ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (746)
  • Spacecraft Propulsion and Power  (746)
  • 2020-2020
  • 2010-2014  (726)
  • 1955-1959  (20)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-31233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-27
    Description: This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy and similar design make them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-30993
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Gaseous and liquid oxygen are extremely reactive materials used in bipropellant propulsion systems. Both flight and ground oxygen systems require a high level of cleanliness to support engine performance, testing, and prevent mishaps. Solvents used to clean and verify the cleanliness of oxygen systems and supporting test hardware must be compatible with the system's materials of construction and effective at removing or reducing expected contaminants to an acceptable level. This paper will define the philosophy and test approach used for evaluating replacement solvents for the current Marshall Space Flight Center/Stennis Space Center baseline HCFC225 material that will no longer be available for purchase after 2014. MSFC/SSC applications in cleaning / sampling oxygen propulsion components, support equipment, and test system were reviewed then candidate replacement cleaners and test methods selected. All of these factors as well as testing results will be discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3288 , National Space and Missile Materials Symposium (NSMMS); Jun 23, 2014 - Jun 26, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: E-662722 , AIAA Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: NTR: High thrust high specific impulse (2 x LOXLH2chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2propellant which is then exhausted to produce thrust. Conventional chemical engine LH2tanks, turbopumps, regenerative nozzles and radiation-cooled shirt extensions used --NTR is next evolutionary step in high performance liquid rocket engines During the Rover program, a common fuel element tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968) NASA and DOE are using this same approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human missions
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN19194 , Advanced Space Propulsion Workshop; Nov 17, 2014 - Nov 19, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In-situ produced propellants have been identified in many architecture studies as key to implementing feasible chemical propulsion missions to destinations beyond lunar orbit. Some of the more noteworthy ones include: launching from Mars to return to Earth (either direct from the surface, or via an orbital rendezvous); using the Earth-Moon Lagrange point as a place to refuel Mars transfer stages with Lunar surface produced propellants; and using Mars Moon Phobos as a place to produce propellants for descent and ascent stages bound for the Mars surface. However successful implementation of these strategies require an ability to successfully transfer propellants from the in-situ production equipment into the propellant tankage of the rocket stage used to move to the desired location. In many circumstances the most desirable location for this transfer to occur is in the low-gravity environment of space. In support of low earth orbit propellant depot concepts, extensive studies have been conducted on transferring propellants in-space. Most of these propellant transfer techniques will be applicable to low gravity operations in other locations. Even ground-based transfer operations on the Moon, Mars, and especially Phobos could benefit from the propellant conserving techniques used for depot refueling. This paper will review the literature of in-situ propellants and refueling to: assess the performance benefits of the use in-situ propellants for mission concepts; review the parallels with propellant depot efforts; assess the progress of the techniques required; and provide recommendations for future research.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN19240 , Advanced Space Propulsion Workshop; Nov 17, 2014 - Nov 19, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN17271 , Propulsion and Energy 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16768 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.
    Keywords: Spacecraft Propulsion and Power
    Type: GSFC-E-DAA-TN15981 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN17180 , AIAA Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16586 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4207 , Wernher von Braun Memorial Symposium; Oct 27, 2014 - Oct 29, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16649 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland Medical Mart & Convention Center, Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4139 , MSFC Technology Expo; Oct 27, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4163 , Chicago Museum of Science and Industry; Oct 15, 2014; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The NASA's Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to quantify the thruster propellant throughput capability. Testing was recently completed in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse.As part of the test termination procedure, a comprehensive performance characterization was performed across the entire NEXT throttle table. This was performed prior to planned repairs of numerous diagnostics that had become inoperable over the course of the test. After completion of these diagnostic repairs in November 2013, a comprehensive end-of-test performance and wear characterization was performed on the test article prior to exposure to atmosphere. These data have confirmed steady thruster performance with minimal degradation as well as mitigation of numerous life limiting mechanisms encountered in the NSTAR design. Component erosion rates compare favorably to pretest predictions based on semi-empirical models used for the thruster service life assessment. Additional data relating to ion beam density profiles, facility backsputter rates, facility backpressure effects on thruster telemetry, and modulation of the neutralizer keeper current are presented as part of the end-of-test characterization. Presently the test article for the NEXT LDT has been exposed to atmosphere and placed within a clean room environment, with post-test disassembly and inspection underway.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16314 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: A key requirement of a low-gravity screen-channel liquid acquisition device (LAD) is the need to retain 100% liquid in the channel in response to propellant outflow and spacecraft maneuvers. The point at which a screen-channel LAD ingests vapor is known as breakdown, and can be measured several different ways such as: visual observation of bubbles in the LAD channel outflow; a sudden change in pressure drop between the propellant tank and LAD sump outlet; or, an indication by wet-dry sensors placed in the LAD channel or outflow stream. Here we describe a new type of sensor for gauging a screen-channel LAD, the Radio Frequency Mass Gauge (RFMG). The RFMG measures the natural electromagnetic modes of the screen-channel LAD, which is very similar to an RF waveguide, to determine the amount of propellant in the channel. By monitoring several of the RF modes, we show that the RFMG acts as a global sensor of the LAD channel propellant fill level, and enables detection of LAD breakdown even in the absence of outflow. This paper presents the theory behind the RFMG-LAD sensor, measurements and simulations of the RF modes of a LAD channel, and RFMG detection of LAD breakdown in a channel using a simulant fluid during inverted outflow and long-term stability tests.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16093 , Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16249 , Propulsion and Energy forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Presentation on the European Service Module mission description, propulsion subsystem, and propulsion and guidance navigation and control interface requirements. The content focuses on the updates to these areas between Constellation and the Multi-Purpose Crew Vehicle.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16757 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of CATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions.
    Keywords: Spacecraft Propulsion and Power
    Type: ARC-E-DAA-TN14562 , Small Satellite Systems and Services (4S) Symposium; May 26, 2014 - May 30, 2014; Porto Petro, Mojorca; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2014-216607 , IEPC-2013-388 , E-18801 , GRC-E-DAA-TN11447 , International Electric Propulsion Conference (IEPC2013); Oct 06, 2013 - Oct 10, 2013; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: Numerical and Analytical methods developed to determine damage accumulation in specific engine components when speed variation included. Dither Life Ratio shown to be well over factor of 2 for specific example. SteadyState assumption shown to be accurate for most turbopump cases, allowing rapid calculation of DLR. If hotfire speed data unknown, Monte Carlo method developed that uses speed statistics for similar engines. Application of techniques allow analyst to reduce both uncertainty and excess conservatism. High values of DLR could allow previously unacceptable part to pass HCF criteria without redesign. Given benefit and ease of implementation, recommend that any finite life turbomachine component analysis adopt these techniques. Probability Values calculated, compared, and evaluated for several industryproposed methods for combining random and harmonic loads. Two new excel macros written to calculate combined load for any specific probability level. Closed form Curve fits generated for widely used 3(sigma) and 2(sigma) probability levels. For design of lightweight aerospace components, obtaining accurate, reproducible, statistically meaningful answer critical.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3687 , Presentation to faculty at the Universite de Liege; Jun 05, 2014; Liege; Belgium|Presentation to faculty at the Royal Institute of Technology; Jun 05, 2014; Stockholm; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3860 , AIAA Propulsion and Energy Forum; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3801 , AIAA Space 2014 Conference; Aug 04, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3665 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN15785 , AIAA Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: MSFC has embarked on use of green propellant replacement of hydrazine for a variety of applications. This paper focused on activities for auxiliary power unit but MSFC is actively investigating use of green propellants for thruster applications. MSFC is interested in partnership with the international community to address the infusion of green propellant into greater use.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3441 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of Prisma, a 1-N thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1-N, and 22-N hydroxyl ammonium nitrate (HAN)-based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units (APUs). This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3496 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3506 , Space Power Workshop 2014; May 05, 2014 - May 08, 2014; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: This paper describes the test campaigns designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster (QVPT), but instead will describe the recent test campaign. In addition, it contains a brief description of the supporting radio frequency (RF) field analysis, lessons learned, and potential applications of the technology to space exploration missions. During the first (Cannae) portion of the campaign, approximately 40 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 935 megahertz and 28 watts. During the subsequent (tapered cavity) portion of the campaign, approximately 91 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 1933 megahertz and 17 watts. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level. Test campaign results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-31446 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference (JPC); Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: The Orion Crew Module Propulsion Reaction Control System is currently complete and ready for flight as part of the Orion program's first flight test, Exploration Flight Test One (EFT-1). As part of the first article design, build, test, and integration effort, several key lessons learned have been noted and are planned for incorporation into the next build of the system. This paper provides an overview of those lessons learned and a status on the Orion propulsion system progress to date.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-31424 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-31422 , Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3348 , 2014 Nuclear and Emerging Technologies for Space (NETS) Conference; Feb 24, 2014 - Feb 26, 2014; Stennis, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3339 , Nuclear and Emerging Technologies for Space; Feb 24, 2014 - Feb 26, 2014; Pearlington, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3341 , Nuclear and Emerging Technologies for Space (NETS 2014); Feb 24, 2014 - Feb 26, 2014; NASA Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3338 , Nuclear and Emerging Technologies for Space 2014 (NETS 2014); Feb 24, 2014 - Feb 26, 2014; Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.
    Keywords: Spacecraft Propulsion and Power
    Type: AAS Paper 14-365 , AAS/AIAA Space Flight Mechanics Meeting; Jan 26, 2014 - Jan 30, 2014; Sante Fe, New Mexico; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.
    Keywords: Spacecraft Propulsion and Power
    Type: KSC-E-DAA-TN14655
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank ullage, and combined use of the axial jet and spray hoops. A submerged liquid pump and compact heat exchanger located inside the test tank were used with all the mixer configurations. The initial series without helium and the final series with liquid nitrogen both used the axial jet mixer. The axial jet configuration successfully demonstrated the ability to control tank pressure; but in the normal-gravity environment, the temperature in the upper tank region (ullage and unwetted wall) was not controlled. The spray hoops and axial jet combination also successfully demonstrated pressure control as well as temperature control of the entire tank and contents. The spray-hoops-only configuration was not expected to be a reliable means of tank mixing because there was no direct means to produce liquid circulation. However, surprisingly good results also were obtained with the sprayhoops- only configuration (i.e., performance metrics such as cycle-averaged vent flowrate were similar to those obtained with the other configurations). A simple thermodynamic model was developed that correctly predicted the TVS behavior (temperature rise or pressure drop per TVS cycle) when helium was present in the ullage. The model predictions were correlated over a range of input parameters. The correlations show that temperature rise or pressure drop per cycle was proportional to both helium mole fraction and tank heat input. The response also depended on the tank fill fraction: the temperature rise or pressure drop (per TVS cycle) increased as the ullage volume decreased.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TP-2014-216633 , E-18831 , GRC-E-DAA-TN12201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (~7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-30968
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: Viewgraphs showing the combustion chamber pressure measured in a heavy weight chamber during testing at the NASA Ames Hybrid Combustion Facility.
    Keywords: Spacecraft Propulsion and Power
    Type: ARC-E-DAA-TN13414
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: J-2X engine testing on the A-2 test stand at the NASA John C. Stennis Space Center (SSC) has recently concluded. As part of that test campaign, the engine was operated at lower power levels in support of expanding the use of J-2X to other missions. However, the A-2 diffuser was not designed for engine testing at the proposed low power levels. To evaluate the risk of damage to the diffuser, computer simulations were created of the rocket engine exhaust plume inside the 50ft long, water-cooled, altitude-simulating diffuser. The simulations predicted that low power level testing would cause the plume to oscillate in the lower sections of the diffuser. This can possibly cause excessive vibrations, stress, and heat transfer from the plume to the diffuser walls. To understand and assess the performance of the diffuser during low power level engine testing, nine accelerometers and four strain gages were installed around the outer surface of the diffuser. The added instrumentation also allowed for the verification of the rocket exhaust plume computational model. Prior to engine hot-fire testing, a diffuser water-flow test was conducted to verify the proper operation of the newly installed instrumentation. Subsequently, two J-2X engine hot-fire tests were completed. Hot-Fire Test 1 was 11.5 seconds in duration, and accelerometer and strain data verified that the rocket engine plume oscillated in the lower sections of the diffuser. The accelerometers showed very different results dependent upon location. The diffuser consists of four sections, with Section 1 being closest to the engine nozzle and Section 4 being farthest from the engine nozzle. Section 1 accelerometers showed increased amplitudes at startup and shutdown, but low amplitudes while the diffuser was started. Section 3 accelerometers showed the opposite results with near zero G amplitudes prior to and after diffuser start and peak amplitudes to +/- 100G while the diffuser was started. Hot-Fire Test 1 strain gages showed different data dependent on section. Section 1 strains were small, and were in the range of 50 to 150 microstrain, which would result in stresses from 1.45 to 4.35 ksi. The yield stress of the material, A-285 Grade C Steel, is 29.7 ksi. Section 4 strain gages showed much higher values with strains peaking at 1600 microstrain. This strain corresponds to a stress of 46.41 ksi, which is in excess of the yield stress, but below the ultimate stress of 55 to 75 ksi. The decreased accelerations and strain in Section 1, and the increased accelerations and strain in Sections 3 and 4 verified the computer simulation prediction of increased plume oscillations in the lower sections of the diffuser. Hot-Fire Test 2 ran for a duration of 125 seconds. The engine operated at a slightly higher power level than Hot-Fire Test 1 for the initial 35 seconds of the test. After 35 seconds the power level was lowered to Hot-Fire Test 1 levels. The acceleration and strain data for Hot-Fire Test 2 was similar during the initial part of the test. However, just prior to the engine being lowered to the Hot-Fire Test 1 power level, the strain gage data in Section 4 showed a large decrease to strains near zero microstrain from their peak at 1500 microstrain. Future work includes further strain and acceleration data analysis and evaluation.
    Keywords: Spacecraft Propulsion and Power
    Type: SSTI-8080-0072
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of reservoir temperature/pressure, the flow resistors, and the setting of the PFCV. The calibration is performed using independent flow control monitoring techniques, providing an in situ measure of the flowrate as a function of controllable parameters. The reservoir temperature controls the iodine sublimation rate, providing propellant to ths thruster by pressurizing the propellant feed system to approx.1-2 psi. Control of the temperature and the PFCV are used to maintain reservoir pressure and keep the thruster discharge current constant.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3223 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Near Earth Asteroid (NEA) Scout mission will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Both are planned for launch in 2017. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric rockets. For example, the NASA Heliophysics Decadal Survey identifies no less than three such missions for possible flight before the mid-2020's. Solar sail propulsion technology is no longer an intesting theoretical possibility; it has been demonstrated in space and is now a critical technology for science and solar system exploration.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3543 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The use of Trigas in rocket propulsion systems is somewhat of a new technology. This paper defines Trigas as a mixture of gases composed largely of helium with a small percentage of a stoichiometric mixture of hydrogen and oxygen. When exposed to a catalyst the hydrogen and oxygen in the mixture combusts, significantly raising the temperature of the mixture. The increase in enthalpy resulting from the combustion process significantly decreases the required quantity of gas needed to pressurize the ullage of the vehicle propellant tanks. The objective of this effort was to better understand the operating characteristics of Trigas in a pressurization system with low temperature applications. In conjunction with ongoing programs at NASA Marshall Space Flight Center, an effort has been undertaken to evaluate the operating characteristics of Trigas through modeling and bench testing. Through improved understanding of the operating characteristics, the risk of using this new technology in a launch vehicle propulsion system was reduced. Bench testing of Trigas was a multistep process that targeted gas characteristics and performance aspects that pose a risk to application in a pressurization system. Pressurization systems are vital to propulsion system performance. Keeping a target ullage pressure in propulsions tanks is necessary to supply propellant at the conditions and flow rates required to maintain desired engine functionality. The first component of testing consisted of sampling Trigas sources that had been stagnant for various lengths of time in order to determine the rate at which stratification takes place. Second, a bench test was set up in which Trigas was sent through a catalyst bed. This test was designed to evaluate the performance characteristics of Trigas, under low temperature inlet temperatures, in a flightlike catalyst bed reactor. The third, most complex, test examined the performance characteristics of Trigas at low temperature temperatures in a test configuration built to more closely resemble a vehicle pressurization system. The results of these bench tests address various risks that all relate to underperformance of Trigas pressurization systems.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3173 , AIAA Propulsion and Energy Forum and Exposition; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States|AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-12
    Description: An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2014-217501 , M-1377
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-12
    Description: High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.
    Keywords: Spacecraft Propulsion and Power
    Type: SSTI-8080-0069
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-12
    Description: Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-30913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4196
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3709 , National Space and Missile Materials Symposium (NSMMS); Jun 23, 2014 - Jun 26, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3652 , JANNAF Committee on Propulsion Conference; May 19, 2014 - May 22, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-13
    Description: A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3275 , JANNAF Propulsion Meeting; May 19, 2014 - May 22, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-13
    Description: For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3667 , Rocket Nozzle Technology Sub-Committee Meeting (RNTS); May 19, 2014 - May 22, 2014; Charleston, SC; United States|JANNAF Propulsion Meeting; May 19, 2014 - May 22, 2014; Charleston, SC; United States|Propellant and Explosives Development and Characterization Sub-Committee Meeting (PEDCP); May 19, 2014 - May 22, 2014; Charleston, SC; United States|Safety and Environmental Protection Sub-Committee Meeting (SEPS); May 19, 2014 - May 22, 2014; Charleston, SC; United States|Structures and Mechanics Behavior Sub-Committee Meeting (S and MBS); May 19, 2014 - May 22, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-13
    Description: The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3851 , Joint Army NASA Navy Air Force (JANNAF) Liquid Propulsion Subcommittee and Advanced Materials Panel Additive Manufacturing for Propulsion Applications Technical Interchange Meeting; Sep 03, 2014 - Sep 05, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4231 , Advanced Space Propulsion Workshop; Nov 17, 2014 - Nov 19, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-13
    Description: In this study, attributes are described for solid and liquid propulsion systems based on historical data. This study is not intended to compare liquid and solid propulsion system attributes, rather to present options for their use in various mission scenarios. US launch vehicle data from 1970 to 2008 was analyzed to assess solid and liquid propulsion development cost and schedule characteristics, performance features, and safety and mission success attributes. The study assessed historical trends for liquid and solid systems, and investigated implications of those trends. It was found that the two propulsion technologies have unique, common and complementary attributes that can be leveraged to meet mission requirements.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3376 , JANNAF Propulsion Meeting; May 19, 2014 - May 22, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3609 , Rocket Nozzle Technology (RNTS) meeting; May 19, 2014 - May 23, 2014; Charleston, SC; United States|Propellant and Explosives Development and Characterization (PEDCP) meeting; May 19, 2014 - May 23, 2014; Charleston, SC; United States|JANNAF Propulsion Meeting; May 19, 2014 - May 23, 2014; Charleston, SC; United States|Structures and Mechanics Beahvior (S and MBS) meeting; May 19, 2014 - May 23, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-13
    Description: The Black Brant variation of the Standard Brant developed in the 1960's has been a workhorse motor of the NASA Sounding Rocket Project Office (SRPO) since the 1970's. In March 2012, the Black Brant Mk1 used on mission 36.277 experienced combustion instability during a flight at White Sands Missile Range, the third event in the last four years, the first occurring in November, 2009, the second in April 2010. After the 2010 event the program has been increasing the motor's throat diameter post-delivery with the goal of lowering the chamber pressure and increasing the margin against combustion instability. During the most recent combustion instability event, the vibrations exceeded the qualification levels for the Flight Termination System. The present study utilizes data generated from T-burner testing of multiple Black Brant propellants at the Naval Air Warfare Center at China Lake, to improve the combustion stability predictions for the Black Brant Mk1 and to generate new predictions for the Mk2. Three unique one dimensional (1-D) stability models were generated, representing distinct Black Brant flights, two of which experienced instabilities. The individual models allowed for comparison of stability characteristics between various nozzle configurations. A long standing "rule of thumb" states that increased stability margin is gained by increasing the throat diameter. In contradiction to this experience based rule, the analysis shows that little or no margin is gained from a larger throat diameter. The present analysis demonstrates competing effects resulting from an increased throat diameter accompanying a large response function. As is expected, more acoustic energy was expelled through the nozzle, but conversely more acoustic energy was generated due to larger gas velocities near the propellant surfaces.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3268 , JANNAF Propulsion Meeting; May 19, 2014 - May 22, 2014; Charleston, SC; United States|Propellant and Explosives Development and Characterization; May 19, 2014 - May 22, 2014; Charleston, SC; United States|Structures and Mechanical Behavior; May 19, 2014 - May 22, 2014; Charleston, SC; United States|Safety and Environmental Protection Joint Subcommittee Meeting; May 19, 2014 - May 22, 2014; Charloston, SC; United States|Rocket Nozzle Technology; May 19, 2014 - May 22, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-28
    Description: A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-28
    Description: This project investigated a new type of small spacecraft propulsion for attitude control, specifically proximity and precision pointing control. Plasmonic force propulsion uses solar light focused on deep-subwavelength nanostructures to excite strong optical forces that accelerate and expel nanoparticle propellant. The goal of the project was to assess the feasibility of plasmonic force propulsion for nano/pico-satellite applications by evaluating key mission parameters for a nano/pico-satellite using plasmonic force propulsion in a NASA-relevant mission context. We achieved this goal and objective by evaluating plasmonic force propulsion within a NASA mission that required attitude control and precision pointing of a small satellite. We numerically simulated plasmonic force fields with asymmetric/gradient geometry and relevant solar light constraints, predicted nanoparticle velocity, mass flow rate, and resulting propulsion performance (thrust, specific impulse), and evaluated spacecraft position control resolution and pointing precision. Additionally we compared the precision pointing capabilities of plasmonic propulsion, as well as the mass, volume, and power requirements, with other state-of-the-art control techniques, such as reaction wheels and colloid/electrospray electric propulsion. The results are very exciting. Plasmonic force propulsion can significantly enhance the state-of-the-art in small spacecraft position and attitude control by 1-2 orders of magnitude. This is most succinctly shown in the figure below, which compares proximity and attitude control of plasmonic force propulsion (PFP) with other state-of-the-art thruster systems (CAT, VAT, electrospray). Additionally this figure also shows the proximity and attitude control required for different existing (James Webb Space Telescope, Hubble) and future (LISA and Stellar Imager) NASA missions. While some of these NASA missions are not small spacecraft missions, the requirements serve to illustrate the fact that more precise proximity and attitude control will be required for future NASA science missions. Stellar imager is a proposed NASA missions that requires an extremely high pointing precision of 0.1 milliarcseconds (2.7x10(exp -7) deg.) for an ultraviolet telescope that has over 200 the resolution of the Hubble Space Telescope, is able to take images showing details on the surfaces of other stars, consists of 20-30 small "mirror sats" flying in formation to produce a giant mirror, and requires each mirror-sat to be placed with nanometer precision and control its attitude with milliarcsecond precision.
    Keywords: Spacecraft Propulsion and Power
    Type: HQ-E-DAA-TN62874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: For more than five decades, Radioisotope Power Systems (RPS) have played a critical role in the exploration of space, enabling missions of scientific discovery to destinations across the solar system by providing electrical power to explore remote and challenging environments - some of the hardest to reach, darkest, and coldest locations in the solar system. In particular, RPS has met the demand of many long-duration mission concepts for continuous power to conduct science investigations independent of change in sunlight or variations in surface conditions like shadows, thick clouds, or dust.
    Keywords: Spacecraft Propulsion and Power
    Type: International Conference on Space Operations (SpaceOps 2014); May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: NASA needs a method of not only propelling and rotating small satellites, but also to track their position and orientation. We propose a concept that will, for the first time, demonstrate both tracking and propulsion simultaneously in the same system.
    Keywords: Spacecraft Propulsion and Power
    Type: KSC-E-DAA-TN15848
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-12
    Description: The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2014-218376 , DFRC-E-DAA-TN17194
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: Exploration of our solar system has brought great knowledge to our nation's scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASA's Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (greater than 1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue, assuming its availability, to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named "Kilopower" that is scalable from approximately 1-10 kWe.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16225 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Plume impingement analyses were performed for the European Service Module (ESM) propulsion system Orbital Maneuvering System engine (OMS-E), auxiliary engines, and reaction control system (RCS) engines. The heat flux from plume impingement on the solar arrays and other surfaces are evaluated. This information is used to provide inputs for the ESM thermal analyses and help determine the optimal configuration for the RCS engines.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16742 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16546 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASAs exploration goals, a number of projects are developing extensible technologies to support NASAs near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kW magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16764 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3886 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: The components required for an in-space iodine vapor-fed Hall effect thruster propellant management system are described. A laboratory apparatus was assembled and used to produce iodine vapor and control the flow through the application of heating to the propellant reservoir and through the adjustment of the opening in a proportional flow control valve. Changing of the reservoir temperature altered the flowrate on the timescale of minutes while adjustment of the proportional flow control valve changed the flowrate immediately without an overshoot or undershoot in flowrate with the requisite recovery time associated with thermal control systems. The flowrates tested spanned a range from 0-1.5 mg/s of iodine, which is sufficient to feed a 200-W Hall effect thruster.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3863 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3865 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: This paper makes no attempt to comprehensively review erosive burning models or the data collected in pursuit of them; the interested reader could begin with Landsbaum for a historical summary. However, a discussion and comparison to recent work by McDonald and Rettenmaier and Heister will be included, along with data generated by Strand, et. al. Suffice it to say that the search for a way to predict erosive burning in any size motor with formulas cleanly applicable to a typical 1D ballistics analysis has been long thwarted. Some models were based on testing that failed to adequately simulate the solid rocket motor environment. In most cases, no realtime burn rate measurement was available. Two popular models, even when calibrated to recent motorlike realtime burn rate data obtained by Furfaro, were shown by McMillin to be inadequate at modeling erosive burning in the Space Shuttle Reusable Solid Rocket Motor (RSRM), the Space Launch Systems' FiveSegment RSRM (RSRMV), and the fivesegment Engineering Test Motor (ETM)3. Subsequently to the data cited from Strand and Furfaro, additional motors of the same kind as Furfaro's were tested with RSRMV propellant, utilizing 7 segments per motor and 3 throat sizes. By measuring propellant web thickness with ultrasonic gages, the burn rate was determined at crossflow Mach numbers up to Mach 0.8. Furthermore, because of the different throat sizes in otherwise identical motors, this provides a unique look at the effect of pressure and base burn rate on the erosive response. Figure 1 shows example of the data pertaining to the high Mach motor, where the port area is initially less than the throat area. The burn rate data was processed using a smoothing method developed to reduce the noise without too severely introducing end effects that limit the range of useful data. Then, an empirical ballistics scheme was used to estimate the flow condition based on the burn rate measurements and pressure measured between each segment.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3206 , AIAA Propulsion and Energy 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States|AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC, and began its mission after it was ejected from the FASTSAT into Earth orbit, where it remained for several weeks before deorbiting as planned. NASA recently selected two small satellite missions for study as part of the Advanced Exploration Systems (AES) Program, both of which will use solar sails to enable their scientific objectives. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Near Earth Asteroid (NEA) Scout mission will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interests for possible future human exploration. Both are being studied for possible launch in 2017. The Planetary Society's privately funded LightSail-A and -B cubesat-class spacecraft are nearly complete and scheduled for launch in 2015 and 2016, respectively. MMA Design launched their DragNet deorbit system in November 2013, which will deploy from the STPSat-3 spacecraft as an end of life deorbit system. The University of Surrey is building a suite of cubesat class drag and solar sail systems that will be launched beginning in 2015. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric rockets. For example, the NASA Heliophysics Decadal Survey identifies no less than three such missions for possible flight before the mid-2020's. Solar and drag sail propulsion technology is no longer merely an interesting theoretical possibility; it has been demonstrated in space and is now a critical technology for science and solar system exploration.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3668 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: NASAs Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. This presentation is a follow-up to the NEXT project overviews presented in 2009-2010. It reviews the status of the NEXT project, presents the current system performance characteristics, and describes planned activities in continuing the transition of NEXT technology to a first flight. In 2013 a voluntary decision was made to terminate the long duration test of the NEXT thruster, given the thruster design has exceeded all expectations by accumulating over 50,000 hours of operation to demonstrate around 900 kg of xenon throughput. Besides its promise for upcoming NASA science missions, NEXT has excellent potential for future commercial and international spacecraft applications.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN15081 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN14818 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3350 , 2014 Nuclear and Emerging Technologies for Space (NETS) Conference; Feb 24, 2014 - Feb 26, 2014; Stennis, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3279 , NIAC Symposium; Feb 04, 2014 - Feb 06, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3274 , 2014 Nuclear Emerging Technologies for Space Conference; Feb 24, 2014 - Feb 26, 2014; Bay Saint Louis, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The Februay 2013 Space Works Commercial report indicates a strong increase in nano/microsatellite (1-50 kg) launch demand globally in future years. Nanosatellites (NanoSats) are small spacecraft in the 1-10 kg range, which present a simple, low-cost option for developing quickly-deployable satellites. CubeSats, a special category of NanoSats, are even being considered for interplanetary missions. However, the small dimensions of CubeSats and the limited mass of the NanoSat class in general place limits of capability on their electrical power systems (especially where typical power sources such as solar panels are considered) and stored energy reserves; restricting the power budget and overall functionality. For example, leveraging NanoSat clusters for computationally intensive problems that are solved collectively becomes more challenging with power related restrictions on communication and data-processing. Further, interplanetary missions that would take NanoSats far from the sun, make the use of solar panels less effective as a power source as their required area would become quite large. To overcome these limitations, americium 241 (Am-241) has been suggested as a low power source option. The Idaho National Laboratory, Center for Space Nuclear Research reports that: (Production) requires small quantities of isotope - 62.5 g of Pu-238; 250 g Am- 241 (for 5 We); Am-241 is available at around 1 kg/yr commercially; Am-241 produces 59 kev gammas which are stopped readily by tungsten so the radiation field is very low. Whereby, an Am-241 source could be placed in among the instruments and the waste heat used to heat the platform; and amounts of isotope are so low that launch approval may be easier, especially with tungsten encapsulation. As further reported, Am-241 has a half-life that is approximately five times greater than that of Pu- 238 and it has been determined that the neutron yield of a 241-AmO(sub 2) source is approximately an order of magnitude lower than that of a 238-PuO(sub 2) source of equal mass and degree of (sup 16)O enrichment. Also it has been demonstrated that shielded heat sources fuelled by oxygen-enriched 238-PuO(sub 2) have masses that are up to 10 times greater than those fuelled by oxygenenriched 241-AmO(sub 2) with equivalent thermal power outputs and neutron dose rates at 1 m radii. For these reasons, Am-241 is well suited to missions that demand long duration electrical power output, such as deep spaceflight missions and similar missions that use radiation-hard electronics and instrumentation that are less susceptible to neutron radiation damage.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3212 , Nuclear and Emerging Technologies for Space (NETS 2014); Feb 24, 2014 - Feb 26, 2014; NASA Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3186 , Nuclear and Emerging Technologies for Space; Feb 24, 2014 - Feb 26, 2014; Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2014-218084 , IAC-12-C4.4.6 , E-18770 , International Astronautical Congress (IAC 2012); Oct 01, 2012 - Oct 05, 2012; Naples; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3178 , 20]4 AIAA SciTech Conference; Jan 13, 2014 - Jan 17, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.
    Keywords: Spacecraft Propulsion and Power
    Type: M13-3139 , AIAA Science and Technology Forum and Exposition (SciTech 2014); Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: SSTI-8080-0069 , Nuclear and Emerging Technologies for Space (NETS) Conference; Feb 24, 2014 - Feb 26, 2014; Bay Saint Louis, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA/ASME/SAE/ASEE Joint Propulsion Conference (JPC); Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total (Delta)V of 11.3 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA/ASME/SAE/ASEE Joint Propulsion Conference (JPC); Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: The role of ion acoustic turbulence in the formation of high-energy ion tails in the plume of a 100-A LaB6 hollow cathode is experimentally and theoretically examined. At fixed flow rate and varying discharge current, single-point measurements of fluctuation intensity in the cathode plume are taken and compared to ion energy measurements. It is shown that for high discharge current the formation of energetic ions is correlated with the amplitude of the ion acoustic turbulence. Two-dimensional maps of background plasma parameters and wave turbulence are made at the highest discharge current investigated, 140 A. A simple, one-dimensional quasilinear model for the interaction of the ion energy distribution with the ion acoustic turbulence is employed, and it is shown that the energy in the measured wave turbulence is sufficiently large to explain the formation of ion tails in the cathode plume. Mitigation techniques for minimizing the amplitude of the turbulence are discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA/ASME/SAE/ASEE Joint Propulsion Conference (JPC); Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M15-4272 , Defense Manufacturing Conference; Dec 01, 2014 - Dec 04, 2014; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: The Orion Multi-Purpose Crew Vehicle Service Module Propulsion Subsystem provides propulsion for the integrated Crew and Service Module. Updates in the exploration architecture between Constellation and MPCV as well as NASA's partnership with the European Space Agency have resulted in design changes to the SM Propulsion Subsystem and updates to the Propulsion interface requirements with Guidance Navigation and Control. This paper focuses on the Propulsion and GNC interface requirement updates between the Constellation Service Module and the European Service Module and how the requirement updates were driven or supported by architecture updates and the desired use of hardware with heritage to United States and European spacecraft for the Exploration Missions, EM-1 and EM-2.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16309 , Propulsion and Energy 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0III, IIII, and IIIII ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0II ionization in the discharge channel.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16340 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16437 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16761 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16633 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Formulation of Affordable and Sustainable NTP Development Strategy is Underway Involving NASA, DOE and Industry. In FY11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16987 , AIAA Space & Astronautics Forum & Exposition (Space 2014); Aug 04, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: This presentation describes results from the end-of-test performance characterization of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test (LDT). Sub-component performance as well as overall thruster performance is presented and compared to results over the course of the test. Overall wear of critical thruster components is also described, and an update on the first failure mode of the thruster is provided.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16741 , AIAA Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3915 , AIAA Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3612 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3497 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
    Keywords: Spacecraft Propulsion and Power
    Type: M14-3575 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The advantages of green propulsion for five mission classes are examined, including a Low Earth Orbit (LEO) mission (GPM), a Geosynchronous Earth Orbit (GEO) mission (SDO), a High Earth Orbit (HEO) mission (MMS), a lunar mission (LRO), and a planetary mission (MAVEN). The propellant mass benefits are considered for all five missions, as well as the effects on the tanks, propellant loading, thruster throughput, thermal considerations, and range requirements for both the AF-M315E and LMP-103S propellants.
    Keywords: Spacecraft Propulsion and Power
    Type: GSFC-E-DAA-TN14280 , Space Propulsion 2014; May 19, 2014 - May 22, 2014; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...