ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2013-10-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The discovery of a molecular thin-film contamination on Genesis flown array samples changed the course of preliminary assessment strategies. Analytical techniques developed to measure solar wind elemental abundances must now compensate for a thin-film contamination. Currently, this is done either by experimental cleaning before analyses or by depth-profiling techniques that bypass the surface contamination. Inside Johnson Space Center s Genesis dedicated ISO Class 4 (Class 10) cleanroom laboratory, the selection of collector array fragments allocated for solar wind analyses are based on the documentation of overall surface quality, visible surface particle contamination greater than 1 m, and the amount of thin film contamination measured by spectroscopic ellipsometry. Documenting the exact thickness, surface topography, and chemical composition of these contaminates is also critical for developing accurate cleaning methods. However, the first step in characterization of the molecular film is to develop accurate ellipsometry models that will determine an accurate thickness measurement of the contamination film.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-27
    Description: The majority of surface particles were found to be 〈 5 microns in diameter with increasing numbers close to the optical resolution limit of 0.3 microns. Acceleration grid EDS results show that the majority of materials appear to be from the SRC shell and SLA materials which include carbon-carbon fibers and Si-rich microspheres in a possible silicone binder. Other major debris material from the SRC included white paint, kapton, collector array fragments, and Al. Image analysis also revealed that SRC materials were also found mixed with the Utah mud and salt deposits. The EDS analysis of the acceleration grid showed that particles 〈 1 m where generally carbon based particles. Chemical cleaning techniques with Xylene and HF in an ultrasonic bath are currently being investigated for removal of small particles by the Genesis science team as well as ultra-pure water megasonic cleaning by the JSC team [4]. Removal of organic contamination from target materials is also being investigated by the science team with the use of UV-ozone cleaning devices at JSC and Open University [5]. In preparation for solar wind oxygen analyses at UCLA and Open University [1, 2], surface particle contamination on three Genesis concentrator targets was closely examined to evaluate cleaning strategies. Two silicon carbide (Genesis sample # 60001 and 60003) and one chemical vapor deposited (CVD) 13C concentrator target (60002) were imaged and mosaic mapped with optical microscopes. The resulting full target mosaic images and particle feature maps were subsequently compared with non-flight, but flight-like, concentrator targets and sample return capsule (SRC) materials. Contamination found on the flown concentrator acceleration grid was further examined using a scanning electron microscope (SEM). Energy dispersive X-ray spectroscopy (EDS) for particle identification was subsequently compared with the optical images from the flown targets. Figure 1 show that all three targets imaged in this report are fully intact and do not show any signs of material fractures. However, previous ellipsometry results and overview imaging of both flown SiC targets show a solar wind irradiation gradient from the center focal point to the outer edge [3]. In addition, due to the hard landing, each target has experienced varying degrees of impacts, scratches, and particle debris from the spacecraft and Utah impact site.
    Keywords: Geosciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (henceforth AACO) is responsible for receiving and curating all of NASAs extraterrestrial samples, current and future (as per NASA Policy Directive (NPD) 7100.10E Curation of Extraterrestrial Materials). As such, the AACO coordinates sample capture, containment, and transportation to the curation facility as well as documents, preserves, prepares, and distributes all of the samples within NASAs astromaterial collections for research, education, and public outreach. Since the lunar rock and soil samples returned during the Apollo Program, NASAs first Class V Restricted Earth Return Missions, the AACO curates six other astromaterials collections. Lessons learned from each collection and respective missions (e.g. Apollo, Genesis, Stardust) as well as advancements in science and technology have informed the AACOs plan for acquiring and curating Martian samples. Given the nature of the collection, a mobile and modular facility is recommended. The two broad requirements a Mars sample facility must maintain are: 1) the ability to contain the samples to protect the public from exposure of an unknown unknown biological agent and 2) ensure the scientific integrity of the samples are maintained (while maximizing scientific outcome). Although Apollo samples were eventually deemed safe and released to the scientific community for evaluation, there is no guarantee that this will be the case for Martian samples. Therefore, the facility in which the samples will be contained and investigated must be modular and able to accommodate an array of instrumentation that could be highly variable depending on the initial scientific outcomes. Furthermore, in order to facilitate proper sample capture and containment upon landing as well as sample distribution to other laboratories with proper containment, a mobile facility is a valuable investment.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN67664 , AGU General Assembly; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Future lunar, Mars, asteroid, and comet sample return missions may collect samples that have been preserved at sub-freezing or even cryogenic temperatures. For such samples, the study of volatiles and temperature-sensitive minerals will have high priority. Valuable geochemical and mineralogical information will be lost if such samples are allowed to reach ambient temperatures on Earth. The ability to store, document, subdivide, and transport extraterrestrial geologic samples while maintaining sub-freezing or cryogenic temperatures, possibly as low as 40 K, is required for the complete scientific study of samples from cold environments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-29178 , Annual Meteoritical Society Conference; Jul 29, 2013 - Aug 02, 2013; Edmonton, Alberta; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Future sample return missions will require strict protocols and procedures for reducing inorganic and organic contamination in isolation containment systems. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs [1, 2]. As part of this in-depth organic study, the current curatorial technical support procedure (TSP) 23 was used for cleaning the gloveboxes with ultra pure water (UPW) [3-5]. Particle counts and identification were obtained that could be used as a benchmark for future mission designs that require glovebox decontamination. The UPW baseline study demonstrates that TSP 23 works well for gloveboxes that have been thoroughly degreased. However, TSP 23 could be augmented to provide even better glovebox decontamination. JSC 03243 could be used as a starting point for further investigating optimal cleaning techniques and procedures. DuPont Vertrel XF or other chemical substitutes to replace Freon- 113, mechanical scrubbing, and newer technology could be used to enhance glovebox cleanliness in addition to high purity UPW final rinsing. Future sample return missions will significantly benefit from further cleaning studies to reduce inorganic and organic contamination.
    Keywords: Chemistry and Materials (General)
    Type: JSC-CN-27808 , Lunar and Planetary Sciences Institute Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.
    Keywords: Ground Support Systems and Facilities (Space)
    Type: JSC-CN-28357 , NASA CAP1EM Advisory Committee Meeting; Mar 23, 2013 - Mar 24, 2013; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Ground Support Systems and Facilities (Space)
    Type: JSC-CN-36144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...