ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,862)
  • MDPI Publishing  (4,862)
  • PANGAEA
  • Water  (3,874)
  • Minerals  (988)
  • 180701
  • 125281
Collection
  • Articles  (4,862)
Publisher
Years
Journal
  • 1
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 969: Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales Water doi: 10.3390/w10080969 Authors: Meizhao Lv Hui Lu Kun Yang Zhongfeng Xu Meixia Lv Xiaomeng Huang The current evaluations of global land data assimilation system (GLDAS) runoff were generally limited to the observation-rich areas. At the global and hemispheric scales, we assessed different runoff components performance of GLDAS (1.0 and 2.1) using the University of New Hampshire and Global Runoff Data Centre (UNH-GRDC) dataset. The results suggest that GLDAS simulations show considerable uncertainties, particularly in partition of surface and subsurface runoffs, in snowmelt runoff modeling, and in capturing the northern peak time. GLDAS1.0-CLM (common land model) produced more surface runoff almost globally; GLDAS-Noah generated more surface runoff over the northern middle-high latitudes and more subsurface runoff in the remaining areas; while the partition in GLDAS1.0-VIC (variable infiltration capacity) is almost opposite to that in Noah. Comparing to GLDAS1.0-Noah, GLDAS2.1-Noah improved the premature snow-melting tendency, but its snowmelt-runoff peak magnitude was excessively high in June and July. The discrepancies in northern primary peak times among precipitation and runoff is partly caused by the combination of rainfall and melting-snow over high-latitude, as well as the very different temporal–spatial distributions for snowmelt runoff simulated by GLDAS models. This paper can provide valuable guidance for GLDAS users, and contribute to the further improvement of hydrological parameterized schemes.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-26
    Description: Water, Vol. 10, Pages 981: Scenario-Based Economic Impact Analysis for Bridge Closures Due to Flooding: A Case Study of North Gyeongsang Province, South Korea Water doi: 10.3390/w10080981 Authors: Byungil Kim Sha Chul Shin Du Yon Kim Flooding has the ability to severely reduce the capacity of a transportation network. The closure of even a single bridge, which often acts as a critical link in transportation networks, can have a severe impact on the entire network. This impact can lead to significant economic costs resulting from increased travel distances for drivers. Despite the significance of these costs, however, notably few studies have been conducted to determine the societal economic cost that would be incurred due to bridge closures. One possible reason for the lack of studies investigating bridge closures due to flooding could stem from the difficultly in collecting data. To address this issue, the methodology presented in this paper uses modeling and data resources that are available for major cities in most developed countries, including those in South Korea. We evaluate the economic impact of the bridge closures using the new administrative capital of North Gyeongsang Province, South Korea as a case study. Scenarios for the closure of bridges are derived from channel surveys and hydraulic analyses. These methods are used to overcome a lack of adequate data on historical floods in the new city. Traffic is forecasted to estimate the number of road users that would be forced to take detours due to inundated bridges. Contrasting travel distances when bridges are and are not operational, economic costs incurred by bridge closures due to flooding are estimated. The results indicated that bridge closures would result in an economic cost of 1563 USD to 44,180 USD per day, depending on how many bridges are closed and how many people are living in the new city. The estimates from this study will act as guidelines for identifying cost-effective mitigation and preparedness strategies aimed at reducing the frequency and impact of bridge closures due to flooding.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-26
    Description: Water, Vol. 10, Pages 972: Microbial Function and Hydrochemistry within a Stratified Anchialine Sinkhole: A Window into Coastal Aquifer Interactions Water doi: 10.3390/w10080972 Authors: Madison C. Davis James R. Garey Anchialine sinkholes provide insight into coastal aquifer systems and coastal mixing processes. Aquifer microbial community function is usually inferred from hydrochemical information, but there are few direct studies of microbial communities in the Floridan Aquifer. Hospital Hole is a 43 m-deep stratified sinkhole under the Weeki Wachee River, FL, with three distinct brackish layers: a hypoxic layer, a chemocline and a sulfidic anoxic layer. Illumina sequencing and bioinformatic tools were used to reconstruct metabolic functions and interactions of microbial communities in each layer. Each layer appears to originate from different parts of the coastal mixing zone and has a distinct microbial community with unique functions, which are influenced by the respective hydrochemistry. Sulfide oxidation and nitrate reduction are the most abundant functions. Syntrophy between methane oxidizers, methanogens and sulfate reducers is present. Similarities between the hydrochemistry and potential connectivity of Hospital Hole and the Floridan Aquifer coastal mixing zone suggest that microbial communities of Hospital Hole could be a surrogate for the coastal mixing zone of the aquifer in the absence of direct studies. Understanding how groundwater microbial communities react to saltwater intrusion and nutrient flux will be useful in predicting how coastal aquifer regions might react to anthropogenic change.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-27
    Description: Minerals, Vol. 8, Pages 315: Biomineral Reactivity: The Kinetics of the Replacement Reaction of Biological Aragonite to Apatite Minerals doi: 10.3390/min8080315 Authors: Martina Greiner Lurdes Férnandez-Díaz Erika Griesshaber Moritz N. Zenkert Xiaofei Yin Andreas Ziegler Sabino Veintemillas-Verdaguer Wolfgang W. Schmahl We present results of bioaragonite to apatite conversion in bivalve, coral and cuttlebone skeletons, biological hard materials distinguished by specific microstructures, skeletal densities, original porosities and biopolymer contents. The most profound conversion occurs in the cuttlebone of the cephalopod Sepia officinalis, the least effect is observed for the nacreous shell portion of the bivalve Hyriopsis cumingii. The shell of the bivalve Arctica islandica consists of cross-lamellar aragonite, is dense at its innermost and porous at the seaward pointing shell layers. Increased porosity facilitates infiltration of the reaction fluid and renders large surface areas for the dissolution of aragonite and conversion to apatite. Skeletal microstructures of the coral Porites sp. and prismatic H. cumingii allow considerable conversion to apatite. Even though the surface area in Porites sp. is significantly larger in comparison to that of prismatic H. cumingii, the coral skeleton consists of clusters of dense, acicular aragonite. Conversion in the latter is sluggish at first as most apatite precipitates only onto its surface area. However, the process is accelerated when, in addition, fluids enter the hard tissue at centers of calcification. The prismatic shell portion of H. cumingii is readily transformed to apatite as we find here an increased porosity between prisms as well as within the membranes encasing the prisms. In conclusion, we observe distinct differences in bioaragonite to apatite conversion rates and kinetics depending on the feasibility of the reaction fluid to access aragonite crystallites. The latter is dependent on the content of biopolymers within the hard tissue, their feasibility to be decomposed, the extent of newly formed mineral surface area and the specific biogenic ultra- and microstructures.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-27
    Description: Minerals, Vol. 8, Pages 318: Mapping Surface Quartz Content in Sand Dunes Covered by Biological Soil Crusts Using Airborne Hyperspectral Images in the Longwave Infrared Region Minerals doi: 10.3390/min8080318 Authors: Shahar Weksler Offer Rozenstein Eyal Ben-Dor Biological soil crusts (BSCs), composed of cyanobacteria, algae, mosses, lichens, and fungi, are important ecosystem engineers that stabilize the quartz-rich dunes in the Nitzana study area near the Israel–Egypt border. The longwave infrared (LWIR) region of the electromagnetic spectrum is very useful for quartz identification since quartz reflectance in the visible, near infrared, and shortwave infrared (VIS-NIR-SWIR, 0.4–2.5 µm) spectral regions lacks identifying features, whereas in the LWIR region, the quartz emissivity spectrum presents a strong doublet feature. This emissivity feature can be used as a diagnostic tool for BSCs development in desert environments, because BSCs attenuate the quartz feature as a function of their successional development. A pair of day and night airborne hyperspectral images were acquired using the Specim AisaOWL LWIR sensor (7.7–12 µm) and processed using an innovative algorithm to reduce the atmospheric interference in this spectral domain. The resulting day and night apparent emissivity products were used to produce a surface quartz content map of the study area. The significant reduction in atmospheric interference resulted in a high correlation (R2 = 0.88) between quartz content in field samples determined by X-ray powder diffraction analysis and emissivity estimations from the airborne images. This, in turn, served as the ground truth to our quartz content map of the surface, and by proxy to the BSC.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-27
    Description: Minerals, Vol. 8, Pages 313: Reverse Flotation Separation of Fluorite from Calcite: A Novel Reagent Scheme Minerals doi: 10.3390/min8080313 Authors: Jianjun Wang Zihan Zhou Yuesheng Gao Wei Sun Yuehua Hu Zhiyong Gao Fluorite (CaF2), as an important strategic mineral source, is usually separated from calcite by the common froth flotation method, but this separation is still not selective enough. The development of a selective collector and/or depressant is the key to achieving high selective separation. 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP or H4L) is widely used as an environmentally friendly water treatment reagent due to its low cost and excellent anti-scaling performance in an aqueous solution. In this study, a novel reagent scheme was developed using HEDP as a fluorite depressant and sodium oleate (NaOL) as a calcite collector for the first time. When 3 × 10−5 mol/L of HEDP and 6 × 10−5 mol/L of NaOL were used at pH 6, the optimal selective separation for single minerals and mixed binary minerals was obtained. Zeta potential measurements indicated that HEDP possessed a stronger adsorption on fluorite than calcite, while NaOL did the opposite. This novel reagent scheme is of low cost, uses a small dosage, and is friendly to the environment, which makes it a promising reagent scheme for fluorite flotation in industrial application.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 989: Computational Study of a Vertical Plunging Jet into Still Water Water doi: 10.3390/w10080989 Authors: Zegao Yin Qianqian Jia Yuan Li Yanxu Wang Dejun Yang The behavior of a vertical plunging jet was numerically investigated using the coupled Level Set and Volume of Fluid method. The computational results were in good agreement with the experimental results reported in the related literature. Vertical plunging jet characteristics, including the liquid velocity field, air void fraction, and turbulence kinetic energy, were explored by varying the distance between the nozzle exit and the still water level. It was found that the velocity at the nozzle exit plays an unimportant role in the shape and size of ascending bubbles. A modified prediction equation between the centerline velocity ratio and the axial distance ratio was developed using the data of the coupled Level Set and Volume of Fluid method, and it showed a better predicting ability than the Level Set and Mixture methods. The characteristics of turbulence kinetic energy, including its maximum value location and its radial and vertical distribution, were also compared with that of submerged jets.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 984: Vulnerability Analysis of the Venetian Littoral and Adopted Mitigation Strategy Water doi: 10.3390/w10080984 Authors: Piero Ruol Luca Martinelli Chiara Favaretto This paper discusses the key aspects of the recent Coastal Plan of the Veneto Region (IT). Its aim is to propose a single mitigation strategy for coastal erosion that is valid for the whole Veneto Region, and possibly elsewhere, as well as a method to assign a priority level to any action. The suggested mitigation action against erosion depends on urbanization level, beach width, as well as cross-shore and long-shore sediment transport. The criterion used to give a priority level to mitigation actions is based on a vulnerability index that takes into account erosive tendency, existing coastal flooding hazards, coast value, environmental relevance, tourist pressure, urbanization level, the presence of production activities, and cultural heritage. A sample case featuring the littoral of Rosolina is also provided and includes a site description, the sediment budget, critical issues and possible mitigation measures.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 982: Multivariate Chemometric Analysis of Membrane Fouling Patterns in Biofilm Ceramic Membrane Bioreactor Water doi: 10.3390/w10080982 Authors: Olga Kulesha Zakhar Maletskyi Harsha Ratnaweera Membrane fouling highly limits the development of Membrane bioreactor technology (MBR), which is among the key solutions to water scarcity. The current study deals with the determination of the fouling propensity of filtered biomass in a pilot-scale biofilm membrane bioreactor to enable the prediction of fouling intensity. The system was designed to treat domestic wastewater with the application of ceramic microfiltration membranes. Partial least squares regression analysis of the data obtained during the long-term operation of the biofilm-MBR (BF-MBR) system demonstrated that Mixed liquor suspended solids (MLSS), diluted sludge volume index (DSVI), chemical oxygen demand (COD), and their slopes are the most significant for the estimation and prediction of fouling intensity, while normalized permeability and its slope were found to be the most reliable fouling indicators. Three models were derived depending on the applied operating conditions, which enabled an accurate prediction of the fouling intensities in the system. The results will help to prevent severe membrane fouling via the change of operating conditions to prolong the effective lifetime of the membrane modules and to save energy and resources for the maintenance of the system.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 983: The Mechanical Properties of High Strength Reinforced Cured-in-Place Pipe (CIPP) Liner Composites for Urban Water Infrastructure Rehabilitation Water doi: 10.3390/w10080983 Authors: Hyun Wook Ji Sung Soo Yoo Jonghoon Kim Dan Daehyun Koo Most urban areas in the world have water infrastructure systems, including the buried sewer and water pipelines, which are assessed as in need of extensive rehabilitation. Deterioration by many other factors affects structural integrity. Trenchless technologies such as Cured-in-Place Pipe (CIPP) are now applied in numerous projects while minimizing disturbance in an urban environment. The main purpose of this study is to develop a high strength CIPP material using various composite materials (e.g., glass fiber, carbon fiber, polyester felt, unsaturated polyester resin, and others). Composite samples were made of the materials and tested using three-point bend apparatus to find mechanical properties, which include the flexural modulus, strength, and deflection. A composite combination with glass fibers with thin felt layers shows the best results in mechanical properties. Flexural modulus is a key factor for CIPP liner thickness design. Glass fiber composite yields between four and nine times higher values than the minimum value specified in the American Society for Testing and Materials (ASTM) F1216. This study provides a fundamental baseline for high strength CIPP liners that are capable of using conventional curing technologies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-28
    Description: Minerals, Vol. 8, Pages 323: (10.4) Face of Ordered and Disordered Dolomite, MgCa(CO3)2: A Computational Study to Reveal the Growth Mechanism Minerals doi: 10.3390/min8080323 Authors: Marco Bruno Erica Bittarello In this study, the stability of the (10.4) face of dolomite was systematically investigated. The surface energies at 0 K of the different (10.4) surfaces resulting from the cut of both ordered and disordered bulk structures were determined and compared, to establish how different atomic configurations (surface terminations) can affect the stability of the investigated face. To study the thermodynamic behavior of a surface, a 2D periodic slab model and the ab initio CRYSTAL code were adopted. The surface energies of the (10.4) faces of calcite and magnesite were also calculated in order to compare them with those of the different terminations of the (10.4) face of dolomite. Our calculations showed that the bulk of the dolomite crystal must have an ordered structure to reach the minimum of the energy, whereas the (10.4) surface is more stable when its structure is disordered. A growth model of the (10.4) face has been proposed: the peculiarity of this model consists in the existence of some disordered layers forming at the interface crystal/solution, which arrange in an ordered structure once covered by others disordered layers resulting by the spiral steps propagation.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-28
    Description: Minerals, Vol. 8, Pages 322: Particle Size Distribution Effects on the Strength Characteristic of Cemented Paste Backfill Minerals doi: 10.3390/min8080322 Authors: Jiangyu Wu Meimei Feng Zhanqing Chen Xianbiao Mao Guansheng Han Yiming Wang It is of great significance, for economic, environmental and security reasons, to investigate the strength characteristic of underground cemented paste backfill (CPB). Consequently, an ultrasonic test, uniaxial and triaxial compression experiment, and acoustic emission (AE) monitoring were carried out on CPB, for which the particles satisfied Talbot gradation. The homogeneity of CPB specimens was evaluated by ultrasonic pulse velocity (UPV). The stress–strain behavior and AE characteristic of CPB specimens under different Talbot indices and confining pressures were investigated. The effects of the particle size distribution and the confining pressure on the peak strength of CPB were analyzed. The strength parameter model of CPB under the coupled influence of the particle size distribution and the confining pressure was constructed based on the Mohr–Coulomb strength criterion. The results show that the peak strength of CPB is positively linear with confining pressure, however, the relationship between its strength parameters and the Talbot index can be characterized by a quadratic polynomial function. This suggests that there is an optimal gradation of particles reflected in the maximum strength of CPB.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-07-28
    Description: Minerals, Vol. 8, Pages 319: Fault Zone Evolution and Development of a Structural and Hydrological Barrier: The Quartz Breccia in the Kiggavik Area (Nunavut, Canada) and Its Control on Uranium Mineralization Minerals doi: 10.3390/min8080319 Authors: Alexis Grare Olivier Lacombe Julien Mercadier Antonio Benedicto Marie Guilcher Anna Trave Patrick Ledru John Robbins In the Kiggavik area (Nunavut, Canada), major fault zones along, or close to, where uranium deposits are found are often associated with occurrence of thick quartz breccia (QB) bodies. These bodies formed in an early stage (~1750 Ma) of the long-lasting tectonic history of the Archean basement, and of the Proterozoic Thelon basin. The main characteristics of the QB are addressed in this study; through field work, macro and microscopic observations, cathodoluminescence microscopy, trace elements, and oxygen isotopic signatures of the quartz forming the QB. Faults formed earlier during syn- to post-orogenic rifting (1850–1750 Ma) were subsequently reactivated, and underwent cycles of cataclasis, pervasive silicification, hydraulic brecciation, and quartz recrystallization. This was synchronous with the circulation of meteoric fluids mixing with Si-rich magmatic-derived fluids at depth, and were coeval with the emplacement of the Kivalliq igneous suite at 1750 Ma. These processes led to the emplacement of up to 30 m thick QB, which behaved as a mechanically strong, transverse hydraulic barrier that localized later fracturing, and compartmentalized/channelized vertical flow of uranium-bearing fluids after the deposition of the Thelon Basin (post 1750 Ma). The development and locations of QB control the location of uranium mineralization in the Kiggavik area.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-07-28
    Description: Water, Vol. 10, Pages 993: Understanding Fundamental Phenomena Affecting the Water Conservation Technology Adoption of Residential Consumers Using Agent-Based Modeling Water doi: 10.3390/w10080993 Authors: Kambiz Rasoulkhani Brianne Logasa Maria Presa Reyes Ali Mostafavi More than one billion people will face water scarcity within the next ten years due to climate change and unsustainable water usage, and this number is only expected to grow exponentially in the future. At current water use rates, supply-side demand management is no longer an effective way to combat water scarcity. Instead, many municipalities and water agencies are looking to demand-side solutions to prevent major water loss. While changing conservation behavior is one demand-based strategy, there is a growing movement toward the adoption of water conservation technology as a way to solve water resource depletion. Installing technology into one’s household requires additional costs and motivation, creating a gap between the overall potential households that could adopt this technology, and how many actually do. This study identified and modeled a variety of demographic and household characteristics, social network influence, and external factors such as water price and rebate policy to see their effect on residential water conservation technology adoption. Using Agent-based Modeling and data obtained from the City of Miami Beach, the coupled effects of these factors were evaluated to examine the effectiveness of different pathways towards the adoption of more water conservation technologies. The results showed that income growth and water pricing structure, more so than any of the demographic or building characteristics, impacted household adoption of water conservation technologies. The results also revealed that the effectiveness of rebate programs depends on conservation technology cost and the affluence of the community. Rebate allocation did influence expensive technology adoption, with the potential to increase the adoption rate by 50%. Additionally, social network connections were shown to have an impact on the rate of adoption independent of price strategy or rebate status. These findings will lead the way for municipalities and other water agencies to more strategically implement interventions to encourage household technology adoption based on the characteristics of their communities.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-07-28
    Description: Water, Vol. 10, Pages 994: Predicting Lake Eutrophication Responses to Multiple Scenarios of Lake Restoration: A Three-Dimensional Modeling Approach Water doi: 10.3390/w10080994 Authors: Yanping Wang Weiping Hu Zhaoliang Peng Ye Zeng Karsten Rinke To improve the water quality and alleviate the eutrophication of Lake Yangchenghu, the third largest freshwater body within the Lake Taihu basin in China and an important source of drinking water, nutrient reduction strategies should be urgently addressed by decision makers, since virtually no improvement of water quality has taken place since the mid-1990s. Due to the lack of sufficient observation data and simulation results, a vertically compressed three-dimensional numerical model, the EcoTaihu model, was used to study the impact of three restoration measures on the water quality—namely, total nitrogen (TN), total phosphorus (TP) and biomass of phytoplankton (BP)—of Lake Yangchenghu: (i) total nutrient reduction, (ii) intensification of flushing by water transfer, and (iii) spatial adjustment of inflow channels. In particular, the spatial effects of the three restoration measures on the water quality were investigated. The results showed that the EcoTaihu model is applicable to other shallow lakes in China. The water quality responses to the different restoration scenarios showed significant spatio-temporal differences. The reduction of nutrient loads from inflows appeared to be the most effective measure for controlling the eutrophication and algal blooms in Lake Yangchenghu. The effectiveness of water transfer on the improvement of water quality for TN and TP was more influenced by the differences of nutrient concentrations between the transferred water and lake water, rather than flow rate, since no proportionate increase of improvement was observable in the case of larger transferred rates (60 m3 s−1). The spatial narrowing of inflowing rivers in the southwestern lake could preferentially improve the water quality in the southern bay of the western lake, but would also result in a deterioration trend of water quality in the total lake and drinking water abstraction areas.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-07-30
    Description: Minerals, Vol. 8, Pages 326: Hydrotalcite and Hydrocalumite in Mortar Binders from the Medieval Castle of Portilla (Álava, North Spain): Accurate Mineralogical Control to Achieve More Reliable Chronological Ages Minerals doi: 10.3390/min8080326 Authors: Graciela Ponce-Antón Luis Angel Ortega Maria Cruz Zuluaga Ainhoa Alonso-Olazabal Jose Luis Solaun Mortars from different stratigraphic units at Portilla Castle (Alava, North Spain) have been analyzed for mineralogical characterization before radiocarbon dating. The mortar binder at Portilla Castle is composed not only of neoformation calcite but also of double-layered hydroxide (LDH) minerals such as hydrotalcite and hydrocalumite. The mineralogy of several fractions of the binder has been analyzed to determine the granulometric distribution of minerals in the binder. The continuous monitoring of mineralogy during the extraction of different grain size fractions has been performed by using a scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analyses (TGA). Hydrotalcite and hydrocalumite-bearing mortar binders give older ages than expected since they introduce dead carbon into the system.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-07-31
    Description: Water, Vol. 10, Pages 1008: Inherent Relationship between Flow Duration Curves at Different Time Scales: A Perspective on Monthly Flow Data Utilization in Daily Flow Duration Curve Estimation Water doi: 10.3390/w10081008 Authors: Lei Ye Wei Ding Xiaofan Zeng Zhuohang Xin Jian Wu Chi Zhang Modelling flow duration curves (FDCs) has long been a topic of interest since it is widely used in various hydrological applications. Most studies related to the estimation of FDCs in ungauged or partial gauged basins focus primarily on using climate and catchment characteristics to regionalize FDC at some single time scale. However, the relationship of FDCs at various time scales are rarely analyzed or studied. Here, we propose two methods, which are Modelled FDC Parameter comparison (M-FDC-P) and Empirical FDC Ratio comparison (E-FDC-R), to study the quantitative relationship between daily and monthly FDCs. One method M-FDC-P, selects a Kappa (KAP) distribution to represent the characteristics of the FDCs and then analyzes the relationship between KAP parameters of modelled FDCs at different time scales. Results indicate that three out of four parameters have strong correlations between FDCs at daily and monthly time scales. The other method, E-FDC-R, compares the quantitative relationship between daily and monthly empirical FDCs with given exceedance probabilities. The Power function is used for fitting the ratio-exceedance probability curves. In addition, the simulated daily FDC derived from monthly FDC can be very consistent with the observed daily flow records when the two parameters of power function are quantified precisely. These results clearly indicate that there are strong connections between daily and monthly FDCs, and monthly FDC can provide valuable information for daily FDC estimation. Since flow records at a large time scale are easier to obtain, daily FDC could be derived from monthly FDC by considering the inherent relationships between FDCs at different time scales, which is not sufficiently realized in previous studies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-07-31
    Description: Water, Vol. 10, Pages 1006: Validation of TRMM 3B42V7 Rainfall Product under Complex Topographic and Climatic Conditions over Hexi Region in the Northwest Arid Region of China Water doi: 10.3390/w10081006 Authors: Xiuna Wang Yongjian Ding Chuancheng Zhao Jian Wang Continuous and accurate spatiotemporal precipitation data plays an important role in regional climate and hydrology research, particularly in the arid inland regions where rain gauges are sparse and unevenly distributed. The main objective of this study is to evaluate and bias-correct the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 rainfall product under complex topographic and climatic conditions over the Hexi region in the northwest arid region of China with the reference of rain gauge observation data during 2009–2015. A series of statistical indicators were adopted to quantitatively evaluate the error of 3B42V7 and its ability in detecting precipitation events. Overall, the 3B42V7 overestimates the precipitation with Bias of 11.16%, and its performance generally becomes better with the increasing of time scale. The agreements between the rain gauge data and 3B42V7 are very low in cold season, and moderate in warm season. The 3B42V7 shows better correlation with rain gauges located in the southern mountainous and central oasis areas than in the northern extreme arid regions, and is more likely to underestimate the precipitation in high-altitude mountainous areas and overestimate the precipitation in low-elevation regions. The distribution of the error on the daily scale is more related to the elevation and rainfall than in monthly and annual scale. The 3B42V7 significantly overestimates the precipitation events, and the overestimation mainly focuses on tiny amounts of rainfall (0–1 mm/d), which is also the range of false alarm concentration. Bias correction for 3B42V7 was carried out based on the deviation of the average monthly precipitation data during 2009–2015. The bias-corrected 3B42V7 was significantly improved compared with the original product. Results suggest that regional assessment and bias correction of 3B42V7 rainfall product are of vital importance and will provide substantive reference for regional hydrological studies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-07-26
    Description: Minerals, Vol. 8, Pages 312: Leaching of Primary Copper Sulfide Ore in Chloride-Ferrous Media Minerals doi: 10.3390/min8080312 Authors: Karina E. Salinas Osvaldo Herreros Cynthia M. Torres Copper extraction from primary copper sulfide ore from a typical porphyry copper deposit from Antofagasta, Chile, was investigated after leaching with a chloride-ferrous media at two temperatures. The study focused on whether this chemical leaching system could be applied at an industrial scale. Leaching tests were conducted in columns loaded with approximately 50 kg of agglomerated ore; the ore was first cured for 14 days and then leached for 90 days. The highest copper extraction, 50.23%, was achieved at 32.9 °C with the addition of 0.6 kg of H2SO4 per ton of ore, 0.525 kg of NaCl per ton of ore, and 0.5 kg of FeSO4 per ton of ore. In respect to copper extraction, the most effective variables were temperature and the addition of NaCl.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-08-03
    Description: Minerals, Vol. 8, Pages 332: Kurchatovite and Clinokurchatovite, Ideally CaMgB2O5: An Example of Modular Polymorphism Minerals doi: 10.3390/min8080332 Authors: Yulia A. Pankova Sergey V. Krivovichev Igor V. Pekov Edward S. Grew Vasiliy O. Yapaskurt Kurchatovite and clinokurchatovite, both of ideal composition CaMgB2O5, from the type localities (Solongo, Buryatia, Russia, and Sayak-IV, Kazakhstan, respectively) have been studied using electron microprobe and single-crystal X-ray diffraction methods. The empirical formulae of the samples are Ca1.01Mg0.87Mn0.11Fe2+0.02B1.99O5 and Ca0.94Mg0.91Fe2+0.10Mn0.04B2.01O5 for kurchatovite and clinokurchatovite, respectively. The crystal structures of the two minerals are similar and based upon two-dimensional blocks arranged parallel to the c axis in kurchatovite and parallel to the a axis in clinokurchatovite. The blocks are built up from diborate B2O5 groups, and Ca2+ and Mg2+ cations in seven- and six-fold coordination, respectively. Detailed analysis of geometrical parameters of the adjacent blocks reveals that symmetrically different diborate groups have different degrees of conformation in terms of the δ angles between the planes of two BO3 triangles sharing a common O atom, featuring two discrete sets of the δ values of ca. 55° (B’ blocks) and 34° (B” blocks). The stacking of the blocks in clinokurchatovite can be presented as …(+B’)(+B”)(+B’)(+B”)… or [(+B’)(+B”)], whereas in kurchatovite it is more complex and corresponds to the sequence …(+B’)(+B”)(+B’)(−B’)(−B”)(−B’)(+B’)(+B”)(+B’)(−B’)(−B”)(−B’)… or [(+B’)(+B”)(+B’)(−B’)(−B”)(−B’)]. The B’:B” ratios for clinokurchatovite and kurchatovite are 1:1 and 2:1, respectively. According to this description, the two minerals cannot be considered as polytypes and their mutual relationship corresponds to the term modular polymorphs. From the viewpoint of information-based measures of structural complexity, clinokurchatovite (IG = 4.170 bits/atom and IG,total = 300.235 bits/cell) is structurally simpler than kurchatovite (IG = 4.755 bits/atom and IG,total = 1027.056 bits/cell). The high structural complexity of kurchatovite can be inferred from the modular character of its structure. The analysis of structural combinatorics in terms of the modular approach allows to construct the whole family of theoretically possible “kurchatovite”-type structures that bear the same structural features common for kurchatovite and clinokurchatovite. However, the crystal structures of the latter minerals are the simplest and are the only ones that have been observed in nature. The absence of other possible structures is remarkable and can be explained by either the maximum-entropy of the least-action fundamental principles.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-08-03
    Description: Minerals, Vol. 8, Pages 331: Textural Characteristics of Noncrystalline Silica in Sinters and Quartz Veins: Implications for the Formation of Bonanza Veins in Low-Sulfidation Epithermal Deposits Minerals doi: 10.3390/min8080331 Authors: Tadsuda Taksavasu Thomas Monecke T. James Reynolds Silica sinters forming at the Wairakei geothermal power plant in New Zealand are composed of noncrystalline opal-A that deposited rapidly from cooling geothermal liquids flashed to atmosphere. The sinter is laminated with alternating layers of variably compacted silicified filamentous microbes encased by chains of fused silica microspheres. Microscopic inspection of bonanza quartz vein samples from the Buckskin National low-sulfidation epithermal precious metal deposit in Nevada showed that colloform bands in these veins exhibit relic microsphere textures similar to those observed in the silica sinters from the Wairakei power plant. The textural similarity suggests that the colloform bands were originally composed of noncrystalline opal-A that subsequently recrystallized to quartz. The colloform bands contain dendrites of electrum and naumannite that must have grown in a yielding matrix of silica microspheres deposited at the same time as the ore minerals, implying that the noncrystalline silica exhibited a gel-like behavior. Quartz bands having other textural characteristics in the crustiform veins lack ore minerals. This suggests that ore deposition and the formation of the colloform bands originally composed of compacted microspheres of noncrystalline silica are genetically linked and that ore deposition within the bonanza veins was only episodic. Supersaturation of silica and precious metals leading to the formation of the colloform bands may have occurred in response to transient flashing of the hydrothermal liquids. Flashing of geothermal liquids may thus represent a key mechanism in the formation of bonanza precious metal grades in low-sulfidation epithermal deposits.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-08-03
    Description: Water, Vol. 10, Pages 1025: Monitoring the Chloride Concentration in International Scheldt River Basin District Water Using a Low-Cost Multifunction Data Acquisition Board Water doi: 10.3390/w10081025 Authors: Wanda J. Guedens Monique Reynders Koen Van Vinckenroye Jan Yperman Robert Carleer In analytical chemistry laboratories, to gather in the shortest time as many data as possible with the utmost accuracy and precision, high throughput automated setups are indispensable. In the present study, to determine the chloride concentration in the international Scheldt river basin district, experiments are carried out utilizing a thermostatically controlled semi-automated setup. A novel ICT-based method is developed using a low-cost multifunction Data Acquisition Board (DAQ) controlled by a homebuilt LabVIEW™ program. Specifically, this approach enables a correlation between different parameters i.e., droplet volume, temperature, A/D voltage conversions. Here, processing experimental data of a potentiometric precipitation titration utilizing a silver nitrate standard solution as titrant in a manual burette equipped with a controllable electronic valve allows for a preliminary indication of the titration end point via the Virtual Instrument (VI) numerical first derivative tool in the LabVIEW software. The LabVIEW tool is compared with the well-known Gran method implemented in the LabVIEW program, emphasizing an accurate performance of the setup to determine the chloride concentration in fresh river water. We are confident that our findings are evidence of the versatile and powerful features of the LabVIEW controlled DAQ in the analytical chemistry laboratory.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-08-07
    Description: Water, Vol. 10, Pages 1040: Storm Water Management and Flood Control in Sponge City Construction of Beijing Water doi: 10.3390/w10081040 Authors: Shuhan Zhang Yongkun Li Meihong Ma Ting Song Ruining Song To solve the problems of increasing local flooding, water shortage, and water pollution caused by the traditional model of urban development, the Chinese government proposed a new model of urban development—the Sponge City. In Beijing, the capital of China, research on storm water management in urban areas has been carried out since 1989 and has put forward the concept of urban storm water harvesting and flood control. The further research and demonstration application started in 2000. So far, a series of policies and technology standards on storm water management have been formulated, which promote the application of technologies on comprehensive urban storm water harvesting and flood control. A significant number of storm water harvesting and flood control projects have been built in Beijing, which are now playing important roles in runoff reduction, local flood control, non-point source pollution reduction, and storm water utilization. However, it does not solve the above problem completely. Storm water management and flood control needs to be further strengthened. The “Sponge City” is based on natural and ecological laws, which allows storm water to be managed with natural infiltration, natural retention and detention, and natural cleaning facilities. Through in-depth analysis of the connotation, characteristics, and construction path of “Sponge City”, this paper summarizes the status quo of urban rainwater flooding, flood control technology development and application, and Beijing policy and engineering to introduce the overall ideas and methods of Sponge City construction. All the above will provide a reference for cities with similar problems in the construction of sponge cities.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1037: Multivariate and Spatial Analysis of Physicochemical Parameters in an Irrigation District, Chihuahua, Mexico Water doi: 10.3390/w10081037 Authors: Jesús Alejandro Prieto-Amparán Beatriz Adriana Rocha-Gutiérrez María de Lourdes Ballinas-Casarrubias María Cecilia Valles-Aragón María del Rosario Peralta-Pérez Alfredo Pinedo-Alvarez Water quality is relevant due to the complexity of the interaction of physicochemical and biological parameters. The Irrigation District 005 (ID005) is one of the most important agricultural region in Chihuahua, México; for that reason, it was proposed to investigate the water quality of the site. Water samples were collected in two periods: Summer (S1) and Fall (S2). The samples were taken from 65 wells in S1, and 54 wells in S2. Physicochemical parameters (PhP) such as Arsenic (As), Temperature, Electrical Conductivity (EC), Oxide Reduction Potential (ORP), Hardness, pH, Total Dissolved Solids (TDS), and Turbidity were analyzed. The data were subjected to statistical principal component analysis (PCA), cluster analysis (CA) and spatial variability tests. In both seasons, the TDS exceeded the Mexican maximum permissible level (MPL) (35% S1, 39% S2). Turbidity exceeded the MPL in S1 (29%) and in S2 (12%). Arsenic was above the MPL for water of agricultural use in 9% (S1) and 13% (S2) of the wells. The PCA results suggested that most variations in water quality in S1 were due to As, pH and Temperature, followed by EC, TDS and Hardness; while in S2 to EC, TDS and Hardness, followed by As and pH.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-08-06
    Description: Minerals, Vol. 8, Pages 337: The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag Minerals doi: 10.3390/min8080337 Authors: Juan Cosa Lourdes Soriano María Victoria Borrachero Lucía Reig Jordi Payá José María Monzó The properties of a binder developed by the alkali-activation of a single waste material can improve when it is blended with different industrial by-products. This research aimed to investigate the influence of blast furnace slag (BFS) and fly ash (FA) (0–50 wt %) on the microstructure and compressive strength of alkali-activated ceramic sanitaryware (CSW). 4 wt % Ca(OH)2 was added to the CSW/FA blended samples and, given the high calcium content of BFS, the influence of BFS was analyzed with and without adding Ca(OH)2. Mortars were used to assess the compressive strength of the blended cements, and their microstructure was investigated in pastes by X-ray diffraction, thermogravimetry, and field emission scanning electron microscopy. All the samples were cured at 20 °C for 28 and 90 days and at 65 °C for 7 days. The results show that the partial replacement of CSW with BFS or FA allowed CSW to be activated at 20 °C. The CSW/BFS systems exhibited better mechanical properties than the CSW/FA blended mortars, so that maximum strength values of 54.3 MPa and 29.4 MPa were obtained in the samples prepared with 50 wt % BFS and FA, respectively, cured at 20 °C for 90 days.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1036: Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy Water doi: 10.3390/w10081036 Authors: Shanjia Li Peixi Su Haina Zhang Zijuan Zhou Rui Shi Wei Gou Plant hydraulic conductivity (K) refers to the rate of water flow (kg s−1) per unit pressure drop (MPa), which drives flow through the plant organ system. It is an important eco-physiology index for measuring plant water absorption and transport capacity. A field study was conducted in the arid region of the Heihe River Basin in northwestern China, plant hydraulic conductivity was measured by high-pressure flowmeter (HPFM) to investigate the characteristics of hydraulic conductivity of typical dominant desert plants (Reaumuria soongarica M., Nitraria sphaerocarpa M., and Sympegma regelii B.) and their relationship with functional traits of leaves, stems, and roots, and explaining their adaptation strategies to desert environment from the perspective of plant organs hydraulic conductivity. The results showed that the hydraulic conductivity of the leaves and stems of R. soongarica and N. sphaerocarpa (KLA, leaf hydraulic conductivity per unit leaf area; KLW, leaf hydraulic conductivity per unit leaf weight; KSLA, stem hydraulic conductivity per unit leaf area; KSLW, stem hydraulic conductivity per unit leaf weight) were significantly lower than those of S. regelii, while their fine root (KRL, root hydraulic conductivity per unit leaf length; KRSA, root hydraulic conductivity per unit root surface area) and whole root (KTRW, whole root hydraulic conductivity per unit root weight) of hydraulic conductivity were significantly higher than those of S. regelii. In addition, KLA and KLW, KSLA and KSLW, and KRL and KRSA in three desert plants all exhibited consistent trends. Correlation analysis illustrated that the hydraulic conductivity of leaves and stems had a significantly positive correlation, but they had no significant negative correlation with the specific leaf weight (SLW, specific leaf weight). The hydraulic conductivity of fine root weight (KRW, root hydraulic conductivity per unit root weight) and specific root surface area (SRSA, specific root surface area) showed significantly positive correlation (r = 0.727, P < 0.05). The results demonstrated that the R. soongarica and N. sphaerocarpa preserved their water content through the strong leaf absorption capacity of soil water and the low water dispersion rates of leaves to adapt to the harsher arid habitat, which is more drought tolerant than S. regelii.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1038: Simple and Low-Cost Procedure for Monthly and Yearly Streamflow Forecasts during the Current Hydrological Year Water doi: 10.3390/w10081038 Authors: Fernando Delgado-Ramos Carmen Hervás-Gámez Accurately forecasting streamflow values is essential to achieve an efficient, integrated water resources management strategy and to provide consistent support to water decision-makers. We present a simple, low-cost, and robust approach for forecasting monthly and yearly streamflows during the current hydrological year, which is applicable to headwater catchments. The procedure innovatively combines the use of well-known regression analysis techniques, the two-parameter Gamma continuous cumulative probability distribution function and the Monte Carlo method. Several model performance statistics metrics (including the Coefficient of Determination R2; the Root-Mean-Square Error RMSE; the Mean Absolute Error MAE; the Index of Agreement IOA; the Mean Absolute Percent Error MAPE; the Coefficient of Nash-Sutcliffe Efficiency NSE; and the Inclusion Coefficient IC) were used and the results showed good levels of accuracy (improving as the number of observed months increases). The model forecast outputs are the mean monthly and yearly streamflows along with the 10th and 90th percentiles. The methodology has been successfully applied to two headwater reservoirs within the Guadalquivir River Basin in southern Spain, achieving an accuracy of 92% and 80% in March 2017. These risk-based predictions are of great value, especially before the intensive irrigation campaign starts in the middle of the hydrological year, when Water Authorities have to ensure that the right decision is made on how to best allocate the available water volume between the different water users and environmental needs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1046: Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China Water doi: 10.3390/w10081046 Authors: Min Luo Tie Liu Fanhao Meng Yongchao Duan Amaury Frankl Anming Bao Philippe De Maeyer The systemic biases of Regional Climate Models (RCMs) impede their application in regional hydrological climate-change effects analysis and lead to errors. As a consequence, bias correction has become a necessary prerequisite for the study of climate change. This paper compares the performance of available bias correction methods that focus on the performance of precipitation and temperature projections. The hydrological effects of these correction methods are evaluated by the modelled discharges of the Kaidu River Basin. The results show that all used methods improve the performance of the original RCM precipitation and temperature simulations across a number of levels. The corrected results obtained by precipitation correction methods demonstrate larger diversities than those produced by the temperature correction methods. The performance of hydrological modelling is highly influenced by the choice of precipitation correction methods. Furthermore, no substantial differences can be identified from the results of the temperature-corrected methods. The biases from input data are often greater from the works of hydrological modelling. The suitability of these approaches depends upon the regional context and the RCM model, while their application procedure and a number of results can be adapted from region to region.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1047: Assessing Decadal Trends of a Nitrate-Contaminated Shallow Aquifer in Western Nebraska Using Groundwater Isotopes, Age-Dating, and Monitoring Water doi: 10.3390/w10081047 Authors: Martin J. Wells Troy E. Gilmore Aaron R. Mittelstet Daniel Snow Steven S. Sibray Shallow aquifers are prone to nitrate contamination worldwide. In western Nebraska, high groundwater nitrate concentrations ([NO3−]) have resulted in the exploration of new groundwater and nitrogen management regulations in the North Platte Natural Resources District (NPNRD). A small region of NPNRD (“Dutch Flats”) was the focus of intensive groundwater sampling by the United States Geological Survey from 1995 to 1999. Nearly two decades later, notable shifts have occurred in variables related to groundwater recharge and [NO3−], including irrigation methods. The objective of this study was to evaluate how changes in these variables, in part due to regulatory changes, have impacted nitrate-contaminated groundwater in the Dutch Flats area. Groundwater samples were collected to assess changes in: (1) recharge rates; (2) biogeochemical processes; and (3) [NO3−]. Groundwater age increased in 63% of wells and estimated recharge rates were lower for 88% of wells sampled (n = 8). However, mean age and recharge rate estimated in 2016 (19.3 years; R = 0.35 m/year) did not differ significantly from mean values determined in 1998 (15.6 years; R = 0.50 m/year). δ15N-NO3− (n = 14) and dissolved oxygen data indicate no major changes in biogeochemical processes. Available long-term data suggest a downward trend in normalized [NO3−] from 1998 to 2016, and lower [NO3−] was observed in 60% of wells sampled in both years (n = 87), but median values were not significantly different. Collectively, results suggest the groundwater system is responding to environmental variables to a degree that is detectable (e.g., trends in [NO3−]), although more time and/or substantial changes may be required before it is possible to detect significantly different mean recharge.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-14
    Description: Minerals, Vol. 8, Pages 250: Effect of Ammonium Chloride on the Efficiency with Which Copper Sulfate Activates Marmatite: Change in Solution Composition and Regulation of Surface Composition Minerals doi: 10.3390/min8060250 Authors: Shengdong Zhang Dongxia Feng Xiong Tong Bo Yang Xian Xie Zinc sulfide minerals are the primary choice for zinc extraction and marmatite is one of the two most common zinc sulphide minerals (sphalerite and marmatite), therefore it is of great significance to study and optimize the flotation of marmatite. To improve the activation of copper sulfate on marmatite, a method involving the addition of ammonium chloride is devised. The method has been proven to be an effective way of improving the activation efficiency of copper sulfate towards marmatite under alkaline conditions. The strengthening mechanism was studied using micro-flotation, adsorption test, X-ray photoelectron spectroscopy, and by analyzing changes in solution composition. Flotation test results show that the activation effect of the copper sulfate towards marmatite is enhanced with the addition of ammonium chloride. According to the results of the adsorption measurements and X-ray photoelectron spectroscopy analysis, when the marmatite surface is activated using copper sulfate with added ammonia chloride, it adsorbs more copper sulfide and less copper hydroxide and zinc hydroxide. These changes in surface composition are believed to occur via the following process: NH3(aq) promotes the dissolution of zinc hydroxide and then facilitates the conversion of surface copper hydroxide to copper sulfide. In addition, the occurrence of Cu(NH3)n2+ can promote the adsorption of copper ions (Cu2+ can be stored as Cu(NH3)n2+ via complexation, and then, when the concentration of copper ions decreases, Cu2+ can be released through the decompositionof Cu(NH3)n2+. Hence, the copper ion concentration can be maintained and this can facilitate the adsorption of Cu2+ on marmatite). Based on a comprehensive analysis of all our results, we propose that adding ammonium chloride to the copper sulfate changes the solution components (i.e., the presence of NH3(aq) and Cu(NH3)n2+) and then regulates the surface composition of marmatite. The change in surface composition improves the hydrophobicity of mineral surface and this leads to an improvement in activation of marmatite.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-12
    Description: Water, Vol. 10, Pages 759: Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel Water doi: 10.3390/w10060759 Authors: Jiangyu Dai Shiqiang Wu Xiufeng Wu Wanyun Xue Qianqian Yang Senlin Zhu Fangfang Wang Dan Chen To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 731: What Germany’s University Beginners Think about Water Reuse Water doi: 10.3390/w10060731 Authors: Sarah Schmid Franz X. Bogner Water reuse is a new technology, not yet implemented, but discussed for use in Germany. Public opinion plays a major role in the success of the introduction of this new technology and was not yet analyzed for Germany. When monitoring 340 university beginners’ conceptions regarding water reuse, a variety of conceptions appeared. While usage of tap water is accepted for drinking purposes, acceptance of recycled water for oral consumption was low. When asked for reasons for (not) using recycled water, three groups of respondents were extracted: (a) The acceptors (convinced of quality, or naming sustainability as a reason); (b) the undecided (doubts about quality, rejection of its use for consumption, and psychological conflicts of logic and disgust); (c) the non-acceptors (unconvinced of quality and preference for bottled water). When asked about factors that would lead to accepting the use of recycled water, insights into treatment processes were identified as the most convincing, followed by educational films and guided tours. Participants showed high conviction about currently existing tap-water qualities. Having water that is cleaned before it reaches the consumer was reported to have high priority. To increase acceptance of water reuse, recommendations for appropriate outreach programs are discussed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 730: A Comparative Study of Groundwater Level Forecasting Using Data-Driven Models Based on Ensemble Empirical Mode Decomposition Water doi: 10.3390/w10060730 Authors: Yicheng Gong Zhongjing Wang Guoyin Xu Zixiong Zhang The reliable and accurate prediction of groundwater levels is important to improve water-use efficiency in the development and management of water resources. Three nonlinear time-series intelligence hybrid models were proposed to predict groundwater level fluctuations through a combination of ensemble empirical mode decomposition (EEMD) and data-driven models (i.e., artificial neural networks (ANN), support vector machines (SVM) and adaptive neuro fuzzy inference systems (ANFIS)), respectively. The prediction capability of EEMD-ANN, EEMD-SVM, and EEMD-ANFIS hybrid models was investigated using a monthly groundwater level time series collected from two observation wells near Lake Okeechobee in Florida. The statistical parameters correlation coefficient (R), normalized mean square error (NMSE), root mean square error (RMSE), Nash–Sutcliffe efficiency coefficient (NS), and Akaike information criteria (AIC) were used to assess the performance of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models. The results achieved from the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models were compared with those from the ANN, SVM and ANFIS models. The three hybrid models (i.e., EEMD-ANN, EEMD-SVM, and EEMD-ANFIS) proved to be applicable to forecast the groundwater level fluctuations. The values of the statistical parameters indicated that the EEMD-ANFIS and EEMD-SVM models achieved better prediction results than the EEMD-ANN model. Meanwhile, the three models coupled with EEMD were found have better prediction results than the models that were not. The findings from this study indicate that the proposed nonlinear time-series intelligence hybrid models could improve the prediction capability in forecasting groundwater level fluctuations, and serve as useful and helpful guidelines for the management of sustainable water resources.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 729: Geothermometry and Isotope Geochemistry of CO2-Rich Thermal Waters in Choygan, East Tuva, Russia Water doi: 10.3390/w10060729 Authors: Anastasia Shestakova Natalia Guseva Yulia Kopylova Albina Khvaschevskaya David A. Polya Igor Tokarev The Choygan area of southern Siberia, Russia hosts a variety of CO2-rich thermal mineral and other waters emerging from springs at temperatures between 7 °C and 39 °C. Chemical analyses of the spring waters (n = 33) were carried out to characterise the waters and determine their origin. A continuum of compositions was observed between relatively lower temperature (7 °C) HCO3-Ca-Na dominated waters with relatively low amount of total dissolved solids (TDS) and high Eh, and higher temperature (39 °C) HCO3-Na-Ca dominated waters with higher TDS and lower Eh—this reflects largely conservative mixing of these components between near surface low temperature, oxidising groundwaters and higher temperature, more reducing thermal waters derived from a deeper geothermal reservoir. Stable isotopic data are consistent with all the water ultimately being derived from meteoric water that has undergone varying degrees of isotopic fractionation following evaporation. The inferred δ18O and δ2H isotopic composition of the unfractionationed meteoric waters is lighter than that expected that of mean annual local precipitation, which together with a strong negative correlation between δ18O and the elevation of the sampled discharging springs, suggests recharge at higher elevations (1600 m to 3000 m; average 2600 m). Reservoir temperature, calculated using geothermometers and an analysis of saturation indices of plausible reservoir minerals, ranged from 70 °C to 100 °C at an inferred depth of 2 to 3 km. Not all chemical components were found to follow conservative mixing behaviour. In particular, (i) the CO2 contents of the waters were highly variable, suggesting either varying degrees of degassing and/or near discharge admixture with air, and (ii) SO4 concentrations in the lower temperature thermal CO2-rich waters were highly variable, suggesting a role of near surface oxidation processes, for example of pyrite, in modifying the concentration of redox sensitive components. Limited δ13C data are consistent with the CO2 predominately being derived from dissolution of metamorphic/igneous carbonate minerals in the reservoir. Based on geological conditions, isotope and chemical data, a conceptual circulation model of the Choygan hydrothermal system is proposed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 728: An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets Water doi: 10.3390/w10060728 Authors: Xiaotao Wu Guihua Lu Zhiyong Wu Hai He Jianhong Zhou Zhenchen Liu Field capacity is one of the most important soil hydraulic properties in water cycle, agricultural irrigation, and drought monitoring. It is difficult to obtain the distribution of field capacity on a large scale using manual measurements that are both time-consuming and labor-intensive. In this study, the field capacity ensemble members were established using existing pedotransfer functions (PTFs) and multiple linear regression (MLR) based on three soil datasets and 2388 in situ field capacity measurements in China. After evaluating the accuracy of each ensemble member, an integration approach was proposed for estimating the field capacity distribution and development of a 250 m gridded field capacity dataset in China. The spatial correlation coefficient (R) and root mean square error (RMSE) between the in situ field capacity and ensemble field capacity were 0.73 and 0.048 m3·m−3 in region scale, respectively. The ensemble field capacity shows great consistency with practical distribution of field capacity, and the deviation is revised when compared with field capacity datasets provided by previous researchers. It is a potential product for estimating field capacity in hydrological and agricultural practices on both large and fine scales, especially in ungauged regions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-14
    Description: Water, Vol. 10, Pages 779: Study of the Scale Effect on Permeability in the Interlayer Shear Weakness Zone Using Sequential Indicator Simulation and Sequential Gaussian Simulation Water doi: 10.3390/w10060779 Authors: Meng Chen Zhifang Zhou Lei Zhao Mu Lin Qiaona Guo Mingwei Li The interlayer shear weakness zone (ISWZ) is a deformation zone in stratified rock masses, with different width and spacing, due to tectonic stresses. It represents the main flow path in rocks due to higher permeability compared with massive rocks. The permeability values of an ISWZ can vary significantly depending on the scale. This study focuses on the correlations between the permeability properties of ISWZs and their geometry properties. A range of realistic 3-D numerical models of ISWZs is developed using geostatistical modeling, with fine-scale geometry and permeability information taken into consideration. These ISWZs represent a set of mud content and width distributions that are typical for ISWZs. Horizontal and vertical permeability values for all ISWZs are found to change in small-scale samples, whereas these fluctuations decrease with increasing sample size. For different types of ISWZs, the results show that ISWZs with variable width will show a significantly larger scale effect on the permeability than that of ISWZs with constant width. Furthermore, ISWZs with a higher mud content display greater variation in horizontal permeability, while the opposite is true for vertical permeability. Based on the coefficient of permeability variation, a criterion is proposed to identify the calculated permeability of a sample is locally homogeneous. The size for this sample relies on the properties estimated (horizontal and vertical permeability) and geometry features. These findings could provide a basis for the selection of permeability values of an ISWZ in hydraulic engineering. Additionally, the procedures used in this article can be applied to any type of ISWZs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-14
    Description: Water, Vol. 10, Pages 774: Development of an Integrated Modelling System for Evaluating Water Quantity and Quality Effects of Individual Wetlands in an Agricultural Watershed Water doi: 10.3390/w10060774 Authors: Yongbo Liu Wanhong Yang Hui Shao Zhiqiang Yu John Lindsay A GIS-based fully-distributed model, IMWEBs-Wetland (Integrated Modelling for Watershed Evaluation of BMPs—Wetland), is developed to simulate hydrologic processes of site-specific wetlands in an agricultural watershed. This model, powered by the open-source GIS Whitebox Geospatial Analysis Tools (GAT) and advanced database technologies, allows users to simulate and assess water quantity and quality effects of individual wetlands at site and watershed scales. A case study of the modelling system is conducted in a subbasin of the Broughton’s Creek Watershed in southern Manitoba of Canada. Modelling results show that the model is capable of simulating wetland processes in a complex watershed with various land management practices. The IMWEBs-Wetland model is unique in simulating the water quantity and quality effects of individual wetlands, which can be used to examine location-specific targeting of wetland retention and restoration at a watershed scale.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-13
    Description: Water, Vol. 10, Pages 770: Electrochemical Degradation of Phenol and Resorcinol Molecules through the Dissolution of Sacrificial Anodes of Macro-Corrosion Galvanic Cells Water doi: 10.3390/w10060770 Authors: Boguslaw Pierozynski Grazyna Piotrowska This paper reports on the processes of phenol and resorcinol electrodegradation carried-out through continuous anodic dissolution of aluminum alloy and carbon steel sacrificial anodes for artificially aerated Cu-Al alloy and Cu-Fe-based galvanic (macro-corrosion) cells and synthetically prepared wastewater solutions. Electrochemical experiments were carried-out by means of a laboratory size, PMMA (Poly-methyl methacrylate)-made electrolyser unit, where significant degrees of phenol (10–89%) and resorcinol (13–37%) decomposition were obtained and visualized through the respective chemical/spectroscopy analyses. In addition, quantitative determination of phenol, as well as resorcinol (and possible electrodegradation products) for the selected experimental conditions was performed by means of instrumental high-performance liquid chromatography/mass spectrometry analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-13
    Description: Water, Vol. 10, Pages 766: The Influences of Sponge City on Property Values in Wuhan, China Water doi: 10.3390/w10060766 Authors: Shiying Zhang Chris Zevenbergen Paul Rabé Yong Jiang Rapid urbanization in China and global climate change have increased urban flood exposure in Wuhan, and the increased flood risk has reduced property values in flood-prone areas. The central government of China is promoting the application of the sponge city concept to reduce urban flood risk and improve the environment in cities. Wuhan is one of the pilot cities of this initiative. A shortage of funds is one of the main obstacles to sponge city construction, as is the lack of a suitable business model. To test residents’ willingness to pay for sponge city construction, this research analyzed the impact of sponge city construction on the housing values of areas covered by sponge city interventions. The authors conducted interviews and analyzed secondary data to gauge residents’ awareness and perceptions of sponge city interventions. The results show that more than half of residents in Wuhan are willing to pay for sponge city measures, but the amount they are willing to pay is limited. Residents are more willing to pay for improvements of their living environment than for flood reduction measures.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-16
    Description: Water, Vol. 10, Pages 794: Navigating the Water-Energy Governance Landscape and Climate Change Adaptation Strategies in the Northern Patagonia Region of Argentina Water doi: 10.3390/w10060794 Authors: Laura Forni Marisa Escobar Pablo Cello Marta Marizza Gustavo Nadal Leonidas Girardin Fernando Losano Lisandro Bucciarelli Charles Young David Purkey Water scientists often find themselves interacting with decision-makers with varying levels of technical background. The sustainable management of water resources is complex by nature, and future conditions are highly uncertain, requiring modeling approaches capable of accommodating a variety of parameters and scenarios. Technical findings from these analyses need to be positioned and conducted within the governance institutions to ensure decision-makers utilize them. This paper examines the water resource challenges for a large basin in northern Patagonia, Argentina and utilizes the Robust Decision Support (RDS) framework to evaluate trade-offs and strategies in a participatory process that included researchers and decision-makers. Integrated water resources models using simulation modeling and decision space visualization show significant climate change impacts, which are augmented with irrigated agriculture expansion and increasing hydropower production.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-16
    Description: Water, Vol. 10, Pages 789: Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015 Water doi: 10.3390/w10060789 Authors: Jinsong Ti Yuhao Yang Xiaogang Yin Jing Liang Liangliang Pu Yulin Jiang Xinya Wen Fu Chen The North China District (NCD) is one of the main grain production regions in China. The double cropping system of irrigation has been leading to the groundwater table decline at the speed of 1–2 m per year. Climate change leads to uncertainty surrounding the future of the NCD agricultural system, which will have great effects on crop yields and crop water demands. In this research, the Meteorological dataset from 54 weather station sites over the period 1960–2015 were collected to quantify the long-term spatial and temporal trends of meteorological data, including daily minimum temperature (Tmin), maximum temperature (Tmax), precipitation, solar radiation, reference evapotranspiration (ET0), and aridity index (AI). The results show that the long-term wheat and maize growing season and annual average air temperatures (Tmin and Tmax) showed strong north to south increasing trends throughout the NCD. The average annual precipitation was 632.9 mm across the NCD, more than 70% of which was concentrated in the maize growing season. The regional average annual ET0 was 1026.1 mm, which was 531.2 and 497.4 mm for the wheat and maize growing season, respectively. The regional precipitation decreased from northwest to southeast in each growing season and annual timescale. The funnel areas have lower precipitation and higher ET0 than the regional average, which may lead to the mining of the groundwater funnel area. The regional average annual AI is 0.63, which lies in the humid class. For temporal analysis, the regional average trends in annual Tmin, Tmax, solar radiation, ET0, precipitation, and AI were 0.37 °C/10a, 0.15 °C/10a, −0.28 MJ/day/m2/10a, −2.98 mm/10a, −12.04 mm/10a, and 0.005/10a, respectively. The increasing trend of temperature and the decreasing trend of solar radiation may have a negative effect on the regional food security. The funnel area AI showed a significant increasing trend for the winter wheat growing season and a decreasing trend for maize, which indicated that more irrigation will be needed for the maize growing season and the winter fallow policy may lead to the increasing trend precipitation being wasted. Analyzing the growing season and the annual meteorological elements of the spatiotemporal trends can help us better understand the influence of climate change on the natural resources and agricultural development in both the past and the future, and will provide us with invaluable information for the modification of cropping patterns to protect the regional and national water and food security.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-17
    Description: Water, Vol. 10, Pages 797: Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control Water doi: 10.3390/w10060797 Authors: Huma Ilyas Ilyas Masih Jan Peter van der Hoek This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO), ultraviolet (UV) irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2), UV/H2O2/chlorine, ozone (O3)/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs): trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), trihaloacetaldehydes (THAs) and chloramines (CAMs). The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs) with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-18
    Description: Water, Vol. 10, Pages 802: The Impact of Climate on Hydrological Extremes Water doi: 10.3390/w10060802 Authors: Salvatore Manfreda Vito Iacobellis Andrea Gioia Mauro Fiorentino Krzysztof Kochanek High and low flows and associated floods and droughts are extreme hydrological phenomena mainly caused by meteorological anomalies and modified by catchment processes and human activities. They exert increasing on human, economic, and natural environmental systems around the world. In this context, global climate change along with local fluctuations may eventually trigger a disproportionate response in hydrological extremes. This special issue focuses on observed extreme events in the recent past, how these extremes are linked to a changing global/regional climate, and the manner in which they may shift in the coming years.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-18
    Description: Water, Vol. 10, Pages 800: Quantification of Seasonal Precipitation over the upper Chao Phraya River Basin in the Past Fifty Years Based on Monsoon and El Niño/Southern Oscillation Related Climate Indices Water doi: 10.3390/w10060800 Authors: Tsuyoshi Kinouchi Gakuji Yamamoto Atchara Komsai Winai Liengcharernsit For better water resources management, we proposed a method to estimate basin-scale seasonal rainfall over selected areas of the Chao Phraya River Basin, Thailand, from existing climate indices that represent variations in the Asian summer monsoon, the El Niño/Southern Oscillation, and sea surface temperatures (SST) in the Pacific Ocean. The basin-scale seasonal rainfall between 1965 and 2015 was calculated for the upper Ping River Basin (PRB) and the upper Nan River Basin (NRB) from a gridded rainfall dataset and rainfall data collected at several gauging stations. The corresponding climate indices, i.e., the Equatorial-Southern Oscillation Index (EQ-SOI), Indian Monsoon Index (IMI), and SST-related indices, were examined to quantify seasonal rainfall. Based on variations in the rainfall anomaly and each climate index, we found that IMI is the primary variable that can explain variations in seasonal rainfall when EQ-SOI is negative. Through a multiple regression analysis, we found that EQ-SOI and two SST-related indices, i.e., Pacific Decadal Oscillation Index (PDO) and SST anomalies in the tropical western Pacific (SSTNW), can quantify the seasonal rainfall for years with positive EQ-SOI. The seasonal rainfall calculated for 1975 to 2015 based on the proposed method was highly correlated with the observed rainfall, with correlation coefficients of 0.8 and 0.86 for PRB and NRB, respectively. These results suggest that the existing indices are useful for quantifying basin-scale seasonal rainfall, provided a proper classification and combination of the climate indices are introduced. The developed method could forecast seasonal rainfall over the target basins if well-forecasted climate indices are provided with sufficient leading time.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-20
    Description: Water, Vol. 10, Pages 811: Simulation of Fluid and Complex Obstacle Coupling Based on Narrow Band FLIP Method Water doi: 10.3390/w10060811 Authors: Changjun Zou Yong Yin With the continuous development of fluid simulation theory and technology, there are increasingly higher requirements for simulation of complex fluid interaction. Fluid simulation based on the Eulerian method is limited by the grid resolution, and the sawtooth phenomenon occurs near the obstacle boundary. To enhance the fluid interaction performance with complex obstacle, an advanced fluid interaction method was proposed based on NBFLIP. Improved from FLIP method, the NBFLIP method combines the advantages of Euler method and Lagrangian method. The SDF method is proposed in complex obstacle discretion, with an expectation to facilitate the processing with obstacle boundary and efficiency improvement. Compared with FLIP method, particle number in NBFLIP method is reduced by 86.2% and the average running time per frame is reduced by 36.1%.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-21
    Description: Water, Vol. 10, Pages 817: Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment Water doi: 10.3390/w10060817 Authors: Cristina-Alejandra Villamar Ismael Vera-Puerto Diego Rivera Felipe De la Hoz Chile is an agricultural power, but also one of the most vulnerable countries to climate change and water shortage. About 50% of the irrigated agriculture land in Chile is in the central zone, thanks to its agricultural-climatic characteristics that provide an adequate water supply (100–4000 m3/s). However, the vulnerability scenario in this zone is high due to the seasonal availability of water resources. Therefore, opportunities to use non-conventional alternative sources (e.g., wastewater) become an appealing and feasible option due to the high population and animal density (>76%) in this part of the country. Moreover, the physicochemical characteristics of the municipal and livestock wastewater suggest that there are potential opportunities to recycle nutrients for agricultural production. In Chile, wastewater reuse opportunities are noted by the wide coverage of wastewater treatment programs, with municipal and intensified livestock production taking up most of the percentage (>99%). Nevertheless, more than 70% of wastewater treatment systems reach biological secondary treatment, which suggests reuse possibilities only for non-food crops. Therefore, this paper is focused on a preliminary analysis of the potential of reusing and recycling municipal and livestock wastewater for Chilean agriculture. There is some reuse work occurring in Chile, specifically in the use of municipal and livestock wastewater for cereal crops (animal feed), forests, and grasslands. However, aspects related to the long-term effects of these practices have not yet been evaluated. Therefore, municipal and livestock wastewater in Chile could be re-valued in agriculture, but the current quality and condition of treated wastewater do not ensure its safe use in food crops. In addition, state policies are needed to provide sustainability (circular and ethic economy) to water reusing/recycling in agriculture.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-19
    Description: Water, Vol. 10, Pages 806: Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony–Backpropagation Neural Network Water doi: 10.3390/w10060806 Authors: Siyu Chen Guohua Fang Xianfeng Huang Yuhong Zhang Prediction of water quality which can ensure the water supply and prevent water pollution is essential for a successful water transfer project. In recent years, with the development of artificial intelligence, the backpropagation (BP) neural network has been increasingly applied for the prediction and forecasting field. However, the BP neural network frame cannot satisfy the demand of higher accuracy. In this study, we extracted monitoring data from the water transfer channel of both the water resource and the intake area as training samples and selected some distinct indices as input factors to establish a BP neural network whose connection weight values between network layers and the threshold of each layer had already been optimized by an improved artificial bee colony (IABC) algorithm. Compared with the traditional BP and ABC-BP neural network model, it was shown that the IABC-BP neural network has a greater ability for forecasting and could achieve much better accuracy, nearly 25% more precise than the BP neural network. The new model is particularly practical for the water quality prediction of a water diversion project and could be readily applied in this field.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-23
    Description: Water, Vol. 10, Pages 827: Optimization of Nitrogen Removal in Solid Carbon Source SND for Treatment of Low-Carbon Municipal Wastewater with RSM Method Water doi: 10.3390/w10070827 Authors: Liqiu Zhang Youwen Huang Shugeng Li Peifen He Dengmin Wang In this work, a loofah sponge was used as the solid carbon source and the carrier in a biofilm reactor. Simultaneous nitrification and denitrification (SND) technology was used to achieve nitrogen removal in low-carbon municipal wastewater in a sequencing batch biofilm reactor (SBBR). At room temperature, the effects of filling ratio, dissolved oxygen (DO), pH, C/N(CODCr/TN), and aeration time on the removal of nitrogen were systematically studied. In addition, the removal efficiency of total nitrogen (TN) was used as the evaluation index in response surface models (RSM) for optimization of nitrogen removal. The results showed that DO, pH, and aeration time affected nitrogen removal significantly. Therefore, DO, pH, and aeration time were used as the independent variables in RSM. The optimum conditions for nitrogen removal were found to be as follows in RSM: DO = 4.09 mg/L, pH = 7.58, aeration time = 10.47 h. Under the optimum conditions, the maximum TN removal efficiency reached 86.27%. The results also demonstrated that the deviation between the experimental and predicted TN removal efficiency was only 0.58%, the predicted model was reliable for future application.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-24
    Description: Minerals, Vol. 8, Pages 263: Effect of TiO2 on the Sintering Behavior of Chromium-Bearing Vanadium–Titanium Magnetite Minerals doi: 10.3390/min8070263 Authors: Weidong Tang Songtao Yang Gongjin Cheng Zixian Gao He Yang Xiangxin Xue The sintering pot test was used to investigate the effect of TiO2 on the sintering behavior of chromium-bearing vanadium–titanium magnetite (CVTM) sinter. The main characterization methods of X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy-energy disperse spectroscopy (SEM-EDS), and metallographic microscopy were employed. In this study, yield, tumbler index (TI), vertical sintering speed, productivity, reduction degradation index (RDI), and reduction index (RI) were tested and calculated. The yield first increases from 82.87% to 84.37% and then decreases to 83.65%, vertical sintering speed first increases from 17.00 mm·min−1 to 23.45 mm·min−1 and then decreases to 20.61 mm·min−1, and productivity first increases from 2.33 t·m−2·h−1 to 3.14 t·m−2·h−1 and then decreases to 2.69 t·m−2·h−1 with increasing TiO2 content. The TI increases from 45.81% to 52.09%, and RDI increases from 74.99% to 96.74%, while RI decreases from 67.92% to 47.15% with increasing TiO2 content.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-24
    Description: Water, Vol. 10, Pages 835: Hydrogeologic and Paleo-Geographic Characteristics of Riverside Alluvium at an Artificial Recharge Site in Korea Water doi: 10.3390/w10070835 Authors: Soo-Hyoung Lee Se-Yeong Hamm Kyoochul Ha YongCheol Kim Dong-Chan Koh Heesung Yoon Sung-Wook Kim This study showed the hydrogeological characteristics of an alluvial aquifer that is composed of sand, silt, and clay layers in a small domain. It can be classified into a lower high-salinity layer and an upper freshwater layer and contains shells and remnant paleo-seawater (average 5000 μS/cm) due to sea level fluctuation. Geological and electrical conductivity logging, a long-term pumping test, and multi-depth water quality measurements were conducted at pumping, injection, and observational wells to evaluate the hydrogeologic properties, identify the optimal recharge rate, and assess artificial recharge. Using a hydraulic test, a large difference in drawdown and salinity appeared at the radially located observational wells because of the difference in hydraulic connectivity between the wells in the small study area. It was concluded that the hydraulic anisotropy and heterogeneity of the alluvial aquifer should be carefully examined when locating an injection well and considering the efficient design of artificial recharge.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 819: Nonstationary Flood Frequency Analysis Using Univariate and Bivariate Time-Varying Models Based on GAMLSS Water doi: 10.3390/w10070819 Authors: Ting Zhang Yixuan Wang Bing Wang Senming Tan Ping Feng With the changing environment, a number of researches have revealed that the assumption of stationarity of flood sequences is questionable. In this paper, we established univariate and bivariate models to investigate nonstationary flood frequency with distribution parameters changing over time. Flood peak Q and one-day flood volume W1 of the Wangkuai Reservoir catchment were used as basic data. In the univariate model, the log-normal distribution performed best and tended to describe the nonstationarity in both flood peak and volume sequences reasonably well. In the bivariate model, the optimal log-normal distributions were taken as marginal distributions, and copula functions were addressed to construct the dependence structure of Q and W1. The results showed that the Gumbel-Hougaard copula offered the best joint distribution. The most likely events had an undulating behavior similar to the univariate models, and the combination values of flood peak and volume under the same OR-joint and AND-joint exceedance probability both displayed a decreasing trend. Before 1970, the most likely combination values considering the variation of distribution parameters over time were larger than fixed parameters (stationary), while it became the opposite after 1980. The results highlight the necessity of nonstationary flood frequency analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 818: Efficient Low-Cost Anaerobic Treatment of Wastewater Using Biochar and Woodchip Filters Water doi: 10.3390/w10070818 Authors: Korbinian Kaetzl Manfred Lübken Tito Gehring Marc Wichern Access to improved sanitation is often lacking in many low-income countries, and approximately 90% of the sewage is discharged without treatment into receiving water bodies. The aim of this study was the development and evaluation of an efficient low-cost wastewater treatment system for developing countries. Biochar and woodchips, potential locally available and inexpensive materials, were used for anaerobic wastewater filtration and their suitability evaluated in comparison to gravel as a common reference material. Filters were fed with raw sewage from a municipal full-scale wastewater treatment plant in Germany at 22 °C room temperature with a hydraulic loading rate (HLR) of 0.05 m∙h−1. This resulted in a mean organic loading rate (OLR) of 252 gCOD∙m−3∙d−1 and a mean organic surface load of 456 gCOD∙m−2∙d−1. To determine the influence of different filter materials, the removal efficiency of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and faecal indicator bacteria (FIB) E. coli and enterococci were tested. It was found that COD (up to 90%), TOC (up to 80%), FIB (up to 1.7 log10-units), and turbidity (effluent turbidity below 35 NTU) could be significantly reduced. The findings of this study demonstrate the potential of anaerobic filters (AFs) for wastewater treatment in low-income countries to reduce water pollution and comprehensively improve water quality. The performance of biochar filters was significantly better over the entire experiment compared to woodchip and gravel filters with respect to COD, TOC, turbidity, and FIB removal, indicating the superior properties of biochar for wastewater treatment.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 821: Changes in the Carbon and Water Fluxes of Subtropical Forest Ecosystems in South-Western China Related to Drought Water doi: 10.3390/w10070821 Authors: Lei Zhou Shaoqiang Wang Yonggang Chi Weimin Ju Kun Huang Robert A. Mickler Miaomiao Wang Quanzhou Yu Drought impacts carbon and water fluxes of terrestrial ecosystems, which are strongly coupled. However, the magnitudes of response of carbon and water fluxes to drought are dependent on many processes, which are more complex than previously expected. Southern China experienced regional climatic perturbation events in the past decade and a two-year drought in 2009–2010. We used a terrestrial ecosystem model coupled with remotely sensed observations and metrological data to simulate the variations of net primary productivity (NPP), evapotranspiration (ET), and water-use efficiency (WUE) (i.e., NPP/ET) in south-western China during the period 2001–2010. Using the standard precipitation index (SPI) classifying different drought stresses, we also quantified the effect of drought on the ecosystem by comparing changes in modelled estimates of monthly WUE, NPP and ET under normal (i.e., baseline) and drought conditions (i.e., 2009 and 2010). The results indicated that NPP and ET showed synchronized declines in drought periods, with time-lag effects. Furthermore, drought-induced NPP decline was larger than ET reduction. An increasing trend in WUE from the moderate to extreme drought classes occurred not only in baseline conditions but also in drought conditions. Especially in the extreme drought period (January, 2010), WUE for the forest ecosystem typically showed a positive response to drought, indicating a drought-resilient forest ecosystem. Our study has important implications for understanding climate extreme effects on the carbon and water cycle of the forest ecosystem.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-27
    Description: Minerals, Vol. 8, Pages 270: Multi-Stage Deformation of the Khangalas Ore Cluster (Verkhoyansk-Kolyma Folded Region, Northeast Russia): Ore-Controlling Reverse Thrust Faults and Post-Mineral Strike-Slip Faults Minerals doi: 10.3390/min8070270 Authors: Valery Y. Fridovsky Maxim V. Kudrin Lena I. Polufuntikova This study reports the results of the analysis of multi-stage deformation structures of the Khangalas gold ore cluster, northeast Russia. Four Late Mesozoic-Early Eocene deformation stages were identified. The first deformation event (D1) was characterized by the development of NW-striking tight to isoclinal folds of the first generation (F1) and interstratal detachment thrusts. Major folds, extensive thrusts, boudinage, cleavage, auriferous mineralized fault zones and quartz-vein gold mineralization were formed in the reverse and thrust fault stress field during the progressive deformation stage (D1), with NE-SW-oriented σ1. Post-ore deformation is widely manifested in the region. Structures D2 and D3 are coaxial. Sinistral strike-slip motions (D2 and D3) occurred along NW-trending faults under prevailing W-E compression. They were accompanied by the formation of NS- and NE-striking F2–3 folds with steep hinges and by bending of the earlier formed structures, among them ore-controlling ones. The last deformation event (D4) was represented by normal-dextral strike-slip faulting, refolding of rocks, pre-existing structures and ore bodies and by the development of folds with steep hinges. Key structural elements of varying age are described, the chronology of deformation events and mineralization reconstructed and their relation to geodynamic events in northeast Asia established.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-28
    Description: Water, Vol. 10, Pages 856: Rainfall Generation Using Markov Chain Models; Case Study: Central Aegean Sea Water doi: 10.3390/w10070856 Authors: Konstantinos Mammas Demetris Francis Lekkas Generalized linear models (GLMs) are popular tools for simulating daily rainfall series. However, the application of GLMs in drought-prone areas is challenging, as there is inconsistency in rainfall data during long and irregular periods. The majority of studies include regions where rainfall is well distributed during the year indicating the capabilities of the GLM approach. In many cases, the summer period has been discarded from the analyses, as it affects predictive performance of the model. In this paper, a two-stage (occurrence and amounts) GLM is used to simulate daily rainfall in two Greek islands. Summer (June–August) smooth adjustments have been proposed to model the low probability of rainfall during summer, and consequently, to improve the simulations during autumn. Preliminary results suggest that the fitted models simulate adequate rainfall occurrence and amounts in Milos and Naxos islands, and can be used as input in future hydrological applications.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 863: Research on Optimal Water Allocation Based on Water Rights Trade under the Principle of Water Demand Management: A Case Study in Bayannur City, China Water doi: 10.3390/w10070863 Authors: Lizhen Wang Yuefei Huang Yong Zhao Haihong Li Fan He Jiaqi Zhai Yongnan Zhu Qingming Wang Shan Jiang In water shortage regions, water rights trading would be much useful for increasing water use inefficiency through changing users’ water demand. In this study, a water optimal allocation modelling system is proposed by considering water rights trading and other governmental policies such as water prices, water savings and industrial policies. An agent-based model was developed to describe the behaviors and goals of individual agents using complex adaptive system theory, information transfers, and functional mechanisms between agents. The developed model was applied to Bayannur City, which suffers from severe water shortages. The water prices for different industries, the water rights transaction price, and the behaviors of various agents in 2020 were forecasted. The results reveal that the water resources optimal allocation model applied in this study can help realize the reasonable allocation of regional water resources under limited water supply. It is also valuable to guide the government in making water resources allocation policies and provide a practical reference for the formulation and adjustment of a water market transaction price.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 860: Simulation of Rain Garden Effects in Urbanized Area Based on Mike Flood Water doi: 10.3390/w10070860 Authors: Jiake Li Bei Zhang Yajiao Li Huaien Li An urban storm and surface water pollution model (MIKE FLOOD) was used to assess the impact of rain gardens on water quantity and quality for an urban area in Xi’an. After the rain garden measures were added, the results show that: (1) In the case where the total proportion of rain gardens was 2%, the overflow reduction rate was 6.74% to 65.23%, the number of overflow points reduction rate was 1.79% to 65.63%, the overload pipes reduction rate was 0% to 11.15%, the runoff reduction rate was 1.93% to 9.69%; (2) Under different rainfall conditions, the load reduction rate of suspended solids (SS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were 2.36% to 30.35%, 2.37% to 30.11%, 2.34% to 30.08%, and 2.32% to 31.35%, respectively; (3) The submersion ranges of different submerged depths and submerged durations were reduced by 0.30% to 64.18% and 7.12% to 100%, respectively. The statistics of the automatic modeling and intelligent analysis system (AMIAS) showed that the rain garden regulation range of the waterlogging risk area was 0.78% to 100%. The rain garden has a good control effect on urban storm runoff in terms of water volume and water quality, but as the rainfall recurrence interval increases, the control effect will decrease.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 862: Spatio-Temporal Synthesis of Continuous Precipitation Series Using Vine Copulas Water doi: 10.3390/w10070862 Authors: Ana Claudia Callau Poduje Uwe Haberlandt Long and continuous series of precipitation in a high temporal resolution are required for several purposes, namely, urban hydrological applications, design of flash flood control structures, etc. As data of the temporally required resolution is often available for short period, it is advantageous to develop a precipitation model to allow for the generation of long synthetic series. A stochastic model is applied for this purpose, involving an alternating renewal process (ARP) describing a system consisting of spells that can take two possible states: wet or dry. Stochastic generation of rainfall time series using ARP models is straight forward for single site simulation. The aim of this work is to present an extension of the model to spatio-temporal simulations. The proposed methodology combines an occurrence model to define in which locations rainfall events occur simultaneously with a multivariate copula to generate synthetic events. Rainfall series registered in different regions of Germany are used to develop and test the methodology. Results are compared with an existing method in which long independent time series of rainfall events are transformed to spatially dependent ones by permutation of their order. The proposed model shows to perform as a satisfactory extension of the ARP model for multiple sites simulations.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 861: Characterization of Chromophoric Dissolved Organic Matter in the Littoral Zones of Eutrophic Lakes Taihu and Hongze during the Algal Bloom Season Water doi: 10.3390/w10070861 Authors: Bingfa Chen Wei Huang Shuzhan Ma Muhua Feng Cheng Liu Xiaozhi Gu Kaining Chen Chromophoric dissolved organic matter (CDOM) is a key component with a critical role in the littoral zones of eutrophic shallow lakes; yet the characteristics of CDOM in these zones remain seldom systematically reported. In this study, the differences in sources, biogeochemical characteristics, and fates of CDOM between the littoral zones of eutrophic lakes Taihu (LLT; frequently occurring algal blooms and longer lake residence time) and Hongze (LLH; no obvious algal blooms and shorter residence time) were compared during the algal bloom season using ultraviolet-visible spectra and excitation and emission matrix spectroscopy combined with parallel factor analysis. Three humic-like fluorescent dissolved organic matter (FDOM) components (C1, C3, and C4) and one protein-like component (C2) were identified. Results showed that FDOM components were dominated by protein-like fluorescent substances in LLT, and humic-like materials in LLH, respectively. The CDOM in LLT had a lower relative aromaticity and molecular weight, humification degree and a higher autotrophic productivity because of algal blooms. Furthermore, CDOM depletion rates in LLT were higher than those in LLH due to a longer lake residence time in LLT. In addition, CDOM shifted from high molecular weight to low molecular weight as the humification degree decreased during the CDOM depletion process. This comparative study showed that algal blooms and lake residence time were the significant factors for distinguishing characteristics of CDOM between littoral zones of shallow lakes on a similar trophic level. This study provides field-based knowledge for remote sensing CDOM measurement and serves as a reference for lakeshore aquatic environmental management.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 857: Cost-Optimal Flexibilization of Drinking Water Pumping and Treatment Plants Water doi: 10.3390/w10070857 Authors: Britta Zimmermann Hedda Gardian Kurt Rohrig This paper examines potential cost savings attained through the flexible operation of water treatment plants and drinking water pumping and the benefits gained by investing in extended water storage capacities that enhance flexibility. An existing plant in South Germany serves as an example. Mixed-integer linear programming is used to model the plant and the electricity procurement on the German spot market while ensuring the security of supply. Cost optimization considering the different cost components reveals potential cost savings through flexible operation. The paper evaluates the benefits of building additional water reservoirs and rates the financial effects of the measures used to enhance the flexibility of water pumping and treatment plants.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 859: Functional Channel Membranes for Drinking Water Production Water doi: 10.3390/w10070859 Authors: Alfredo Gonzalez-Perez Kenneth M. Persson Frank Lipnizki Drinking water production utilities rely on, among other processes, different filtration technologies like bank filtration and slow sand filters, as well as pressure, roughing, or rapid gravity filters that, together with low- and high-pressure operating membranes, help to ensure high quality drinking water for millions of customers all over the world. The global market of membrane separation technologies is projected to reach USD 11.95 Billion by 2021, encompassing water treatment, wastewater treatment, food and beverage processing, industrial gas processing, and pharmaceutical and biomedical applications. In addition to the current, polymer-based membrane separation technologies, new promising strategies using embedded functional motifs, water and ion channels, are expected to play a key role in the next generation of membranes for separation purposes, which are of paramount relevance for drinking water production utilities. In this review, we summarize the different strategies for developing new advanced membranes with a wide variety of functional motifs, like biological and artificial water and ion channels, and their possible impact on drinking water applications.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 970: Water and Nitrogen Productivity of Potato Growth in Desert Areas under Low-Discharge Drip Irrigation Water doi: 10.3390/w10080970 Authors: Pavel Trifonov Naftali Lazarovitch Gilboa Arye Narrow profit margins, resource conservation issues and environmental concerns are the main driving forces to improve fertilizer uptake, especially for potatoes. Potatoes are a high value crop with a shallow, inefficient root system and high fertilizer rate requirements. Of all essential nutrients, nitrogen (N) is often limiting to potato production. A major concern in potato production is to minimize N leaching from the root zone. Therefore, the main objective of this study was to examine the potato crop characteristics under drip irrigation with low-discharge (0.6 L h−1) and to determine the optimal combination of irrigation (40, 60, 80, and 100%) and fertigation (0, 50, and 100%) doses. In this study, the 80% (438.6 mm) irrigation dose and a 50% (50 mg N L−1) fertigation dose (W80%F50%) showed that these doses are sufficient for optimal potato yield (about 40 ton ha−1) in conjunction with water and fertilizer savings. Moreover, this treatment did not exhibit any qualitative changes in the potato tuber compared to the 100% treatments. When considering water productivity and yield, one may select a harsher irrigation regime if the available agricultural soils are not a limiting factor. Thus, higher yields can be obtained with lower irrigation and fertigation doses and a larger area.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 967: Modeling the Runoff Reduction Effect of Low Impact Development Installations in an Industrial Area, South Korea Water doi: 10.3390/w10080967 Authors: Jungho Kim Jungho Lee Yangho Song Heechan Han Jingul Joo Low-impact development (LID) methods are an important approach to storm-water mitigation. Modeling the effects of these installations using rainfall-runoff simulations can provide useful data for future design and implementation. In this study, we used the Storm Water Management Model to assess seven types of LID installations (vegetated areas, garden pots, tree filter boxes, permeable pavement, infiltration ditches, rain barrels, and infiltration blocks) at a South Korean industrial site. Using both short- and long-term simulation periods and distinct sub-basins within the study site, we were able to assess LID performance at the combined watershed, as well as at one LID facility. All LID types showed reasonable performance for storm-water runoff reduction, though rain barrels were the least effective. The effect of rainfall runoff reduction on LID facilities is changed according to rainfall depth (annual precipitation, monthly rainfall), the ratio of drainage area and facility capacity. We concluded that SWMM-LID modeling can effectively support the management of LID installations by providing additional design and planning data to better mitigate the effects of storm-water runoff.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-08-01
    Description: Minerals, Vol. 8, Pages 329: The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece Minerals doi: 10.3390/min8080329 Authors: Petros Petrounias Panagiota P. Giannakopoulou Aikaterini Rogkala Paraskevi Lampropoulou Eleni Koutsopoulou Dimitrios Papoulis Basilios Tsikouras Konstantin Hatzipanagiotou This paper investigates the effect of alteration on the physicomechanical properties of igneous rocks used as aggregates, from various areas from Greece. The studied lithologies include serpentinized dunites, serpentinized harzburgites, serpentinized lherzolites, metamorphic gabbros, diabases, dacites and andesites. Quantitative petrographic analysis shows that the tested samples display various percentages of secondary phyllosilicate minerals. Mineral quantification of the studied rock samples was performed by using the Rietveld method on X-ray diffraction patterns. The samples were also tested to assign moisture content (w (%)), total porosity (nt (%)), uniaxial compressive strength (UCS (MPa)) and Los Angeles abrasion test (LA (%)). The influence of secondary phyllosilicate minerals on the physicomechanical behavior of the tested samples was determined using regression analysis and their derived equations. Regression analysis shows a positive relationship between the percentage of the phyllosilicate minerals of the rocks and the moisture content as well as with the total porosity values. In mafic and ultramafic rock samples, the relationships between the secondary phyllosilicate minerals and their physicomechanical properties have shown that the total amount of the secondary phyllosilicate minerals results negatively on their physicomechanical properties. On the other hand, the low percentage of phyllosilicate minerals in volcanic rocks can’t be able to define their engineering properties.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-07-31
    Description: Minerals, Vol. 8, Pages 327: Assessment of the Mineral Resource Potential of Atlantic Ferromanganese Crusts Based on Their Growth History, Microstructure, and Texture Minerals doi: 10.3390/min8080327 Authors: Isobel A. Yeo Kate Dobson Pierre Josso Richard B. Pearce Sarah A. Howarth Paul A. J. Lusty Tim P. Le Bas Bramley J. Murton The decarbonisation of our energy supply is reliant on new technologies that are raw material intensive and will require a significant increase in the production of metals to sustain them. Ferromanganese (FeMn) crusts are seafloor precipitates, enriched in metals such as cobalt and tellurium, both of which have a predicted future demand above current production rates. In this study, we investigate the texture and composition of FeMn crusts on Tropic Seamount, a typical Atlantic guyot off the coast of western Africa, as a basis for assessing the future mineral resource potential of Atlantic Seamounts. The majority of the summit is flat and covered by FeMn crusts with average thicknesses of 3–4 cm. The crusts are characterized by two dominant textures consisting of either massive pillared growth or more chaotic, cuspate sections of FeMn oxides, with an increased proportion of detrital and organic material. The Fe, Mn, and Co contents in the FeMn oxide layers are not affected by texture. However, detrital material and bioclasts can form about 50% of cuspate areas, and the dilution effect of this entrained material considerably reduces the Fe, Mn, and Co concentrations if the bulk samples are analyzed. Whilst Tropic Seamount meets many of the prerequisites for a crust mining area, the thickness of the crusts and their average metal composition means extraction is unlikely to be viable in the near future. The ability to exploit more difficult terrains or multiple, closely spaced edifices would make economic feasibility more likely.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-07-31
    Description: Minerals, Vol. 8, Pages 328: Mesozoic High- and Low-SiO2 Adakites and A-Type Granites in the Lower Yangtze River Belt, Eastern China: Implications for Petrogenesis and Metallogeny Minerals doi: 10.3390/min8080328 Authors: Lei Liu Geng Chu Yanguang Li Xiaoyong Yang Madhava Warrier Santosh Qing Hu The Lower Yangtze River Belt (LYRB) is one of the important magmatic and metallogenic belts in China and hosts abundant Mesozoic calc-alkaline magmatic rocks and economic mineral deposits. Anqing orefield in the southwestern of the LYRB received less attention during the last two decades. Here, we present an integrated study of whole-rock major and trace elements, zircon U-Pb dating and Lu-Hf isotopes on late Mesozoic adakites and A-type granites from the Anqing orefield. The adakites emplaced during 138–136 Ma and can be further subdivided into two types: high-SiO2 adakites (HSA) with SiO2 >60 wt % from the Zongpu intrusion, and low-SiO2 adakites (LSA) <60 wt % from the Yueshan intrusion. The rocks display mid- to high-K calc-alkaline features and have consistent arc-like trace element characteristics with enrichment in LREE and LILE, and depletion in HREE and HFSE. The distinct zircon εHf(t) values for the LSA (from −27 to −20) and HSA (from −15 to −5) preclude a magma mixing model, yet suggest a subduction-related setting with partial melting of the subducted slab and overlying metasomatic mantle wedge. The A-type granites dated at 124 Ma from the Dalongshan intrusion characterized by LILE and LREE enrichment and slightly negative Eu anomalies, with lower MgO, CaO but higher K2O and Na2O contents. Their zircon εHf(t) values and geochemical features suggest that the parent magma was produced by the partial melting of Neoproterozoic crustal components, followed by variable degrees of fractional crystallization under a back-arc extensional setting, together with minor juvenile crust input. The adakites and A-type granites investigated in this study record a tectonic transition from compressive to extensional setting during 138–124 Ma. The transitional magmatic pulses are associated with distinct metallogenic signature with the adakites hosting copper deposits and the A-type granites linked to uranium mineralization.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-08-01
    Description: Water, Vol. 10, Pages 1016: Improved Mixed Distribution Model Considering Historical Extraordinary Floods under Changing Environment Water doi: 10.3390/w10081016 Authors: Jianzhu Li Yanchen Zheng Yimin Wang Ting Zhang Ping Feng Bernard A. Engel Historical extraordinary floods are an important factor in non-stationary flood frequency analysis and they may occur at any time, regardless of whether the environment is changing or not. Based on mixed distribution (MD) modeling, this paper proposed an improved mixed distribution (IMD) model to consider the discontinuity and non-stationarity of flood samples simultaneously, which adds historical extraordinary floods in both sub-series divided by a change point. As a case study, the annual maximum peak discharge and volume series of Ankang hydrological station, located in the upper Hanjiang River Basin of China, were selected to identify non-stationarity by using the variation diagnosis system. MD and IMD were used to fit the flood characteristic series and a genetic algorithm was employed to estimate the optimal parameters. Compared with the design flood values fitted by the stationary Pearson type-III distribution, the results computed by IMD decreased at low return periods and increased at high return periods, with the difference varying from −6.67% to 7.19%. The results highlighted that although the design flood values of IMD are slightly larger than those of MD with different return periods, IMD provided a better result than MD. IMD provides a new perspective for non-stationary flood frequency analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-08-01
    Description: Water, Vol. 10, Pages 1011: Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China Water doi: 10.3390/w10081011 Authors: Junhong Zhang Luojie Feng Lu Chen Dangwei Wang Minglong Dai Wensheng Xu Tao Yan Dam construction is an important means to improve water use efficiency and the aquatic environment. However, the flow regulation of the Three Gorges Reservoir (TGR) in the middle Yangtze River has attracted much attention because the severe drought occurred in the river-lake system downstream of the TGR. In this paper, the Dongting Lake was selected as a case study in order to detect the possible relationship between the flow regulation of the TGR and the extreme drought in the river-lake system based on a coupled hydrodynamic model. The results not only confirmed the significant role of the TGR to relieve drought in the river-lake system, but also indicated that the outflow of the TGR and the hydraulic gradient between the Zhicheng to Chenglingji stations were the crucial factors to affect the water exchange between the rivers and the Dongting Lake. The adjustment of hydraulic gradient within a proper range during the water compensation of the TGR will be an effective measure to improve the water exchange and water environment in the river-lake system. These findings present the quantitative influence of these important factors on the water exchange between rivers and lakes and provide a scientific reference for environmental and ecological management of other river-lake systems.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-08-01
    Description: Water, Vol. 10, Pages 1009: A Philosophical Justification for a Novel Analysis-Supported, Stakeholder-Driven Participatory Process for Water Resources Planning and Decision Making Water doi: 10.3390/w10081009 Authors: David R. Purkey Marisa Isabel Escobar Arias Vishal K. Mehta Laura Forni Nicholas J. Depsky David N. Yates Walter N. Stevenson Two trends currently shape water resources planning and decision making: reliance on participatory stakeholder processes to evaluate water management options; and growing recognition that deterministic approaches to the evaluation of options may not be appropriate. These trends pose questions regarding the proper role of information, analysis, and expertise in the inherently social and political process of negotiating agreements and implementing interventions in the water sector. The question of how one might discover the best option in the face of deep uncertainty is compelling. The question of whether the best option even exists to be discovered is more vexing. While such existential questions are not common in the water management community, they are not new to political theory. This paper explores early classical writing related to issues of knowledge and governance as captured in the work of Plato and Aristotle; and then attempts to place a novel, analysis-supported, stakeholder-driven water resources planning and decision making practice within this philosophical discourse, making reference to current decision theory. Examples from the Andes and California, where this practice has been used to structure participation by key stakeholders in water management planning and decision-making, argue that when a sufficiently diverse group of stakeholders is engaged in the decision making process expecting the discovery of the perfect option may not be warranted. Simply discovering a consensus option may be more realistic. The argument touches upon the diversity of preferences, model credibility and the visualization of model output required to explore the implications of various management options across a broad range of inherently unknowable future conditions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-08-04
    Description: Minerals, Vol. 8, Pages 334: Water Structure, Dynamics and Ion Adsorption at the Aqueous {010} Brushite Surface Minerals doi: 10.3390/min8080334 Authors: Natalya A. Garcia Paolo Raiteri Elias Vlieg Julian D. Gale Understanding the growth processes of calcium phosphate minerals in aqueous environments has implications for both health and geology. Brushite, in particular, is a component of certain kidney stones and is used as a bone implant coating. Understanding the water–brushite interface at the molecular scale will help inform the control of its growth. Liquid-ordering and the rates of water exchange at the brushite–solution interface have been examined through the use of molecular dynamics simulation and the results compared to surface X-ray diffraction data. This comparison highlights discrepancies between the two sets of results, regardless of whether force field or first principles methods are used in the simulations, or the extent of water coverage. In order to probe other possible reasons for this difference, the free energies for the adsorption of several ions on brushite were computed. Given the exothermic nature found in some cases, it is possible that the discrepancy in the surface electron density may be caused by adsorption of excess ions.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-08-08
    Description: Minerals, Vol. 8, Pages 338: Synthesis of 4A Zeolite from Kaolinite-Type Pyrite Flotation Tailings (KPFT) Minerals doi: 10.3390/min8080338 Authors: Yating Cui Yu Zheng Weiqing Wang As a solid waste, kaolinite-type pyrite flotation tailings (KPFT) are a type of low-quality kaolin that contain impurities, such as iron and titanium. In this study, KPFT were calcined at 800 °C for two hours. The calcined production (CKPFT), which is mainly metakaolin, was used as the silicon and aluminum source to synthesize 4A zeolite (Na12[(AlO2)12(SiO2)12]·27H2O) via hydrothermal synthesis. The optimal hydrothermal synthesis conditions were determined from X-ray diffraction phase analysis, relative crystallinity (RC), and cation ion exchange capacity (CEC). The optimal hydrothermal synthesis conditions were determined to be a ratio of 5 g CKPFT, 6.5 g NaOH, 65 mL H2O, crystallization temperature 110 °C, and crystallization time of three hours. Under the optimal hydrothermal synthesis conditions, the RC and CEC of the synthesized 4A zeolite were 40.77% and 210.32 mg CaCO3·g−1, respectively. Further characterizations including pore size distribution, scanning electron microscopy, energy dispersive X-ray, thermogravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy were performed. The results revealed that impurities in KPFT do not affect the synthesis of 4A zeolite. The surface morphology of the synthesized 4A zeolite was composed of chamfered-edged cubes with a particle size of one to three μm that was thermally stable up to approximately 890 °C.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1048: The Stability of Tailings Dams under Dry-Wet Cycles: A Case Study in Luonan, China Water doi: 10.3390/w10081048 Authors: Xingang Wang Hongbin Zhan Jiading Wang Ping Li Instability of tailings dams may result in loss of life and property and serious environmental pollution. The position of the tailings dam’s phreatic line varies due to continuously changing factors such as rainfall infiltration and discharge of tailings recycling water. Consequently, tailings dams undergo dry-wet (DW) cycles, accompanied by the appearance of a hydro-fluctuation belt. With dynamic development of the physical and chemical properties of tailings sand in the hydro-fluctuation belt, the stability of tailings dams is uncertain. In this study, direct shear tests were performed on the tailings sand collected from a tailings dam in Luonan, through which the shear strength parameters of tailings sand with DW cycles were obtained. Then, a method that efficiently calculates the phreatic line of the tailings dam under DW cycles was proposed. In addition, based on laboratory tests and the proposed phreatic line calculation method, we used a finite element program to evaluate the stability of the tailings dam that experienced different DW cycles. The calculated results showed that: (i) the damage effects of DW cycles gradually weakens as the number of DW cycles increases. (ii) With the increasing of DW cycles, the maximum displacement of the tailings dam increases from 0.5 mm to 22 mm, and the area of maximum displacement expanded mainly at the toe of the tailings dam and at the front edge of the hydro-fluctuation belt. (iii) The tailings dam safety factor decreases continuously with increasing DW cycles. This study may provide a novel method for analyzing the stability of tailings dams under different DW cycles as well as an important reference for improving tailings dam stability.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-08-09
    Description: Minerals, Vol. 8, Pages 344: Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea) Minerals doi: 10.3390/min8080344 Authors: Ella Sokol Svetlana Kokh Olga Kozmenko Sofya Novikova Pavel Khvorov Elena Nigmatulina Elena Belogub Maxim Kirillov We characterise the mineralogy and geochemistry of Oligo-Miocene Maykopian shales that are currently extruded by onshore mud volcanoes of the Kerch-Taman Province (the Northern Black Sea) from the depths of ~2.5–3 km. The ejected muds are remarkable by highly diverse authigenic mineralogy that comprises glauconite, apatite, siderite, mixed Fe–Mg–Mn–(Ca) and Mn–Ca–Fe-carbonates, pyrite, marcasite, sphalerite, cinnabar, chalcopyrite, nukundamite, akantite, native Cu, Au and Au–Ag alloys. Precise geochemical techniques and high-resolution methods are applied to study the composition of bulk rocks, sulphide and carbonate fractions, as well as individual mineral species, including trace element and isotopic compositions of carbonates (C, O) and pyrite (S). Mineralogy of clastic and heavy fractions is used as a provenance tracer. Oxygen-deficient to weakly sulphuric deposition conditions are inferred for the parent sediments proceeding from trace element partitioning between carbonate, sulphide, and metallic phases. The main conclusion of the study is that onshore mud volcanoes of the region only transport buried sedimentary material and authigenic minerals they store to the ground surface.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-08-09
    Description: Minerals, Vol. 8, Pages 343: The Evolution, Current Status, and Future Prospects of Using Biotechnologies in the Mineral Extraction and Metal Recovery Sectors Minerals doi: 10.3390/min8080343 Authors: D. Barrie Johnson The current global demand in terms of both the amounts and range of metals for industrial and domestic use greatly exceeds that at any previous time in human history. Recycling is inadequate to meet these needs and therefore mining primary metal ores will continue to be a major industry in the foreseeable future. The question of how metal mining can develop in a manner which is less demanding of energy and less damaging of the environment in a world whose population is increasingly aware of, and concerned about, the environment, requires urgent redress. Increased application of biotechnologies in the mining sector could go some way in solving this conundrum, yet, biomining (harnessing microorganisms to enhance the recovery of base and precious metals) has remained a niche application since it was first knowingly used in the 1960s. This manuscript reviews the development and current status of biomining applications and highlights their limitations as well as their strengths. New areas of biotechnology that could be applied in the mining sector, and their potential impact in terms of both their potential environmental and economic benefits, are also discussed.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-08-09
    Description: Water, Vol. 10, Pages 1054: Understanding the Mississippi River Delta as a Coupled Natural-Human System: Research Methods, Challenges, and Prospects Water doi: 10.3390/w10081054 Authors: Nina S.-N. Lam Y. Jun Xu Kam-biu Liu David E. Dismukes Margaret Reams R. Kelley Pace Yi Qiang Siddhartha Narra Kenan Li Thomas A. Bianchette Heng Cai Lei Zou Volodymyr Mihunov A pressing question facing the Mississippi River Delta (MRD), like many deltaic communities around the world, is: Will the system be sustainable in the future given the threats of sea level rise, land loss, natural disasters, and depleting natural resources? An integrated coastal modeling framework that incorporates both the natural and human components of these communities, and their interactions with both pulse and press stressors, is needed to help improve our understanding of coastal resilience. However, studying the coastal communities using a coupled natural-human system (CNH) approach is difficult. This paper presents a CNH modeling framework to analyze coastal resilience. We first describe such a CNH modeling framework through a case study of the Lower Mississippi River Delta in coastal Louisiana, USA. Persistent land loss and associated population decrease in the study region, a result of interplays between human and natural factors, are a serious threat to the sustainability of the region. Then, the paper describes the methods and findings of three studies on how community resilience of the MRD system is measured, how land loss is modeled using an artificial neural network-cellular automata approach, and how a system dynamic modeling approach is used to simulate population change in the region. The paper concludes by highlighting lessons learned from these studies and suggesting the path forward for analysis of coupled natural-human systems.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-08-09
    Description: Water, Vol. 10, Pages 1055: Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device Water doi: 10.3390/w10081055 Authors: Robin Lenz Matthias Labrenz A variety of microplastic sampling instrumentation is currently used for water pollution studies. Plankton net-based approaches have been the most adopted techniques for water column and surface sampling. When applied to microplastics (MP) in the lower µm size range these methods, however, introduce non-negligible risks of sample contamination and loss due to instrument and procedure design. Based on the first principles of systems engineering design we have developed a mobile sampling platform for field application that fulfils the needs of producing usable MP samples with a lower size limit of 10 µm using an encapsulated flow-through filtration concept. Here, we explain the requirements, development, and construction of the device for others to replicate and improve.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-08-10
    Description: Water, Vol. 10, Pages 1059: Experimental Studies on the Stability Assessment of a Levee Using Reinforced Soil Based on a Biopolymer Water doi: 10.3390/w10081059 Authors: Dongwoo Ko Joongu Kang Cement and other similar compounds have been used to prevent a levee breach during a flood. However, the demand is increasing for eco-friendly and sustainable alternatives to replace the conventional method for levee stabilization and strengthening. To improve the durability and environmental friendliness of a levee, the Andong River Experiment Center applied a biopolymer, which is a new eco-friendly substance, to fabricate a levee model, and conducted a hydraulic model experiment to evaluate the reliability and stability of the new type of levee. An image analysis was applied to calculate the scale of the breaches of the levee slopes. Based on the experimental results obtained, the characteristics of the breach between an earthen levee and the proposed levee were compared. The stability of the levee body was also evaluated according to the thickness of the new substance. The ultimate aim of this study was to derive the optimal conditions by verifying the performance and effectiveness of the new substance in terms of levee breach factors such as overflow, seepage, or piping in a series of hydraulic experiments. In the future, the field application of these optimal conditions will be verified through a real-scale experiment.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-08-11
    Description: Minerals, Vol. 8, Pages 346: Metal Sequestration through Coupled Dissolution–Precipitation at the Brucite–Water Interface Minerals doi: 10.3390/min8080346 Authors: Jörn Hövelmann Christine V. Putnis Liane G. Benning The increasing release of potentially toxic metals from industrial processes can lead to highly elevated concentrations of these metals in soil, and ground- and surface-waters. Today, metal pollution is one of the most serious environmental problems and thus, the development of effective remediation strategies is of paramount importance. In this context, it is critical to understand how dissolved metals interact with mineral surfaces in soil–water environments. Here, we assessed the processes that govern the interactions between six common metals (Zn, Cd, Co, Ni, Cu, and Pb) with natural brucite (Mg(OH)2) surfaces. Using atomic force microscopy and a flow-through cell, we followed the coupled process of brucite dissolution and subsequent nucleation and growth of various metal bearing precipitates at a nanometer scale. Scanning electron microscopy and Raman spectroscopy allowed for the identification of the precipitates as metal hydroxide phases. Our observations and thermodynamic calculations indicate that this coupled dissolution–precipitation process is governed by a fluid boundary layer at the brucite–water interface. Importantly, this layer differs in composition and pH from the bulk solution. These results contribute to an improved mechanistic understanding of sorption reactions at mineral surfaces that control the mobility and fate of toxic metals in the environment.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-08-10
    Description: Water, Vol. 10, Pages 1056: Simplified Lake Surface Area Method for the Minimum Ecological Water Level of Lakes and Wetlands Water doi: 10.3390/w10081056 Authors: Songpu Shang Songhao Shang The determination of the rational minimum ecological water level is the base for the protection of ecosystems in shrinking lakes and wetlands. Based on the lake surface area method, a simplified lake surface area method was proposed to define the minimum ecological lake level from the lake level-logarithm of the surface area curve. The curve slope at the minimum ecological lake level is the ratio of the maximum lake storage to the maximum surface area. For most practical cases when the curve cannot be expressed as a simple analytical function, the minimum ecological lake level can be determined numerically using the weighted sum method for an equivalent multi-objective optimization model that balances ecosystem protection and water use. This method requires fewer data of lake morphology and is simple to compute. Therefore, it is more convenient to use this method in the assessment of the ecological lake level. The proposed method was used to determine the minimum ecological water level for one freshwater lake, one saltwater lake, and one wetland in China. The results can be used in the lake ecosystem protection planning and the rational use of water resources in the lake or wetland basins.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-08-11
    Description: Water, Vol. 10, Pages 1071: Correction: Oubennaceur, K., et al. Uncertainty Analysis of a Two-Dimensional Hydraulic Model. Water 2018, 10, 272 Water doi: 10.3390/w10081071 Authors: Khalid Oubennaceur Karem Chokmani Miroslav Nastev Marion Tanguy Sebastien Raymond The authors wish to make the following corrections to this paper [...]
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1076: Operating Cost Reduction of In-line Coagulation/Ultrafiltration Membrane Process Attributed to Coagulation Condition Optimization for Irreversible Fouling Control Water doi: 10.3390/w10081076 Authors: Sung Soo Yoo This study examined the optimum coagulation conditions for reducing irreversible fouling during the in-line coagulation/ultrafiltration (UF) membrane process and assessed the decrease in operating cost. The coagulation conditions that generated charge-neutralization, sweep-flocculation, and under-dosing mechanisms were obtained by a jar-test, and a pilot-scale in-line coagulation/UF membrane process was operated under the coagulation conditions. Charge-neutralization and sweep-flocculation mechanisms reduced irreversible fouling effectively, and the under-dosing mechanism was able to reduce irreversible fouling only when flocs of a certain size or larger were formed. This revealed that floc size was a more important factor in reducing irreversible fouling than floc structure, and once initial cake layers were created by flocs of a fixed size, the structure of formed cake layers had only a minor effect on irreversible fouling. Regarding reduction in operating cost, 0.5 mg/L and 3 h, which were necessary to produce an under-dosing mechanism, were deemed the optimum coagulant dosage and coagulant injection time, respectively, to reduce irreversible fouling. In order to analyze the operating cost reduction effect, a pilot plant was operated under optimum operating conditions, and the total operating cost was approximately 11.2% lower than without in-line coagulation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1075: Abundant and Rare Bacterioplankton in Freshwater Lakes Subjected to Different Levels of Tourism Disturbances Water doi: 10.3390/w10081075 Authors: Congcong Jiao Dayong Zhao Rui Huang Xinyi Cao Jin Zeng Yuqing Lin Wenjie Zhao Anthropogenic disturbances have a negative impact on lake ecosystems, such as water environmental degradation. Bacterioplankton communities are essential components in lakes and consist of a few abundant species and several rare taxa. However, little is known about the community diversity and composition of abundant and rare bacterioplankton subjected to different levels of anthropogenic disturbances. In this study, water samples were collected from twelve freshwater lakes located around the city of Nanjing, China. Both Illumina MiSeq sequencing and multivariate statistical analysis were employed to determine the bacterioplankton community composition and its relation to environmental variables. The results indicated that tourism disturbances (mostly sewage discharge and tourist activities) altered the community structure of both abundant and rare bacterioplankton by changing water physicochemical characteristics. Alpha diversity of both abundant and rare taxa did not differ among different anthropogenic disturbance lakes (p > 0.05). Rare bacterial taxa possessed higher alpha diversity than abundant taxa, though rare taxa occupied a tiny portion of abundance (4.5%). Redundancy analysis demonstrated that dissolved organic carbon (DOC) was the most significant correlation variable for constraining the variation of abundant taxa, whereas total phosphorus (TP), ammonium nitrogen (NH4+-N), and chlorophyll-a (Chl-a) were the most dominant environmental factors constraining the rare taxa, indicating abundant and rare taxa may have different ecological niches.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1074: Applicability Assessment of Estimation Methods for Baseflow Recession Constants in Small Forest Catchments Water doi: 10.3390/w10081074 Authors: Hyunje Yang Hyung Tae Choi Honggeun Lim In South Korea, since small forest catchments are located upstream of most river basins, the baseflow from these catchments is important for a clean water supply to downstream areas. Baseflow recession analysis is widely recognized as a valuable tool for estimating the baseflow component of the stream hydrograph. However, few studies have applied this tool to small forest catchments. So, this study was conducted to assess the applicability of the recession analysis methods proposed in previous studies. The data used were long-term rainfall-runoff data from 1982 to 2011 in the Gwangneung coniferous (GC) and deciduous (GD) forest catchment in Gyeonggi-do, South Korea. For the applicability assessment, six recession constant estimation methods, which were used by previous studies, were selected. The recession constants of the GC and GD catchments were calculated, and applicability assessments were conducted by comparing the recession predictions and baseflow separations. As a result, the recession constants for GC and GD were 0.8480 and 0.9235, respectively. This clear difference may be due to the different forest cover in each area. The correlation regression line, AR(1) model, and the Vogel and Kroll method showed lower error rates and appropriate baseflow indexes compared with other methods.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1073: Laboratory Studies on Nearshore Density-Driven Exchange Flow over a Partly Vegetated Slope Water doi: 10.3390/w10081073 Authors: Zhenghua Gu Hao-Che Ho Zijing Wang Ying-Tien Lin Density-driven exchange flows, which are important to the transport of nutrients, pollutants and chemical substances without external forcing, were studied through laboratory lock-exchange experiments. Rigid and emergent cylinders were placed in one of two reservoirs in a partitioned wedge-shaped tank to simulate a partly vegetated slope. The experimental results found that cylinders placed on only one side of the tank lead to different current speeds in the current head and tail that subsequently create various flow patterns and significantly affect the downslope current motions. By fitting with the experimental data, some unknown coefficients can be obtained in the theoretical formulae that are able to predict the intrusion length and exchange flowrate in real field systems. Compared to the flat bed cases, the total exchange discharge over a steep slope decreases by up to 4% for vegetation distributed in shallow water and increases by 14% for vegetation distributed in deeper regions. These results suggest that bed slope and vegetation distribution are crucial to the density-driven exchange flows in the flushing of nearshore regions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1072: Bacterial Productivity in a Ferrocyanide-Contaminated Aquifer at a Nuclear Waste Site Water doi: 10.3390/w10081072 Authors: Andrew Plymale Jacqueline Wells Emily Graham Odeta Qafoku Shelby Brooks Brady Lee This study examined potential microbial impacts of cyanide contamination in an aquifer affected by ferrocyanide disposal from nuclear waste processing at the US Department of Energy’s Hanford Site in south-eastern Washington State (USA). We examined bacterial productivity and microbial cell density in groundwater (GW) from wells with varying levels of recent and historical total cyanide concentrations. We used tritiated leucine (3H-Leu) uptake as a proxy for heterotrophic, aerobic bacterial productivity in the GW, and we measured cell density via nucleic acid staining followed by epifluorescence microscopy. Bacterial productivity varied widely, both among wells that had high historical and recent total cyanide (CN−) concentrations and among wells that had low total CN− values. Standing microbial biomass varied less, and was generally greater than that observed in a similar study of uranium-contaminated hyporheic-zone groundwater at the Hanford Site. Our results showed no correlation between 3H-Leu uptake and recent or historical cyanide concentrations in the wells, consistent with what is known about cyanide toxicity with respect to iron speciation. However, additional sampling of the CN− affected groundwater, both in space and time, would be needed to confirm that the CN− contamination is not affecting the GW biota.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-08-14
    Description: Water, Vol. 10, Pages 1079: Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran Water doi: 10.3390/w10081079 Authors: Masoud Jafari Shalamzari Wanchang Zhang Population growth and rising water demand, climate change, severe droughts, and land-use changes are among the top severe issues in Iran. Water management in this country is sectoral and disintegrated. Each authority evaluates water based on its final intention and there is no commonplace indicator for evaluation programs. In this research, we used the Water Poverty Index (WPI) to map the status of water scarcity in a north-eastern province of Iran. Water poverty was measured based on five components of “Resources”, “Access”, “Capacity”, “Use”, and “Environment”. The scores on each component were then aggregated using the weighted multiplicative function, assuming equal weights for all components. The overall WPI was evaluated to be 41.1, signaling an alarming and serious water poverty in the study area. Based on the results, Azadshahr (29.1) and Gorgan (61.6) districts had the worst and the best conditions among all cases, respectively. To better understand the importance of WPI components, four weighting alternatives were used; however, none of them resulted in a tangible improvement of WPI index. The cross-correlation between the components was also evaluated, with Access and Capacity showing significant results. Leaving out “Capacity”, however, reduced WPI by 8.1. In total, “Access”, “Capacity”, and “Use” had the highest correlation with WPI, implying that any attempt to improve water poverty in the province must firstly tackle these issues. This study showed that WPI is an effective indicator of water scarcity assessment and could be used to make priorities for policy-making and water management.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-08-14
    Description: Water, Vol. 10, Pages 1077: Is Overgrazing Really Influencing Soil Erosion? Water doi: 10.3390/w10081077 Authors: Ionut Cristi Nicu Soil erosion is a serious problem spread over a variety of climatic areas around the world. The main purpose of this paper is to produce gully erosion susceptibility maps using different statistical models, such as frequency ratio (FR) and information value (IV), in a catchment from the northeastern part of Romania, covering a surface of 550 km2. In order to do so, a total number of 677 gullies were identified and randomly divided into training (80%) and validation (20%) datasets. In total, 10 conditioning factors were used to assess the gully susceptibility index (GSI); namely, elevation, precipitations, slope angle, curvature, lithology, drainage density, topographic wetness index, landforms, aspect, and distance from rivers. As a novelty, overgrazing was added as a conditioning factor. The final GSI maps were classified into four susceptibility classes: low, medium, high, and very high. In order to evaluate the two models prediction rate, the AUC (area under the curve) method was used. It has been observed that adding overgrazing as a contributing factor in calculating GSI does not considerably change the final output. Better predictability (0.87) and success rate (0.89) curves were obtained with the IV method, which proved to be more robust, unlike FR method, with 0.79 value for both predictability and success rate curves. When using sheepfolds, the value decreases by 0.01 in the case of the FR method, and by 0.02 in the case of the success rate curve for the IV method. However, this does not prove the fact that overgrazing is not influencing or accelerating soil erosion. A multi-temporal analysis of soil erosion is needed; this represents a future working hypothesis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-08-14
    Description: Water, Vol. 10, Pages 1078: A Review of Demand Models for Water Systems in Buildings including A Bayesian Approach Water doi: 10.3390/w10081078 Authors: Ling-Tim Wong Kwok-Wai Mui Instantaneous flow rate estimation is essential for sizing pipes and other components of water systems in buildings. Although various demand models have been developed in line with design and technology trends, most water supply system designs are routinely and substantially over-sized to keep failure risks to a minimum. Three major types of demand models from the literature are reviewed in this paper: (1) deterministic approach; (2) probabilistic approach; and (3) demand time-series approach. As findings show some widely used model estimates are much larger than the field measurements, this paper proposes a Bayesian approach to bridge the gap between model-based and field-measured values for the probable maximum simultaneous water demand. The proposed approach is flexible to adopt estimates as its prior values from a wide range of existing water demand models for determining the Bayesian coefficients for reference models, codes, and design standards with relevant measurement data. The approach provides a useful method not only for evaluating the corresponding demand values from various design references, but also for responding to the call for sustainable building design.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-08-19
    Description: Minerals, Vol. 8, Pages 356: Geology and Mineralogy of Rare Earth Elements Deposits and Occurrences in Finland Minerals doi: 10.3390/min8080356 Authors: Thair Al-Ani Ferenc Molnár Panu Lintinen Seppo Leinonen Rare earth elements (REE) have critical importance in the manufacturing of many electronic products in the high-tech and green-tech industries. Currently, mining and processing of REE is strongly concentrated in China. A substantial growth in global exploration for REE deposits has taken place in the recent years and has resulted in considerable advances in defining new resources. This study provides an overview of the mineralogical and petrological peculiarities of the most important REE prospects and metallogeny of REE in Finland. There is a particularly good potential for future discoveries of carbonatite hosted REE deposits in the Paleozoic Sokli carbonatite complex, as well as in the Paleoproterozoic Korsnäs and Kortejärvi Laivajoki areas. This review also provides information about the highest known REE concentration in the alkaline intrusions of Finland in the Tana Belt and other alkaline rock hosted occurrences (e.g., Otanmäki and Katajakangas). Significant REE enrichments in hydrothermal alteration zones are also known in the Kuusamo Belt (Uuniniemi and Honkilehto), and occurrences of REE-rich mineralisation are also present in granite pegmatite bodies and greisens in central and southern Finland (Kovela monazite granite and the Rapakivi Granite batholith at Vyborg, respectively). REE minerals in all of the localities listed above were identified and analyzed by scanning electron microscopy (SEM) and electron microprobes (EMPs). In localities of northern and central Finland, both primary rock forming and epigenetic-hydrothermal REE minerals were found, namely phosphates (monazite-Ce, xenotime-Y), fluorcarbonates (bastnäsite-Ce, synchysite), and hydrated carbonates (ancylite-Ce), hydrated aluminium silicates (allanite-Ce, Fe-allanite, cerite, chevkinite), oxides (fergusonite, euxenite) and U-Pb rich minerals. The chondrite normalized REE concentrations, the La/Nd ratios and the REE vs. major element contents in several types of REE bearing minerals from prospects in Finland can be used to identify and define variable REE fractionation processes (carbonatites), as well as to discriminate deposits of different origins.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-08-19
    Description: Minerals, Vol. 8, Pages 357: Aqueous Fe(II)-Induced Phase Transformation of Ferrihydrite Coupled Adsorption/Immobilization of Rare Earth Elements Minerals doi: 10.3390/min8080357 Authors: Yingheng Fei Jian Hua Chengshuai Liu Fangbai Li Zhenke Zhu Tangfu Xiao Manjia Chen Ting Gao Zhiqi Wei Likai Hao The phase transformation of iron minerals induced by aqueous Fe(II) (Fe(II)aq) is a critical geochemical reaction which greatly affects the geochemical behavior of soil elements. How the geochemical behavior of rare earth elements (REEs) is affected by the Fe(II)aq-induced phase transformation of iron minerals, however, is still unknown. The present study investigated the adsorption and immobilization of REEs during the Fe(II)aq-induced phase transformation of ferrihydrite. The results show that the heavy REEs of Ho(III) were more efficiently adsorbed and stabilized compared with the light REEs of La(III) by ferrihydrite and its transformation products, which was due to the higher adsorptive affinity and smaller atomic radius of Ho(III). Both La(III) and Ho(III) inhibited the Fe atom exchange between Fe(II)aq and ferrihydrite, and sequentially, the Fe(II)aq-induced phase transformation rates of ferrihydrite, because of the competitive adsorption with Fe(II)aq on the surface of iron (hydr)oxides. Owing to the larger amounts of adsorbed and stabilized Ho(III), the inhibition of the Fe(II)aq-induced phase transformation of ferrihydrite affected by Ho(III) was higher than that by La(III). Our findings suggest an important role for the Fe(II)aq-induced phase transformation of iron (hydr)oxides in assessing the mobility and transfer behavior of REEs, as well as for their occurrence in earth surface environments.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-08-18
    Description: Minerals, Vol. 8, Pages 355: On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India Minerals doi: 10.3390/min8080355 Authors: Ondřej Krátký Vladislav Rapprich Martin Racek Jitka Míková Tomáš Magna Mineralogical and chemical data are presented for a suite of Na–Cr-rich clinopyroxenes associated with chromite, winchite (sodium-calcium amphibole), titanite and calcite in Mg-Cr-rich silicocarbonatites from the Samalpatti carbonatite complex, Tamil Nadu, South India. The Mg-Cr-rich silicocarbonatites occur as 10–30 cm large enclaves in pyroxenites. The chemical composition of the pyroxenes differs among individual enclaves, with variable proportions of diopside, kosmochlor and jadeite-aegirine end-members. These compositions fill a previously unoccupied space in the kosmochlor-diopside-jadeite+aegirine ternary plot, indicating a distinct origin of kosmochlor-rich pyroxene compared with previous findings from diverse settings. The Na–Cr-rich clinopyroxene has low ΣREE = 9.2 ppm, with slight enrichment in LREE (LaN = 7), coupled with low HREE (YbN = 0.6), and flat HREE, paralleled by a significant fractionation of Nb/Ta (2408) and Th/U (26.5). Sodic metasomatism (fenitization) associated with either carbonatite emplacement at shallow levels or during carbonatite ascent through the upper mantle most likely was the major process operating in the area. We suggest two scenarios of the formation of Na–Cr-rich pyroxene: (1) from mantle-derived chromian mineral phases (spinel and/or garnet) through fenitization, with subsequent corrosion by growing winchite due to volatile influx; (2) via metasomatic reaction of Cr-rich garnet in mantle peridotite due to reaction with Na-rich carbonatite melt. Collectively, the appearance of kosmochlor may play an important role in deconvolving metasomatic processes, and fenitization in particular. If combined with petrologic experiments, it could improve our understanding of the origin and subsequent history of chemical signatures of carbonate-rich materials in the mantle.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-08-20
    Description: Water, Vol. 10, Pages 1106: Comprehensive Evaluation of Water Resource Security: Case Study from Luoyang City, China Water doi: 10.3390/w10081106 Authors: Guanghua Dong Juqin Shen Yizhen Jia Fuhua Sun The security of water resources is the core content and ultimate goal of urban water resource management agencies. The management of water resources is directly related to the needs of urban residents’ lives and the area’s socio-economic development. How to determine the effective evaluation indicators and methods is an important prerequisite to solving the water resource security problem. This study took Luoyang City as the research area and constructed a water resource security evaluation index system based on pressure-state-response framework. An analytic hierarchy process and entropy weight method were used to determine the index weight. A set pair analysis model was then introduced to evaluate the security of water resources in Luoyang from 2006 to 2016. The results of this study show that the standard of water resource security generally improved in Luoyang in the latter years of the study period. From 2006 to 2008, Luoyang was graded at the Insecurity Level. This compares to a slightly improved grading of Critical Security Level from 2009 to 2016 (except for 2013). However, the overall grade is still low. The pressure on the Luoyang water resource system mainly comes from the development of the urban socio-economy, which in turn has caused problems for both the quantity and quality of water resources. Therefore, a series of countermeasures have been introduced as a means of improving the water resource security of Luoyang, and these measures have achieved certain results. However, further improvements to the efficiency of water resource utilization and strengthening the management and protection of water resources remain necessary.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-08-19
    Description: Water, Vol. 10, Pages 1102: Conditions Influencing Municipal Strategy-Making for Sustainable Urban Water Management: Assessment of Three Swedish Municipalities Water doi: 10.3390/w10081102 Authors: Erik Glaas Mattias Hjerpe Robert Jonsson Strategy-making is key for realizing sustainable urban water management. Though general barriers and factors for change have been identified, fewer studies have assessed how different conditions influence municipalities’ strategy-making ability and, thus, how to plan strategically given these conditions. Healey’s strategy-making notion was applied to delimit a study of how size, finances, development path, and water organization influence Swedish municipalities’ strategy-making ability for urban water. Three municipalities, Laxå, Norrköping, and Skellefteå, with different, yet overlapping, institutional and socio-economic conditions were analyzed using semi-structured interviews, a stakeholder workshop, and document analyses. The study finds that even though key events have filtered urban water issues into the political agenda, this has not induced systemic change, except where the role of water management in urban development has been specified, i.e., has aligned dispersed planning processes. Organizational setup influences the strategy-making ability by prescribing not only when water issues are raised, but also what system perspective should be applied and what actors that should be enrolled. Judging from the three cases, size, finances, and development path do matter for strategy-making ability, but they appear to be less important than the organizational setup. Departures for improving strategy-making under different conditions are discussed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-08-22
    Description: Minerals, Vol. 8, Pages 364: The Arsenic Fault-Pathfinder: A Complementary Tool to Improve Structural Models in Mining Minerals doi: 10.3390/min8090364 Authors: Daniel Carrizo Carlos Barros German Velasquez In a mining operation, the structural model is considered as a first-order data required for planning. During the start-up and in-depth expansion of an operation, whether the case is open-pit or underground, the structural model must be systematically updated because most common failure mechanisms of a rock mass are generally controlled by geological discontinuities. This update represents one of the main responsibilities for structural geologists and mine engineers. For that purpose, our study presents a geochemically-developed tool based on the tridimensional (3-D) distribution of arsenic concentrations, which have been quantified with a very high-density of blast-holes sampling points throughout an open pit operation. Our results show that the arsenic spatial distribution clearly denotes alignments that match with faults that were previously recognized by classical direct mapping techniques. Consequently, the 3-D arsenic distribution can be used to endorse the existence and even more the real persistence of structures as well as the cross-cutting relationships between faults. In conclusion, by linking the arsenic fault-pathfinder tool to direct on field fault mapping, it is possible to improve structural models at mine scale, focusing on geotechnical design and management, with a direct impact in the generation of safety mining activities.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-08-23
    Description: Water, Vol. 10, Pages 1114: Operational Evaluation of a Small Hydropower Plant in the Context of Sustainable Development Water doi: 10.3390/w10091114 Authors: Natalia Walczak Proper design of hydrotechnical structures should meet the basic principles of sustainable development, i.e., the investment should be designed and made in technical terms, in accordance with the applicable standards and regulations, provide certain economic benefits and guarantee the absence of environmental hazards. The article examines the work of a Small Hydropower Plant (SHP) in Jaracz in technical and hydraulic terms. It also provides the analysis of the effect of changes in parameters such as water head, flow rate velocity, and shape of trash rack bars on expected SHP profits. The assessment of hydraulic performance consisted of investigating the impact of reduced flow rate and water head on power output and energy production. The analyses were carried out for the Francis turbine installed in the facility. Since the loss of channel capacity is shaped by plant debris accumulated on trash racks, the hydraulic performance assessment was extended to include the analysis of the species and weight composition of such accumulation on fine trash racks located in the inlet channel. Field research involved collecting organic material from the growing season (spring, summer) and post-growing season (autumn). Technical conditions were developed on the basis of the current technical condition of the inlet channel; there were also made simulations of its deteriorating state, as well as its impact on the received energy and economic benefits.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-08-23
    Description: Water, Vol. 10, Pages 1115: Drag Effect of Water Consumption on Urbanization—A Case Study of the Yangtze River Economic Belt from 2000 to 2015 Water doi: 10.3390/w10091115 Authors: Min An Van Butsic Weijun He Zhaofang Zhang Teng Qin Zhengwei Huang Liang Yuan Urbanization is an engine of economic development, but this process is often constrained by increasingly scarce water resources. A model predicting the drag effect of water consumption on urbanization would be useful for future planning for sustainable water resource utilization and economic growth. Using panel data from 11 provinces in China’s Yangtze River economic belt (YREB) from 2000 to 2015, we apply Romer’s growth drag theory with spatial econometric models to quantitatively analyze the drag effect of water consumption on urbanization. The results show the following. (1) The drag effect of water consumption on urbanization has significant spatial correlation; the spatial Durbin model is the best model to calculate this spatial connection. (2) The spatial coefficient is 0.39 and the drag that is caused by water consumption on urbanization in the YREB is 0.574, which means that when spatial influences are considered, urbanization speed slows by 0.574% due to water consumption constraints. (3) Each region in the YREB has different water consumption patterns and structure; we further calculate each region’s water consumption drag on urbanization. We find that areas with high urbanization levels, like Shanghai (average 84.7%), have a lower water consumption drag effect (0.227), and they can avoid the “resource curse” of water resource constraints. However, some low-level urbanization provinces, like Anhui (average 39.3%), have a higher water consumption drag effect (1.352). (4) Our results indicate that the water drag effect is even greater than the drag effect of coal and land. Therefore, policies to increase urbanization should carefully consider the way that water constraints may limit growth. Likewise, our spatial model indicates that policy makers should work with neighboring provinces and construct an effective regional water cooperation mechanism.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-08-26
    Description: Water, Vol. 10, Pages 1138: Minimizing the Principle Stresses of Powerhoused Rock-Fill Dams Using Control Turbine Running Units: Application of Finite Element Method Water doi: 10.3390/w10091138 Authors: Ameen Ibrahim Othman Al-Ansari Yaseen This study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse represented by four vertical Francis turbines, foundation, and the upstream reservoir. Changing the upstream water table minimum and maximum water levels, standers earth gravity, fluid-solid interface, hydrostatic pressure, and the soil properties are considered. The dam model runs to cover all possibilities for turbines operating in accordance with the reservoir discharge ranges. In order to minimize stresses in the dam body and increase dam safety, this study optimizes the turbine operating system by integrating turbine and dam models.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-08-26
    Description: Water, Vol. 10, Pages 1135: Hydrological Modeling of Climate Change Impacts in a Tropical River Basin: A Case Study of the Cauto River, Cuba Water doi: 10.3390/w10091135 Authors: Yalina Montecelos-Zamora Tereza Cavazos Thomas Kretzschmar Enrique R. Vivoni Gerald Corzo Eugenio Molina-Navarro The soil and water assessment tool (SWAT) model was applied for the first time in Cuba to assess the potential impacts of climate change on water availability in the Cauto River basin. The model was calibrated (and validated) for the 2001–2006 (2007–2010) period at a monthly timescale in two subbasins La Fuente and Las Coloradas, representative of middle and upper sections of the Cauto basin; the calibrated models showed good performance. The output available for the regional climate Model RegCM4.3 was used to force the calibrated SWAT models to simulate a baseline (1970–2000) period and near-future (2015–2039) hydrologic regimes under the representative concentration pathway (RCP) 8.5 emission scenario. The future projections suggest regional increases of 1.5 °C in mean annual temperature and a 38% decrease in mean annual precipitation in the subbasins. These changes translate to possible reductions in the annual streamflow of up to 61% with respect to the baseline period, whereas the aquifer recharge in the basin is expected to decrease up to 58%, with a consequent reduction of groundwater flow, especially during the boreal summer wet season. These projection scenarios should be of interest to water resources managers in tropical regions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-08-25
    Description: Minerals, Vol. 8, Pages 367: Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization Minerals doi: 10.3390/min8090367 Authors: Jian Hua Manjia Chen Chengshuai Liu Fangbai Li Jian Long Ting Gao Fei Wu Jing Lei Minghua Gu The interaction between aqueous Fe(II) (Fe(II)aq) and iron minerals is an important reaction of the iron cycle, and it plays a critical role in impacting the environmental behavior of heavy metals in soils. Metal substitution into iron (hydr)oxides has been reported to reduce Fe atom exchange rates between Fe(II)aq and metal-substituted iron (hydr)oxides and inhibit the recrystallization of iron (hydr)oxides. However, the environmental behaviors of the substituted metal during these processes remain unclear. In this study, Fe(II)aq-induced recrystallization of Cr-substituted goethite (Cr-goethite) was investigated, along with the sequential release behavior of substituted Cr(III). Results from a stable Fe isotopic tracer and Mössbauer characterization studies show that Fe atom exchange occurred between Fe(II)aq and structural Fe(III) (Fe(III)oxide) in Cr-goethites, during which the Cr-goethites were recrystallized. The Cr substitution inhibited the rates of Fe atom exchange and Cr-goethite recrystallization. During the recrystallization of Cr-goethites induced by Fe(II)aq, Cr(III) was released from Cr-goethite. In addition, Cr-goethites with a higher level of Cr-substituted content released more Cr(III). The highest Fe atom exchange rate and the highest amount of released Cr(III) were observed at a pH of 7.5. Under reaction conditions involving a lower pH of 5.5 or a higher pH of 8.5, there were substantially lower rates of Fe atom exchange and Cr(III) release. This trend of Cr(III) release was similar with changes in Fe atom exchange, suggesting that Cr(III) release is driven by Fe atom exchange. The release and reincorporation of Cr(III) occurred simultaneously during the Fe(II)aq-induced recrystallization of Cr-goethites, especially during the late stage of the observed reactions. Our findings emphasize an important role for Fe(II)aq-induced recrystallization of iron minerals in changing soil metal characteristics, which is critical for the evaluation of soil metal activities, especially those in Fe-rich soils.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-08-28
    Description: Water, Vol. 10, Pages 1148: Water Quality Prediction Method Based on IGRA and LSTM Water doi: 10.3390/w10091148 Authors: Jian Zhou Yuanyuan Wang Fu Xiao Yunyun Wang Lijuan Sun Water quality prediction has great significance for water environment protection. A water quality prediction method based on the Improved Grey Relational Analysis (IGRA) algorithm and a Long-Short Term Memory (LSTM) neural network is proposed in this paper. Firstly, considering the multivariate correlation of water quality information, IGRA, in terms of similarity and proximity, is proposed to make feature selection for water quality information. Secondly, considering the time sequence of water quality information, the water quality prediction model based on LSTM, whose inputs are the features obtained by IGRA, is established. Finally, the proposed method is applied in two actual water quality datasets: Tai Lake and Victoria Bay. Experimental results demonstrate that the proposed method can take full advantage of the multivariate correlations and time sequence of water quality information to achieve better performance on water quality prediction compared with the single feature or non-sequential prediction methods.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...