ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (310)
  • Cell & Developmental Biology
  • General Chemistry
  • 2005-2009  (310)
  • 2000-2004
  • 1995-1999
  • 2006  (310)
Collection
Keywords
Years
  • 2005-2009  (310)
  • 2000-2004
  • 1995-1999
Year
  • 101
    Publication Date: 2019-07-13
    Description: In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near sinusoidal variations in ion composition as a functions of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II us strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h -- 1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System UV period defined by [Brown, M. E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ration (minimum S IV mixing ratio) is aligned with a System III longitude of 200 deg +/-, the amplitude is a factor of 4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; 180; 1; 124-140
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contaminating on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when microgravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Habitation 2006; Feb 05, 2006 - Feb 08, 2006; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Conference on Hab. Research and Tech. Development; Feb 06, 2006 - Feb 08, 2006; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-13
    Description: The Mars Exploration Rover (MER) Spirit landed on the plains of Gusev Crater on 4 January 2004. One primary scientific objective for the mission is to characterize the mineralogical and elemental composition of surface materials, searching for evidence of water and clues for assessing past and current climates and their suitability for life [1]. The role of the Moessbauer (MB) spectrometer on Spirit is to provide quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. The speciation and distribution of Fe in Martian rock and soil constrains the primary rock types, redox conditions under which primary minerals crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. In this abstract, we discuss the incredible diversity of Fe-bearing phases detected by Spirit s MB instrument during its first 540 sols of exploration at Gusev crater [2,3].
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth Workshop on Mossbauer Spectroscopy; Jun 07, 2006 - Jun 11, 2006; Seeheim; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-07-13
    Description: Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-07-13
    Description: The bulk chemical compositions of planets may yield important clues concerning planetary origins. Failing that, bulk compositions are still important, in that they constrain calculation of planetary mineralogies and also constrain the petrogenesis of basaltic magmas. In the case of the Earth, there is little or no debate about the composition of the Earth's upper mantle. This is because our sample collections contain peridotitic xenoliths of that mantle. The most fertile of these are believed to have been little modified from their primary compositions. Using these samples and chondritic meteorites as a starting point, small perturbations on the compositions of existing samples allow useful reconstruction of the bulk silicate Earth (BSE). Elsewhere, I have argued that the next simplest case is the Eucrite Parent Body (EPB). Reconstructions based on Sc partitioning indicate that the EPB can be well approximated by a mixture of 20% eucrite and 80% equilibrium olivine. This leads to a parent body that is similar to CO (or devolatilized CM) chondrites. Partial melting experiments on CM chondrites confirm this model, because the residual solids in these experiments are dominated by olivine with minor pigonite [3]. The most difficult bodies to reconstruct are those that have undergone the most differentiation. Both the Moon and Mars may have passed through a magma ocean stage. In any event, lunar and martian basalts, unlike eucrites, were not derived from undifferentiated source regions. Reconstructions are primarily based on compositional trends within the basalts themselves with some critical assumptions: (i) Refractory lithophile elements (Ca, Al, REE, actinides) are presumed to be in chondritic relative abundances; and (ii) some major element ratio is believed to exist in a chondritic ratio (e.g., Mg/Si, Mg/Al). The most commonly used parameter is Mg/Si.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Origin: Determine O/H ratio (water abundance) and constrain core mass to decide among alternative theories of origin. Interior: Understand Jupiter's interior structure and dynamical properties by mapping its gravitational and magnetic fields Atmosphere: Map variations in atmospheric composition, temperature, cloud opacity and dynamics to depths greater than 100 bars at all latitudes. Magnetosphere: Characterize and explore the three-dimensional structure of Jupiter's polar magnetosphere and auroras.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ISTS 2006-o-2-06V , 25th International Symposium on Space Technology and Science; Jun 07, 2006; Kanazawa; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-07-13
    Description: Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-07-13
    Description: The Thermal and Evolved Gas Analyzer (TEGA) instrument scheduled to fly onboard the 2007 Mars Phoenix Scout Mission will perform differential scanning calorimetry (DSC) and evolved gas analysis (EGA) of soil samples and ice collected from the surface and subsurface at a northern landing site on Mars. We have been developing a sample characterization data library using a laboratory DSC integrated with a quadrupole mass spectrometer to support the interpretations of TEGA data returned during the mission. The laboratory TEGA test-bed instrument has been modified to operate under conditions similar to TEGA, i.e., reduced pressure (e.g., 100 torr) and reduced carrier gas flow rates. We have previously developed a TEGA data library for a variety of volatile-bearing mineral phases, including Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates. Here we examine the thermal and evolved gas properties of samples that contain organics. One of the primary objectives of the Phoenix Scout Mission is to search for habitable zones by assessing organic or biologically interesting materials in icy soil. Nitrogen is currently the carrier gas that will be used for TEGA. In this study, we examine two possible modes of detecting organics in geologic samples; i.e., pyrolysis using N2 as the carrier gas and combustion using O2 as the carrier gas.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-07-13
    Description: Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes the reorientation of the Mini-Moons of Enceladus and Miranda. The hot spots of Enceladus and its relationship to Miranda is also presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: UCLA Planetary Science Seminar; May 25, 2006; CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-07-13
    Description: The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASAs Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependent power requirements to surface assets that would enable future in-situ exploration of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AC-06-A5.2.06 , 57th International Astrnautical Congress; Oct 02, 2006 - Oct 06, 2006; Valencia; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-13
    Description: One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space 2006; Sep 19, 2006 - Sep 21, 2006; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-07-13
    Description: The MTP Communications and Tracking Technology Development Program aims to develop critical enabling technology components and products that will make the future high capacity communications links from Mars possible. It comprises ten technology development tasks. This paper briefly describes each task and gives a summary of the current state of the research and future recommendations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEEAC Paper 1247 , IEEE Aerospace Conference, Big Sky, Montana, March 4-11, 2006; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-13
    Description: This paper describes a conceptual flagship-class Europa orbiter concept that was assumed to launch as early as 2012, arriving at Europa approximately 8 years later using inner solar system gravity assists to reach Jupiter. Jupiter's intense radiation environment limits the mission duration at Europa to 30 days for this study, though the duration is a result of multiple trades and is by no means fixed. The Europa Subgroup of the Outer Planets Assessment Group identified six primary science objectives for this concept.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This viewgraph presentation discusses the need for a relay network at Mars and investments needed for a Mars relay network.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SCAWG Networking Technology Workshop; Aug 10, 2006; Reston, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A viewgraph presentation on the Cassini-Huygens Mars Exploration Rover is shown. The contents include: 1) Deep Space Network (DSN); 2) Saturn Cassini-Huygens; 3) Mars Exploration Rover; and 4) References.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Rottery Club, Mallorca; Oct 09, 2006 - Oct 10, 2006; Mallorca; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-13
    Description: This experimental study explores the petrogenesis of ureilites by a partial melting/smelting process. Experiments have been performed over temperature (1150-1280 C), pressure (5-12.5 MPa), and low oxygen fugacity (graphite-CO gas) conditions appropriate for a hypothetical ureilite parent body approximately 200 km in size. Experimental and modeling results indicate that a partial melting/smelting model of ureilite petrogenesis can explain many of the unique characteristics displayed by this meteorite group. Compositional information preserved in the pigeonite-olivine ureilites was used to estimate the composition of melts in equilibrium with the ureilites. The results of 20 experiments saturated with olivine, pyroxene, metal, and liquid with appropriate ureilite compositions are used to calibrate the phase coefficients and pressure-temperature dependence of the smelting reaction. The calibrated coefficients are used to model the behavior of a hypothetical residue that is experiencing fractional smelting. The residue is initially olivine-rich and smelting progressively depletes the olivine content and enriches the pyroxene and metal contents of the residues. The modeled residue composition at 1260 C best reproduces the trend of ureilite bulk compositions. The model results also indicate that as a ureilite residue undergoes isothermal decompression smelting over a range of temperatures, Ca/Al values and Cr203 contents are enriched at lower temperatures (below about 1240 C) and tend to decrease at higher temperatures. Therefore, fractional smelting can account for the high Ca/A1 and Cr203 wt% values observed in ureilites. We propose that ureilites were generated from an olivine-rich, cpx-bearing residue. Smelting began when the residue was partially melted and contained liquid, olivine, and carbon. These residues experienced varying degrees of fractional smelting to produce the compositional variability observed within the pigeonite-bearing ureilites. Variations in mineral composition, modal proportions, and isotopic signatures are best described by heterogeneous accretion of the ureilite parent body followed by minimal and variable degrees of igneous processing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-1016); 70; 5; 1291-1308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-13
    Description: This viewgraph presentation gives a general overview of the Mars Express NASA Project at JPL. The contents include: 1) Mars Express/NASA Project Overview; 2) Experiment-Investigator Matrix; 3) Mars Express Support of NASA's Mars Exploration Objectives; 4) U.S./NASA Support of Mars Express; 5) Mars Express Schedule (2003-2007); 6) Mars Express Data Rates; 7) MARSIS Overview Results; 8) MARSIS with Antennas Deployed; 9) MARSIS Science Objectives; 10) Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) Experiment Overview; 11) Mars Express Orbit Evolution; 12) MARSIS Science - Subsurface Sounding; 13) MARSIS-North Polar Ice Cap; 14) MARSIS Data-Buried Basin; 15) MARSIS over a Crater Basin; 16) MARSIS-Buried Basin; 17) Ionogram - Orbit 2032 (example from Science paper); 18) Ionogram-Orbit 2018 (example from Science paper); and 19) Recent MARSIS Results ESA Press Releases.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-13
    Description: Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference, Big Sky, Montana, March 4-11, 2006; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-13
    Description: This paper will discuss the Probabilistic Risk Assessment (PRA) effort and its involvement with related activities during the development of the Mars Exploration Rover (MER). The Rovers were launched 2003.June.10 (Spirit) and 2003.July.7 (Opportunity), and both have proven very successful. Although designed for a 90-day mission, the Rovers have been operating for over two earth years. This paper will review aspects of how the MER project integrated PRA into the design and development process. A companion paper (Development of the Mars Exploration Rover PRA) will describe the MER PRA and design changes from those results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Conference on Probabilistic Safety Assessment and Management; May 15, 2006 - May 19, 2006; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: A viewgraph presentation on the Titan Montgolfiere balloon mission is shown. The topics include: 1) Science; 2) Operational Scenario; 3) Mission Architecture; 4) Aerial Vehicle; and 5) Summary
    Keywords: Lunar and Planetary Science and Exploration
    Type: Outer Planets Assesment Group Meeting; May 04, 2006 - May 05, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-07-13
    Description: A viewgraph presentation on Deep Space Navigation, and Entry, Decent, and Landing (EDL) for Mars Exploration Rovers is shown. The contents include: 1) JPL Spacecraft Operating across the Solar System; 2) 2003 - 2004: The Busiest Period in JPL's History; 3) Deep Space Navigation Will Enable Many of the New NASA Missions; 4) What Exactly is Navigation vs. GNC for Deep Space?; 5) Cruise and Approach: Why is Deep Space Navigation So Difficult?; 6) Project Importance of GNC: Landing Site Selection; 7) Planetary Communications and Tracking; 8) Tracking Data Types; 9) Delta Differential One-Way Range (deltaDOR); 10) All Solutions Leading up to TCM-4 Design; 11) Entry Flight Path Sensitivities; 12) MER Navigation Results; 13) Atmospheric Entry Targeting and Delivery; 14) Landing Ellipse Orientation; 15) MER Landing Site Trade Example; 16) Entry, Descent and Landing: Entry Guidance or What Things Do We NOT do for MER Landings (but we will later...); 17) Entering Martian Space 8:29 p.m. PST (ERT); 18) Entry, Descent and Landing; 19) Entry, Descent and Landing: Terminal Guidance; 20) The Challenge Going from 12,000 mph to Zero in Less Than Six Minutes; 21) Spirit Landing Location; 22) Entry, Descent and Landing: The Future; 23) Powered Descent Time-Line; and 24) Updated Sky Crane Maneuver Description. A short summary is also given on planetary guidance, navigation and control as it pertains to EDL systems
    Keywords: Lunar and Planetary Science and Exploration
    Type: Interplanetary Spacecraft Mission Seminar; Jun 21, 2006 - Jun 23, 2006; Daejon; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A viewgraph presentation on the diapir-induced reorientation of Enceladus is shown. The contents include: 1) Activity on Enceladus; 2) Miranda's Coronae: Origin above Diapirs; 3) Reorientation of Miranda; 4) Planetary Reorientation; 5) Modeling Diapir-Induced Reorientation; 6) Diapir-Induced Reorientation: Results; 7) Tectonic Implications of Reorientation; 8) Additional Tests of Reorientation; 9) Diapir-Induced Reorientation of Enceladus: Conclusions; and 10) Diapir-Induced Reorientation: Future Work
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary Science: Challenges and Discoveries; May 29, 2006 - Jun 02, 2006; Blios; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the known and possible geologic processes of Europa. It shows slides of Europa, with different terrains (ridged plains and molten plains), and a possible view of the interior. Europa's eccentric orbit is reviewed. The presentation also reviews Europa's composition. The possible reasons for Europa's geology are reviewed. Also the possiblity that life exists on Europa is raised. The planned Europa Geophysical Explorer mission is also reviewed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary Science: Challenges and Discoveries; May 29, 2006 - Jun 02, 2006; Blios; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-13
    Description: Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near Sun pointing. This will result in an increase in the scattered background light flux, often contributing to degraded link performance. The varying duration of near Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, impact of near Sun pointing on spaceborne optical transceivers is discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-07-13
    Description: A viewgraph presentation on the technology status and plans for Terrestrial Planet Finder Interferometer is shown. The topics include: 1) The Navigator Program; 2) TPF-I Project Overview; 3) Project Organization; 4) Technology Plan for TPF-I; 5) TPF-I Testbeds; 6) Nulling Error Budget; 7) Nulling Testbeds; 8) Nulling Requirements; 9) Achromatic Nulling Testbed; 10) Single Mode Spatial Filter Technology; 11) Adaptive Nuller Testbed; 12) TPF-I: Planet Detection Testbed (PDT); 13) Planet Detection Testbed Phase Modulation Experiment; and 14) Formation Control Testbed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SPIE Astronomical Telescopes and Instrumentation; May 24, 2006 - May 31, 2006; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-13
    Description: The development of surface technologies for NASA's human and robotic lunar program beyond 2010 has begun. The multitude of projects underway and future ones will soon rely on the availability of lunar regolith simulant materials chosen to simulate the characteristics of lunar regoliths in order to design, test and qualify prototype hardware and flight equipment. The selection and development of standard lunar regolith simulants (SLRS) for the use of NASA technology programs was one of the main recommendations of the 2005 Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The realization of that objective is now underway through the NASA simulant development program at the Marshall Space Flight Center. The approach adopted to define materials requirements for standard simulants of regolith from the Highlands regions of the Moon will be presented along with a discussion of limitations inherent to such an endeavor.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary and Terrestrial Mining Sciences Symposium; Jun 04, 2006 - Jun 07, 2006; Sudbury, Ont.; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-13
    Description: Significant challenges and logistical issues exist for the development of standardized lunar regolith simulant (SLRS) materials for use in the development and testing of flight hardware for upcoming NASA lunar missions. A production program at Marshall Space Flight Center (MSFC) for the deployment of lunar mare basalt simulant JSC-lA is underway. Root simulants have been proposed for the development of a low-T mare basalt simulant and a high-Ca highland anorthosite simulant, as part of a framework of simulant development outlined in the 2005 Lunar Regolith Simulant Materials Workshop held at MSFC. Many of the recommendation for production and standardization of simulants have already been documented by the MSFC team. But there are a number of unanswered questions related to geology which need ta be addressed prior to the creation of the simulants.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary and Terrestrial Mining Sciences Symposium, Sudbury, Ont., Canada, June 4-7, 2006; Jun 04, 2006 - Jun 07, 2006; Sudbury, Ont.; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the estimates and modeling for S-band Lunar radar backscatter. By way of basic review it shows the average lunar radar behavior, the average lunar radar cross-section at 3.8-cm, 23-cm and 68-cm wavelengths. It also reviews the equations for estimating 13 cm scattering from 3.8 and 23 cm data. Charts show the inferred 13-cm average scattering derived from interpolation of the 1960's observations and the modeled 13-cm average scattering. It also reviews the scattering differences: between linear polarizations from slopes from roughness.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Chandrayan Mini-RF Science Team Meeting, Applied Physics Laboratory; Jul 17, 2006; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-13
    Description: In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling 〉 300 million miles over a 6-7 month period. In order to operate for extended duration (〉9 months), both Rovers are equipped with rechargeable Lithium-ion batteries, which have enabled operation for over 854 and 834 Sols of operation, respectively, to date. Given that the batteries were required to support the mission for 90 Sols of operation by design, it is significant that the batteries have demonstrated over a nine fold increase in life over mission objectives. In addition to supporting the surface operations in conjunction with a triple-junction deployable solar arrays, the batteries were designed to aid in the launch and the EDL pyros, and allow for anomalies during cruise. In summary, the requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20 C to +30 C), withstand long storage periods (e.g., cruise period), operate in an inverted orientation, and support high current pulses (e.g., firing pyro events). In order to determine the viability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit (RBAU), consisting of two 8-cell 10 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The testing includes, (a) performing initial characterization tests (discharge capacity at different temperatures), (b) simulating the launch conditions, (c) simulating the cruise phase conditions (including trajectory correction maneuvers), (d) simulating the entry, decent, and landing (EDL) pulse load profile (required to support the pyros) (e) simulating the Mars surface operation mission simulation conditions, as well as, (f) assessing capacity loss and impedance characteristics as a function of temperature and life. This paper provides further detail to previously reported results1 of the RBAU testing program, especially with regard to the life characteristics. To date, the lithium-ion batteries (fabricated by Lithion/Yardney, Inc.) have been demonstrated to far exceed the requirements defined by the mission, both on Mars and on the ground, and are projected to support an extended mission (〉 4 years).
    Keywords: Lunar and Planetary Science and Exploration
    Type: 4th International Energy Conversion Engineering Conference; Jun 26, 2006 - Jun 29, 2006; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-13
    Description: START is a tool to optimize research and development primarily for NASA missions. It was developed within the Strategic Systems Technology Program Office, a division of the Office of the Chief Technologist at NASA's Jet Propulsion Laboratory. START is capable of quantifying and comparing the risks, costs, and potential returns of technologies that are candidates for funding. START can be enormously helpful both in selecting technologies for development -- within the constraints of budget, schedule, and other resources -- and in monitoring their progress. START's methods are applicable to everything from individual tasks to multiple projects comprising entire programs of investigation. They can address virtually any technology assessment and capability prioritization issue. In this report, START is used to analyze the capability needs using data from NASA's Exploration Systems Architecture Study (ESAS).
    Keywords: Lunar and Planetary Science and Exploration
    Type: 16th Annual International Symposium of the International Council on Systems Engineering, Orlando, Florida, July 09, 2006; Jul 09, 2006; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-13
    Description: A concept for development of second generation 10 MWe prototype lunar power plant utilizing a gas cooled fission reactor supplying heated helium working fluid to two parallel 5 MWe closed cycle gas turbines is presented. Such a power system is expected to supply the energy needs for an initial lunar colony with a crew of up to 50 persons engaged in mining and manufacturing activities. System performance and mass details were generated by an author developed code (BRMAPS). The proposed pilot power plant can be a model for future plants of the same capacity that could be tied to an evolutionary lunar power grid.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2006-214658 , E-15789 , AIAA Paper 2006-4117 , Fourth International Energy Conversion Engineering Conference and Exhibit (IECES); Jun 26, 2006 - Jun 29, 2006; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-13
    Description: The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other elements. The technology assessment process was developed and implemented by SACD as the ESAS architecture was refined. SACD implemented a rigorous and objective process which included (a) establishing architectural functional needs, (b) collection, synthesis and mapping of technology data, and (c) performing an objective decision analysis resulting in technology development investment recommendations. The investment recommendation provided budget, schedule, and center/program allocations to develop required technologies for the exploration architecture, as well as the identification of other investment opportunities to maximize performance and flexibility while minimizing cost and risk. A summary of the trades performed and methods utilized by SACD for the Exploration Systems Mission Directorate (ESAS) activity is presented along with how SACD is currently supporting the implementation of the Vision for Space Exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper 2006-7030 , 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; Sep 06, 2006 - Sep 08, 2006; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-07-13
    Description: The flight of Apollo 11 was the end of a decade-long race to reach the moon, a race between the US and Soviet Union, but also a race with time, for we as a nation only had the 1960s to reach our objective. Most of us remember that particular day, July 20, 1969, but the further we are from any date the harder it is to recall details. It s easy to forget, for instance, how close together the Apollo flights came to each other as the lunar flight date approached. Apollo 7 circled Earth for almost 11 days testing the systems of the spacecraft in October 1968; Apollo 8 gave us the first glimpse of our entire planet while circling the moon during Christmas of 1968. Apollo 9 lifted off on March 3 of 1969, and Apollo 10 returned to Earth on May 26 of that year. Less than two months later, on 16 July, Apollo 11 lifted off on its mission of landing on the moon. That s five Apollo launches in ten months, three of which went to the moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Space Conference 2006; Sep 17, 2006 - Sep 21, 2006; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Before returning humans to the Moon for mankind s seventh lunar landing, NASA will embark upon a series of robotic missions with International partnership, executed within the construct of an integrated program, designed specifically to prepare the way for this further human exploration. The Lunar Precursors Robotic Exploration Program (LPRP) will acquire knowledge about the moon and its environment, as well as to develop operational experience and infrastructure, all needed to bring about sustained human exploration in the lunar environment. This paper presents an overview of the program in its early stages, a review of the currently planned missions, highlights of several of the program s important features and objectives, and a discussion of the challenges faced as we move forward to prepare for a return of people to the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IAU XXVI General Assembly; Aug 16, 2006 - Aug 23, 2006; Prague; Czech Republic
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-13
    Description: A new project within the Exploration Systems Mission Directorate s Technology Development Program at NASA involves development of lightweight structures and low temperature mechanisms for Lunar and Mars missions. The Structures and Mechanisms project is to develop advanced structure technology for the primary structure of various pressurized elements needed to implement the Vision for Space Exploration. The goals are to significantly enhance structural systems for man-rated pressurized structures by 1) lowering mass and/or improving efficient volume for reduced launch costs, 2) improving performance to reduce risk and extend life, and 3) improving manufacturing and processing to reduce costs. The targeted application of the technology is to provide for the primary structure of the pressurized elements of the lunar lander for both sortie and outpost missions, and surface habitats for the outpost missions. The paper presents concepts for habitats that support six month (and longer) lunar outpost missions. Both rigid and flexible habitat wall systems are discussed. The challenges of achieving a multi-functional habitat that provides micro-meteoroid, radiation, and thermal protection for explorers are identified.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper 2006-7338 , Space 2006 Conference and Exposition; Sep 18, 2006 - Sep 21, 2006; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-13
    Description: A numerical model of the thermal history of Martian ground ice at the approximate location of the planned Phoenix landing site has been developed and used to identify instances of relatively warm ground ice over the last 10 Ma. Many terrestrial organisms are adapted to life at or below the freezing temperature of water, and we will use the approximate doubling time of terrestrial microbial populations as a function of temperature, is used as a metric against which to assess the "habitability" of Martian ground ice.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Fourth Mars Polar Science Conference; Oct 02, 2006 - Oct 06, 2006; Davos; Switzerland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The Hadean Earth is widely and enduringly pictured as a world of exuberant volcanism, exploding meteors, huge craters, infernal heat, and billowing sulfurous steams; i.e., a world of fire and brimstone punctuated with blows to the head. In the background the Moon looms gigantic in the sky. The popular image has given it a name that celebrates our mythic roots. A hot early Earth is an inevitable consequence of accretion. The Moon-forming impact ensured that Earth as we know it emerged from a fog of silicate vapor. The impact separated the volatiles from the silicates. It took approx. 100 years to condense and rain out the bulk of the vaporized silicates, although relatively volatile elements may have remained present in the atmosphere throughout the magma ocena stage. The magma ocean lasted approx. 2 Myr, its lifetime prolonged by tidal heating and thermal blanketing by a thick CO2-rich steam atmosphere. Water oceans condensed quickly after the mantle solidified, but for some 10-100 Myr the surface would have stayed warm (approx. 500 K) until the CO2 was removed into the mantle. Thereafter the faint young Sun suggests that a lifeless Earth would always have been evolving toward a bitterly cold ice world, but the cooling trend was fiequently interrupted by volcanic or impact induced thaws. A cartoon history of water, temperature, and carbon dioxide in the aftermath of the moon-formining-impact is shown. How long it stays hot depends on how long it takes to scrub the C02 out of the atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 Goldschmidt Conference; Aug 23, 2006 - Sep 03, 2006; Melbourne; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-13
    Description: CO2 is present on the surface of many Solar System objects, but not always as a segregated, pure ice. In pure CO2-ice, the fundamental absorption is located near 4.268 micron (2343.3 wavenumbers). However, on several objects, the CO2 fundamental is shifted to higher frequency. This shift may be produced by CO2 gas trapped in another material, or adsorbed onto minerals. We have seen that a mixture of H2O, CH3OH4 and CO2 forms a type II clathrate when heated to 125 K and produces a CO2 fundamental near 4.26 micron. The exact location of the feature is strongly dependent on the initial ratio of the three components. We are currently exploring various starting ratios relevant to the Solar System to determine the minimum amount of CH3OH needed to convert all of the CO2 to the clathrate, i.e. eliminate the splitting of the CO2 fundamental. We are testing the stability of the clathrate to thermal processing and UV photolysis, and documenting the changes seen in the spectra in the wavelength range from 1-5 micron. We acknowledge financial support from the Origins of Solar Systems Program, the Planetary Geology and Geophysics and the NASA Postdoctoral Program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Division of Planetary Science Meeting; Oct 08, 2006 - Oct 13, 2006; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-13
    Description: Saturn remains of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum (STAIF-2006); Feb 12, 2006 - Feb 16, 2006; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-13
    Description: The Alpha-Particle-X-ray Spectrometer (APXS) is part of the in situ payload of the Mars Exploration Rovers. It has determined the chemical composition of soils and rocks along the nearly 6 km long traverse of the rover Spirit. The measuring method a combination of PIXE and XRF using Cm244 sources - allowed the unambiguous identification of elemental compositions with high precision. Besides sample triage and quantification of saltforming elements as indicators for aqueous alteration, the APXS also delivered important constraints to mineralogy intruments (i.e., Mossbauer (MB), MiniTES, Pancam) on minerals and rock types. The mineralogy instruments on the other hand provided constraints on minerals used for APXS normative calculations and, e.g. allowed the attribution of S to sulfate, instead of sulfide or elemental sulfur. This abstract gives an updated overview of the data obtained up to our current rover position on sol 720 at the eastern base of the Columbia Hills. We will emphasize elemental correlations that imply the presence of certain minerals that can not be identified by the MER mineralogy instruments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 37th Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-13
    Description: The Mars Exploration Rover (MER) Spirit landed on the plains of Gusev Crater on 4 January 2004 [1]. The scientific objective of the Moessbauer (MB) spectrometer on Spirit is to provide quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. The speciation and distribution of Fe in Martian rock and soil constrains the primary rock types, redox conditions under which primary minerals crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering.We discuss the Fe-bearing phases detected by Spirit s MB instrument during its first 540 sols of exploration [2,3]. Spirit roved eastward across the plains from its landing site to the Columbia Hills during the first approx.150 sols. Rocks are unweathered to weakly weathered olivine basalt, with olivine, pyroxene (Ol 〉 Px), magnetite (Mt), and minor hematite (Hm) and nanophase ferric oxide (npOx) as their primary Fe-bearing minerals. Soils are generally similar basaltic materials, except that the proportion of npOx is much higher (up to approx.40%). NpOx is an oct-Fe3+ alteration product whose concentration is highest in fine-grained soils and lowest in rock interiors exposed by grinding with the Rock Abrasion Tool (RAT). Spirit explored the lower slopes of the Columbia Hills (West Spur) during sols approx.150-320. West Spur rocks are highly altered, even for interior surfaces exposed by grinding (Fe3+/FeT approx.0.56-0.84). High concentrations of npOx, Hm, and Mt are present. One rock (Clovis) contains significant quantities of goethite (alpha-FeOOH; approx.40% of total Fe). The detection of goethite is very significant because it is a mineralogical marker for aqueous alteration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 36th COSPAR Scientific Assembly; Jul 14, 2006 - Jul 25, 2006; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-13
    Description: Nakhlites are olivine-bearing clinopyroxenites with cumulate textures, and probably came from Mars [e.g., 1]. A total of seven nakhlites have been identified so far. Unlike other martian meteorites (e.g., shergottites), nakhlites have been only moderately shocked and their original igneous textures are still well-preserved. Also, these meteorites have similarly older crystallization ages of approx.1.3 Ga compared to shergottites with ages of approx.0.18-0.57 Ga [e.g., 2]. MIL 03346 is characterized by abundant (approx.20 vol %) glassy mesostasis, indicating that it cooled rapidly and probably formed near the top [3] or at the bottom [4] of the chilled margin of a thick intrusive body. The mesostasis quenched from the trapped intercumulus liquid may provide information on the parent magma compositions of the nakhlites. In this report, we present Rb-Sr and Sm-Nd isotopic data for MIL 03346, discuss correlation of its age with those of other nakhlites and the nature of their source regions in the Martian mantle.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2006 - Mar 17, 2006; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-13
    Description: Vision for Exploration includes "use of lunar resources to support sustained human space exploration". In a favorable orbit, dark sky could be a valuable resource. Spitzer Space Telescope dewar shell maintained at 35 K. Lunar orbit is favorable. Design of radiator to specific lunar environment. A large patch of lunar sky is permanently dark. Radiator provides reliable and un-interrupted cooling. Applications include: a) Zero-boil-off cryogen storage; b) Separation of lunar volatiles for resource utilization; c) Purify oxygen for astronauts; and d) Scrub air for habitation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Habitation; Feb 05, 2006 - Feb 08, 2006; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-13
    Description: Shortly after landing on Mars, post-flight analysis of the "Spirit" entry data suggested that the vehicle experienced large, anomalistic oscillations in angle-of-attack starting at about M=6. Similar analysis for "Opportunity " found even larger oscillations starting immediately after maximum dynamic pressure at M=14. Where angles-of-attack of 1-2 degrees were expected from maximum dynamic pressure to drogue deployment, the reconstructions suggested 4 to 9 degrees. The next Mars lander, 2007 Phoenix project, was concerned enough to recommend further exploration of the anomalies. Detailed analysis of "Opportunity" data found significant anomalies in the hypersonic aerodynamic torques. The analysis showed that these torques were essentially fixed in the spinning vehicle. Nearly a year after landing, the "Oportunity" rover took pictures of its aeroshell on the surface, which showed that portions of the aeroshell thermal blanket assembly still remained. This blanket assembly was supposed to burn off very early in the entry. An analysis of the aeroshell photographs led to an estimate of the aerodynamic torques that the remnants could have produced. A comparison of two estimates of the aerodynamic torque perturbations (one extracted from telemetry data and the other from Mars surface photographs) showed exceptional agreement. Trajectory simulations using a simple data derived torque perturbation model provided rigid body motions similar to that observed during the "Opportunity" entry. Therefore, the case of the anomalistic attitude behavior for the "Opportunity" EDL is now considered closed and a suggestion is put forth that a similar event occurred for the "Spirit" entry as well.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AAS 06-087 , 29th Annual AAS Guidance and Control Conference; Feb 04, 2006 - Feb 08, 2006; Breckenridge, Co; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-07-13
    Description: Models and simulations (M&S) are critical resources in the exploration of space. They support program management, systems engineering, integration, analysis, test, and operations by providing critical information that supports key analyses and decisions (technical, cost and schedule). Consequently, there is a clear need to establish a solid understanding of M&S strengths and weaknesses, and the bounds within which they can credibly support decision making. In this presentation we will describe how development of simulation capability documentation will be used to form a Basis of Confidence (Basis of Confidence) for National Aeronautics and Space Administration (NASA) M&S. The process by which BOC documentation is developed will be addressed, as well as the structure and critical concepts that are essential for establishing credibility of NASA's Exploration Systems Mission Directorate (ESMD) legacy M&S. We will illustrate the significance of BOC documentation in supporting decision makers and Accreditation Authorities in M&S risk management.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 Spring Sim/Simulation Interoperability Standards Organization and the Society for Modeling and Simulation International; Apr 02, 2006 - Apr 07, 2006; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-13
    Description: This document reports the findings of the Mars Science and Telecommunications Orbiter (MSTO) Science Advocacy Group (SAG), which was convened by the Mars Exploration Program Analysis Group (MEPAG) and the Mars Exploration Office at JPL to identify and prioritize areas of Mars atmospheric and surface science objectives for Mars that can be accomplished from orbit on a MSTO like mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 15th Mars Exploration Program Analysis Group (MEPAG); Apr 19, 2006 - Apr 20, 2006; Monrovia, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third Annual Meeting of the Asia--Oceania Geosciences Society; Jul 10, 2006 - Jul 14, 2006; Singapore
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-13
    Description: This paper discusses the process and results of technology assessment in support of the United States Vision for Space Exploration of the Moon, Mars and Beyond. The paper begins by reviewing the Presidential Vision: a major endeavor in building systems of systems. It discusses why we wish to return to the Moon, and the exploration architecture for getting there safely, sustaining a presence, and safely returning. Next, a methodology for optimal technology investment is proposed with discussion of inputs including a capability hierarchy, mission importance weightings, available resource profiles as a function of time, likelihoods of development success, and an objective function. A temporal optimization formulation is offered, and the investment recommendations presented along with sensitivity analyses. Key questions addressed are sensitivity of budget allocations to cost uncertainties, reduction in available budget levels, and shifting funding within constraints imposed by mission timeline.
    Keywords: Lunar and Planetary Science and Exploration
    Type: World Automation Congress, Budapest, Hungary, July 24, 2006; Jul 24, 2006; Budapest; Hungary
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-13
    Description: A viewgraph presentation of the unusual radar backscatter properties along the Northern Rim of Imbrium Basin is shown. The contents include: 1) Visual and Infrared Observations of Moon; 2) Radar Observations of Moon; 3) Lunar Orbiter Photographs Geologic Setting; 4) 70-cm Radar Data; 5) .70-cm Radar Dark Halo Craters; 6) 3.8-cm Radar Data; 7) 7.5-m Radar Data; 8) 70cm, 3.8 cm and 7.5-m Radar Data; 9) Optical and Infrared Data; 10) Plato Rilles; 11) Isopachs of Crater Ejecta; 12) Plato-like Craters; 13) Observation Summary; 14) Interpretation Matrix; 15) Dark Halo Diameters vs. Crater Size; and 16) Radar Geologic Column.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 2007 - Mar 17, 2007; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-13
    Description: We are developing technologies to increase the autonomous capabilities of future rover missions. Our objectives are to make rovers easier to command and to enable them to make more effective use of rover resources when problems arise or when things go better than expected. We will demonstrate OASIS (Onboard Analysis Science Investigation System) which combined planning and scheduling techniques with machine learning to enable rovers to perform robust and opportunistic science operations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Conference on Automated Planning and Scheduling; Jun 06, 2006 - Jun 10, 2006; English Lake District; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Purdue University Student Colloquium (12/7/06) and IN Advanced Aerospace Manufacturing Alliance (12/8/06}; Dec 07, 2006 - Dec 08, 2006; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019-07-13
    Description: The premise of the design of operations for the Mars Exploration Rovers (MER) is that the vehicles will drive each day. As a result, they will encounter some aspect of the terrain environment that cannot be anticipated or otherwise accommodated by the sequences linked onboard that day. The operations team then must correct the problem by planning then commanding the execution of a different drive the next day. Often other aspects of the operation on the surface of Mars: environmental changes, component degradation, errors in sequence design or execution, etc., lead to anomalies which must be addressed before normal operations can resume. The operational design that makes it possible to recover from a driving error each day also reduces the time needed to recover from anomalies. As an example of the efficiency achieved, less than 5% (about 30 sols out of 700 sols of operations) of the time on the surface has been devoted to recovery from anomalies for each vehicle. In this paper the major anomalies experienced by the MER rovers will be recounted and the streamlined approaches to addressing these problems described. The operational flexibility developed for these missions is also a function of the system design that anticipated a number of likely faults and conditions arising from uncertainty in sequence execution and environmental change. This design will be described as well as the considerations in operation that motivated this design. These considerations will likely be present in any future surface mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA SpaceOps Conference; Jun 19, 2006 - Jun 24, 2006; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2019-07-13
    Description: The Phoenix Mars Scout Lander will launch in August 2007 and land on the northern plains of Mars in May of 2008. In a departure from traditional planetary surface mission operations, it will have no direct-to-Earth communications capability and will rely entirely on Mars-orbiting relays in order to facilitate command and control as well as the return of science and engineering data. The Mars Exploration Rover missions have demonstrated the robust data-return capability using this architecture, and also have demonstrated the capability of using this method for command and control. The Phoenix mission will take the next step and incorporate this as the sole communications link. Operations for 90 Sols will need to work within the constraints of Odyssey and Mars Reconnaissance Orbiter communications availability, anomalies must be diagnosed and responded to through an intermediary and on-board fault responses must be tolerant to loss of a relay. These and other issues pose interesting challenges and changes in paradigm for traditional space operations and spacecraft architecture, and the approach proposed for the Phoenix mission is detailed herein.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA 9th International Conference on Spacecraft Operations (SpaceOps; Jun 19, 2006 - Jun 24, 2006; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-13
    Description: The Mars Reconnaissance Orbiter (MRO), launched on August 12, 2005, carries six science instruments, each with unique requirements for repetitive global monitoring, regional or global survey mapping, and/or targeted observations of Mars. Some prefer nadir-only observations, while other instruments require many off-nadir observations (especially for stereo viewing). Because the operations requirements are often incompatible, an interactive science planning process has been developed. This process is more complex than in some recent NASA Mars missions, but less complex (and more repetitive) than processes used by many large planetary missions. It takes full advantage of MRO's novel onboard processing capabilities, and uses simple electronic interactions between geographically distributed teams. This paper describes the process used during MRO's Primary Science Phase (PSP) to plan both interactive and non-interactive observations of Mars, and what has already been learned in the tests and rehearsals preparing for PSP.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA 9th International Conference on Space Operations (SpaceOps; Jun 19, 2006 - Jun 24, 2006; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-07-13
    Description: A viewgraph presentation describing in situ instruments for NASA missions is shown. The topics include: 1) In Situ Instrumentation; 2) Planetary Extremes; 3) Mars Surface Environment; 4) Lunar Precursor Mission Environment; 5) Europa Surface Analogue; 6) Other Parameters; 7) Space In Situ Instrumentation still in its Infancy; 8) Needed Capabilities For In Situ Science; 9) Framework For Putting The Pieces Together; 10) The Wild World of Astrobiology; 11) Timeline; 12) Example: MOD; 13) In Situ Sample Analysis Laboratories are more complex; 14) technologies In Situ Sample Analysis Requires Integration of Many Emerging Advanced Concepts; 15) Supporting technologies for In Situ Laboratories; 16) Micro-laboratory example; 17) In Situ Instrument Classes; and 18) Key for Analytical Instrument:Sample Preparation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 6th Annual NASA Earth Science Technology Conference (ESCTC 2006); Jun 27, 2006 - Jun 28, 2006; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the thermal performance of the Mars Exploration Rovers. The Mars Exploration Rover (MER) project landed two identical roving science vehicles on Mars in January 2004; they have continued to perform geological science data collection well beyond their surface design lifetime of 90 sols. The design of the thermal system is described. Pictures from the rovers are also included,
    Keywords: Lunar and Planetary Science and Exploration
    Type: 36th International Conference on Environmental Systems Society of Automotive Engineers; Jul 16, 2006 - Jul 20, 2006; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-13
    Description: This viewgraph presentation focuses on the results of the more recent and detailed Europa Explorer (EE) study. Based on the Europa Geophysical Explorer (EGE) the EE Study was more detailed and reached a modified design point, it re-affirmed all the conclusions reached during the EGE Study. The presentation reviews some of the important considerations of the study, including the trajectory design with earth gravity assists, the radiation considerations, the desired instruments for studying Europa, the total mass available, a conceptual illustration of the spacecraft. The attitude, propulsion and thermal control issues are also addressed. The data communications issues are reviewed. The expectations from the mission are summarized in the conclusion. These include a 90 day operational period, that is likely to continue for over a year; that EE would produce 1000 more observations than the Galileo mission; that EE would carry over 200 kg of instrumentation (including shielding); that EE would return over 21 Gigabits of data per Earth day; there would be about 340kg of unused mass, which could be used for more instrumentation, or a lander; and that this would be designed with currently available technology.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This viewgraph presentation on enabling space science and exploration covers the following topics: 1) Today s Deep Space Network; 2) Next Generation Deep Space Network; 3) Needed technologies; 4) Mission IT and networking; and 5) Multi-mission operations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL''s 8th Briefing for Industry, Pasadena, California, April 18, 2006; Apr 18, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-07-13
    Description: The United States has successfully landed five robotic systems on the surface of Mars. These systems all had landed mass below 0.6 metric tons (t), had landed footprints on the order of hundreds of km and landed at sites below -1.4 km MOLA elevation due the need to perform entry, descent and landing operations in an environment with sufficient atmospheric density. At present, robotic exploration systems engineers are struggling with the challenges of increasing landed mass capability to 0.8 t while improving landed accuracy to tens of km and landing at a site as high as +2 km MOLA elevation for the Mars Science Laboratory project. Meanwhile, current plans for human exploration of Mars call for the landing of 40-80 t surface elements at scientifically interesting locations within close proximity (tens of m) of pre-positioned robotic assets. This paper summarizes past successful entry, descent and landing systems and approaches being developed by the robotic Mars exploration program to increased landed performance (mass, accuracy and surface elevation). In addition, the entry, descent and landing sequence for a human exploration system will be reviewed, highlighting the technology and systems advances required.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference, Big Sky, Montana, March 4-11, 2006; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-07-13
    Description: Chondritic clast PV1 from the Plainview H-chondrite regolith breccia is a subrounded, 5-mm diameter unequilibrated chondritic fragment that contains 13 wt% C occurring mainly within irregularly shaped 30-400-micron-size opaque patches. The clast formed from H3 chondrite material as indicated by the mean apparent chondrule diameter (310 micron vs. approximately 300 micron in H3 chondrites), the mean Mg-normalized refractory lithophile abundance ratio (1.00 +/- 0.09 XH), the previously determined 0-isotopic composition (Delta O-17 = 0.66% vs. 0.68 +/- 0.04%0 in H3 chondrites and 0.73 +/- 0.09% in H4-6 chondrites), the heterogeneous olivine compositions in grain cores (with a minimum range of Fal-19), and the presence of glass in some chondrules. Although the clast lacks the fine-grained, ferroan silicate matrix material present in type 3 ordinary chondrites, PV1 contains objects that appear to be recrystallized clumps of matrix material. Similarly, the apparent dearth of radial pyroxene and cryptocrystalline chondrules in PV1 is accounted for by the presence of some recrystallized fragments of these chondrule textural types. All of the chondrules in PV1 are interfused indicating that temperatures must have briefly reached approximately 1100C (the approximate solidus temperature of H-chondrite silicate). The most likely source of this heating was by an impact. Some metal was lost during impact heating as indicated by the moderately low abundance of metallic Fe-Ni in PV1 (approximately 14 wt%) compared to that in mean H chondrites (approximately 18 wt%). The carbon enrichment of the clast may have resulted from a second impact event, one involving a cometary projectile, possibly a Jupiter-family comet. As the clast cooled, it experienced hydrothermal alteration at low water/rock ratios as evidenced by the thick rims of ferroan olivine around low-FeO olivine cores. The C-rich chondritic clast was later incorporated into the H-chondrite parent-body regolith and extensively fractured and faulted.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 69; 3419-3430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-07-13
    Description: A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Early Planetary Differentiation; Dec 08, 2006 - Dec 10, 2006; Sonoma, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-07-13
    Description: Ureilites are the second largest achondrite group. They are ultramafic achondrites that have experienced igneous processing whilst retaining some degree of nebula-derived chemical heterogeneity. They differ from other achondrites in that they contain abundant carbon and their oxygen isotope compositions are very heterogeneous and similar to those of the carbonaceous chondrite anhydrous mineral line. Their carbonaceous nature and some compositional characteristics indicative of nebular origin suggest that they are primitive materials that form a link between nebular processes and early periods of planetesimal accretion. However, despite numerous studies, the exact origin of ureilites remains unclear. Current opinion is that they represent the residual mantle of an asteroid that underwent silicate and Fe-Ni-S partial melting and melt removal. Recent studies of short-lived chronometers indicate that the parent asteroid of the ureilites differentiated very early in the history of the Solar System. Therefore, they contain important information about processes that formed small rocky planetesimals in the early Solar System. In effect, they form a bridge between nebula processes and differentiation in small planetesimals prior to accretion into larger planets and so a correct interpretation of ureilite petrogenesis is essential for understanding this critical step.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Early Planetary Differentiation; Dec 08, 2006 - Dec 10, 2006; Sonoma, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-07-13
    Description: Lunar samples returned from the Apollo program motivated development of the Bence-Albee algorithm for the rapid and accurate analysis of lunar materials, and established interlaboratory comparability through its common use. In the analysis of mineral and rock fragments it became necessary to combine micro- and macroscopic analysis by coupling electron-probe microanalysis (EPMA) with automated stage point counting. A coarse grid that included several thousand points was used, and initially wavelength-dispersive (WDS) and later energydispersive (EDS) data were acquired at discrete stage points using approx. 5 sec count times. A approx 50 micrometer beam diameter was used for WDS and up to 500 micrometer beam diameter for EDS analysis. Average analyses of discretely sampled phases were coupled with the point count data to calculate the bulk composition using matrix algebra. Use of a defocused beam resulted in a contribution from multiple phases to each analytical point, and the analytical data were deconvolved relative to end-member phase chemistry on the fly. Impressive agreement was obtained between WDS and EDS measurements as well as comparison with bulk chemistry obtained by other methods. In the 30 years since these methods were developed, significant improvements in EPMA automation and computer processing have taken place. Digital beam control allows routine collection of x-ray maps by EDS, and stage mapping for WDS is conducted continuously at slew speed and incrementally by sampling at discrete points. Digital pulse processing in EDS systems has significantly increased the throughput for EDS mapping, and the ongoing development of Si-drift detector systems promises mapping capabilities rivaling WDS systems. Spectrum imaging allows a data cube of EDS spectra to be acquired and sophisticated processing of the original data is possible using matrix algebra techniques. The study of lunar and meteoritic materials includes the need to conveniently: (1) Characterize the sample at microscopic and macroscopic scales with relatively high sensitivity, (2) Determine the modal abundance of minerals, and (3) Identify and relocate discrete features of interest in terms of size and chemistry. The coupled substitution of cations in minerals can result in significant variation in mineral chemistry, but at similar average Z, leading to poor backscattered-electron (BSE) contrast discrimination of mineralogy. It is necessary to discriminate phase chemistry at both the trace element level and the major element level. To date, the WDS of microprobe systems is preferred for mapping due to high throughput and the ability to obtain the necessary intensity to discriminate phases at both trace and major element concentrations. It is desirable to produce fully quantitative compositional maps of geological materials, which requires the acquisition of k-ratio maps that are background and dead-time corrected, and which have been corrected by phi(delta z〉 or an equivalent algorithm at each pixel. To date, turnkey systems do not allow the acquisition of k-ratio maps and the rigorous correction in this manner. X-ray maps of a chondrule from the Ourique meteorite, and a comb-layered xenolith from the San Francisco volcanic field, have been analyzed and processed to extract phase information. The Ourique meteorite presents a challenge due to relatively low BSE contrast, and has been studied using spectrum imaging. X-ray maps for Si, Mg, and FeK(alpha) were used to produce RGB images. The xenolith sample contains sector-zoned augite, olivine, plagioclase, and basaltic glass. X-ray maps were processed using Lispix and ImageJ software to produce mineral phase maps. The x-ray maps for Mg, Ca, and Ti were used with traceback to generate binary images that were converted to RGB images. These approaches are successful in discriminating phases, but it is desirable to achieve the methods that were used on lunar samples 30 years ago on current microprobe systems. Curnt research includes x-ray mapping analysis of the Dalgety Downs chondrite by micro x-ray fluorescence and spectrum imaging, in collaboration with Kenny Witherspoon of IXRF Systems and Dale Newbury of NIST.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Microscopy and Microanalysis 2006 Meeting; Jul 30, 2006 - Aug 03, 2006; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-07-13
    Description: This presentation focuses strictly on science goals and strawman payload, trajectories, telecom/attenuation, atmospheric entry, descent and TPS issues, and communications.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 4th International Planetary Probe Workshop; Jun 27, 2006 - Jun 30, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Joint 2001 Mars Odyssey PSG and HEND Workshop, IKI,; May 22, 2006 - May 25, 2006; Moscow; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lecture to MIT Senior Capstone Design Class; Mar 15, 2006; Cambridge, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology Science Conference AbSciCon2006, Ronald Reagan Center; Mar 27, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-07-13
    Description: The Mars Telecommunications Orbiter (MTO) to be launched in 2009 will play a key role in the Mars Network since it will be the first interplanetary mission whose primary objective is to provide communications to existing and upcoming Mars missions, This paper presents a basic description of the primary mission an provides trajectory information for the Mars Telecommunication Orbiter.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AAS/AIAA Astrodynamics Specialists Conference; Jan 22, 2006 - Jan 26, 2006; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-07-13
    Description: This paper summarizes important milestones in a yearlong comprehensive effort which culminated in successful deployments of the MARSIS antenna booms in May and June of 2005. Experimentally measured straight section and hinge properties are incorporated into specialized modeling techniques that are used to simulate the boom lenticular joints. System level models are exercised to understand the boom deployment dynamics and spacecraft level implications. Discussion includes a comparison of ADAMS simulation results to measured flight data taken during the three boom deployments. Important parameters that govern lenticular joint behavior are outlined and a short summary of lessons learned and recommendations is included to better understand future applications of this technology.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials Conference; May 01, 2006 - May 04, 2006; Newport RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-13
    Description: This paper summarizes the resolution of an in flight anomaly that occurred during the deployment of the first of three MARSIS antenna booms. Characteristics of this deployment are described, along with a correlation to finite element models and measured spacecraft inertias, which allowed the intermediate state of the boom to be accurately determined. Based on this information, a spacecraft maneuver was performed that warmed the stalled hinge and led to the first boom successfully locking into its designed geometry. The confirmed partially deployed boom shape was then used to develop a thermal model of the stalled hinge both in its initial solar attitude and during the successful spacecraft maneuver. Results from the hinge thermal model and component level testing were evaluated in order to determine the root cause of the anomaly and the probability of its recurrence on subsequent deployments. These conclusions were then utilized in planning mitigating actions that were implemented during the remaining two boom deployments. Final flight data are presented for both dipole booms indicating a correctly deployed and healthy antenna. The monopole boom deployment was detected but the final state of the boom is unknown.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 47th AIAA Structures, Structural, and Materials Conference; May 01, 2006 - May 04, 2006; Newport RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-13
    Description: This paper will present a process for increasing the stiffness of harmonic gear assemblies and recommend a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Aerospace Mechanisms Symposium, Langley Research Center, Hampton, Virginia; May 17, 2006 - May 19, 2006
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019-07-13
    Description: The need for sufficient quantities of oxygen, water, and fuel resources to support a crew on the surface of Mars presents a critical logistical issue of whether to transport such resources from Earth or manufacture them on Mars. An approach based on the classical Wildcat Drilling Problem of Bayesian decision theory was applied to the problem of finding water in order to compute the expected value of precursor mission sample information. An implicit (required) probability of finding water on Mars was derived from the value of sample information using the expected mass savings of alternative precursor missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Western Decision Sciences Institute 35th Annual Meeting; Apr 11, 2006; Waikoloa, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: NASA's new vision to return humans to the Moon is the next practical step in expanding human habitation beyond Earth. As the Habitation 2006 Conference website states: 'new knowledge and new technologies are required.' Along with the development of new habitation systems, an important consideration is how to transport these heavy structures cheaply to the Moon? We propose the use of ultra-low-energy orbits in the Interplanetary Superhighway as an economical and effective means to deliver cargo to the Moon. This approach not only reduces the propulsion cost, but also provides enormous flexibility and robustness to the mission architecture.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Habitation 2006 Conference; Feb 05, 2006 - Feb 08, 2006; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL Advisory Council; Mar 09, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-13
    Description: This paper discusses how system validation challenges influenced the design of the EDL architecture and highlights how some of the remaining challenges will be addressed to assure a successful landing of this unprecedented rover on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-13
    Description: This document summarizes the technical challenges to planetary protection for these targets of interest and outlines some of the considerations, particularly at the system level, in designing an appropriate technology investment strategy for targets beyond Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-07-13
    Description: This paper will cover the mission design, progress made in the formulation phases, key system trades, future plans and challenges.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019-07-13
    Description: Future Mars missions may need the capability to land much closer to a desired target and/or advanced methods of detecting, avoiding, or tolerating landing hazards. Therefore, technologies that enable 'pinpoint landing' (within tens of meters to 1 km of a target site) will be crucial to meet future mission requirements. As part of NASA Research Announcement, NRA 03-OSS-01, NASA solicited proposals for technology development needs of missions to be launched to Mars during or after the 2009 launch opportunity. Six technology areas were identified as of high priority including advanced entry, descent, and landing (EDL) technologies. In May 2004, 11 proposals with PIs from universities, industries, and NASA centers, were awarded in the area of advanced EDL by NASA for further study and development. This paper presents an overview of these developing technologies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-13
    Description: Starting from approximately 150 candidate Martian landing sites, two distinct sites have been selected for further investigation by sophisticated rovers. The two rovers, named 'Spirit' and 'Opportunity', begin the surface mission respectively to Gusec Crater and Meridiani Planum in January 2004. the rovers are essentially robotic geologists, sent on a mission to research for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. Before this scientific search can commence, precise trajectory targeting and control is necessary to achieve the entry requirements for the selected landing sites within the constraints of the flight system. The maneuver design challenge is to meet or exceed these requirements while maintaining the necessary design flexibility to accommodate additional project concerns. Opportunities to improve performance and reduce risk based on trajectory control characteristics are also evaluated.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrodynamics Specialist Conference; Aug 16, 2006 - Aug 19, 2006; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Juno Project, Radiation Workshop Group Meeting, Teleconference; Mar 10, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: 35th Annual Ultrasonic Industry Association (UIA) Symposium; Mar 13, 2006 - Mar 14, 2006; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 06, 2006 - Mar 09, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-13
    Description: Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum; Feb 12, 2006 - Feb 16, 2006; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technologies and Applications International Forum (STAIF); Feb 12, 2005 - Feb 16, 2005; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technologies and Applications International Forum (STAIF); Feb 12, 2005 - Feb 16, 2005; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: MBARI Seminar: Making Tracks on Mars: Mission Operations for Deep Space; Jan 11, 2006; Moss Landing, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-07-13
    Description: The request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum; Feb 12, 2006 - Feb 16, 2006; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-13
    Description: Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum; Feb 12, 2006 - Feb 16, 2006; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-13
    Description: Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Venus Entry Probe Workshop; Jan 19, 2006 - Jan 20, 2006; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A science mission about Europa requires high-inclination low-altitude orbits. However, perturbations of Jupiter on the orbiter result in instability. Previous approaches to maximize the lifetime of the orbiter use the doubly averaged problem. We work with the unaveraged equations and find unstable periodic orbits with long lifetimes. These low-altitude repeat ground track solutions exist at all inclinations, making them suitable for mapping missions. The governing dynamics include Hill's model and a Europa gravity field based on synchronous moon theory. Inclusion of additional gravity terms is trivial to the solution method, and for the case of J3, we find a marginal impact on orbit lifetime. The science orbits are found to last on the order of 1 year when the initial conditions are achieved to 11 significant digits and 4 months when only 3 significant digits are achieved. Finally, we demonstrate that the solutions are robust in a realistic ephemeris model, finding average lifetimes of 3 to 4 months for wide range of initial conditions with peak lifetimes of up to 6 months.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 AAS/AIAA SpaceFlight Mechanics Meeting; Jan 22, 2006 - Jan 26, 2006; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-07-13
    Description: This paper investigates the sensitivity of the planned Jupiter Icy Moons Orbiter mission to variations in interplanetary injection date, magnitude, and direction, starting in a low-Earth assembly orbit. These results are used to determine the frequency and number of injection opportunities from a processing assembly obit. It is shown that the use of a low-thrust propulsion system with a nuclear-electric power source would allow the interplanetary trajectory performance to be relatively insensitive to variations in injection conditions. This result yields many injection opportunities due to the long injection period and consecutive orbits with favorable geometry.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 AAS/AIAA SpaceFlight Mechanics Meeting; Jan 22, 2006 - Jan 26, 2006; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This paper describes the issues and challenges related to the design of the rendezvous between the Earth Return Vehicle (ERV) and the Orbiting Sample (OS) for the Mars Sample Return (MSR) mission. In particular, attention will be focused on the strategy for 'optimizing' the intermediate segment of the rendezvous process, during which there are a great number of variables that must be considered and well understood.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 AAS/AIAA SpaceFlight Mechanics Meeting; Jan 22, 2006 - Jan 26, 2006; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: An overview of the design of a possible mission to three large moons of Jupiter (Callisto, Ganymede, and Europa) is presented. The potential Jupiter Icy Moons Orbiter (JIMO) mission uses ion thrusters powered by a nuclear reactor to transfer from Earth to Jupiter and enter a low-altitude science orbit around each of the moons. The combination of very limited control authority and significant multibody dynamics resulted in some aspects of the trajectory design being different than for any previous mission. The results of several key trades, innovative trajectory types and design processes, and remaining issues are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 AAS/AIAA SpaceFlight Mechanics Meeting; Jan 22, 2006 - Jan 26, 2006; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The proposed NASA Jupiter Icy Moons Orbiter (JIMO) mission would have used a single spacecraft to orbit Callisto, Ganymede, and Europa in succession. The enormous Delta-Velocity required for this mission (nearly [25 km/s]) would necessitate the use of very high efficiency electric propulsion. The trajectory created for the proposed baseline JIMO mission may be the most complex trajectory ever designed. This paper describes the current reference trajectory in detail and describes the processes that were used to construct it.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 AAS/AIAA SpaceFlight Mechanics Meeting; Jan 22, 2006 - Jan 26, 2006; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-13
    Description: Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Recent Advances in Engineering Mechanics, California State University; Jan 12, 2006; Fullerton, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-13
    Description: There are three primary drivers behind current investments in telecommunications information technology and navigation. One is finding ways to maximize the volume of science data returned from missions since i nstrument data generation often exceeds communication bandwidth. Another is to provide the necessary technology to enable networked spacecraft around Mars. The third driver is to enable more precise landing so in-situ vehicles can be placed in the more scientifically interesting regions. This paper describes the current NASA investments in these areas funded through the NASA Mars Technology Base Program NRA.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...