ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: Spacecraft Thermal Control Workshop; Mar 08, 2011 - Mar 10, 2011; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: A process has been examined for bonding a platinum resistance thermometer (PRT) onto potential aerospace materials such as flat aluminum surfaces and a flexible copper tube to simulate coaxial cables for flight applications. Primarily, PRTs were inserted into a silver-plated copper braid to avoid stresses on the sensor while the sensor was attached with the braid to the base material for long-duration, deep-space missions. A1-1145/graphite composite (planar substrate) and copper tube have been used in this study to assess the reliability of PRT bonding materials. A flexible copper tube was chosen to simulate the coaxial cable to attach PRTs. The substrate materials were cleaned with acetone wipes to remove oils and contaminants. Later, the surface was also cleaned with ethyl alcohol and was air-dried. The materials were gently abraded and then were cleaned again the same way as previously mentioned. Initially, shielded (silver plated copper braid) PRT (type X) test articles were fabricated and cleaned. The base antenna material was pretreated and shielded, and CV-2566 NuSil silicone was used to attach the shielded PRT to the base material. The test articles were cured at room temperature and humidity for seven days. The resistance of the PRTs was continuously monitored during the thermal cycling, and the test articles were inspected prior to, at various intermediate steps during, and at the end of the thermal cycling as well. All of the PRTs survived three times the expected mission life for the JUNO project. No adhesion problems were observed in the PRT sensor area, or under the shielded PRT. Furthermore, the PRT resistance accurately tracked the thermal cycling of the chamber.
    Keywords: Instrumentation and Photography
    Type: NPO-47682 , NASA Tech Briefs, October 2011; 5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better suited for the cooling of semiconductor devices.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47306 , NASA Tech Briefs, Februrary 2013; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NPO-47299 , NASA Tech Briefs, March 2013; 9-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2020-01-04
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-1298 , 2016 Spacecraft Thermal Control Workshop; Mar 22, 2016 - Mar 24, 2016; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2011 Spacecraft Thermal Control Workshop; Mar 08, 2011; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2005 Spacecraft Thermal Control Workshop; Mar 09, 2005 - Mar 11, 2005; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This paper covers the design, thermal testing and flight experiences with the computer-controlled thermostats on the propulsion line heaters. Flight experience revealed heater control behavior with propellant loaded into the system and during thruster firings that was not observable during system level testing. Explanations of flight behavior, lessons learned, and suggestions for improvement of the propellant line heater design are presented in this paper.
    Keywords: Mechanical Engineering
    Type: Rept-2004-01-2414 , 4th International Conference on Environmental Systems (ICES); Jul 10, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the thermal performance of the Mars Exploration Rovers. The Mars Exploration Rover (MER) project landed two identical roving science vehicles on Mars in January 2004; they have continued to perform geological science data collection well beyond their surface design lifetime of 90 sols. The design of the thermal system is described. Pictures from the rovers are also included,
    Keywords: Lunar and Planetary Science and Exploration
    Type: 36th International Conference on Environmental Systems Society of Automotive Engineers; Jul 16, 2006 - Jul 20, 2006; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: 14th Spacecraft Thermal Control Technology Workshop; Mar 11, 2003; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...