrib. No. 2132 , JSC-E-DAA-TN66030 , Lunar and Planetary Science Conference (LPSC 2019); 18ý22 Mar. 2019; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-20
    Description: The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) rover has been essential in understanding volatile-bearing phases in Gale Crater materials. SAMs evolved gas analysis mass spectrometry (EGA-MS) has detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments, in many samples. The identity and evolution temperature of evolved gases can support CheMin instrument mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). For the past ~500 sols, MSL has been exploring the Vera Rubin Ridge (VRR), which exhibits a striking hematite signature in orbital remote sensing data, in order to understand the depositional and diagenetic history recorded in the rocks and how it relates to the underlying Murray Formation. Four rock samples were drilled, one from the Blunts Point Member (Duluth, DU), one from the Pettegrrove Point Member (Stoer, ST), and two from the Jura Member. The Jura Member displays differences in color, summarized as grey and red, and a key goal was to constrain the cause of this color difference and the associated implications for depositional or post-depositional conditions. To investigate, a grey (Highfield, HF) and a red (Rock Hall, RH) Jura sample were drilled. Here we will give an overview of results from SAM EGA-MS analyses of VRR materials, with some comparisons to analyses of samples of the underlying Murray.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN64831 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-20
    Description: Previous work by this team (Reale et al. 2018) has found that the current assimilation of AIRS (Atmospheric InfraRed Sounder) radiances on a regularly spaced thinning grid is suboptimal, probably because of horizontal error correlation over meteorologically inactive areas. Moreover, cloud-cleared radiances appear to be a better product than clear-sky radiances, but need to be assimilated at a much lower density globally, because of the higher information content. Specifically: 1. Assimilation of AIRS cloud-cleared radiances at a density of about one quarter of the clear-sky radiances improves global forecast skill; 2. An adaptive thinning strategy assimilating cloud-cleared radiances at reduced density globally except around tropical cyclones (TCs), leads to substantial improvement in the structure and intensity forecast of TCs without damaging global skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66629 , Arctic Year of Polar Prediction (YOPP 2019) Science Workshop; Jan 14, 2019 - Jan 16, 2019; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN66321 , Boy Scouts Merit Badge Day; Mar 09, 2019; Decatur, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-20
    Description: The Astromaterials Acquisition and Curation Office at the Johnson Space Center is the past, present, and future home of all of NASAs astromaterials sample collections. The primary goals of the curation office are to maintain the long-term integrity of the samples and ensure that the samples are distributed for scientific study in a fair, timely, and responsible manner, thus maximizing the return on each sample. Part of the curation process is planning for the future. To this end, we perform fundamental research in advanced curation initiatives to better prepared for future sample return missions. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new sample collections, or getting new results from existing sample collections. As part of these advanced curation efforts, we have installed and are operating a Nikon XTH 320 X-ray Computed Tomography(XCT) system in the JSC curation office with four interchangeable X-ray sources, a large-area detector, and a heavy-duty stage. These instrument characteristics allow us exceptional flexibility to analyze a wide range of sample sizes, from sub-mm soil particles to rocks 〉10 cm in diameter. The penetrative nature of the XCT scans allows for astromaterials samples to be analyzed within sealed low-density containers (e.g., Teflon bags), preserving the pristinity of the samples. We have begun scanning of the Apollo and Antarctic Meteorite sample suites in order to non-destructively map out lithic clasts (and other features) within the samples. The data from these scans will be made available to scientists via the JSC curation website and the Astromaterials Curation Newsletter. We anticipate sample requests from these new lithic clasts identified in these old samples. We also anticipate that XCT analyses like these would be useful for future sample return missions, like the OSIRIS REx mission, as well as future sample return missions.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN65858 , Tomography for Scientific Advancement North America 2019; Mar 06, 2019 - Mar 08, 2019; Gainesville, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64559 , Cyclone Global Navigation Satellite System (CYGNSS) Science Team Meeting; Jan 15, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-20
    Description: In magmatic systems, the availabil- ity of excess oxygen that can react with multivalent elements such as Fe and S to change their charge (oxi- dation of Fe2+ to Fe3+ or reduction of S6+ to S2-) is characterized by a parameter called the oxygen fugacity (O2). The O2 controls the availability of these ions and consequently the mineralsand the chemistry of those mineralsthat crystallize from a melt. Mineral mode and chemistry control how magmas evolve, and given that O2 varies by many orders of magnitude on different planets [2], understanding the O2 of a mag- ma is critical to relating observations about a magma to the body on which it forms. The mineral apatite was long thought to only incor- porate S6+ in a coupled substitution for P5+, but recently natural apatites with S2- were identified in lunar mare basalts that crystallized at low O2 [3]. This suggests that apatite can be used as a monitor of O2 assuming that one can 1) measure S6+/S (S6+ over total sulfur), and 2) determine some partitioning relationship be- tween apatite and melt for S6+ and S2-. The most common method for measuring S6+/S is X-ray Absorption Near-Edge Spectroscopy (XANES), but given the limited access to synchrotron facilities, it is wise to explore the potential of other methods for measuring S6+/S. One such possible method relies upon the shift in energy of the sulfur K- peak on the electron microprobe. However, apatite is subject to well-documented beam damage [4, 5], so it is neces- sary to evaluate under what conditions can reliable S6+ ethod.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN65746 , Lunar and Planetary Science Conference (LPSC); Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN64258 , Lecture at University of Alberta; Mar 20, 2019; Edmonton, Alberta; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-20
    Description: Seismic data, inclusive of velocities and attenuation, can be utilized to elucidate the physical state of planetary interiors]. However, numerous micromechanical factors have been either experimentally demonstrated, or theoretically considered, to affect the propagation and dissipation of seismic energy within crystalline solids - including, but not limited to, changes in grain size, temperature, melt fraction, pressure and dislocation density. Thus, observed variations in seismic wave speeds and attenuation may be used to ultimately map variations in physical properties, such as those listed above, within planetary bodies. But, in order to complete a successful inversion of seismic data into representations of physical properties, a first requirement is to obtain a fundamental laboratory based understanding of how each of these possible factors individually influences seismic waves. Here we conduct an experimental study with the initial objective to further understand one of the most commonly invoked, yet least studied, mechanisms that could alter intrinsic seismic wave attenuation: water content (occurring as chemically-bound hydroxyl). The historical basis for determining the effect of water on seismic properties was established predominantly through analogy with large-strain creep experiments conducted on olivine under water-saturated conditions. While these deformation experiments routinely demonstrate a weakening of olivine in the presence of water, they represent a fundamentally different deformation regime in comparison to the microstrains experienced due to a passing seismic wave. Thus, in order to directly assess the effects of water on seismic properties, small-strain experiments are required. Substantially modified seismic properties in the presence of water have been observed previously at low strains and low frequencies, but only in a single exploratory study conducted under water-saturated conditions. Thus, to properly test the theoretical predictions we conducted a systematic study of the seismic properties of olivine using low-frequency torsional oscillation on aggregates containing varying concentrations of bound hydroxyl, for the first time at under saturated conditions.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN64826 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-20
    Description: Impact cratering is an important geological process that occurs on every rocky body in the solar system. It alters the texture and mineralogy of rocks via shock metamorphism. The peak shock pressures experienced by a rock are traditionally evaluated using qualitative optical methods however, quantitative methods do exist. One such method was developed by Uchizono et al., who used X-ray Diffraction (XRD) to measure lattice strain () in several artificially shocked olivine grains using XRD peak broadening as a function of tan , where is the diffraction angle. They plotted the values against the known peak shock pressures experienced by the olivine grains. Using this calibration curve, the precise shock pressure experienced by a grain of olivine can be determined using its measured value. Another method was developed by McCausland et al. and Izawa et al., who used in situ XRD to measure strain-related mosaicity (SRM) of olivine in several ordinary chondrites and enstatite in enstatite chondrites, respectively. They plotted these results against the shock stage estimates for these meteorites. Using these plots, meteorites can be assigned to shock stage bins by measuring the SRM of olivine and/or enstatite. Both methods are useful for evaluating shock metamorphism, however, they have limitations. Uchizono et al.s calibration curve has been successfully applied to martian meteorites, however it can only be applied to olivine-bearing rocks. McCausland et al.s and Izawa et al.s SRM method is uncalibrated and is limited to binning meteorites by shock stage. This work aims to expand on both methods by creating calibration curves for clinopyroxene (CPX): one for , similar to Uchizono et al.s calibration curve for olivine, and one for SRM. This will extend the application of shock calibration methods to a greater variety of rock types. Preliminary results are presented herein.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN64820 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-20
    Description: The United States Air Force (USAF) operates two space launch ranges, the Eastern Range (ER) and the Western Range (WR). The ER is primarily located at the Cape Canaveral Air Force Station (CCAFS) and the WR is located at the Vandenberg Air Force Base (VAFB). Multiple systems are used to measure the atmosphere at both ranges, including a suite of 915-Mhz (megahertz) Doppler Radar Wind Profilers (DRWP). The 915-MHz DRWPs are used to measure winds in the lowest few kilometers of the atmosphere, primarily in the boundary layer. Boundary layer winds are important during launch, and observations of such can be used as input to toxic dispersion and low-level abort trajectory models. However, these 915-MHz systems are nearing the end of their service life and need to be replaced by systems with similar, or greater, capabilities. The USAF funded evaluations of two systems: a 449-MHz DRWP and a Lidar. Both systems were stationed at each range for separate periods of approximately three months from November 2017 through May 2018. The USAF also funded NASAs Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) to evaluate wind output from the two systems. MSFC NE conducted analysis to demonstrate the systems wind accuracy relative to measurements from the Automated Meteorological Profiling System (AMPS) (Divers et al., 2000), data availability, and Effective Vertical Resolution (EVR).
    Keywords: Meteorology and Climatology
    Type: M19-7165 , Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States|Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-20
    Description: Earth-GRAM (Earth-Global Reference Atmospheric Model) Overview: Provides monthly statistics at any point in the atmosphere; Monthly, geographic, altitude variation; Current Version - Earth-GRAM 2016, C++; Output Includes - pressure, density, temperature, horizontal and vertical winds, speed of sound, atmospheric constituents; Used by engineering community to create atmospheric dispersions at a rapid runtime; Not a forecast model. MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2) Background: Developed by NASA Goddard Modelling and Assimilation Office; Horizontal Resolution: 0.625 degrees by 0.5 degrees longitude-by-latitude grid (NCEP (National Centers for Environmental Prediction) reanalysis I vs. 2.5 degrees by 2.5 degrees currently used in Earth-GRAM); Vertical resolution: 72 model layers or interpolated to 42 pressure levels to 0.1 hectopascals (hPa) (NCEP reanalysis I, surface to 10hPa at 17 pressure levels).
    Keywords: Meteorology and Climatology
    Type: M18-7141 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-20
    Description: Weather balloons have been a longstanding asset to NASA and Aerospace meteorology. Balloons are used from launch vehicle design to day-of-launch operations. One of the most valuable assets from these balloons is wind data from the surface up to 30 kilometers. Due to aloft winds, the balloons may drift downrange of the launch site and vehicle flight path. A 2017 study found balloons at Kennedy Space Center (KSC) can drift as far as 200 kilometers from the launch site (Decker 2017). To obtain robust launch vehicle wind assessments, it is highly desirable to characterize the wind environment along the flight path. This study looks into the errors associated with spatial separation of wind measurements using the North American Regional Reanalysis (NARR).
    Keywords: Meteorology and Climatology
    Type: M18-7121 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States|Conference on Aviation, Range, and Aerospace Meteorology; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The Community Coordinated Modeling Center (CCMC) provides a variety of services to the space science community. The mission for the CCMC's Space Weather Forecasting team is to address the space weather needs of NASA's robotic mission by conducting customized space weather services to NASA end-users. The team leverages CCMC tools/resources, carries out prototyping activities for the next generation space weather tools and follows communications/interactions with the users. We provide space weather forecasts, notifications, analysis and also education. This presentation will describe the team's concepts of operations, notification processes, anomaly analysis, and the tools used for space weather forecasting. The tools include a system that are completely open and available to the public's use like the Integrated Space Weather Analysis (iSWA) tool and the Database of Notifications, Knowledge and Information (DONKI). We will also discuss the education and training activities and how events like solar eclipses are important for the improvement and validation of different space weather models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67624 , UK Solar Physics Workshop; Jul 02, 2019 - Jul 07, 2019; San Juan; Argentina
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN68134 , Interagency Debris Coordination Meeting; May 07, 2019 - May 10, 2019; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN68401 , Interagency Debris Coordination Committee Meeting 37 (IADC-37); May 06, 2019; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Space weathering alters the surfaces of airless planetary bodies via irradiation from the solar wind and micrometeorite impacts. These processes modify the microstructure, chemical composition, and spectral properties of surface materials, typically resulting in the reddening (increasing reflectance with increasing wavelength), darkening (reducing albedo), and attenuation of characteristic absorption features in reflectance spectra. In lunar samples, these changes in optical properties are driven by the production of reduced nanophase Fe particles (npFe). Our understanding of space weathering has largely been based on data from the Moon and, more recently, near-Earth S-type asteroids. However, the environment at Mercury is significantly different, with the surface experiencing intense solar wind irradiation and higher velocity micrometeorite impacts. Additionally, the composition of Mercurys surface varies significantly from that of the Moon, including a component with very low albedo known as low reflectance material (LRM) which is enriched with up to 4 wt.% carbon over the local mean. Our understanding of how carbon phases, including graphite, are altered as a result of these processes is limited.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN64971 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: In a negative-polarity coronal hole, magnetic flux emergence, seen by the Solar Dynamics Observatory's {SDO) Helioseismic Magnetic lmager (HMI), begins at approximately 19:00 UT on March 3, 2016. The emerged magnetic field produced sunspots, which NOAA numbered 12514 two days later. The emerging magnetic field is largely bipolar with the opposite-polarity fluxes spreading apart overall, but there is simultaneously some convergence and cancellation of opposite-polarity flux at the polarity inversion line (PIL) inside the emerging bipole. In the first fifteen hours after emergence onset, three obvious eruptions occur, observed in the coronal EUV images from SDO's Atmospheric Imaging Assembly (AIA). The first two erupt from separate segments of the external PIL between the emerging positve-polarity flux and the extant surrounding negative-polarity flux, with the exploding magnetic field being prepared and triggered by flux cancellation at the external PIL. The emerging bipole shows obvious overall left-handed shear and/or twist in its magnetic field. The focus of th is poster is the third and largest eruption, which comes from inside the emerging bipole and blows it open to produce a CME observed by SOHO/LASCO. That eruption is preceded by flux cancellation at the emerging bipole's interior PIL, cancellation that plausibly builds a sheared and twisted flux rope above the interior PIL and finally triggers the blow-out eruption of the flux rope via photospheric-convectiondriven slow tether-cutting reconnection of the legs of the sheared core field, low above the interior PIL, as proposed by van Ballegooijen & Martens (1989) and Moore & Roumeliotis (1992). The production of this eruption is a (perhaps rare) counterexample to solar eruptions that result from external collisional shearing between opposite polarities from two distinct emerging and/or emerged bipoles (Chintzoglou et al. 2019).
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN69285 , Solar Physics Division of the American Astronomical Society; Jun 09, 2019 - Jun 13, 2019; St. Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: We present data from ground-based, vacuum-chamber tests demonstrating the ability to modulate the output of a plasma source capable of producing a low-Earth orbit (LEO) type plasma. We obtained plasma oscillations up to 2.5 kHz impingent on stationary test equipment, which corresponds to meter-level ionospheric structures in LEO. This plasma source is, therefore, suitable for developing scientific instruments that measure the LEO plasma environment, in situ, with meter-level spatial resolution. Measurements were made using a fixed-bias collector and an electrometer sampling at 40 kHz. A mechanical aperture was established at the output of the plasma source via two concentric grids. The outer grid was free to rotate in the azimuthal direction with respect to the fixed inner grid. An identical, alternating hole pattern in the two grids resulted in a variable aperture that cycles through 90 open/close cycles per revolution. The frequency of the plasma oscillations is limited by the mechanism used to spin the grids and the bearing assembly on which the grids rotate. Higher frequencies are obtainable by upgrading the drive mechanism, allowing the possibility of centimeter-level spatial resolution.
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN68704 , Applied Space Environment Conference; May 13, 2019 - May 17, 2019; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Recent studies have shown that, in response to a surface warming, the marine tropical low-cloud cover (LCC) as observed by passive-sensor satellites substantially decreases, therefore generating a smaller negative value of the top-of-the-atmosphere (TOA) cloud radiative effect (CRE). Here we study the LCC and CRE interannual changes in response to sea surface temperature (SST) forcings in the GISS model E2 climate model, a developmental version of the GISS model E3 climate model, and in 12 other climate models, as a function of their ability to represent the vertical structure of the cloud response to SST change against 10 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) observations. The more realistic models (those that satisfy the observational constraint) capture the observed interannual LCC change quite well ([delta]LCC]/[delta]SST= -3.491.01%K [negative 1 superscript] vs. [delta]LCC/[delta]SST[subscript obs]= -3.590.28%K[negative 1 superscript]) while the others largely underestimate it ([delta]LCC/[delta]SST= -1.321.28%K[negative 1 superscript]). Consequently, the more realistic models simulate more positive shortwave (SW) feedback ([delta]CRE/[delta]SST=2.601.13Wm[negative 2 superscript] K[negative 1 superscript]) than the less realistic models (CRE/SST=0.872.63Wm2K1), in better agreement with the observations ([delta]CRE/[delta]SST[subscript obs]=30.26Wm[negative 2 superscript] K[negative 1 superscript] ), although slightly underestimated. The ability of the models to represent moist processes within the planetary boundary layer (PBL) and produce persistent stratocumulus (Sc) decks appears crucial to replicating the observed relationship between clouds, radiation and surface temperature. This relationship is different depending on the type of low clouds in the observations. Over stratocumulus regions, cloud-top height increases slightly with SST, accompanied by a large decrease in cloud fraction, whereas over trade cumulus (Cu) regions, cloud fraction decreases everywhere, to a smaller extent.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66347 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 5; 2813–2832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydro-meteorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65540 , Handbook of Hydrometeorological Ensemble Forecasting; 701-743
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The rationale for using multi-model ensembles in climate change projections and impacts research is often based on the expectation that different models constitute independent estimates; therefore, a range of models allows a better characterisation of the uncertainties in the representation of the climate system than a single model. However, it is known that research groups share literature, ideas for representations of processes, parameterisations, evaluation data sets and even sections of model code. Thus, nominally different models might have similar biases because of similarities in the way they represent a subset of processes, or even be near-duplicates of others, weakening the assumption that they constitute independent estimates. If there are near-replicates of some models, then treating all models equally is likely to bias the inferences made using these ensembles. The challenge is to establish the degree to which this might be true for any given application. While this issue is recognised by many in the community, quantifying and accounting for model dependence in anything other than an ad-hoc way is challenging. Here we present a synthesis of the range of disparate attempts to define, quantify and address model dependence in multi-model climate ensembles in a common conceptual framework, and provide guidance on how users can test the efficacy of approaches that move beyond the equally weighted ensemble. In the upcoming Coupled Model Intercomparison Project phase 6 (CMIP6), several new models that are closely related to existing models are anticipated, as well as large ensembles from some models. We argue that quantitatively accounting for dependence in addition to model performance, and thoroughly testing the effectiveness of the approach used will be key to a sound interpretation of the CMIP ensembles in future scientific studies.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65616 , Earth System Dynamics (ISSN 2190-4979) (e-ISSN 2190-4987); 10; 1; 91-105
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN62757 , Space Dust and space Debris in the vicinity of the Earth; Nov 09, 2018; London, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: The profound changes in global SO[subscript 2] emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and europe. europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and east Asia. the uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. the agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65103 , Scientific Reports (e-ISSN 2045-2322); 9; 953
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Earth system models are complex and represent a large number of processes, resulting in a persistent spread across climate projections for a given future scenario. Owing to different model performances against observations and the lack of independence among models, there is now evidence that giving equal weight to each available model projection is suboptimal. This Perspective discusses newly developed tools that facilitate a more rapid and comprehensive evaluation of model simulations with observations, process-based emergent constraints that are a promising way to focus evaluation on the observations most relevant to climate projections, and advanced methods for model weighting. These approaches are needed to distil the most credible information on regional climate changes, impacts, and risks for stakeholders and policy-makers.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65080 , Nature Climate Change (ISSN 1758-678X) (e-ISSN 1758-6798); 9; 102-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs.unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 Celsius degrees (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1Celsius degrees (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 Celsius degrees (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design,and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65060 , Ecology Letters (ISSN 1461-023X) (e-ISSN 1461-0248)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-18
    Description: Determining the biological impact of spaceflight through novel approaches is essential to reduce the health risks to astronauts for long-term space missions. The current established health risks due to spaceflight are only reflecting known symptomatic and physiologic responses and do not reflect early onset of other potential diseases. There are many unknown variables which still need to be identified to fully understand the health impacts due to the environmental factors in space. One method to uncover potential novel biological mechanisms responsible for health risks in astronauts is by utilizing NASA's GeneLab Data Systems (genelab.nasa.gov). GeneLab is public repository that hosts multiple omics datasets generated from space biology experiments that include experiments flown in space, simulated cosmic radiation.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN68412 , DREAM CHALLENGES@RECOMB 2019; May 04, 2019; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN66280 , IEEE Aerospace Conference; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-27
    Description: The dramatic flow of data from the Kepler and K2 missions opens the opportunity to significantly improve our knowledge of stellar interiors, surface dynamics, and structure. However, interpretation of these observations is a challenging task because it depends on tiny effects that can be studied only with advanced first-principles modeling. We present results of 3D time-dependent radiative hydrodynamic simulations of stellar outer convection zones and atmospheres taking into account chemical composition, radiative transfer, turbulence effects, and a realistic equation of state for main sequence stars. We will discuss properties of convective structure and dynamics, convective overshoot, effects of magnetic fields and rotation, as well as the potential influence of turbulent surface dynamics on high-precision RV measurements.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN66281 , Kepler & K2 Science Conference V; Mar 04, 2019 - Mar 08, 2019; Glandale, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-27
    Description: When faced with the question of designing an asteroid deflection mission or with the decision of launching it, significant uncertainties are present in the asteroids physical properties, and its orbit solution. The success of the deflection mission relies heavily on these aspects. For example, a heavier than expected asteroid will reduce the imparted deflection DV. So will a larger porosity value by reducing the beta factor [1]. Here, we present a new capability that estimates asteroid impact risk under consideration of these uncertainties. The new method samples the uncertainty space along multiple dimensions, performs a predetermined deflection, propagates the deflected samples to the Earth, models the impact damage, and estimates the overall risk outcome. The work builds on the Probabilistic Asteroid Impact Risk (PAIR) assessment tool [2] by including orbital uncertainty and deflection capabilities. We demonstrate this risk estimation approach for threatening asteroids using the example of the fictitious impactor 2019 PDC. Such analysis provides a quantitative basis for the work of decision makers and disaster managers. It may further find application in areas such as mitigation mission planning where projected post-mitigation risk can be compared to premitigation levels as a means of cost-benefit analysis formitigation options.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN68445 , 2019 IAA Planetary Defense Conference; Apr 29, 2019 - May 03, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN68281 , 2019 IAA Planetary Defense Conference; Apr 29, 2019 - May 03, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-27
    Description: Fine-grained, spinel-rich Ca-Al-rich inclusions (FGIs) in carbonaceous chondrites consist of numerous layered nodules having cores of spinel, hibonite, and/or perovskite surrounded by multiple thin layers of melilite, anorthite, diopside, and/or olivine. They are interpreted as aggregates of direct high-temperature condensates from an 16O-rich nebular gas that escaped significant melting. However, FGIs are very complex objects composed of intimate intergrowths of fine-grained refractory phases and show extremely large variations in mineralogy, modal abundance, and textures. Thus, detailed FIB/TEM analyses of FGIs are required to fully characterize their micro-to-nanometer scale textures, mineralogy, and chemical compositions and hence elucidate their formation processes and conditions in the early solar nebula. Here, we present our on-going study of pristine FGIs from the reduced CV3 chondrites Efremovka and Thiel Mountains (TIL) 07003 and 07007 that have minimal evidence for secondary parent body alteration.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN69153 , Annual Meeting of the Meteoritical Society; Jul 08, 2019 - Jul 12, 2019; Sapporo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-27
    Description: thermally-metamorphosed ordinary chondrite regolith breccias (Monahans 1998, hereafter simply Monahans ( 5) and Zag (H3-6)) contain fluid inclusion-bearing halite (NaCl) crystals dated to be ~4.5 billion years old. Thus, compositional data on fluid inclusions in these halites will reveal unique information regarding the origin and activity of aqueous fluids in the early solar system, and especially their interactions with organic mate- rial. Our initial analyses of solid inclusions in Monahans halite has shown the presence of olivine, high- and low- Ca pyroxene, feldspars, magnetite, sulfides, phyllosilicates, zeolites, metal, phosphates and abundant organics. We age of carbon, carbonates and organics in these residues, and low but significant amino acids concentrations in Monahans and Zag halite.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN68431 , Annual Meeting of the Meteoritical Society; Jul 08, 2019 - Jul 12, 2019; Sapporo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-27
    Description: The CM chondrites are generally complex impact breccias, in which lithic clasts and mineral fragments showing various degrees of aqueous alteration and possibly originating from different parent bodies are mixed together. The occurrence of CM-like clasts in other chondritic and achondritic meteorite breccias is also well-documented, however, reports on the occurrence of foreign clasts in CM chondrites are rare. In this study, we reinvestigated the white clast in the Murchison CM chondrite and demonstrate that the clast is not related to R chondrites as earlier suggested. In addition to the classification we discuss the origin and the history of its formation by studying several aspects like mineralogy, bulk chemistry, Rare Earth Elements (REE), oxygen isotopes, and the soluble organic compounds.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN68324 , Annual Meeting of the Meteoritical Society; Jul 07, 2019 - Jul 12, 2019; Sapporo, Hokkaido; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...