ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (329)
  • Instrumentation and Photography  (259)
  • Cell & Developmental Biology
  • General Chemistry
  • 2000-2004  (588)
  • 1995-1999
  • 2003  (588)
Collection
Years
  • 2000-2004  (588)
  • 1995-1999
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This paper presents viewgraphs on turbulence detection and mitigation technologies in weather accident prevention. The topics include: 1) Organization; 2) Scope of Turbulence Effort; 3) Background; 4) Turbulence Detection and Mitigation Program Metrics; 5) Approach; 6) Turbulence Team Relationships; 7) WBS Structure; 8) Deliverables; 9) TDAM Changes; 10) FY-01 Results/Accomplishments; 11) Out-year Plans; and 12) Element Status.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 73-90; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This paper presents the weather accident prevention project review during the period of June 5, through June 7, 2001. The topics include: 1) Background; 2) Guidance; 3) Plan; 4) System Elements; 5) AWIN System; 6) Market Segments; 7) Technology Development Level; 8) Aviation Safety Program Organization; 9) Partnerships; 10) NASA Facilities; 11) Timeline; 12) AWIN Research Areas; and 13) Cooperative Research with FAA. This paper is in viewgraph form.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 33-50; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: This viewgraph presentation provides information on three flight tests in which NASA Langley's ARIES B-757 research aircraft was intentionally piloted into areas with a high risk for severe atmospheric turbulence. During its encounter with turbulence, instruments aboard the aircraft monitored wind, temperature and acceleration, and onboard Doppler radar detected forward turbulence. Data was collected along a spectrum, from smooth air to severe turbulence.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 476-509; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This viewgraph presentation provides an overview of the turbulence JSIT program. Topics covered include: CAST process, intervention and project statistics, JSAT turbulence model, initial project subject candidates and project status.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 738-745; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-10-30
    Description: We describe a miniaturized suite of instruments which provides both bulk energy resolved plasma properties and coarse neutral mass spectroscopy suitable for measurements on the Jupiter Icy Moons Orbiter (JIMO). The suite is comprised of two instruments; the Miniaturized Electro-Static Analyzer (MESA), and the Flat Plasma Spectrometer (FLAPS), designed to measure the near earth environment on the Air Force Academy small satellite missions Falconsat-2 and 3.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 52; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-10-30
    Description: GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 27; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-10-30
    Description: Galileo in-situ dust measurements have shown that the Galilean moons are surrounded by tenuous dust clouds formed by collisional ejecta from their icy surfaces, kicked up by impacts of interplanetary micrometeoroids. The majority of the ejecta dust particles have been sensed at altitudes below five between 0.5 and 1 micron, just above the detector threshold, indicating a size distribution decreasing towards bigger particles. their parent bodies. They carry information about the properties of the surface from which they have been kicked up. In particular, these grains may carry organic compounds and other chemicals of biological relevance if they exist on the icy Galilean moons. In-situ analysis of the grain composition with a sophisticated dust analyzer instrument flying on a Jupiter Icy Moons Orbiter can provide important information about geochemical and geophysical processes during the evolutionary histories of these moons which are not accessible with other techniques from an orbiter spacecraft. Thus, spacecraft-based in-situ dust measurements can be used as a diagnostic tool for the analysis of the surface composition of the moons. This way, the in-situ measurements turn into a remote sensing technique by using the dust instrument like a telescope for surface investigation. An instrument capable of very high resolution composition analysis of dust particles is the Cometary Secondary Ion Mass Analyzer (COSIMA). The instrument was originally developed for the Comet Rendezvous and Asteroid Flyby (CRAF) mission and has now been built for ESA'S comet orbiter Rosetta. Dust particles are collected on a target and are later located by an optical microscope camera. A pulsed primary indium ion gun partially ionizes the dust grains. The generated secondary ions are accelerated in an electric field and travel through a reflectron-type time-of-flight ion mass spectrometer.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 41; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-10-30
    Description: The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 48; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-10-30
    Description: Electrodynamic effects play a significant, global role in the state and energization of the Earth's ionosphere/magnetosphere, but even more so on Jupiter, where the auroral energy input is four orders of magnitude greater than on Earth. The Jovian magnetosphere is distinguished from Earth's by its rapid rotation rate and contributions from satellite atmospheres and internal plasma sources. The electrodynamic effects of these factors have a key role in the state and energization of the ionosphere-corona- plasmasphere system of the planet and its interaction with Io and the icy satellites. Several large scale interacting processes determine conditions near the icy moons beginning with their tenuous atmospheres produced from sputtering, evaporative, and tectonic/volcanic sources, extending out to exospheres that merge with ions and neutrals in the Jovian magnetosphere. This dynamic environment is dependent on a complex network of magnetospheric currents that act on global scales. Field aligned currents connect the satellites and the middle and tail magnetospheric regions to the Jupiter's poles via flux tubes that produce as bright auroral and satellite footprint emissions in the upper atmosphere. This large scale transfer of mass, momentum, and energy (e.g. waves, currents) means that a combination of complementary diagnostics of the plasma, neutral, and and field network must be obtained near simultaneously to correctly interpret the results. This presentation discusses the applicability of UV spatial heterodyne spectroscopy (SHS) to the broad study of this system on scales from satellite surfaces to Jupiter's aurora and corona.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 29; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-10-30
    Description: The addition of a comprehensive wave investigation to the Jupiter Icy Moons Orbiter (JIMO) science payload will provide a broad range of information on the icy moons of Jupiter including the detection of subsurface liquid oceans; mapping of their ionospheres; their interaction with the magnetospheric environment; and on the Jovian magnetosphere. These measurements are obtained through the use of both passive and active (sounding) means over broad frequency ranges. The frequency range of interest extends from less than 1 Hz to 40 MHz for passive measurements, from approximately 1 kHz to a few MHz for magnetospheric and ionospheric sounding, and between 1 and approximately 10 MHz for subsurface radar sounding. An instrument to detect subsurface radar sounding, magnetospheric interactions, and ionospheric sounding is discussed.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 42; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-08-29
    Description: Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-29
    Description: In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-08-29
    Description: The National Center for Atmospheric Research (NCAR) regional climate model version 2 (RegCM2) is used to investigate the observed characteristics of intraseasonal oscillations over South America. Our study is mainly concentrated on an intraseaonal mode, which is observed to account for a large portion of the intraseasonal variation, to have a standing feature and to be independent of the MJO. The NCEPDOE AMIP-II reanalysis is utilized to provide initial and lateral boundary conditions for the RegCM2 based upon the OOZ, 062, 122 and 182 data.Our results indicate that the intraseasonal oscillation still exists with time- averaged lateral boundary condition, which prevents the MJO and other outside disturbances from entering the model's domain, suggesting a locally forced oscillation responsible for ths intraseasonal mode independent of the MJO. Further experiments show that the annual and daily variabilities and a radiative-convective interaction are not essential to the locally forced intraseasonal oscillation. The intraseasonal oscillations over Amazon in our model essentially result from interactions among atmospheric continental- scale circulation, surface radiation, surface sensible and latent heat fluxes, and cumulus convection. The wavelet analyses of various surface energy fluxes and surface energy budget also verify that the primary cause of intraseasonal oscillation is the interaction of land surface processes with the atmosphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-08-29
    Description: The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-08-29
    Description: We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-10-02
    Description: The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.
    Keywords: Instrumentation and Photography
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-10-02
    Description: Parker (1985, 1994) first described evidence for catastrophic flooding from a large lake or sea within Argyre Planitia through the Uzboi-Holden- Ladon-Margaritifer Valles system during the Noachian. The channel connection to Argyre had been recognized during the mid-1970s, based primarily on Russian orbiter images taken at that time. The most critical reviews of these inferences related to the relative timing of the plains materials, sinuous ridges, and debris aprons in southern Argyre, and the connection, via Uzboi Vallis, of ponding within Argyre to flooding through the Chryse Trough. The prevailing "competing" hypothesis for formation of materials within Argyre is that they are a result of south circumpolar glacial processes, with glacial scour and stagnation producing the pitting and sinuous ridges (eskers) on the basin floor rather than lacustrine erosion and deposition followed much later by a process akin to rock glacier formation of the debris aprons in a colder Amazonian climate. Argyre was part of a larger surface hydrological system that also included two large valley networks draining the Margaritifer Sinus region northwest of Argyre. The morphometry of these systems suggest a combination of precipitation and groundwater sapping, with surface runoff for their formation.
    Keywords: Meteorology and Climatology
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Long-baseline Interferometry in the Mid-infrared: How and Why?; Ringberg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-11
    Description: On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of the radiation exposure limits by the International Commission on Radiological Protection with the classification of aircrew as radiation workers renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.
    Keywords: Instrumentation and Photography
    Type: Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign; 387-407; NASA/CP-2003-212155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The tissue equivalent proportional counter had the purpose of providing the energy absorbed from a radiation field and an estimate of the corresponding linear energy transfer (LET) for evaluation of radiation quality to convert to dose equivalent. It was the recognition of the limitations in estimating LET which lead to a new approach to dosimetry, microdosimetry, and the corresponding emphasis on energy deposit in a small tissue volume as the driver of biological response with the defined quantity of lineal energy. In many circumstances, the average of the lineal energy and LET are closely related and has provided a basis for estimating dose equivalent. Still in many cases the lineal is poorly related to LET and brings into question the usefulness as a general purpose device. These relationships are examined in this paper.
    Keywords: Instrumentation and Photography
    Type: Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign; 241-260; NASA/CP-2003-212155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: Royal Meteorological Society (RMS) Conference; Norwich; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: TPF Expo '03; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Innovative Designs for the Next Large Aperture Optical/UV Telescope (NHST); Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Toward Other Earths: Darwin/TPF and the Search for Extrasolar Terrestrial Planets; Heidelberg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-11
    Description: This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-12
    Description: Contents include the following: 1. Introduction: What is the (Floating Potential Probe) FPP? Why was NiMH battery selected? Haw well would crimped seal cell performed in long term vacuum exposure? 2. Verification tests: Battery description. Test methods. Results. Main findings. FPP status.
    Keywords: Instrumentation and Photography
    Type: The 2002 NASA Aerospace Battery Workshop; NASA/CP-2003-212344
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the available observations. The decreasing continental trend in precipitation is located primarily over tropical land regions, with some other regions, such as North America experiencing an increasing trend. Precipitation trends are diagnosed further using the water tracers to delineate the precipitation that occurs because of continental evaporation, as opposed to oceanic evaporation. These diagnostics show that over global land areas, the recycling of continental moisture is decreasing in time. However, the recycling changes are not spatially uniform so that some regions, most notably over the United States, experience continental recycling of water that increases in time.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can superficially look similar to cases in which very little precipitation occurs. These situations could possibly baffle the operational weather forecasters. In this article, the major precipitation event that affected Piedmont (Italy) between 13 and 16 October 2000 is investigated. This is one of the cases in which no intense cyclone was observed within the Mediterranean region at any time, only a moderate system was present, and yet exceptional rainfall and flooding occurred. The emphasis of this study is on the moisture origin and transport. Moisture and energy balances are computed on different space- and time-scales, revealing that precipitation exceeds evaporation over an area inclusive of Piedmont and the northwestern Mediterranean region, on a time-scale encompassing the event and about two weeks preceding it. This is suggestive of an important moisture contribution originating from outside the region. A synoptic and dynamic analysis is then performed to outline the potential mechanisms that could have contributed to the large-scale moisture transport. The central part of the work uses a quasi-isentropic water-vapor back trajectory technique. The moisture sources obtained by this technique are compared with the results of the balances and with the synoptic situation, to unveil possible dynamic mechanisms and physical processes involved. It is found that moisture sources on a variety of atmospheric scales contribute to this event. First, an important contribution is caused by the extratropical remnants of former tropical storm Leslie. The large-scale environment related to this system allows a significant amount of moisture to be carried towards Europe. This happens on a time- scale of about 5-15 days preceding the Piedmont event. Second, water-vapor intrusions from the African Inter-Tropical Convergence Zone and evaporation from the eastern Atlantic contribute on the 2-5 day time-scale. The large-scale moist dynamics appears therefore to be one important factor enabling a moderate Mediterranean cyclone to produce heavy precipitation. Finally, local evaporation from the Mediterranean, water-vapor recycling, and orographically-induced low-level convergence enhance and concentrate the moisture over the area where heavy precipitation occurs. This happens on a 12-72 hour time-scale.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: A combination multi-aircraft and several satellite sensors were used to examine the core of Hurricane Erin on September 10, 2001, as part of the CAMEX4 program. During the first set of aircraft passes, around 1700 UTC, Erin was still at its maximum intensity with a central pressure of 969 hpa and windspeed of 105 kts (54 m/s). The storm was moving slowly northwestward at 4 m/s, over an increasingly colder sea surface. Three instrumented aircraft, the NOAA P3 with radar, the NASA ER- 2 at 19 km, newly equipped with GPS dropwindsondes, and the NASA DC-8 with dropwindsondes flew in formation across the eye at about 1700 UTC and again 2.5 hrs later around 1930 UTC. The storm had weakened by 13 m/s between the first and second eye penetrations. The warm core had a maximum temperature anomaly of only 11 C, located at 500 hpa, much weaker and lower than active hurricanes. The core appeared to slant rearward above 400 hpa. Even on the first penetration, airborne radar showed that the eye wall cloud towers were dying. The tops fell short of reaching 15 km and a melting band was found throughout. The tropopause had a bulge to 15.8 km elevation (environment approx. 14.4 km) above the dying convection. A feature of Erin at this timt was a pronounced wave-number-one convective asymmetry with all convective activity being confined to the forward quadrants on the left side of the shear vector as calculated from analyses. This is similar to that predicted by the mesoscale numerical models, which also predict that such small amounts of shear would not affect the storm intensity. In Erin, it is remarkable that relatively small shear produced such a pronounced asymmetry in the convection. In addition, horizontal asymmetries in the low-level warm core were identified. Almost certainly, the colder ocean would kill the tall convective towers feeding the warm core, even if wind shear were absent.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: Sensitivity studies are performed on the assimilation of TRMM (Tropical Rainfall Measurement Mission) Microwave Imager (TMI) derived rainfall data into a mesoscale model using a four-dimensional variational data assimilation (4DVAR) technique. A series of numerical experiments is conducted to evaluate the impact of TMI rainfall data on the numerical simulation of Hurricane Bonnie (1998). The results indicate that rainfall data assimilation is sensitive to the error characteristics of the data and the inclusion of physics in the adjoint and forward models. In addition, assimilating the rainfall data alone is helpful for producing a more realistic eye and rain bands in the hurricane but does not ensure improvements in hurricane intensity forecasts. Further study indicated that it is necessary to incorporate TMI rainfall data together with other types of data such as wind data into the model, in which case the inclusion of the rainfall data further improves the intensity forecast of the hurricane. This implies that proper constraints may be needed for rainfall assimilation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: There has been increasing effort in recent years to employ satellite remotely sensed data to identify and map vector habitat and malaria transmission risk in data sparse environments. In the current investigation, available satellite and other land surface climatology data products are employed in short-term forecasting of infection rates in the Mpumalanga Province of South Africa, using a multivariate autoregressive approach. The climatology variables include precipitation, air temperature and other land surface states computed by the Off-line Land-Surface Global Assimilation System (OLGA) including soil moisture and surface evaporation. Satellite data products include the Normalized Difference Vegetation Index (NDVI) and other forcing data used in the Goddard Earth Observing System (GEOS-1) model. Predictions are compared to long- term monthly records of clinical and microscopic diagnoses. The approach addresses the high degree of short-term autocorrelation in the disease and weather time series. The resulting model is able to predict 11 of the 13 months that were classified as high risk during the validation period, indicating the utility of applying antecedent climatic variables to the prediction of malaria incidence for the Mpumalanga Province.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: This paper extends the work of our previous study, which showed the potential of using precipitation in the eastern Indian Ocean to predict when an El Nino would begin. The paper begins by showing the successful prediction of the 2002-03 El Nino. However, precipitation is really used as a substitute for wind (storms are usually accompanied by heavy wind), because a popular hypothesis is that winds (especially % winds out of the West) stir up the ocean surface in the western Pacific sending currents of warm waters to the east Pacific where El Ninos form. This paper shows that it is typical for storms that produce strong winds in the western Pacific to have traveled from the Indian Ocean. We begin in the Indian Ocean looking at strong bursts of wind over several days. The number of windy days seems to increase in the months prior to El Nino. We examined these relationships in detail for November 2001 to April 2002, before the recent El Nino, using NASA's TRMM and QuikSCAT data. We found in one case that a warming of the eastern Indian Ocean occurred about 25 days before heavy rainfall formed. As the stormed moved eastward it was followed (6 days later) by strong winds out of the West. The entire storm system (and warming of the sea) moved eastward through a small strip of water between Indonesia and Australia, before reaching the western Pacific. Thus, this paper increases our understanding of the physical processes leading to the formation of El Nino.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.
    Keywords: Meteorology and Climatology
    Type: IEEE TGARS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-06
    Description: In this study, the relationship between tropical convection and the meridional convergence of zonal momentum flux in the tropical upper troposphere is investigated using NOAA interpolated outgoing longwave radiation data and NCEP-NCAR reanalysis wind data. In particular, a variety of correlation coefficients are calculated between the data sets, both of which are filtered to isolate disturbances with frequencies and wavenumbers consistent with the Madden-Julian oscillation. The results show regions of significant correlation during each season, with the magnitude and area covered by significant correlation coefficients varying with season. Furthermore, it is found that the correlation structures look very similar to theoretical calculations of the atmospheric response to a region of tropical heating. This result suggests that tropical waves, in particular mixed Rossby-gravity waves, play an important role in the meridional transport zonal momentum into the deep tropical upper troposphere. Finally, these findings have implications to the generation of rising motion near the tropical tropopause, which in turn has ramifications for vertical moisture transport and tropopause cirrus formation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: A characteristic feature of rainfall statistics is that they depend on the space and time scales over which rain data are averaged. A previously developed spectral model of rain statistics that is designed to capture this property, predicts power law scaling behavior for the second moment statistics of area-averaged rain rate on the averaging length scale L as L right arrow 0. In the present work a more efficient method of estimating the model parameters is presented, and used to fit the model to the statistics of area-averaged rain rate derived from gridded radar precipitation data from TOGA COARE. Statistical properties of the data and the model predictions are compared over a wide range of averaging scales. An extension of the spectral model scaling relations to describe the dependence of the average fraction of grid boxes within an area containing nonzero rain (the "rainy area fraction") on the grid scale L is also explored.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: A combination of cloud-top and columnar droplet sizes derived from the multi Tropical Rainfall Measurement Mission (TRMM) sensors reveals the sensitivity of the aerosols effect on cloud-precipitation process due to environmental vertical thermodynamic structure. First, the magnitude of aerosol indirect effect could be larger with the analysis of columnar droplet sizes than that derived from the cloud-top droplet sizes, since column-droplet size can account for the broader droplet spectra in the cloud layers. Second, a combination of cloud- top and columnar droplet sizes reveals that the warm rain process is prevented regardless of the aerosols concentration under a high static stability such as when a strong temperature inversion exists, while a high aerosol concentration suppresses the warm rain formulation under a low static stability.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 microns. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the radiance signal or sensitivity to CO2 change near the surface is not significantly diminished even in the presence of aerosols and/or thin cirrus clouds in the atmosphere; (c) the modification of sunlight path length by scattering of aerosols and cirrus clouds could lead to large systematic errors in the retrieval; therefore, ancillary aerosol/cirrus cloud data are important to reduce retrieval errors; (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature; (e) the atmospheric path length, over which the CO2 absorption occurs, must be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the rain drop-size-distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop-size-distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation but affect the retrievals is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5 deg to deg N latitude and 166 deg to 172 deg E longitude from July to September 1999, and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, i.e. the rain rate, the precipitation water content, the drop-size-distribution intercept, and the mass weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are in general higher than the official TRMM Precipitation Radar (PR) only estimates for the area and the period considered in the study. Ground-based precipitation estimates, derived from an analysis of rain gauge and ground radar data, are in better agreement with the combined estimates than with the TRMM PR-only estimates, which suggests that information useful for improving the radar-only estimates is contained in the brightness temperature data.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect to percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, shallow cumulus cloudiness, deep convective cloudiness, and rainfall occurrence all are larger over the deforested and non-forested (savanna) regions than over areas of dense jungle. This difference is in response to a local circulation initiated by the differential heating of the region s varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift in the onset of convection toward afternoon hours in the deforested and towards the morning hours in the savanna regions when compared to the neighboring forested regions. Analysis of 14 years of monthly estimates from the Special Sensor Microwave/Imager data revealed that in only in August was there a pattern of higher monthly rainfall amounts over the deforested region.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-06
    Description: Moist entropy is nearly conserved in adiabatic motion. It is redistributed rather than created by moist convection. Thus moist entropy and its equation, as a healthy direction, can be used to construct analytical and numerical models for the interaction between tropical convective clouds and large-scale circulations. Hence, an accurate equation of moist entropy is needed for the analysis and modeling of atmospheric convective clouds. On the basis of the consistency between the energy and the entropy equations, a complete equation of moist entropy is derived from the energy equation. The equation expresses explicitly the internal and external sources of moist entropy, including those in relation to the microphysics of clouds and precipitation. In addition, an accurate formula for the surface flux of moist entropy from the underlying surface into the air above is derived. Because moist entropy deals "easily" with the transition among three water phases, it will be used as a prognostic variable in the next generation of cloud-resolving models (e. g. a global cloud-resolving model) for low computational noise. Its equation that is derived in this paper is accurate and complete, providing a theoretical basis for using moist entropy as a prognostic variable in the long-term modeling of clouds and large-scale circulations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: In ocean-color remote sensing, approximately 90% of the flux at the sensor originates from atmospheric scattering, with the water-leaving radiance contributing the remaining 10% of the total flux. Consequently, errors in the measured top-of-the atmosphere radiance are magnified a factor of 10 in the determination of water-leaving radiance. Proper characterization of the atmosphere is thus a critical part of the analysis of ocean-color remote sensing data. It has always been necessary to calibrate the ocean-color satellite sensor vicariously, using in situ, ground-based results, independent of the status of the pre-flight radiometric calibration or the utility of on-board calibration strategies. Because the atmosphere contributes significantly to the measured flux at the instrument sensor, both the instrument and the atmospheric correction algorithm are simultaneously calibrated vicariously. The Marine Optical Buoy (MOBY), deployed in support of the Earth Observing System (EOS) since 1996, serves as the primary calibration station for a variety of ocean-color satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Japanese Ocean Color Temperature Scanner (OCTS) , and the French Polarization and Directionality of the Earth's Reflectances (POLDER). MOBY is located off the coast of Lanai, Hawaii. The site was selected to simplify the application of the atmospheric correction algorithms. Vicarious calibration using MOBY data allows for a thorough comparison and merger of ocean-color data from these multiple sensors.
    Keywords: Instrumentation and Photography
    Type: Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume VI: Special Topics in Ocean Optics Protocols and Appendices; 87-126; NASA/TM-2003?211621/Rev4?Vol.VI
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-06
    Description: Climate models often ignore the influence of ice-phase physics (IPP) of hydrometeors as a second order effect. This has also been true for McRAS (Microphysics of clouds with Relaxed Arakawa Schubert Scheme) developed by the authors. Recognizing that the temperature sounding is critical for moist-convection, and, that IPP would modify it, we investigated the influence of introducing IPP into McRAS coupled to FvGCM (finite volume General Circulation Model with NCAR physics). We analyzed three 3-yr long simulations; the first called Control Case, CC and had no IPP; the other two called Experiments El and E2 had IPP introduced with two different in-cloud freezing assumptions. Simulation El assumed that all hydrometeors remain liquid in the updraft and freeze upon detrainment. Simulation E2 invoked the in-cloud freezing of new condensate generated at subfreezing temperatures in the updraft while old cloud water continued to ascend as liquid. Upon detrainment, this cloud water also froze like in E1. With these assumptions, about 50% of hydrometeors froze in the tower and the rest froze in the anvil. However, in both El and E2, the frozen hydrometeors melted during fall at the first encounter of above freezing ambient temperature. Comparative analysis revealed that El simulated far more mid-level and far less deep clouds while E2 had modified deep and more mid-level clouds as compared to CC along with some major changes around the melt-level. We infer that IPP produced a more realistic response in E2. At the basic level, the results show that ice-phase processes influence convective detrainment at mid- and deep levels in accord with TOGAGOARE observations. The results suggest that IPP can help to mitigate less-than-observed mid-level and over-abundance of deep convective clouds in McRAS.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-06
    Description: A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-12
    Description: Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Our analysis of discrepancies between the PR rainfall and attenuation suggests that uncertainty in the assumed drop size distribution and associated attenuation/reflectivity/rainfall relationships inherent in single-frequency radar methods is a serious issue for studies of interannual variability.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 30; No. 4; 29-1 - 29-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-12
    Description: Methods are being developed at Marshall Space Flight Center's Toxicity Lab on a CG/IRD System that will be used to detect ammonia in low part per million (ppm) levels. These methods will allow analysis of gas samples by syringe injections. The GC is equipped with a unique cryogenic-cooled inlet system that will enable our lab to make large injections of a gas sample. Although the initial focus of the work will be analysis of ammonia, this instrument could identify other compounds on a molecular level. If proper methods can be developed, the IRD could work as a powerful addition to our offgassing capabilities.
    Keywords: Instrumentation and Photography
    Type: 5th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2003-212931
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A code U initiative starting in the FY04 budget includes specific funding for 'Phase Change' and 'Multiphase Flow Research' on the ISS. NASA GRC developed a concept for two facilities based on funding/schedule constraints: 1) Two Phase Flow Facility (TphiFFy) which assumes integrating into FIR; 2) Contact Line Dynamics Experiment Facility (CLiDE) which assumes integration into MSG. Each facility will accommodate multiple experiments conducted by NRA selected PIs with an overall goal of enabling specific NASA strategic objectives. There may also be a significant ground-based component.
    Keywords: Instrumentation and Photography
    Type: Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems; 167-181; NASA/TM-2003-212598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-06
    Description: Pollution prevention (P2) opportunities and Greening the Government (GtG) activities, including the development of the Real-Time Environmental Monitoring System (RTEMS), are currently under development at the NASA Glenn Research Center. The RTEMS project entails the ongoing development of a monitoring system which includes sensors, instruments, computer hardware and software, plus a data telemetry system.Professor Kocher has been directing the RTEMS project for more than 3 years, and the implementation of the prototype system at GRC will be a major portion of his summer effort. This prototype will provide mulitmedia environmental monitoring and control capabilities, although water quality and air emissions will be the immediate issues addressed this summer. Applications beyond those currently identified for environmental purposes will also be explored.
    Keywords: Instrumentation and Photography
    Type: 2003 NASA Faculty Fellowship Program at Glenn Research Center; 42-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A multifunction sensor has been developed in the Sensors and Electronics Technology Branch. It is capable of measuring heat flux, surface temperature, and, in principle, strain magnitude & direction, while compensating for the apparent strain due to changes in operating temperature. In order to achieve this strain measuring capability, Mr. Zeller will work on improving the signal processing algorithm to include several special cases, such as when the principal strain axis lies either parallel to or perpendicular to one of the arms of the sensor. In addition, he will implement a GUI to make the sensor more user friendly.
    Keywords: Instrumentation and Photography
    Type: 2003 NASA Faculty Fellowship Program at Glenn Research Center; 87-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-06
    Description: Global precipitation is monitored from a variety of platforms including space-borne, ground- and ocean-based platforms. Intercomparisons of these observations are crucial to validating the measurements and providing confidence for each measurement technique. Probability distribution functions of rain rates are used to compare satellite and ground-based radar observations. A preferred adjustment technique for improving rain rate distribution estimates is identified using measurements from ground-based radar and radar and rain gauges within the coverage area of the radar. The underwater measurement of rainfall shows similarities to radar measurements, but with intermediate spatial resolution and high temporal resolution. Reconciling these different measurement techniques provides understanding and confidence for all of the methods.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-06
    Description: Four calibration algorithms are studied for microwave polarimeters that use hybrid coupler-based correlators: 1) conventional two-look of hot and cold sources, 2) three looks of hot and cold source combinations, 3) two-look with correlated source, and 4) four-look combining methods 2 and 3. The systematic errors are found to depend on the polarimeter component parameters and accuracy of calibration noise temperatures. A case study radiometer in four different remote sensing scenarios was considered in light of these results. Applications for Ocean surface salinity, Ocean surface winds, and soil moisture were found to be sensitive to different systematic errors. Finally, a standard uncertainty analysis was performed on the four-look calibration algorithm, which was found to be most sensitive to the correlated calibration source.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-06
    Description: We present a concept for an imaging gamma-ray polarimeter operating from approx. 50 MeV to approx. 1 GeV. Such an instrument would be valuable for the study of high-energy pulsars, active galactic nuclei, supernova remnants, and gamma-ray bursts. The concept makes use of pixelized gas micro-well detectors, under development at Goddard Space Flight Center, to record the electron-positron tracks from pair-production events in a large gas volume. Pixelized micro-well detectors have the potential to form large-volume 3-D track imagers with approx. 100 micron (rms) position resolution at moderate cost. The combination of high spatial resolution and a continuous low-density gas medium permits many thousands of measurements per radiation length, allowing the particle tracks to be imaged accurately before multiple scattering masks their original directions. The polarization of the incoming radiation may then be determined from the azimuthal distribution of the electron-positron pairs. We have performed Geant4 simulations of these processes to estimate the polarization sensitivity as a function of instrument parameters and event selection criteria.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-06
    Description: Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as as 1-2 mm commonly occur in high-latitude regions during the winter months. While such atmospheres carry only a few percent of the latent heat energy compared to tropical atmospheres, the effects of low vapor amounts on the polar radiation budget - both directly through modulation of longwave radiation and indirectly through the formation of clouds - are considerable. Accurate measurements of precipitable water vapor (PWV) during such dry conditions are needed to improve polar radiation models for use in understanding and predicting change in the climatically sensitive polar regions. To this end, the strong water vapor absorption at 183.310 GHz provides a unique means of measuring low amounts of PWV. Weighting function analysis, forward model calculations based upon a 7-year radiosonde dataset, and retrieval simulations consistently predict that radiometric measurements made using several millimeter-wavelength (MMW) channels near the 183 GHz line, together with established microwave (MW) measurements at the 22.235 GHz water vapor line and -3 1 GHz atmospheric absorption window can be used to determine within 5% uncertainty the full range of PWV expected in the Arctic. This unique collective capability stands in spite of accuracy limitations stemming from uncertainties due to the sensitivity of the vertical distribution of temperature and water vapor at MMW channels. In this study the potential of MMW radiometry using the 183 GHz line for measuring low amounts of PWV is demonstrated both theoretically and experimentally. The study uses data obtained during March 1999 as part of an experiment conducted at the Department of Energy s Cloud and Radiation Testbed (CART) near Barrow, Alaska. Several radiometers from both NOAA and NASA were deployed during the experiment to provide the first combined MMW and MW ground-based data set during dry arctic conditions. Single-channel retrievals of PWV were performed using the MW and MMW data. Discrepancies in the retrieved values were found to be consistent with differences observed between measured brightness temperatures (TBs) and forward-modeled TBs based on concurrent radiosonde profiles. These discrepancies are greater than can be explained by measurement error alone and are attributed to absorption model uncertainty. We discuss here the measurements, retrieval technique, and line model discrepancies along with difficulties and potential of MMW/MW PWV measurement.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-06
    Description: The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-06
    Description: Long-term integrations using the Rotunno-Emanuel (RE) model demonstrate that given sufficient elapsed time the weak initial vortex specified by R E can also lead to tropical cyclogenesis, albeit at a slower growth rate. Thus the RE notion of the finite-amplitude nature of tropical cyclogenesis is valid only if the period of examination is limited to the first eight days. These results also show that, if initial vortex as specified by RE is used, prior to cyclogenesis the model state does not resemble the observed pre-genesis disturbances in the sense that there is no precipitation in the center of the disturbance. Another experiment using the same model but with the initial vortex replaced by a disturbance with a different structure shows that a state resembling the observed pre-genesis disturbances can be simulated and this state can lead to spontaneous cyclogenesis, a rapid transition between two quasi-equilibria. This spontaneous cyclogenesis is associated with the generation of a new convective region at large radius and its subsequent contraction, which reminds one of the observed eye-wall replacement, but the distinction from the latter is obvious.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-06
    Description: To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux, surface air humidity, and winds are likely to be more realistic than the other three flux datasets examined, although those of GSSTF2 are still subject to regional biases.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: The southern hemisphere stratospheric winter of 2002 was the most unusual winter yet observed in the southern hemisphere climate record. Temperatures near the edge of the Antarctic polar vortex were considerably warmer than normal over the entire course of the winter. The polar night jet was considerably weaker than normal, and was displaced more poleward than has been observed in previous winters. These record high temperatures and weak jet resulted from a series of wave events that took place over the course of the winter. The first large event occurred on 15 May, and the final warming occurred on 25 October. The propagation of these wave events from the troposphere is diagnosed from time series of Eliassen-Palm flux vectors. The wave events tended to occur irregularly over the course of the winter, and pre-conditioned the polar night jet for the extremely large wave event of 22 September. This large wave event resulted in the first ever observed major stratospheric warming in the southern hemisphere. This wave event split the Antarctic ozone hole. The combined effect of the wave events of the 2002 winter resulted in the smallest ozone hole observed since 1988.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-06
    Description: A 5-year daily rainfall dataset (3B42) from TRMM (Tropical Rainfall Measuring Mission) is used to investigate the activity and properties of westward-propagating synoptic-scale waves over tropical West Africa. Evident wave signals appearing in wavenumber-frequency space show their modulations on the surface rainfall pattern during the boreal summer. Interannual variability exists in both their intensity and spectral properties, i. e., dominant frequency and wavenumber ranges. These variabilities can be partly ascribed to year-to-year variations of their embedded large-scale environment, especially the status of mid-tropospheric African easterly jet (AEJ). Generally, a stronger (weaker) AEJ indicates more (less) instability energy yielding a stronger (weaker) wave activity season. Seasonal mean rainfall has shown an impact on these waves in some years. However, the impact is not as clear and consistent as AEJ, implying the complexity of their relationship with large-scale environment. To fully understand interannual variability of synoptic-scale waves over tropical West Africa, including the variability in their preferred frequencies and wavenumbers, it is therefore necessary to examine possible intra-seasonal variations existing in both wave activity and large-scale fields, in addition to their structure, propagation, and associated convection.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-10-02
    Description: We have developed a process for deriving near-surface (approx. 1m) temperatures for potential landing sites, based on observational parameters from MGS TES, Odyssey THEMIS, and a boundary layer model developed by Murphy for fitting Pathfinder meteorological measurements. Minimum nighttime temperatures at the MER landing sites can limit power available, and thus mission lifetime. Temperatures are derived based on thermal inertia, albedo, and opacity estimated for the Hematite site in Sinus Meridiani, using predictions of 1-m air temperatures from a one-dimensional atmospheric model. The Hematite site shows 9 % probability of landing at a location with nighttime temperatures below the 97 C value considered to be a practical limit for operations.
    Keywords: Meteorology and Climatology
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-10-02
    Description: In this paper we approach four key questions that are central to our understanding of the nature of climate change on Mars: 1. By what mechanism has the evolution of the CO2 atmosphere, dominated at early times by violent process, been guided to the moderate quantities present today? 2.How do obliquity cycles affect the migration of CO2 between the various reservoirs of CO2, and what effect does this have on the bulk atmosphere of the planet in time? 3. Is the geophysical evidence that the last few Myr experienced periods that are substantially wetter than the present attributable to a substantially more massive greenhouse atmosphere? 4. Is the current atmospheric pressure determined primarily by the partial pressure of CO2 in cold (approx. 148 K) ice caps, or is it because disequilibrium water, and hence weathering, ceases at pressures below the triple point of water?
    Keywords: Meteorology and Climatology
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-10-02
    Description: The interest for Martian water ice clouds has recently taken a new extent given their likely involvement both in climate and in the hydrological cycle. Previous related microphysical studies have already discussed the complex interactions between airborne dust and clouds [2]. Whereas water ice mantles upon dust cores enhance sedimentation rates and thus possibly change the vertical distribution of dust and water, the advection of clouds by winds could also modulate the geographical distribution of volatiles. Within this context, only 3D modeling based on the use of Martian General Circulation Models (MGCM) is able to give us a consistent clue of the global climatic aspects of Martian clouds.
    Keywords: Meteorology and Climatology
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-10-02
    Description: This experiment will integrate a VBB (Very Broad Band) two axis seismometer, a three axis Short Period seismometer and a series of environmental sensors for pressure, infra-sounds and temperature. IPGP (France) has the overall responsibility of the experiment and is responsible for the VBB and environmental sensors. ETHZ (Switzerland) is responsible for the electronics of the experiment and JPL (USA) for the SP (Short Period) sensors. SEIS instrument was first proposed and accepted for NetLander mission (and will also be in charge of data acquisition for SPICE experiment). This seismic package should also be proposed for future missions.
    Keywords: Instrumentation and Photography
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-06
    Description: The objective of this project is to modify the standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. This apparatus will allow us to conduct normal gravity experiments that accurately and quantitatively evaluate a material's flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire configuration that provides a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by a flame in a spacecraft or extraterrestrial gravity level. Prototype unit testing results are presented in this paper. Ignition delay times and regression rates for PMMA are presented over a range of radiant heat flux levels and equivalent stretch rates which demonstrate the ability of ELSA to simulate key features of microgravity and extraterrestrial fire behavior.
    Keywords: Instrumentation and Photography
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 213-216; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: AMS Conference on Southern Hemisphere Meteorology; New Zealand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: AAS 201st Meeting; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: 2003 IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Aspen 2003, Gravitational Wave Advanced Detector Workshop; Aspen, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Future space-based optical interferometers will require control of the optical path delay to accomplish some or all of the three objectives: balancing the optical path in the two arms to within a tolerance corresponding to the coherence length of the star light being observed, modulating the optical path in order to observe the phase of the star light interference fringe, and modulating the path length in order to reduce the effect of cyclic errors in the laser metrology system used to measure the optical path length in the two arms of the interferometer.
    Keywords: Instrumentation and Photography
    Type: 2003 IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-08
    Description: This study looks at the possible causes of sason-long June Gloom.
    Keywords: Meteorology and Climatology
    Type: 83rd Annual Meeting of American Meteorological Society; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: Joint 46th Annual Conference on Great Lakes Research and 10th World Lakes; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society Annual Meeting: Seventh Symposium on Integrated Observing Systems: the Water Cycle; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-08
    Description: Using empirical results on the interplanetary magnetic field strengths of magnetic clouds versus velocities, we show that the 1 September 1859 Carrington solar flare most likely had an associated intense magnetic cloud ejection which led to a storm on Earth of DST ~ -1760 nT.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 108; no. A7; 1268
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Astronomical Telescopes and Instrumentation; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: TPF Expo; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Frontiers in Optics/Laser Science XIX; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: 5th Eduardo Amaldi Conference on Gravitational Waves; Tirrenia; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Frequency Control Symposium; Tampa, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Star Formation at High Angular Resolutions; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: The Micro-Arcsecond Metrology (MAM) experiment is one of a family of ground-based testbeds that will demonstrate critical technologies for SIM, the Space Interferometry Mission.
    Keywords: Instrumentation and Photography
    Type: 2003 IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: Annual Meeting of American Meteorological Society; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-05
    Description: Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed microdamage in composites. Since AU is focused on assessing the distributed microdamage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-05
    Description: Infrared thermography is the measuring of the temperature of an object by examining the spectral quantities of light emission. The microgravity combustion experiment Solid Inflammability Boundary at Low-Speeds (SIBAL) calls for full-field temperature measurements of a thin sheet of cellulosic fuel as a flame front moves across the fuel, and infrared thermography is the only technique that can accomplish this task. The thermography is accomplished by imaging the fuel with a midinfrared camera that is sensitive in the 3.0- to 5.0-microns wavelength region in conjunction with a 3.7 - to 4.1-microns bandpass filter to eliminate unwanted infrared radiation from components other than the fuel.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-05
    Description: A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-06
    Description: We have assembled an 18-year velocity record for Jakobshavn Isbrae, Greenland. From a 1985 speed of approx. 7000 m/yr, the glacier had slowed by approx. 1000 m/ yr in 1992, which coincided with independently observed thickening in the early 1990s . The glacier then sped up by approx. 4000 m/yr between 1997 and 2000, during which time other measurements show rapid thinning . From 2000 to 2003, the glacier s floating ice tongue almost entirely disintegrated, as speed increased to 12,600 m/yr. If the retreat of the ice tongue caused the acceleration, then similar losses of floating ice tongues since the Little Ice Age may explain the current rapid thinning observed for many of Greenland s outlet glaciers.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: Global Positioning System (GPS) Radio Occultations (RO) bending angles and refractivity data characterize mostly the vertical structure of the Earth's atmosphere. We answer the question whether proper simulation of GPS RO data for data assimilation can be obtained with one-dimensional vertical operators, or if accounting also for horizontal atmospheric structures via ray-tracing makes a positive difference when compared with real data. We present a detailed implementation of a geometrical optics multi-plane two-dimensional (2D) ray-tracing as an observation operator to simulate GPS RO bending angles and refractivities within the Finite Volume Data Assimilation System (FVDAS). Comparisons of the outputs of that 2D observation operator with those of simpler ID observation operators are used to generate estimates of errors induced by neglecting tangent point drift (TPD) and horizontal gradients (HG). These error estimates are then confronted with errors estimates derived using 6335 real CHAMP and SAC-C occultations. The agreement for TPD-induced (HG-induced) errors is remarkably positive at altitudes 10-30 km (below 10 km). Comparisons in bending angles O - B STD of the outputs of the multi-plane 2D ray-tracer with those of a vertical Abel transform show reductions of about 8% of the usual O - B bending angle STD due to TPD in the stratosphere (3% due to HG, in the troposphere only). In terms of refractivity, the O - B STD reductions are about 1520% for TPD and 3-5% for HG in the same regions. These reductions are obtained using either 6-hour forecasts or analyses as backgrounds, and using Geometrical Optics (GO) or Canonical Transform (CT) data.
    Keywords: Meteorology and Climatology
    Type: Quarterly Journal of the Roayl Meteorological Society; Volume 129; 1-999
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-06
    Description: The Pennsylvania State University-National Center for Atmospheric Research mesoscale model MM5 is used to simulate Hurricane Erin (2001) at high resolution (4-km spacing) from its early development as a tropical depression on 7 September 2001, through a period of rapid intensification into a strong hurricane (8-9 September), and finally into a stage during which it maintains its intensity on 10 September. These three stages of development, intensification, and maintenance in the simulation are in good agreement with the observed evolution of Erin. The simulation shows that during the development and early portions of the intensification stages, intensification is favored because the environmental wind shear is weak and the system moves over a warm tongue of water. As Erin intensifies, the wind'shear gradually increases with the approach of an upper-level trough and strengthening of a low-level high pressure system. By 10 September, the wind shear peaks and begins to decrease, the storm moves over slightly cooler waters, and the intensification ends. Important structural changes occur at this time as the outer precipitation shift from the northeastern and eastern sides to the western side of the eye and precipitation begins to surround the entire eye to initiate the development of a secondary wind maximum and an outer eyewall. The simulation is used to investigate the role of vertical wind shear in the changes of the precipitation structure that took place between 9-10 September by examining the effects of both storm-relative flow changes and changes in the shear-induced tilt. Qualitative agreement is found between the divergence pattern and advection of vorticity by the relative flow with convergence (divergence) generally associated with asymmetric inflow (outflow) in the eyewall region. The shift in the outer precipitation is consistent with a shift in the low-level relative inflow from the northeastern to the northwestern side of the storm. The changes in the relative flow are associated with changes in the winds as the hurricane moves relative to the upper tough and the low-level high pressure system. Examination of the shear-induced tilt of the vortex shows that the change in the tilt direction is greater than that of the shear direction as the tilt shifts from a northerly orientation to northwesterly. Consistent with theory for adiabatic vortices, the maximum low-level convergence and upper-level divergence (and the maximum upward motion) occurs in the direction of tilt. Consequently, both mechanisms may play roles in the changes in the precipitation pattern.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-06
    Description: Contents include the folloving: Presidents budget. Office of Administrator chart. Aura project organization chart. Agreements. Aura observatory configuration. Aura science questions. EOS Aura atmospheric profile measurements. Science objectives: tracking ozone layer recovery; global measurements of air quality; impact of atmospheric constituente on climate. MLS instruments, OH measurement example. Osone monitoring instrument (OMI). OMI technology. OMI will track global ozone changes.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-06
    Description: In part I of this paper, the United States (US) radiosonde temperature data are shown to have significant and unexplained inhomogeneities in the mid-troposphere. This part discusses the differences between observations taken at 0 and 12 UTC especially in the stratosphere by the Vaisala RS80 radiosondes that are integrated within the National Weather Service's (NWS) Micro-ART system. The results show that there is a large maxima in the horizontal distribution of the monthly means of the 0/12 UTC differences over the central US that is absent over Canada and this maxima is as large as 5 C at 10 hPa. The vertical profiles of the root-mean-square of the monthly means are much larger in the US than those else where. The data clearly shows that the 0/12 UTC differences are largely artificial especially over the central US and originate in the post processing software at observing stations, thus confirming the findings in part I. Special flight data from the NWS's test facility at Sterling, Va. have been obtained. This data can be used to deduce the bias correction applied by Vaisala's post processing system. By analyzing the correction data, it can be shown that the inconsistencies with non-US Vaisala RS80 data as well as most of the large 0/12 UTC differences over the US can be accounted for by multiplying the reported elapsed time (i.e. time since launch) by the factor which is incorrectly applied by the post processing software. After being presented with the findings in this paper, Vaisala further isolated the source of the inconsistencies to a software coding error in the radiation bias correction scheme. The error effects only the software installed at US stations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: Recently a new spectral technique as been developed for the analysis of aperiodic and nonlinear signals - the Hilbert-Huang transform. This paper shows how these transforms can be used to discover synoptic and climatic features: For sea level data, the transforms capture the oceanic tides as well as large, aperiodic river outflows. In the case of solar radiation, we observe variations in the diurnal and seasonal cycles. Finally, from barographic data, the Hilbert-Huang transform reveals the passage of extratropical cyclones, fronts, and troughs. Thus, this technique can flag significant weather events such its a flood or the passage of a squall line.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-06
    Description: The Global Modeling Initiative has integrated two 35-year simulations of an ozone recovery scenario with an offline chemistry and transport model using two different meteorological inputs. Physically based diagnostics, derived from satellite and aircraft data sets, are described and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barrier formation in the subtropics and polar regions, and extratropical wave-driven transport. Some diagnostics are especially relevant to simulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of meteorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a general circulation model (GMI(sub GCM)) showed a very good residual circulation in the tropics and northern hemisphere. The simulation with input from a data assimilation system (GMI(sub DAS)) performed better in the midlatitudes than at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GMI(sub GCM) has greater fidelity throughout the stratosphere than the GMI(sub DAS).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-06
    Description: In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-06
    Description: The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone distribution. Through the monitoring of statistical properties of the agreement between the data and the model, this approach also enables us to detect changes in the quality of ozone data retrieved from satellite-borne instrument measurements. This paper demonstrates that calculations of the changes in satellite data quality, and the impact these changes on the estimates of the global ozone distribution, can assist in maintaining the uniform quality of the satellite ozone data throughout the lifetime of these instruments, thus contributing to our understanding of long-term ozone change.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-06
    Description: The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/~tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-06
    Description: We use a Plane-Parallel Cloud (PPC) model to illustrate how Mie scattering from cloud particles interacts with Rayleigh scattering in the atmosphere and produces a complex wavelength dependence in the top-of-the-atmosphere (TOA) reflectances measured by satellite instruments that operate in the ultraviolet (UV) part of the spectrum. Comparisons of the PPC model-derived spectral dependence of reflectances with the Total Ozone Mapping Spectrometer (TOMS) measurements show surprisingly good agreement over a wide range of observational conditions. The PPC model results also are compared with the results of two other cloud models: Lambert Equivalent Reflectivity (LER) and Modified Lambert Equivalent Reflectivity (MLER) that have been used to analyze satellite data in the UV. These models assume that clouds are opaque Lambertian reflectors rather than Mie scattering particles. Although one of these models (MLER) agrees reasonably well with the data, the results from this model appear somewhat unphysical and may not be suitable for interpreting satellite data if one desires high accuracy. We also use the PPC model to illustrate how clouds can perturb tropospheric O3 absorption in complex ways that cannot be explained by models that treat them as reflecting surfaces rather than as volume scatterers.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-06
    Description: A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...