ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (19,679)
  • MDPI Publishing  (19,679)
  • PANGAEA
  • Sensors  (13,573)
  • Materials  (6,106)
  • 115624
  • 15954
  • 1
    Publication Date: 2018-07-25
    Description: Sensors, Vol. 18, Pages 2406: Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion Sensors doi: 10.3390/s18082406 Authors: Zhihong Deng Lijian Yin Baoyu Huo Yuanqing Xia In most practical applications, the tracking process needs to update the data constantly. However, outliers may occur frequently in the process of sensors’ data collection and sending, which affects the performance of the system state estimate. In order to suppress the impact of observation outliers in the process of target tracking, a novel filtering algorithm, namely a robust adaptive unscented Kalman filter, is proposed. The cost function of the proposed filtering algorithm is derived based on fading factor and maximum correntropy criterion. In this paper, the derivations of cost function and fading factor are given in detail, which enables the proposed algorithm to be robust. Finally, the simulation results show that the presented algorithm has good performance, and it improves the robustness of a general unscented Kalman filter and solves the problem of outliers in system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1287: Polysaccharide-Based Aerogel Bead Production via Jet Cutting Method Materials doi: 10.3390/ma11081287 Authors: Imke Preibisch Philipp Niemeyer Yusuf Yusufoglu Pavel Gurikov Barbara Milow Irina Smirnova The aim of this work is to develop a method to produce spherical biopolymer-based aerogel particles, which is capable for scale-up in the future. Therefore, the jet cutting method is suggested. Amidated pectin, sodium alginate, and chitosan are used as a precursor (a 1–3 wt. % solution) for particle production via jet cutting. Gelation is realized via two methods: the internal setting method (using calcium carbonate particles as cross-linkers and citric and acidic acid for pH adjustment) and the diffusion method (in calcium chloride solutions). Gel particles are subjected to solvent exchange to ethanol and consequent supercritical drying with CO2. Spherical aerogel particles with narrow particle size distributions in the range of 400 to 1500 µm and a specific surface area of around 500 m2/g are produced. Overall, it can be concluded that the jet cutting method is suitable for aerogel particle production, although the shape of the particles is not perfectly spherical in all cases. However, parameter adjustment might lead to even better shaped particles in further work. Moreover, the biopolymer-based aerogel particles synthesized in this study are tested as humidity absorbers in drying units for home appliances, particularly for dishwashers. It has been shown that for several cycles of absorption and desorption of humidity, aerogel particles are stable with an absorption capacity of around 20 wt. %.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1279: Computational Predictions and Microwave Plasma Synthesis of Superhard Boron-Carbon Materials Materials doi: 10.3390/ma11081279 Authors: Paul A. Baker Shane A. Catledge Sumner B. Harris Kathryn J. Ham Wei-Chih Chen Cheng-Chien Chen Yogesh K. Vohra Superhard boron-carbon materials are of prime interest due to their non-oxidizing properties at high temperatures compared to diamond-based materials and their non-reactivity with ferrous metals under extreme conditions. In this work, evolutionary algorithms combined with density functional theory have been utilized to predict stable structures and properties for the boron-carbon system, including the elusive superhard BC5 compound. We report on the microwave plasma chemical vapor deposition on a silicon substrate of a series of composite materials containing amorphous boron-doped graphitic carbon, boron-doped diamond, and a cubic hard-phase with a boron-content as high as 7.7 at%. The nanoindentation hardness of these composite materials can be tailored from 8 GPa to as high as 62 GPa depending on the growth conditions. These materials have been characterized by electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, and nanoindentation hardness, and the experimental results are compared with theoretical predictions. Our studies show that a significant amount of boron up to 7.7 at% can be accommodated in the cubic phase of diamond and its phonon modes and mechanical properties can be accurately modeled by theory. This cubic hard-phase can be incorporated into amorphous boron-carbon matrices to yield superhard materials with tunable hardness values.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1290: Compositional Dependence of Phase Selection in CoCrCu0.1FeMoNi-Based High-Entropy Alloys Materials doi: 10.3390/ma11081290 Authors: Ning Liu Chen Chen Isaac Chang Pengjie Zhou Xiaojing Wang To study the effect of alloy composition on phase selection in the CoCrCu0.1FeMoNi high-entropy alloy (HEA), Mo was partially replaced by Co, Cr, Fe, and Ni. The microstructures and phase selection behaviors of the CoCrCu0.1FeMoNi HEA system were investigated. Dendritic, inter-dendritic, and eutectic microstructures were observed in the as-solidified HEAs. A simple face centered cubic (FCC) single-phase solid solution was obtained when the molar ratio of Fe, Co, and Ni was increased to 1.7 at the expense of Mo, indicating that Fe, Co, and Ni stabilized the FCC structure. The FCC structure was favored at the atomic radius ratio δ ≤ 2.8, valence electron concentration (VEC) ≥ 8.27, mixing entropy ΔS ≤ 13.037, local lattice distortion parameter α2 ≤ 0.0051, and ΔS/δ2 > 1.7. Mixed FCC + body centered cubic (BCC) structures occurred for 4.1 ≤ δ ≤ 4.3 and 7.71 ≤ VEC ≤ 7.86; FCC or/and BCC + intermetallic (IM) mixtures were favored at 2.8 ≤ δ ≤ 4.1 or δ > 4.3 and 7.39 < VEC ≤ 8.27. The IM phase is favored at electronegativity differences greater than 0.133. However, ΔS, α2, and ΔS/δ2 were inefficient in identifying the (FCC or/and BCC + IM)/(FCC + BCC) transition. Moreover, the mixing enthalpy cannot predict phase structures in this system.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1286: An Evaluation of Wetting and Adhesion of Three Bioceramic Root Canal Sealers to Intraradicular Human Dentin Materials doi: 10.3390/ma11081286 Authors: Jung-Hong Ha Hyeon-Cheol Kim Young Kyung Kim Tae-Yub Kwon Root canal sealers should have good wetting and adhesion with intraradicular dentin. This study evaluated the wetting and adhesion properties of three bioceramic root canal sealers on dentin using contact angle (CA) measurements and calculations based on the Owens–Wendt–Rabel–Kälble (OWRK) model and compared the properties with those of a resin sealer. Three bioceramic sealers (EndoSequence BC Sealer (BC); Endoseal MTA (EM); and MTA Fillapex (MF)) were tested, together with one epoxy resin-based sealer (AH Plus (AP)). Disc-shaped sealer specimens and human premolar teeth with flat and polished intraradicular dentin surfaces were prepared (n = 12). The CAs of two liquids (water and methylene iodide) were measured on the surfaces using the sessile drop method. The wetting and adhesion properties of the four sealers were calculated using the wetting envelope and isogram diagram, respectively. Group BC showed the best wettability among the four sealer groups. The best adhesion was achieved for group EM, followed by group BC, with a significant difference being present between the two groups (p < 0.05). The OWRK-based calculation indicated that the bioceramic BC and EM sealers showed superior wetting and adhesion properties to the AP sealers.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1281: Investigation of Cutting Temperature during Turning Inconel 718 with (Ti,Al)N PVD Coated Cemented Carbide Tools Materials doi: 10.3390/ma11081281 Authors: Jinfu Zhao Zhanqiang Liu Qi Shen Bing Wang Qingqing Wang Physical Vapor Deposition (PVD) Ti1−xAlxN coated cemented carbide tools are commonly used to cut difficult-to-machine super alloy of Inconel 718. The Al concentration x of Ti1−xAlxN coating can affect the coating microstructure, mechanical and thermo-physical properties of Ti1−xAlxN coating, which affects the cutting temperature in the machining process. Cutting temperature has great influence on the tool life and the machined surface quality. In this study, the influences of PVD (Ti,Al)N coated cemented carbide tools on the cutting temperature were analyzed. Firstly, the microstructures of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coatings were inspected. The increase of Al concentration x enhanced the crystallinity of PVD Ti1−xAlxN coatings without epitaxy growth of TiAlN crystals. Secondly, the mechanical and thermo-physical properties of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coated tools were analyzed. The pinning effects of coating increased with the increasing of Al concentration x, which can decrease the friction coefficient between the PVD Ti1−xAlxN coated cemented carbide tools and the Inconel 718 material. The coating hardness and thermal conductivity of Ti1−xAlxN coatings increased with the increase of Al concentration x. Thirdly, the influences of PVD Ti1−xAlxN coated tools on the cutting temperature in turning Inconel 718 were analyzed by mathematical analysis modelling and Lagrange simulation methods. Compared with the uncoated tools, PVD Ti0.41Al0.59N coated tools decreased the heat generation as well as the tool temperature to reduce the thermal stress generated within the tools. Lastly, the influences of Ti1−xAlxN coatings on surface morphologies of the tool rake faces were analyzed. The conclusions can reveal the influences of PVD Ti1−xAlxN coatings on cutting temperature, which can provide guidance in the proper choice of Al concentration x for PVD Ti1−xAlxN coated tools in turning Inconel 718.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1278: Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets Materials doi: 10.3390/ma11081278 Authors: Sutao Han Xuedao Shu Chang Shu Considering problems about concaves at the stepped shaft ends, this paper established the plastic flow kinetic theories about metal deforming during the cross-wedge rolling (CWR) process. By means of the DEFORM-3D finite element software and the point tracing method, the forming process of stepped shafts and the forming mechanism of concaves at shaft ends were studied. Based on the forming features of stepped shafts, rolling pieces were designed using variable cone angle billets. Single-factor tests were conducted to analyze the influence law of the shape parameters of billet with variable cone angle on end concaves, and rolling experiments were performed for verification. According to the results, during the rolling process of stepped shafts, concaves will come into being in stages, and the increasing tendency of its depth is due to the wave mode, the parameters of cone angle α, the first cone section length n. Furthermore, the total cone section length m has an increasingly weaker influence on the end concaves. Specifically, cone angle α has the most significant influence on the quality of shaft ends, which is about twice the influence of the total cone section length m. The concave depth will decrease at the beginning, and then increase with the increasing of the cone angle α and the first cone section length n, and it will decrease with the increasing of the total cone section length m. Finite element numerical analysis results are perfectly consistent with experimental results, with the error ratio being lower than 5%. The results provide a reliable theoretical basis for effectively disposing of end concave problems during CWR, rationally confirming the shape parameters of billets with a variable cone angle, improving the quality of stepped shaft ends, and realizing the near-net forming process of cross-wedge rolling without a stub bar.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1276: Tool Wear Mechanism in Cutting of Stack CFRP/UNS A97075 Materials doi: 10.3390/ma11081276 Authors: Severo Raul Fernandez-Vidal Sergio Fernandez-Vidal Moises Batista Jorge Salguero The aeronautics industry’s competitiveness has led to the need to increase productivity with one shot drilling (OSD) systems capable of drilling stacks of dissimilar materials (fibre/metal laminates, FML) in order to reduce riveting times. Among the materials that constitute the current aeronautical models, composite materials and aluminium (Al) and titanium (Ti) alloys stand out. These one-pass machining techniques produce high-quality holes, especially when all the elements that have to be joined are made of the same material. This work has followed a conventional OSD strategy and the same cutting conditions applied to CFRP (carbo-fibre-reinforced polymer), Al and CFRP/Al stacked sheets to know the wear mechanisms produced. With this purpose, results were obtained by using current specific techniques, such as microstructural analysis, monitoring of the shear forces and analysis of macrogeometric deviations. It has been determined that when these drilling techniques are applied under the same cutting conditions to stacks of materials of a different nature, the results of the wear mechanisms acting on the tool differ from those obtained when machining each material separately. This article presents a comparison between the effects of tool wear during dry drilling of CFRP and UNS A97075 plates separately and when machined as stacks.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2420: Strain Transfer Characteristics of Resistance Strain-Type Transducer Using Elastic-Mechanical Shear Lag Theory Sensors doi: 10.3390/s18082420 Authors: Yongqian Li Zhigang Wang Chi Xiao Yinming Zhao Yaxin Zhu Zili Zhou The strain transfer characteristics of resistance strain gauge are theoretically investigated. A resistance strain-type transducer is modeled to be a four-layer and two-glue (FLTG) structure model, which comprises successively the surface of an elastomer sensitive element, a ground adhesive glue, a film substrate layer, an upper adhesive glue, a sensitive grids layer, and a polymer cover. The FLTG model is studied in elastic–mechanical shear lag theory, and the strain transfer progress in a resistance strain-type transducer is described. The strain transitional zone (STZ) is defined and the strain transfer ratio (STR) of the FLTG structure is formulated. The dependences of the STR and STZ on both the dimensional sizes of the adhesive glue and structural parameters are calculated. The results indicate that the width, thickness and shear modulus of the ground adhesive glue have a greater influence on the STZ ratio. To ensure that the resistance strain gauge has excellent strain transfer performance and low hysteresis, it is recommended that the paste thickness should be strictly controlled, and the STZ ratio should be less than 10%. Moreover, the STR strongly depends on the length and width of the sensitive grids.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2416: Design and Optimization of a Novel Three-Dimensional Force Sensor with Parallel Structure Sensors doi: 10.3390/s18082416 Authors: Guanyu Huang Dan Zhang Sheng Guo Haibo Qu To measure large external forces exerted on a loading platform, a novel three-dimensional force sensor is developed in this paper. The proposed sensor was designed with a parallel mechanism with three degrees of freedom. Kinematic analysis of this sensor was performed. Due to its structural characteristics, the working principle of the sensor was analyzed using a Jacobian matrix. The sensitivity diversity index and measuring capability were both calculated. The analysis showed that the proposed sensor is more suitable for measuring large forces than existing strain sensors. In addition, compared with existing strain sensors, this sensor is more suitable for measuring forces along the x and y axes. By changing the stiffness coefficients of the springs, the proposed sensor has reconfigurability. This sensor can change its measuring capability to meet different requirements. Next, the mode shapes and natural frequencies of the proposed sensor were performed. Finally, based on these performance indices, the design variables were optimized using a Multi-Objective Genetic Algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2415: Cheeses Made from Raw and Pasteurized Cow’s Milk Analysed by an Electronic Nose and an Electronic Tongue Sensors doi: 10.3390/s18082415 Authors: Nuno I. P. Valente Alisa Rudnitskaya João A. B. P. Oliveira M. Teresa S. R. Gomes Elvira M. M. Gaspar Cheese prepared from whole milk, raw and pasteurized, were analysed by an electronic nose based on piezoelectric quartz crystals and an electronic tongue based on potentiometric sensors, immediately after their preparation and along ripening (after 7 and 21 days). Whey was also analysed by the potentiometric electronic tongue. Results obtained by the electronic nose and tongue were found to be complementary, with the electronic nose being more sensitive to differences in the milk and the electronic tongue being more sensitive to milk pasteurization. Electronic tongue was able to distinguish cheeses made from raw and pasteurized milk, both analysing the whey or the curd, with correct classification rate of 96% and 84%, respectively. Besides, the electronic nose was more sensitive than the electronic tongue to the ripening process, with large differences between samples after 7 and 21 days, while the electronic tongue was only sensitive to the initial maturation stages, with large difference between freshly prepared cheese and with seven days of maturation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2412: Validation of the Accuracy and Convergence Time of Real Time Kinematic Results Using a Single Galileo Navigation System Sensors doi: 10.3390/s18082412 Authors: Zbigniew Siejka For the last two decades, the American GPS and Russian GLONASS were the basic systems used in global positioning and navigation. In recent years, there has been significant progress in the development of positioning systems. New regional systems have been created, i.e., the Japanese Quasi-Zenith Satellite System (QZSS) and Indian Regional Navigational Satellite System (IRNSS). A plan to build its own regional navigation system named Korean Positioning System (KPS) was announced South Korea on 5 February 2018. Currently, two new global navigation systems are under development: the European Galileo and the Chinese BeiDou. The full operability of both systems by 2020 is planned. The paper deals with a possibility of determination of the user’s position from individual and independent global navigation satellite system (GNSS). The article is a broader concept aimed at independent determination of precise position from individual GPS, GLONASS, BeiDou and Galileo systems. It presents real time positioning results (Real Time Kinematic-RTK) using signals from Galileo satellites only. During the test, 14 Galileo satellites were used and the number of simultaneously observed Galileo satellites varied from five to seven. Real-time measurements were only possible in certain 24-h observation windows. However, their number was completed within 6 days at the end of 2017 and beginning of 2018, so there was possible to infer about the current availability, continuity, convergence time and accuracy of the RTK measurements. In addition, the systematic errors were demonstrated for the Galileo system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-07-26
    Description: Sensors, Vol. 18, Pages 2409: The Bluetooth Mesh Standard: An Overview and Experimental Evaluation Sensors doi: 10.3390/s18082409 Authors: Mathias Baert Jen Rossey Adnan Shahid Jeroen Hoebeke Mesh networks enable a many-to-many relation between nodes, which means that each node in the network can communicate with every other node using multi-hop communication and path diversity. As it enables the fast roll-out of sensor and actuator networks, it is an important aspect within the Internet of Things (IoT). Utilizing Bluetooth Low Energy (BLE) as an underlying technology to implement such mesh networks has gained a lot of interest in recent years. The result was a variety of BLE meshing solutions that were not interoperable because of the lack of a common standard. This has changed recently with the advent of the Bluetooth Mesh standard. However, a detailed overview of how this standard operates, performs and how it tackles other issues concerning BLE mesh networking is missing. Therefore, this paper investigates this new technology thoroughly and evaluates its performance by means of three approaches, namely an experimental evaluation, a statistical approach and a graph-based simulation model, which can be used as the basis for future research. Apart from showing that consistent results are achieved by means of all three approaches, we also identify possible drawbacks and open issues that need to be dealt with.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-07-27
    Description: Materials, Vol. 11, Pages 1294: High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries Materials doi: 10.3390/ma11081294 Authors: Yuesheng Wang Zimin Feng Wen Zhu Vincent Gariépy Catherine Gagnon Manon Provencher Dharminder Laul René Veillette Michel L. Trudeau Abdelbast Guerfi Karim Zaghib Sodium-ion batteries (SIBs) are in the spotlight because of their potential use in large-scale energy storage devices due to the abundance and low cost of sodium-based materials. There are many SIB cathode materials under investigation but only a few candidate materials such as carbon, oxides and alloys were proposed as anodes. Among these anode materials, hard carbon shows promising performances with low operating potential and relatively high specific capacity. Unfortunately, its low initial coulombic efficiency and high cost limit its commercial applications. In this study, low-cost maple tree-biomass-derived hard carbon is tested as the anode for sodium-ion batteries. The capacity of hard carbon prepared at 1400 °C (HC-1400) reaches 337 mAh/g at 0.1 C. The initial coulombic efficiency is up to 88.03% in Sodium trifluoromethanesulfonimide (NaTFSI)/Ethylene carbonate (EC): Diethyl carbonate (DEC) electrolyte. The capacity was maintained at 92.3% after 100 cycles at 0.5 C rates. The in situ X-ray diffraction (XRD) analysis showed that no peak shift occurred during charge/discharge, supporting a finding of no sodium ion intercalates in the nano-graphite layer. Its low cost, high capacity and high coulombic efficiency indicate that hard carbon is a promising anode material for sodium-ion batteries.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-07-27
    Description: Materials, Vol. 11, Pages 1291: Synthesis and Plasmonic Chiroptical Studies of Sodium Deoxycholate Modified Silver Nanoparticles Materials doi: 10.3390/ma11081291 Authors: Jing Wang Kai-Xuan Fei Xin Yang Shuai-Shuai Zhang Yin-Xian Peng Sodium deoxycholate modified silver nanoparticles prepared in the presence of sodium deoxycholate as a chiral inducer exhibit plasmonic circular dichroism (CD) signals. The plasmon-induced chirality arises from the presence of chiral molecules (sodium deoxycholate) on the surface of Ag nanoparticles, which transfer their chiral properties to the visible wavelength range due to the Coulomb interactions between the chiral molecules and plasmonic nanoparticles. The prepared Ag nanoparticles (NPs) exhibit distinct line shapes of plasmonic CD, which can be tailored by varying the pH values of the solutions. A mechanism was proposed to explain the generation of the distinct plasmonic CD shapes, which indicated that the arrangements of chiral molecules in the plasmonic hot spots between Ag NPs are crucial for the induced plasmonic CD.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-07-27
    Description: Materials, Vol. 11, Pages 1293: The 3 R’s for Platelet-Rich Fibrin: A “Super” Tri-Dimensional Biomaterial for Contemporary Naturally-Guided Oro-Maxillo-Facial Soft and Hard Tissue Repair, Reconstruction and Regeneration Materials doi: 10.3390/ma11081293 Authors: Consuelo C. Zumarán Marcelo V. Parra Sergio A. Olate Eduardo G. Fernández Francisco T. Muñoz Ziyad S. Haidar Platelet-Rich fibrin (PRF) is a three-dimensional (3-D) autogenous biomaterial obtained via simple and rapid centrifugation from the patient’s whole blood samples, without including anti-coagulants, bovine thrombin, additives, or any gelifying agents. At the moment, it is safe to say that in oral and maxillofacial surgery, PRFs (particularly, the pure platelet-rich fibrin or P-PRF and leukocyte and platelet-rich fibrin or L-PRF sub-families) are receiving the most attention, essentially because of their simplicity, cost-effectiveness, and user-friendliness/malleability; they are a fairly new “revolutionary” step in second-generation therapies based on platelet concentration, indeed. Yet, the clinical effectiveness of such surgical adjuvants or regenerative platelet concentrate-based preparations continues to be highly debatable, primarily as a result of preparation protocol variability, limited evidence-based clinical literature, and/or poor understanding of bio-components and clinico-mechanical properties. To provide a practical update on the application of PRFs during oral surgery procedures, this critical review focuses on evidence obtained from human randomized and controlled clinical trials only. The aim is to serve the reader with current information on the clinical potential, limitations, challenges, and prospects of PRFs. Accordingly, reports often associate autologous PRFs with early bone formation and maturation; accelerated soft-tissue healing; and reduced post-surgical edema, pain, and discomfort. An advanced and original tool in regenerative dentistry, PRFs present a strong alternative and presumably cost-effective biomaterial for oro-maxillo-facial tissue (soft and hard) repair and regeneration. Yet, preparation protocols continue to be a source of confusion, thereby requiring revision and standardization. Moreover, to increase the validity, comprehension, and therapeutic potential of the reported findings or observations, a decent analysis of the mechanico-rheological properties, bio-components, and their bioactive function is eagerly needed and awaited; afterwards, the field can progress toward a brand-new era of “super” oro-dental biomaterials and bioscaffolds for use in oral and maxillofacial tissue repair and regeneration, and beyond.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2436: Bio-Inspired Covert Active Sonar Strategy Sensors doi: 10.3390/s18082436 Authors: Jiajia Jiang Xianquan Wang Fajie Duan Chunyue Li Xiao Fu Tingting Huang Lingran Bu Ling Ma Zhongbo Sun The covertness of the active sonar is a very important issue and the sonar signal waveform design problem was studied to improve covertness of the system. Many marine mammals produce call pulses for communication and echolocation, and existing interception systems normally classify these biological signals as ocean noise and filter them out. Based on this, a bio-inspired covert active sonar strategy was proposed. The true, rather than man-made sperm whale, call pulses were used to serve as sonar waveforms so as to ensure the camouflage ability of sonar waveforms. A range and velocity measurement combination (RVMC) was designed by using two true sperm whale call pulses which had excellent range resolution (RR) and large Doppler tolerance (DT). The range and velocity estimation methods were developed based on the RVMC. In the sonar receiver, the correlation technology was used to confirm the start and end time of sonar signals and their echoes, and then based on the developed range and velocity estimation method, the range and velocity of the underwater target were obtained. Then, the RVMC was embedded into the true sperm whale call-train to improve the camouflage ability of the sonar signal-train. Finally, experiment results were provided to verify the performance of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2435: Quantitative Contact-Less Estimation of Energy Expenditure from Video and 3D Imagery Sensors doi: 10.3390/s18082435 Authors: Gregor Koporec Goran Vučković Radoje Milić Janez Perš Measurement of energy expenditure is an important tool in sport science and medicine, especially when trying to estimate the extent and intensity of physical activity. However, most approaches still rely on sensors or markers, placed directly on the body. In this paper, we present a novel approach using a fully contact-less, fully automatic method, that relies on computer vision algorithms and widely available and inexpensive imaging sensors. We rely on the estimation of the optical and scene flow to calculate Histograms of Oriented Optical Flow (HOOF) descriptors, which we subsequently augment with the Histograms of Absolute Flow Amplitude (HAFA). Descriptors are fed into regression model, which allows us to estimate energy consumption, and to a lesser extent, the heart rate. Our method has been tested both in lab environment and in realistic conditions of a sport match. Results confirm that these energy expenditures could be derived from purely contact-less observations. The proposed method can be used with different modalities, including near infrared imagery, which extends its future potential.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2434: Smart Portable Devices Suitable for Cultural Heritage: A Review Sensors doi: 10.3390/s18082434 Authors: Federica Valentini Andrea Calcaterra Simonetta Antonaroli Maurizio Talamo This article reviews recent portable sensor technologies to apply in the Cultural Heritage (CH) fields. The review has been prepared in the form of a retrospective description of the sensor’s history and technological evolution, having: new nanomaterials for transducers, miniaturized, portable and integrated sensors, the wireless transmission of the analytical signals, ICT_Information Communication Technology and IoT_Internet of Things to apply to the cultural heritage field. In addition, a new trend of movable tattoo sensors devices is discussed, referred to in situ analysis, which is especially important when scientists are in the presence of un-movable and un-tangible Cultural Heritage and Art Work objects. The new proposed portable contact sensors (directly applied to art work objects and surfaces) are non-invasive and non-destructive to the different materials and surfaces of which cultural heritage is composed.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2433: Multi-Camera Imaging System for UAV Photogrammetry Sensors doi: 10.3390/s18082433 Authors: Damian Wierzbicki In the last few years, it has been possible to observe a considerable increase in the use of unmanned aerial vehicles (UAV) equipped with compact digital cameras for environment mapping. The next stage in the development of photogrammetry from low altitudes was the development of the imagery data from UAV oblique images. Imagery data was obtained from side-facing directions. As in professional photogrammetric systems, it is possible to record footprints of tree crowns and other forms of the natural environment. The use of a multi-camera system will significantly reduce one of the main UAV photogrammetry limitations (especially in the case of multirotor UAV) which is a reduction of the ground coverage area, while increasing the number of images, increasing the number of flight lines, and reducing the surface imaged during one flight. The approach proposed in this paper is based on using several head cameras to enhance the imaging geometry during one flight of UAV for mapping. As part of the research work, a multi-camera system consisting of several cameras was designed to increase the total Field of View (FOV). Thanks to this, it will be possible to increase the ground coverage area and to acquire image data effectively. The acquired images will be mosaicked in order to limit the total number of images for the mapped area. As part of the research, a set of cameras was calibrated to determine the interior orientation parameters (IOPs). Next, the method of image alignment using the feature image matching algorithms was presented. In the proposed approach, the images are combined in such a way that the final image has a joint centre of projections of component images. The experimental results showed that the proposed solution was reliable and accurate for the mapping purpose. The paper also presents the effectiveness of existing transformation models for images with a large coverage subjected to initial geometric correction due to the influence of distortion.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2432: A Terahertz CMOS V-Shaped Patch Antenna with Defected Ground Structure Sensors doi: 10.3390/s18082432 Authors: Hyeongjin Kim Wonseok Choe Jinho Jeong In this paper, a V-shaped patch antenna with defected ground structure is proposed at terahertz to overcome the limited performance of a standard complementary metal-oxide semiconductor (CMOS) patch antenna consisting of several metal layers and very thin interdielectric layers. The proposed V-shaped patch with slots allows the increased radiation resistance and broadband performance. In addition, the patch resonating at different frequency from the V-shaped patch is stacked on the top to broaden the impedance-matching bandwidth. More importantly, the slots are formed in the ground plane, which is called the defected ground structure, to further increase the radiation resistance and thus improve the bandwidth and efficiency. It is verified from electromagnetic simulations that the leakage waves from the defected ground can enhance the antenna directivity and gain by coherently interfering with the topside radiation. The proposed on-chip antenna is fabricated using a standard 65 nm CMOS process. The on-wafer measurement shows very wide bandwidth in input reflection coefficient (<−10 dB), greater than 28.7% from 240 to >320 GHz. The measured peak gain was as high as 5.48 dBi at 295 GHz. To the best of the authors’ knowledge, these results belong to the best performance among the terahertz CMOS on-chip antennas without using additional components or processes such as dielectric resonators, lens, or substrate thinning.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2430: Relative Pose Based Redundancy Removal: Collaborative RGB-D Data Transmission in Mobile Visual Sensor Networks Sensors doi: 10.3390/s18082430 Authors: Xiaoqin Wang Y. Ahmet Şekercioğlu Tom Drummond Vincent Frémont Enrico Natalizio Isabelle Fantoni In this paper, the Relative Pose based Redundancy Removal (RPRR) scheme is presented, which has been designed for mobile RGB-D sensor networks operating under bandwidth-constrained operational scenarios. The scheme considers a multiview scenario in which pairs of sensors observe the same scene from different viewpoints, and detect the redundant visual and depth information to prevent their transmission leading to a significant improvement in wireless channel usage efficiency and power savings. We envisage applications in which the environment is static, and rapid 3D mapping of an enclosed area of interest is required, such as disaster recovery and support operations after earthquakes or industrial accidents. Experimental results show that wireless channel utilization is improved by 250% and battery consumption is halved when the RPRR scheme is used instead of sending the sensor images independently.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2439: HemoKinect: A Microsoft Kinect V2 Based Exergaming Software to Supervise Physical Exercise of Patients with Hemophilia Sensors doi: 10.3390/s18082439 Authors: Fernando Mateo Emilio Soria-Olivas Juan Carrasco Santiago Bonanad Felipe Querol Sofía Pérez-Alenda Patients with hemophilia need to strictly follow exercise routines to minimize their risk of suffering bleeding in joints, known as hemarthrosis. This paper introduces and validates a new exergaming software tool called HemoKinect that intends to keep track of exercises using Microsoft Kinect V2’s body tracking capabilities. The software has been developed in C++ and MATLAB. The Kinect SDK V2.0 libraries have been used to obtain 3D joint positions from the Kinect color and depth sensors. Performing angle calculations and center-of-mass (COM) estimations using these joint positions, HemoKinect can evaluate the following exercises: elbow flexion/extension, knee flexion/extension (squat), step climb (ankle exercise) and multi-directional balance based on COM. The software generates reports and progress graphs and is able to directly send the results to the physician via email. Exercises have been validated with 10 controls and eight patients. HemoKinect successfully registered elbow and knee exercises, while displaying real-time joint angle measurements. Additionally, steps were successfully counted in up to 78% of the cases. Regarding balance, differences were found in the scores according to the difficulty level and direction. HemoKinect supposes a significant leap forward in terms of exergaming applicability to rehabilitation of patients with hemophilia, allowing remote supervision.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2428: Narrowband Characterization of Near-Ground Radio Channel for Wireless Sensors Networks at 5G-IoT Bands Sensors doi: 10.3390/s18082428 Authors: Hicham Klaina Ana Vazquez Alejos Otman Aghzout Francisco Falcone In this contribution, a narrowband radio channel model is proposed for rural scenarios in which the radio link operates under near-ground conditions for application in wireless sensor networks dedicated to smart agriculture. The received power attenuation was measured for both transmitter and receiver antennas placed at two different heights above ground: 0.2 and 0.4 m. Three frequency ranges, proposed for future 5G-IoT use case in agriculture, were chosen: 868 MHz, 2.4 GHz and 5.8 GHz. Three ground coverings were tested in a rural scenario: soil, short and tall grass fields. The path loss was then estimated as dependent of the radio link range and a three-slope log-normal path loss model was tailored. Results are explained in terms of the first Fresnel zone obstruction. Commercial Zigbee sensor nodes operating at 2.4 GHz were used in a second experiment to estimate the link quality from the experimental Radio Signal Strength Indicator (RSSI) received values. Two sensor nodes were placed at the same elevation above ground as in the previous experiment, only for short grass field case. The Quality of Service performance was determined in terms of theoretical bit error rate achieved for different digital modulations—BPSK, 8PSK and 16QAM—concluding remarkable results for an obstructed radio link.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-07-27
    Description: Sensors, Vol. 18, Pages 2429: A PUF- and Biometric-Based Lightweight Hardware Solution to Increase Security at Sensor Nodes Sensors doi: 10.3390/s18082429 Authors: Rosario Arjona Miguel Ángel Prada-Delgado Javier Arcenegui Iluminada Baturone Security is essential in sensor nodes which acquire and transmit sensitive data. However, the constraints of processing, memory and power consumption are very high in these nodes. Cryptographic algorithms based on symmetric key are very suitable for them. The drawback is that secure storage of secret keys is required. In this work, a low-cost solution is presented to obfuscate secret keys with Physically Unclonable Functions (PUFs), which exploit the hardware identity of the node. In addition, a lightweight fingerprint recognition solution is proposed, which can be implemented in low-cost sensor nodes. Since biometric data of individuals are sensitive, they are also obfuscated with PUFs. Both solutions allow authenticating the origin of the sensed data with a proposed dual-factor authentication protocol. One factor is the unique physical identity of the trusted sensor node that measures them. The other factor is the physical presence of the legitimate individual in charge of authorizing their transmission. Experimental results are included to prove how the proposed PUF-based solution can be implemented with the SRAMs of commercial Bluetooth Low Energy (BLE) chips which belong to the communication module of the sensor node. Implementation results show how the proposed fingerprint recognition based on the novel texture-based feature named QFingerMap16 (QFM) can be implemented fully inside a low-cost sensor node. Robustness, security and privacy issues at the proposed sensor nodes are discussed and analyzed with experimental results from PUFs and fingerprints taken from public and standard databases.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-07-28
    Description: Materials, Vol. 11, Pages 1301: Spiral Bevel Gears Face Roughness Prediction Produced by CNC End Milling Centers Materials doi: 10.3390/ma11081301 Authors: Álvaro Álvarez Amaia Calleja Mikel Arizmendi Haizea González Luis Norberto Lopez de Lacalle The emergence of multitasking machines in the machine tool sector presents new opportunities for the machining of large size gears and short production series in these machines. However, the possibility of using standard tools in conventional machines for gears machining represents a technological challenge from the point of view of workpiece quality. Machining conditions in order to achieve both dimensional and surface quality requirements need to be determined. With these considerations in mind, computer numerical control (CNC) methods to provide useful tools for gear processing are studied. Thus, a model for the prediction of surface roughness obtained on the teeth surface of a machined spiral bevel gear in a multiprocess machine is presented. Machining strategies and optimal machining parameters were studied, and the roughness model is validated for 3 + 2 axes and 5 continuous axes machining strategies.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-07-28
    Description: Materials, Vol. 11, Pages 1302: Enhanced Cycling Stability of LiCuxMn1.95−xSi0.05O4 Cathode Material Obtained by Solid-State Method Materials doi: 10.3390/ma11081302 Authors: Hongyuan Zhao Fang Li Xiuzhi Bai Tingting Wu Zhankui Wang Yongfeng Li Jianxiu Su The LiCuxMn1.95−xSi0.05O4 (x = 0, 0.02, 0.05, 0.08) samples have been obtained by a simple solid-state method. XRD and SEM characterization results indicate that the Cu-Si co-doped spinels retain the inherent structure of LiMn2O4 and possess uniform particle size distribution. Electrochemical tests show that the optimal Cu-doping amount produces an obvious improvement effect on the cycling stability of LiMn1.95Si0.05O4. When cycled at 0.5 C, the optimal LiCu0.05Mn1.90Si0.05O4 sample exhibits an initial capacity of 127.3 mAh g−1 with excellent retention of 95.7% after 200 cycles. Moreover, when the cycling rate climbs to 10 C, the LiCu0.05Mn1.90Si0.05O4 sample exhibits 82.3 mAh g−1 with satisfactory cycling performance. In particular, when cycled at 55 °C, this co-doped sample can show an outstanding retention of 94.0% after 100 cycles, whiles the LiMn1.95Si0.05O4 only exhibits low retention of 79.1%. Such impressive performance shows that the addition of copper ions in the Si-doped spinel effectively remedy the shortcomings of the single Si-doping strategy and the Cu-Si co-doped spinel can show excellent cycling stability.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-07-28
    Description: Materials, Vol. 11, Pages 1297: A Straightforward Substitution Strategy to Tune BODIPY Dyes Spanning the Near-Infrared Region via Suzuki–Miyaura Cross-Coupling Materials doi: 10.3390/ma11081297 Authors: Guanglei Li Yu Otsuka Takuya Matsumiya Toshiyuki Suzuki Jianye Li Masashi Takahashi Koji Yamada In this study, a series of new red and near-infrared (NIR) dyes derived from 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) were developed by introducing thiophene and its derivatives to the 3- and 5- positions of the dichloroBODIPY core. For the first time, cyclictriol boronates and N-methyliminodiacetic acid (MIDA) boronate were used as organoboron species to couple with 3,5-dichloroBODIPY via the one-step Suzuki–Miyaura cross-coupling. Six kinds of thieno-expended BODIPY dyes were synthesized in acceptable yields ranging from 31% to 79%. All six dyes showed different absorption and emission wavelengths spanning a wide range (c.a. 600–850 nm) in the red and NIR regions with relatively high quantum yields (19–85%). Cellular imaging of 8-(2,6-dimethylphenyl)-re3,5-di(2-thienyl)-BODIPY (dye 1) was conducted using bovine cumulus cells, and the fluorescence microscopy images indicated that the chromophore efficiently accumulated and was exclusively localized in the cytoplasm, suggesting it could be utilized as a subcellular probe. All six dyes were characterized using 1H-NMR and mass spectrometry.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2448: Application-Aware Anomaly Detection of Sensor Measurements in Cyber-Physical Systems Sensors doi: 10.3390/s18082448 Authors: Amin Ghafouri Aron Laszka Koutsoukos Detection errors such as false alarms and undetected faults are inevitable in any practical anomaly detection system. These errors can create potentially significant problems in the underlying application. In particular, false alarms can result in performing unnecessary recovery actions while missed detections can result in failing to perform recovery which can lead to severe consequences. In this paper, we present an approach for application-aware anomaly detection (AAAD). Our approach takes an existing anomaly detector and configures it to minimize the impact of detection errors. The configuration of the detectors is chosen so that application performance in the presence of detection errors is as close as possible to the performance that could have been obtained if there were no detection errors. We evaluate our result using a case study of real-time control of traffic signals, and show that the approach outperforms significantly several baseline detectors.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2444: Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing Sensors doi: 10.3390/s18082444 Authors: Minh Tran Ahmad Fallatah Alison Whale Sonal Padalkar Gold (Au) has been widely used as a material for Surface Enhanced Raman Spectroscopy (SERS) due to its plasmonic properties, stability and biocompatibility. Conventionally for SERS application, Au is deposited on a rigid substrate such as glass or silicon. The rigid substrates severely limit analyte collection efficiency as well as portability. Here, flexible substrates like carbon cloth and carbon paper were investigated as potential substrate candidates for SERS application. The flexible substrates were coated with Au nanostructures by electrodeposition. Model analyte, Rhodamine 6G was utilized to demonstrate the capabilities of the flexible SERS substrates. Additionally, the pesticide paraoxon was also detected on the flexible SERS substrates as well as on a real sample like the apple fruit.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2441: A Label-Free Fluorescent Assay for the Rapid and Sensitive Detection of Adenosine Deaminase Activity and Inhibition Sensors doi: 10.3390/s18082441 Authors: Xinxing Tang Kefeng Wu Han Zhao Mingjian Chen Changbei Ma Adenosine deaminase (ADA), able to catalyze the irreversible deamination of adenosine into inosine, can be found in almost all tissues and plays an important role in several diseases. In this work, we developed a label-free fluorescence method for the detection of adenosine deaminase activity and inhibition. In the presence of ADA, ATP has been shown to be hydrolyzed. The ATP aptamer was shown to form a G-quadruplex/thioflavin T (ThT) complex with ThT and exhibited an obvious fluorescence signal. However, the ATP aptamer could bind with ATP and exhibited a low fluorescence signal because of the absence of ADA. This assay showed high sensitivity to ADA with a detection limit of 1 U/L based on an SNR of 3 and got a good linear relationship within the range of 1–100 U/L with R2 = 0.9909. The LOD is lower than ADA cutoff value (4 U/L) in the clinical requirement and more sensitive than most of the reported methods. This technique exhibited high selectivity for ADA against hoGG I, UDG, RNase H and λexo. Moreover, this strategy was successfully applied for assaying the inhibition of ADA using erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and, as such, demonstrated great potential for the future use in the diagnosis of ADA-relevant diseases, particularly in advanced drug development.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-07-28
    Description: Sensors, Vol. 18, Pages 2440: A Privacy Preserving Scheme for Nearest Neighbor Query Sensors doi: 10.3390/s18082440 Authors: Yuhang Wang Zhihong Tian Hongli Zhang Shen Su Wei Shi In recent years, location privacy concerns that arise when using the nearest neighbor query services have gained increasing attention, as such services have become pervasive in mobile social networks devices and the IoT environments. State-of-the-art privacy preservation schemes focus on the obfuscation of the location information, which has suffered from various privacy attacks and the tradeoff of the quality of service. By noticing the fact that the user’s location could be replaced by their surrounding wireless sensor infrastructures in proximity, in this paper, we propose a wireless sensor access point-based scheme for the nearest neighbor query, without using the location of the user. Then, a noise-addition-based method that preserves user’s location privacy was proposed. To further strengthen the adaptability of the approach to real-world environments, several performance-enhancing methods are introduced, including an R-tree-based Noise-Data Retrieval Algorithm (RNR), and a nearest neighbor query method based on our research. Both performance and security evaluations are conducted to validate our approach. The results show the effectiveness and the practicality of our work.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-07-29
    Description: Materials, Vol. 11, Pages 1308: Observation of Morphology Changes of Fine Eutectic Si Phase in Al-10%Si Cast Alloy during Heat Treatment by Synchrotron Radiation Nanotomography Materials doi: 10.3390/ma11081308 Authors: Shougo Furuta Masakazu Kobayashi Kentaro Uesugi Akihisa Takeuchi Tomoya Aoba Hiromi Miura A series of three-dimensional morphology changes of fine eutectic Si-particles during heat treatment have been investigated in Self-modified and Sr-modified Al-10%Si cast alloys by means of synchrotron radiation nanotomography utilizing a Fresnel zone plate and a Zernike phase plate in this study. The coral-like shape particles observed in Sr-modified cast alloy fragmented at branch and neck during heat treatment at 773 K. The fragmentation occurred up to 900 s. After that, the fragmented particles grew and spheroidized by Ostwald ripening. On the other hand, rod-like shaped eutectic Si-particles observed in self-modified cast alloy were larger in size compared with the particle size in Sr-modified cast alloy. Separation of eutectic Si-particles in Self-modified cast alloy occurred up to approximately 900 s, which was similar tendency to that in Sr-modified cast alloy. However, it was found that the morphology change behavior was very complex in rod-like shape Si-particles. The three-dimensional morphology changes of fine eutectic Si-particles in both cast alloys, specifically fragmentation and spheroidizing, can be connected to changes in mechanical properties.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-07-29
    Description: Materials, Vol. 11, Pages 1306: Pattern-Dependent Mammalian Cell (Vero) Morphology on Tantalum/Silicon Oxide 3D Nanocomposites Materials doi: 10.3390/ma11081306 Authors: Hassan I. Moussa Megan Logan Wing Y. Chan Kingsley Wong Zheng Rao Marc G. Aucoin Ting Y. Tsui The primary goal of this work was to investigate the resulting morphology of a mammalian cell deposited on three-dimensional nanocomposites constructed of tantalum and silicon oxide. Vero cells were used as a model. The nanocomposite materials contained comb structures with equal-width trenches and lines. High-resolution scanning electron microscopy and fluorescence microscopy were used to image the alignment and elongation of cells. Cells were sensitive to the trench widths, and their observed behavior could be separated into three different regimes corresponding to different spreading mechanism. Cells on fine structures (trench widths of 0.21 to 0.5 μm) formed bridges across trench openings. On larger trenches (from 1 to 10 μm), cells formed a conformal layer matching the surface topographical features. When the trenches were larger than 10 μm, the majority of cells spread like those on blanket tantalum films; however, a significant proportion adhered to the trench sidewalls or bottom corner junctions. Pseudopodia extending from the bulk of the cell were readily observed in this work and a minimum effective diameter of ~50 nm was determined for stable adhesion to a tantalum surface. This sized structure is consistent with the ability of pseudopodia to accommodate ~4–6 integrin molecules.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-07-29
    Description: Materials, Vol. 11, Pages 1307: In Situ DRIFTS Studies of NH3-SCR Mechanism over V2O5-CeO2/TiO2-ZrO2 Catalysts for Selective Catalytic Reduction of NOx Materials doi: 10.3390/ma11081307 Authors: Yaping Zhang Xiupeng Yue Tianjiao Huang Kai Shen Bin Lu TiO2-ZrO2 (Ti-Zr) carrier was prepared by a co-precipitation method and 1 wt. % V2O5 and 0.2 CeO2 (the Mole ratio of Ce to Ti-Zr) was impregnated to obtain the V2O5-CeO2/TiO2-ZrO2 catalyst for the selective catalytic reduction of NOx by NH3. The transient activity tests and the in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analyses were employed to explore the NH3-SCR (selective catalytic reduction) mechanism systematically, and by designing various conditions of single or mixing feeding gas and pre-treatment ways, a possible pathway of NOx reduction was proposed. It was found that NH3 exhibited a competitive advantage over NO in its adsorption on the catalyst surface, and could form an active intermediate substance of -NH2. More acid sites and intermediate reaction species (-NH2), at lower temperatures, significantly promoted the SCR activity of the V2O5-0.2CeO2/TiO2-ZrO2 catalyst. The presence of O2 could promote the conversion of NO to NO2, while NO2 was easier to reduce. The co-existence of NH3 and O2 resulted in the NH3 adsorption strength being lower, as compared to tests without O2, since O2 could occupy a part of the active site. Due to CeO2’s excellent oxygen storage-release capacity, NH3 adsorption was weakened, in comparison to the 1 wt. % V2O5-0.2CeO2/TiO2-ZrO2 catalyst. If NOx were to be pre-adsorbed in the catalyst, the formation of nitrate and nitro species would be difficult to desorb, which would greatly hinder the SCR reaction. All the findings concluded that NH3-SCR worked mainly through the Eley-Rideal (E-R) mechanism.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-07-29
    Description: Sensors, Vol. 18, Pages 2450: Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas Sensors doi: 10.3390/s18082450 Authors: Tao Wu Zhensen Wu Jiaji Wu Gwanggil Jeon Liwen Ma The X-band marine radar has been employed as a remote sensing tool for sea state monitoring. However, there are few literatures about sea spectra considering both the wave parameters and short wind-wave spectra in China Offshore Seas, which are of theoretical and practical significance. Based on the wave parameters acquired from the European Centre for Medium-Range Weather Forecasts reanalysis data (ERA-Interim reanalysis data) during 36 months from 2015 to 2017, a finite depth sea spectrum considering both wind speeds and ocean environmental parameters is established in this study. The wave spectrum is then built into a modified two-scale model, which can be related to the ocean environmental parameters (wind speeds and wave parameters). The final results are the mean backscattering coefficients over the variety of sea states at a given wind speed. As the model predicts, the monthly maximum backscattering coefficients in different seas change slowly (within 4 dB). In addition, the differences of the backscattering coefficients in different seas are quite small during azimuthal angles of 0° to 90° and 270° to 360° with a relative error within 1.5 dB at low wind speed (5 m/s) and 2 dB at high wind speed (10 m/s). With the method in the paper, a corrected result from the experiment can be achieved based on the relative error analysis in different conditions.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-07-29
    Description: Sensors, Vol. 18, Pages 2451: Interaction of Lamb Wave Modes with Weak Material Nonlinearity: Generation of Symmetric Zero-Frequency Mode Sensors doi: 10.3390/s18082451 Authors: Xiaoqiang Sun Xiangyan Ding Feilong Li Shijie Zhou Yaolu Liu Ning Hu Zhongqing Su Youxuan Zhao Jun Zhang Mingxi Deng The symmetric zero-frequency mode induced by weak material nonlinearity during Lamb wave propagation is explored for the first time. We theoretically confirm that, unlike the second harmonic, phase-velocity matching is not required to generate the zero-frequency mode and its signal is stronger than those of the nonlinear harmonics conventionally used, for example, the second harmonic. Experimental and numerical verifications of this theoretical analysis are conducted for the primary S0 mode wave propagating in an aluminum plate. The existence of a symmetric zero-frequency mode is of great significance, probably triggering a revolutionary progress in the field of non-destructive evaluation and structural health monitoring of the early-stage material nonlinearity based on the ultrasonic Lamb waves.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-07-31
    Description: Sensors, Vol. 18, Pages 2472: Multiple Instances QoS Routing in RPL: Application to Smart Grids Sensors doi: 10.3390/s18082472 Authors: Jad Nassar Matthieu Berthomé Jérémy Dubrulle Nicolas Gouvy Nathalie Mitton Bruno Quoitin The Smart Grid (SG) aims to transform the current electric grid into a “smarter” network where the integration of renewable energy resources, energy efficiency and fault tolerance are the main benefits. This is done by interconnecting every energy source, storage point or central control point with connected devices, where heterogeneous SG applications and signalling messages will have different requirements in terms of reliability, latency and priority. Hence, data routing and prioritization are the main challenges in such networks. So far, RPL (Routing Protocol for Low-Power and Lossy networks) protocol is widely used on Smart Grids for distributing commands over the grid. RPL assures traffic differentiation at the network layer in wireless sensor networks through the logical subdivision of the network in multiple instances, each one relying on a specific Objective Function. However, RPL is not optimized for Smart Grids, as its main objective functions and their associated metric does not allow Quality of Service differentiation. To overcome this, we propose OFQS an objective function with a multi-objective metric that considers the delay and the remaining energy in the battery nodes alongside with the dynamic quality of the communication links. Our function automatically adapts to the number of instances (traffic classes) providing a Quality of Service differentiation based on the different Smart Grid applications requirements. We tested our approach on a real sensor testbed. The experimental results show that our proposal provides a lower packet delivery latency and a higher packet delivery ratio while extending the lifetime of the network compared to solutions in the literature.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-07-31
    Description: Sensors, Vol. 18, Pages 2465: Improving Classification Algorithms by Considering Score Series in Wireless Acoustic Sensor Networks Sensors doi: 10.3390/s18082465 Authors: Amalia Luque Javier Romero-Lemos Alejandro Carrasco Julio Barbancho The reduction in size, power consumption and price of many sensor devices has enabled the deployment of many sensor networks that can be used to monitor and control several aspects of various habitats. More specifically, the analysis of sounds has attracted a huge interest in urban and wildlife environments where the classification of the different signals has become a major issue. Various algorithms have been described for this purpose, a number of which frame the sound and classify these frames, while others take advantage of the sequential information embedded in a sound signal. In the paper, a new algorithm is proposed that, while maintaining the frame-classification advantages, adds a new phase that considers and classifies the score series derived after frame labelling. These score series are represented using cepstral coefficients and classified using standard machine-learning classifiers. The proposed algorithm has been applied to a dataset of anuran calls and its results compared to the performance obtained in previous experiments on sensor networks. The main outcome of our research is that the consideration of score series strongly outperforms other algorithms and attains outstanding performance despite the noisy background commonly encountered in this kind of application.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1284: Microstructures and Compressive Properties of Al Matrix Composites Reinforced with Bimodal Hybrid In-Situ Nano-/Micro-Sized TiC Particles Materials doi: 10.3390/ma11081284 Authors: Feng Qiu Hao-Tian Tong Yu-Yang Gao Qian Zou Bai-Xin Dong Qiang Li Jian-Ge Chu Fang Chang Shi-Li Shu Qi-Chuan Jiang Bimodal hybrid in-situ nano-/micro-size TiC/Al composites were prepared with combustion synthesis of Al-Ti-C system and hot press consolidation. Attempt was made to obtain in-situ bimodal-size TiC particle reinforced dense Al matrix composites by using different carbon sources in the reaction process of hot pressing forming. Microstructure showed that the obtained composites exhibited reasonable bimodal-sized TiC distribution in the matrix and low porosity. With the increasing of the carbon nano tube (CNT) content from 0 to 100 wt. %, the average size of the TiC particles decreases and the compressive strength of the composite increase; while the fracture strain increases first and then decreases. The compressive properties of the bimodal-sized TiC/Al composites, especially the bimodal-sized composite synthesized by Al-Ti-C with 50 wt. % CNTs as carbon source, were improved compared with the composites reinforced with single sized TiC. The strengthening mechanism of the in-situ bimodal-sized particle reinforced aluminum matrix composites was revealed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1283: Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine Materials doi: 10.3390/ma11081283 Authors: Roya Nazempour Qianyi Zhang Ruxing Fu Xing Sheng Optical fibers and waveguides in general effectively control and modulate light propagation, and these tools have been extensively used in communication, lighting and sensing. Recently, they have received increasing attention in biomedical applications. By delivering light into deep tissue via these devices, novel applications including biological sensing, stimulation and therapy can be realized. Therefore, implantable fibers and waveguides in biocompatible formats with versatile functionalities are highly desirable. In this review, we provide an overview of recent progress in the exploration of advanced optical fibers and waveguides for biomedical applications. Specifically, we highlight novel materials design and fabrication strategies to form implantable fibers and waveguides. Furthermore, their applications in various biomedical fields such as light therapy, optogenetics, fluorescence sensing and imaging are discussed. We believe that these newly developed fiber and waveguide based devices play a crucial role in advanced optical biointerfaces.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1282: Development of a Novel in Silico Model to Investigate the Influence of Radial Clearance on the Acetabular Cup Contact Pressure in Hip Implants Materials doi: 10.3390/ma11081282 Authors: Saverio Affatato Massimiliano Merola Alessandro Ruggiero A hip joint replacement is considered one of the most successful orthopedic surgical procedures although it involves challenges that must be overcome. The patient group undergoing total hip arthroplasty now includes younger and more active patients who require a broad range of motion and a longer service lifetime of the implant. The current replacement joint results are not fully satisfactory for these patients’ demands. As particle release is one of the main issues, pre-clinical experimental wear testing of total hip replacement components is an invaluable tool for evaluating new implant designs and materials. The aim of the study was to investigate the cup tensional state by varying the clearance between head and cup. For doing this we use a novel hard-on-soft finite element model with kinematic and dynamic conditions calculated from a musculoskeletal multibody model during the gait. Four different usual radial clearances were considered, ranging from 0 to 0.5 mm. The results showed that radial clearance plays a key role in acetabular cup stress-strain during the gait, showing from the 0 value to the highest, 0.5, a difference of 44% and 35% in terms of maximum pressure and deformation, respectively. Moreover, the presented model could be usefully exploited for complete elastohydrodynamic synovial lubrication modelling of the joint, with the aim of moving towards an increasingly realistic total hip arthroplasty in silico wear assessment accounting for differences in radial clearances.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1277: Filtration of Sub-3.3 nm Tungsten Oxide Particles Using Nanofibrous Filters Materials doi: 10.3390/ma11081277 Authors: Raheleh Givehchi Qinghai Li Zhongchao Tan This work aims to understand the effects of particle concentration on the filtration of nanoparticles using nanofibrous filters. The filtration efficiencies of triple modal tungsten oxide (WOx) nanoparticles were experimentally determined at three different concentrations for the size range of 0.82–3.3 nm in diameter. All tests were conducted using polyvinyl alcohol (PVA) nano-fibrous filters at an air relative humidity of 2.9%. Results showed that the filtration efficiencies of sub-3.3 nm nanoparticles depended on the upstream particle concentration. The lower the particle concentration was, the higher the filtration efficiency was.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-07-26
    Description: Materials, Vol. 11, Pages 1280: Porous Silk Fibroin Microspheres Sustainably Releasing Bioactive Basic Fibroblast Growth Factor Materials doi: 10.3390/ma11081280 Authors: Jing Qu Lu Wang Longxing Niu Jiaming Lin Qian Huang Xuefeng Jiang Mingzhong Li Basic fibroblast growth factor (bFGF) plays a significant role in stimulating cell proliferation. It remains a challenge in the field of biomaterials to develop a carrier with the capacity of continuously releasing bioactive bFGF. In this study, porous bFGF-loaded silk fibroin (SF) microspheres, with inside-out channels, were fabricated by high-voltage electrostatic differentiation, and followed by lyophilization. The embedded bFGF exhibited a slow release mode for over 13 days without suffering burst release. SEM observations showed that incubated L929 cells could fully spread and produce collagen-like fibrous matrix on the surface of SF microspheres. CLSM observations and the results of cell viability assay indicated that bFGF-loaded microspheres could significantly promote cell proliferation during five to nine days of culture, compared to bFGF-unloaded microspheres. This reveals that the bFGF released from SF microspheres retained obvious bioactivity to stimulate cell growth. Such microspheres sustainably releasing bioactive bFGF might be applied to massive cell culture and tissue engineering as a matrix directly, or after being combined with three-dimensional scaffolds.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-08-02
    Description: Materials, Vol. 11, Pages 1332: Biocompatible/Biodegradable Electrowetting on Dielectric Microfluidic Chips with Fluorinated CTA/PLGA Materials doi: 10.3390/ma11081332 Authors: Kaidi Zhang Lei Chao Jia Zhou One of the major hurdles in the development of biocompatible/biodegradable EWOD (Electrowetting-on-dielectric) devices is the biocompatibility of the dielectric and hydrophobic layers. In this study, we address this problem by using reactive ion etching (RIE) to prepare a super-hydrophobic film combining fluorinated cellulose triacetate (CTA) and poly (lactic-co-glycolic acid) (PLGA). The contact angle (CA) of water droplets on the proposed material is about 160°. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) characterizations indicate that a slight increase in the surface roughness and the formation of CFx (C-F or CF2) bonds are responsible for the super-hydrophobic nature of the film. Alternating Current (AC) static electrowetting and droplet transportation experiments evidence that contact angle hysteresis and contact line pinning are greatly reduced by impregnating the CTA/PLGA film with silicon oil. Therefore, this improved film could provide a biocompatible alternative to the typical Teflon® or Cytop® films as a dielectric and hydrophobic layer.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-08-03
    Description: Materials, Vol. 11, Pages 1336: Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel Materials doi: 10.3390/ma11081336 Authors: Lanqing Tang Caifu Qian Ayhan Ince Jing Zheng Huifang Li Zhichao Han In this paper, the fatigue crack growth behavior of the base metal (BM), the weld metal (WM) and the heat-affected zone (HAZ) in the metal-inert gas (MIG) welded joints of the 06Cr19Ni10 stainless steel are analyzed and studied. Results of the fatigue crack propagation tests show that a new fatigue crack initiates at the crack tip of a pre-existing crack, then propagates perpendicular to the direction of cyclic fatigue loads. This observation indicates that the original mixed-mode crack transforms into the mode I crack. The WM specimen has the largest fatigue crack growth rate, followed by the HAZ specimen and the BM specimen. To illustrate the differences in fatigue crack growth behavior of the three different types of specimens, metallographic structure, fracture morphology and residual stresses of the BM, HAZ and WM are investigated and discussed. The metallographic observations indicate that the mean grain size of the HAZ is relatively larger than that of the BM. The fractographic analysis shows that the WM has the largest fatigue striation width, followed by the HAZ and the BM. It is also found that the depth of dimple in the WM is relatively shallower than the one in the HAZ and BM, implying the poor plasticity behavior of the material. Analysis results of the residual stress analysis demonstrate a high level of tensile residual stress appearance in the WM and HAZ.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-08-03
    Description: Materials, Vol. 11, Pages 1337: Variations of the Elastic Properties of the CoCrFeMnNi High Entropy Alloy Deformed by Groove Cold Rolling Materials doi: 10.3390/ma11081337 Authors: Paul Lohmuller Laurent Peltier Alain Hazotte Julien Zollinger Pascal Laheurte Eric Fleury The variations of the mechanical properties of the CoCrFeMnNi high entropy alloy (HEA) during groove cold rolling process were investigated with the aim of understanding their correlation relationships with the crystallographic texture. Our study revealed divergences in the variations of the microhardness and yield strength measured from samples deformed by groove cold rolling and conventional cold rolling processes. The crystallographic texture analyzed by electron back scattered diffraction (EBSD) revealed a hybrid texture between those obtained by conventional rolling and drawing processes. Though the groove cold rolling process induced a marked strengthening effect in the CoCrFeMnNi HEA, the mechanical properties were also characterized by an unusual decrease of the Young’s modulus as the applied groove cold rolled deformation increased up to about 0.5 before reaching a stabilized value. This decrease of the Young’s modulus was attributed to the increased density of mobile dislocations induced by work hardening during groove cold rolling processing.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-08-03
    Description: Sensors, Vol. 18, Pages 2534: A Gyroscope Bias Estimation Algorithm Based on Map Specific Information Sensors doi: 10.3390/s18082534 Authors: Tian Tan Ao Peng Junjun Huang Lingxiang Zheng Gang Ou In an inertial navigation system, especially in a pedestrian dead-reckoning system, gyroscope bias can demonstrably reduce positioning accuracy. A novel gyroscope bias estimation algorithm is proposed, which estimates the bias of a gyroscope under any set of angle observations. Moreover, a method for obtaining Euler angles using map corridor information is proposed. The heading information obtained from a map is used to estimate the bias, and the estimated bias is used to correct the trajectories. Experimental results show that it is feasible for the algorithm to estimate the bias of the gyroscope.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1350: Removal of Zinc Ions Using Hydroxyapatite and Study of Ultrasound Behavior of Aqueous Media Materials doi: 10.3390/ma11081350 Authors: Simona Liliana Iconaru Mikael Motelica-Heino Régis Guegan Mihai Valentin Predoi Alina Mihaela Prodan Daniela Predoi The present study demonstrates the effectiveness of hydroxyapatite nanopowders in the adsorption of zinc in aqueous solutions. The synthesized hydroxyapatites before (HAp) and after the adsorption of zinc (at a concentration of 50 mg/L) in solution (HApD) were characterized using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM, respectively). The effectiveness of hydroxyapatite nanopowders in the adsorption of zinc in aqueous solutions was stressed out through ultrasonic measurements. Both Langmuir and Freundlich models properly fitted on a wide range of concentration the equilibrium adsorption isotherms, allowing us to precisely quantify the affinity of zinc to hydroxyapatite nanopowders and to probe the efficacy of hydroxyapatite in removal of zinc ions from aqueous solutions in ultrasonic conditions.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1344: Reducing Porosity and Refining Grains for Arc Additive Manufacturing Aluminum Alloy by Adjusting Arc Pulse Frequency and Current Materials doi: 10.3390/ma11081344 Authors: Donghai Wang Jiping Lu Shuiyuan Tang Lu Yu Hongli Fan Lei Ji Changmeng Liu Coarse grains and gas pores are two main problems that limit the application of additive manufacturing aluminum alloys. To reduce porosity and refine grains, this paper presents a quantitative investigation into the effect of pulse frequency and arc current on the porosity and grains of arc additive manufacturing Al–5Si alloy. The experiment results show that pulse frequency and arc current have a significant impact on the macrostructure, microstructure, porosity, and tensile properties of the samples. Fine grains and a uniform microstructure can be obtained with low pulse frequency and low arc current as a result of the rapid cooling of the molten pool. With the increase of pulse frequency, density shows a trend that firstly escalates and attains the maximum value at 50 Hz, but later declines as a result of the relation between pores formation and gas escape. Moreover, better tensile properties can be obtained at low pulse frequency and low arc current because of the finer grains.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1345: Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials Materials doi: 10.3390/ma11081345 Authors: Yihu Wang Ming Ma Jianing Wang Weijie Zhang Weipeng Lu Yunhua Gao Bing Zhang Yanchuan Guo Gelatin-based hydrogel, which mimics the natural dermal extracellular matrix, is a promising tissue engineering material. However, insufficient and uncontrollable mechanical and degradation properties remain the major obstacles for its application in medical bone regeneration material. Herein, we develop a facile but efficient strategy for a novel hydrogel as guided bone regeneration (GBR) material. In this study, methacrylic anhydride (MA) has been used to modify gelatin to obtain photo-crosslinkable methacrylated gelatin (GelMA). Moreover, the GelMA/PEGDA hydrogel was prepared by photo-crosslinking GelMA and PEGDA with photoinitiator I2959 under UV treatment. Compared with the GelMA hydrogel, the GelMA/PEGDA hydrogel exhibits several times stronger mechanical properties than pure GelMA hydrogel. The GelMA/PEGDA hydrogel shows a suitable degradation rate of more than 4 weeks, which is beneficial to implant in body. In vitro cell culture showed that osteoblast can adhere and proliferate on the surface of the hydrogel, indicating that the GelMA/PEGDA hydrogel had good cell viability and biocompatibility. Furthermore, by changing the quantities of GelMA, I2959, and PEGDA, the gelation time can be controlled easily to meet the requirement of its applications. In short, this study demonstrated that PEGDA enhanced the performance and extended the applications of GelMA hydrogels, turning the GelMA/PEGDA hydrogel into an excellent GBR material.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-08-04
    Description: Materials, Vol. 11, Pages 1352: Study on Upconversion and Thermal Properties of Tm3+/Yb3+ Co-Doped La2O3-Nb2O5-Ta2O5 Glasses Materials doi: 10.3390/ma11081352 Authors: Minghui Zhang Haiqin Wen Xiuhong Pan Jianding Yu Hui Shao Fei Ai Huimei Yu Meibo Tang Lijun Gai The effect of Yb3+ ions on upconversion luminescence and thermal properties of Tm3+/Yb3+ co-doped La2O3-Nb2O5-Ta2O5 glasses has been studied. Glass transition temperature is around 740 °C, indicating high thermal stability. The effect of Yb3+ ions on the thermal stability is not obvious. Both the glass forming ability and the upconversion luminescence first increase and then decrease with the increase of Yb3+ ions. The glasses perform low glass forming ability with ΔT around 55 °C. Blue and red emissions centered around 477, 651, and 706 nm are obtained at the excitation of 976 nm laser. The upconversion luminescence mechanism is energy transfer from Yb3+ to Tm3+ mixed with two- and three- photon processes. The thermal kinetic Differential Thermal Analysis (DTA)-analysis indicates that the average activation energy first increases and then decreases with the increase of Yb3+ ions. This result can be introduced in order to improve upconversion luminescence of glasses by crystallization in the future. Tm3+/Yb3+ co-doped La2O3-Nb2O5-Ta2O5 glasses with good upconversion and thermal properties show promising applications in solid-state laser, optical temperature sensing.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2578: An Outlook on Physical and Virtual Sensors for a Socially Interactive Internet Sensors doi: 10.3390/s18082578 Authors: Ngombo Armando André Rodrigues Vasco Pereira Jorge Sá Silva Fernando Boavida The Internet keeps changing at a rapid pace, driven mainly by the emerging concepts and applications that make it aware of the physical world and responsive to user context. The Internet of Things (IoT) concept is quickly giving way to more advanced and highly interactive environments that go well beyond the mere sensing of the physical world. Today, in addition to traditional electronic devices, IoT sensing/actuating includes both software and human-based entities. This paper provides an outlook on the future of sensing/actuating approaches on the Internet at large, which we see increasingly related to all kinds of socially interactive technologies. With these objectives in mind, we propose a taxonomy to deal with the heterogeneity of sensing/actuating approaches in IoT. We also analyse the state-of-the-art of Social Sensing. Finally, we identify open issues and associated research opportunities, the main ones being the integration of all sensing approaches, the combination of social sciences, engineering, and computing as enablers of context-aware, cognitive applications and, last but not least, the unified management of large sets of very heterogeneous sensors/actuators.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2576: General Signal Model for Multiple-Input Multiple-Output GMTI Radar Sensors doi: 10.3390/s18082576 Authors: Fuyou Li Feng He Zhen Dong Manqing Wu Yongsheng Zhang Multiple-input multiple-output (MIMO) ground moving target indication (GMTI) radar has been studied recently because of its excellent performance. In this paper, a general signal model is established for the MIMO GMTI radar with both fast-time and slow-time waveforms. The general signal model can be used to evaluate the performance of the MIMO GMTI radar with arbitrary waveforms such as the ideal orthogonal, code division multiple access (CDMA), frequency-division multiple access (FDMA), time division multiple access (TDMA), and Doppler division multiple access (DDMA) waveforms. We proposed a range-compensation method to eliminate the range-dependence of the FDMA waveforms. The simulation results indicate that the improved performance of FDMA waveforms is achieved utilizing the range-compensation method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2572: Tunable Fabry-Perot Interferometer Designed for Far-Infrared Wavelength by Utilizing Electromagnetic Force Sensors doi: 10.3390/s18082572 Authors: Dong Geon Jung Jun Yeop Lee Jae Keon Kim Daewoong Jung Seong Ho Kong A tunable Fabry-Perot interferometer (TFPI)-type wavelength filter designed for the long-wavelength infrared (LWIR) region is fabricated using micro electro mechanical systems (MEMS) technology and the novel polydimethylsiloxane (PDMS) micro patterning technique. The structure of the proposed infrared sensor consists of a Fabry-Perot interferometer (FPI)-based optical filter and infrared (IR) detector. An amorphous Si-based thermal IR detector is located under the FPI-based optical filter to detect the IR-rays filtered by the FPI. The filtered IR wavelength is selected according to the air etalon gap between reflectors, which is defined by the thickness of the patterned PDMS. The 8 μm-thick PDMS pattern is fabricated on a 3 nm-thick Al layer used as a reflector. The air etalon gap is changed using the electromagnetic force between the permanent magnet and solenoid. The measured PDMS gap height is about 2 μm, ranging from 8 μm to 6 μm, with driving current varying from 0 mA to 600 mA, resulting in a tunable wavelength range of 4 μm. The 3-dB bandwidth (full width at half maximum, FWHM) of the proposed filter is 1.5 nm, while the Free Spectral Range (FSR) is 8 μm. Experimental results show that the proposed TFPI can detect a specific wavelength at the long LWIR region.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2574: Modeling and Control of a Micro AUV: Objects Follower Approach Sensors doi: 10.3390/s18082574 Authors: Jesus Arturo Monroy-Anieva Cyril Rouviere Eduardo Campos-Mercado Tomas Salgado-Jimenez Luis Govinda Garcia-Valdovinos This work describes the modeling, control and development of a low cost Micro Autonomous Underwater Vehicle (μ-AUV), named AR2D2. The main objective of this work is to make the vehicle to detect and follow an object with defined color by means of the readings of a depth sensor and the information provided by an artificial vision system. A nonlinear PD (Proportional-Derivative) controller is implemented on the vehicle in order to stabilize the heave and surge movements. A formal stability proof of the closed-loop system using Lyapunov’s theory is given. Furthermore, the performance of the μ-AUV is validated through numerical simulations in MatLab and real-time experiments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-08-07
    Description: Sensors, Vol. 18, Pages 2570: The Sensory Quality and Volatile Profile of Dark Chocolate Enriched with Encapsulated Probiotic Lactobacillus plantarum Bacteria Sensors doi: 10.3390/s18082570 Authors: Milica Mirković Sanja Seratlić Kieran Kilcawley David Mannion Nemanja Mirković Zorica Radulović Cocoa and dark chocolate have a wide variety of powerful antioxidants and other nutrients that can positively affect human health. Probiotic dark chocolate has the potential to be a new product in the growing number of functional foods. In this study, encapsulated potential probiotic Lactobacillus plantarum 564 and commercial probiotic Lactobacillus plantarum 299v were added in the production of dark chocolate. The results show very good survival of probiotic bacteria after production and during storage, reaching 108cfu/g in the first 60 days and over 106cfu/g up to 180 days. No statistically significant difference (p > 0.05) in chemical composition and no major differences in the volatile profiles between control and experimental chocolate samples were observed, indicating no impact of probiotic bacteria on compositional and sensory characteristics of dark chocolate. The sensory evaluation of control and both probiotic dark chocolate samples showed excellent sensory quality after 60 and 180 days of storage, demonstrating that probiotics did not affect aroma, texture and appearance of chocolate. Due to a high viability of bacterial cells and acceptable sensory properties, it can be concluded that encapsulated probiotics Lb. plantarum 564 and Lb. plantarum 299v could be successfully used in the production of probiotic dark chocolate.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-08-06
    Description: Sensors, Vol. 18, Pages 2564: Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review Sensors doi: 10.3390/s18082564 Authors: Andrea Ancillao Salvatore Tedesco John Barton Brendan O’Flynn In the last few years, estimating ground reaction forces by means of wearable sensors has come to be a challenging research topic paving the way to kinetic analysis and sport performance testing outside of labs. One possible approach involves estimating the ground reaction forces from kinematic data obtained by inertial measurement units (IMUs) worn by the subject. As estimating kinetic quantities from kinematic data is not an easy task, several models and protocols have been developed over the years. Non-wearable sensors, such as optoelectronic systems along with force platforms, remain the most accurate systems to record motion. In this review, we identified, selected and categorized the methodologies for estimating the ground reaction forces from IMUs as proposed across the years. Scopus, Google Scholar, IEEE Xplore, and PubMed databases were interrogated on the topic of Ground Reaction Forces estimation based on kinematic data obtained by IMUs. The identified papers were classified according to the methodology proposed: (i) methods based on direct modelling; (ii) methods based on machine learning. The methods based on direct modelling were further classified according to the task studied (walking, running, jumping, etc.). Finally, we comparatively examined the methods in order to identify the most reliable approaches for the implementation of a ground reaction force estimator based on IMU data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-08-06
    Description: Sensors, Vol. 18, Pages 2563: Joint Center Estimation Using Single-Frame Optimization: Part 2: Experimentation Sensors doi: 10.3390/s18082563 Authors: Eric Frick Salam Rahmatalla Human motion capture is driven by joint center location estimates, and error in their estimation can be compounded by subsequent kinematic calculations. Soft tissue artifact (STA), the motion of tissue relative to the underlying bones, is a primary cause of error in joint center calculations. A method for mitigating the effects of STA, single-frame optimization (SFO), was introduced and numerically verified in Part 1 of this work, and the purpose of this article (Part 2) is to experimentally compare the results of SFO with a marker-based solution. The experimentation herein employed a single-degree-of-freedom pendulum to simulate human joint motion, and the effects of STA were simulated by affixing the inertial measurement unit to the pendulum indirectly through raw, vacuum-sealed meat. The inertial sensor was outfitted with an optical marker adapter so that its location could be optically determined by a camera-based motion-capture system. During the motion, inertial effects and non-rigid attachment of the inertial sensor caused the simulated STA to manifest via unrestricted motion (six degrees of freedom) relative to the rigid pendulum. The redundant inertial and optical instrumentation allowed a time-varying joint center solution to be determined both by optical markers and by SFO, allowing for comparison. The experimental results suggest that SFO can achieve accuracy comparable to that of state-of-the-art joint center determination methods that use optical skin markers (root mean square error of 7.87–37.86 mm), and that the time variances of the SFO solutions are correlated (r =  0.58–0.99) with the true, time-varying joint center solutions. This suggests that SFO could potentially help to fill a gap in the existing literature by improving the characterization and mitigation of STA in human motion capture.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-08-06
    Description: Sensors, Vol. 18, Pages 2562: A Real-Time Imaging Algorithm Based on Sub-Aperture CS-Dechirp for GF3-SAR Data Sensors doi: 10.3390/s18082562 Authors: Guang-Cai Sun Yanbin Liu Mengdao Xing Shiyu Wang Liang Guo Jun Yang Conventional synthetic aperture radar (SAR) imaging algorithms usually require a period of time to process data that is longer than the time it takes to record one synthetic aperture or that corresponding to an adequate azimuth resolution. That is to say, the real-time processing system is idle during the long data recording time and the utilization of computational resources is low. To deal with this problem, a real-time imaging algorithm based on sub-aperture chirp scaling dechirp (CS-dechirp) is proposed in this paper. With CS-dechirp, the sub-aperture data could be processed to form an image with relatively low resolution. Subsequently, a few low-resolution images are generated as longer azimuth data are recorded. At the stage of full-resolution image generation, a coherent combination method for the low-resolution complex-value images is developed. As the low-resolution complex-value images are coherently combined one by one, the resolution is gradually improved and the full-resolution image is finally obtained. The results of a simulation and real data from the GF3-SAR validate the effectiveness of the proposed algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-08-08
    Description: Materials, Vol. 11, Pages 1372: The Effect of the Morphology of Coarse Aggregate on the Properties of Self-Compacting High-Performance Fibre-Reinforced Concrete Materials doi: 10.3390/ma11081372 Authors: Krzysztof Ostrowski Łukasz Sadowski Damian Stefaniuk Daniel Wałach Tomasz Gawenda Konrad Oleksik Ireneusz Usydus When understanding the effect of the morphology of coarse aggregate on the properties of a fresh concrete mixture, the strength and deformability of self-compacting high-performance fibre-reinforced concrete (SCHPFRC) can be seen to be critical for its performance. In this research, regular and irregular grains were separated from granite coarse aggregate. The morphology of these grains was described while using digital image analysis. As a result, the aspect ratio, roundness and area ratio were determined in order to better understand this phenomenon. Then, the principal rheological, physical, and mechanical properties of SCHPFRC were determined. The obtained results indicated that the morphology of the grains of coarse aggregate has an impact on the strength and stiffness properties of SCHPFRC. Moreover, significant differences in the transverse strain of concretes were observed. The morphology of the coarse aggregate also has an impact on the rheological parameters of a fresh concrete mixture. To better understand this phenomenon, the hypothesized mechanism of the formation of SCHPFRC caused by different morphology of coarse aggregate was proposed at the end of the article.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1364: Recent Developments in Spectroscopic Techniques for the Detection of Explosives Materials doi: 10.3390/ma11081364 Authors: Wei Zhang Yue Tang Anran Shi Lirong Bao Yun Shen Ruiqi Shen Yinghua Ye Trace detection of explosives has been an ongoing challenge for decades and has become one of several critical problems in defense science; public safety; and global counter-terrorism. As a result, there is a growing interest in employing a wide variety of approaches to detect trace explosive residues. Spectroscopy-based techniques play an irreplaceable role for the detection of energetic substances due to the advantages of rapid, automatic, and non-contact. The present work provides a comprehensive review of the advances made over the past few years in the fields of the applications of terahertz (THz) spectroscopy; laser-induced breakdown spectroscopy (LIBS), Raman spectroscopy; and ion mobility spectrometry (IMS) for trace explosives detection. Furthermore, the advantages and limitations of various spectroscopy-based detection techniques are summarized. Finally, the future development for the detection of explosives is discussed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1362: Numerical Modelling of the Effect of Filler/Matrix Interfacial Strength on the Fracture of Cementitious Composites Materials doi: 10.3390/ma11081362 Authors: Xiaowei Ouyang Zichao Pan Zhiwei Qian Yuwei Ma Guang Ye Klaas van Breugel The interface between filler and hydration products can have a significant effect on the mechanical properties of the cement paste system. With different adhesion properties between filler and hydration products, the effect of microstructural features (size, shape, surface roughness), particle distribution and area fraction of filler on the fracture behavior of a blended cement paste system is supposed to be different, as well. In order to understand the effect of the microstructural features, particle distribution and area fraction of filler on the fracture behavior of a blended cement paste system with either strong or weak filler-matrix interface, microscale simulations with a lattice model are carried out. The results show that the strength of the filler-matrix interface plays a more important role than the microstructural features, particle distribution and area fraction of filler in the crack propagation and the strength of blended cement paste. The knowledge acquired here provides a clue, or direction, for improving the performance of existing fillers. To improve the performance of fillers in cement paste in terms of strength, priority should be given to improving the bond strength between filler particles and matrix, not to modifying the microstructural features (i.e., shape and surface roughness) of the filler.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1361: Phase Stability and Properties of Ti-Nb-Zr Thin Films and Their Dependence on Zr Addition Materials doi: 10.3390/ma11081361 Authors: Jeonghyeon Yang Munkhbayar Baatarsukh Joohyeon Bae Sunchul Huh Hyomin Jeong Byeongkeun Choi Taehyun Nam Jungpil Noh Ternary Ti-Nb-Zr alloys were prepared by a magnetron sputtering method with porous structures observed in some of them. In bulk, in order to control the porous structure, a space holder (NH4HCO3) is used in the sintering method. However, in the present work, we show that the porous structure is also dependent on alloy composition. The results from Young’s modulus tests confirm that these alloys obey d-electrons alloy theory. However, the Young’s modulus of ternary thin films (≈80–95 GPa) is lower than that for binary alloys (≈108–123 GPa). The depth recovery ratio of ternary Ti-Nb-Zr thin films is also higher than that for binary β-Ti-(25.9–34.2)Nb thin film alloys.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1358: POSS Nanofiller-Induced Enhancement of the Thermomechanical Properties in a Fluoroelastomer Terpolymer Materials doi: 10.3390/ma11081358 Authors: Daphné Berthier Marie-Pierre Deffarges Nicolas Berton Mathieu Venin Florian Lacroix Bruno Schmaltz Yohan Tendron Eric Pestel François Tran-Van Stéphane Méo The present study reports on the use of three types of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with various organic substituents as fillers in a fluoroelastomer (FKM). A series of/POSS elastomer composite thin films is prepared. Microstructural SEM/TEM (scanning electron microscopy/transmission electron microscopy) imaging reveals a dispersion state allowing the presence of micron-sized domains. The influence of POSS content is studied in order to optimize thermal stability and mechanical properties of the composite thin films. Both POSS-A (with an acryloyl functional group and seven isobutyl substituents) and POSS-P (with eight phenyl substituents) lead to higher thermal stability and modulus of the composites, with respect to the unfilled FKM terpolymer matrix. covalent grafting of POSS-A onto the FKM network is found to play a critical role. Enhanced storage modulus in the rubbery plateau region (+210% at 200 °C for 20 phr) suggests that POSS-A is particularly suitable for high temperature applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1363: Synthesis of Gold Functionalised Nanoparticles with the Eranthis hyemalis Lectin and Preliminary Toxicological Studies on Caenorhabditis elegans Materials doi: 10.3390/ma11081363 Authors: Jamila Djafari Marie T. McConnell Hugo M. Santos José Luis Capelo Emilia Bertolo Simon C. Harvey Carlos Lodeiro Javier Fernández-Lodeiro The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant (EHL) is a Type II Ribosome Inactivating Protein (RIP). Type II RIPs have shown anti-cancer properties and have great potential as therapeutic agents. Similarly, colloidal gold nanoparticles are successfully used in biomedical applications as they can be functionalised with ligands with high affinity and specificity for target cells to create therapeutic and imaging agents. Here we present the synthesis and characterization of gold nanoparticles conjugated with EHL and the results of a set of initial assays to establish whether the biological effect of EHL is altered by the conjugation. Gold nanoparticles functionalised with EHL (AuNPs@EHL) were successfully synthesised by bioconjugation with citrate gold nanoparticles (AuNPs@Citrate). The conjugates were analysed by UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential analysis, and Transmission Electron Microscopy (TEM). Results indicate that an optimal functionalisation was achieved with the addition of 100 µL of EHL (concentration 1090 ± 40 µg/mL) over 5 mL of AuNPs (concentration [Au0] = 0.8 mM). Biological assays on the effect of AuNPs@EHL were undertaken on Caenorhabditis elegans, a free-living nematode commonly used for toxicological studies, that has previously been shown to be strongly affected by EHL. Citrate gold nanoparticles did not have any obvious effect on the nematodes. For first larval stage (L1) nematodes, AuNPs@EHL showed a lower biological effect than EHL. For L4 stage, pre-adult nematodes, both EHL alone and AuNPs@EHL delayed the onset of reproduction and reduced fecundity. These assays indicate that EHL can be conjugated to gold nanoparticles and retain elements of biocidal activity.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1359: Facile Fabrication of Dumbbell-Like β-Bi2O3/Graphene Nanocomposites and Their Highly Efficient Photocatalytic Activity Materials doi: 10.3390/ma11081359 Authors: Jun Yang Taiping Xie Chenglun Liu Longjun Xu β-Bi2O3 decorated graphene nanosheets (β-Bi2O3/GN) were prepared by a facile solution mixing method. The crystal structure, surface morphology, and photo absorbance properties of the products were characterized by XRD, SEM, and UV-VIS diffuse reflection, respectively. Moreover, the effect of graphene content on photocatalytic activity was systematically investigated, and the results indicated that these composites possessed a high degradation rate of Rhodamine B (RhB), which was three times higher than that of bare β-Bi2O3 when graphene content was 1 wt %. This high photocatalytic activity was attributed predominantly to the presence of graphene, which served as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from β-Bi2O3.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1357: Radial Compressive Property and the Proof-of-Concept Study for Realizing Self-expansion of 3D Printing Polylactic Acid Vascular Stents with Negative Poisson’s Ratio Structure Materials doi: 10.3390/ma11081357 Authors: Zichao Wu Ji Zhao Wenzheng Wu Peipei Wang Bofan Wang Guiwei Li Shuo Zhang Biodegradable stents offer the potential to reduce the in-stent restenosis by providing support long enough for the vessel to heal. The polylactic acid (PLA) vascular stents with negative Poisson’s ratio (NPR) structure were manufactured by fused deposition modeling (FDM) 3D printing in this study. The effects of stent diameter, wall thickness and geometric parameters of arrowhead NPR structure on radial compressive property of 3D-printed PLA vascular stent were studied. The results showed that the decrease of stent diameter, the increase of wall thickness and the increase of the surface coverage could enhance the radial force (per unit length) of PLA stent. The radial and longitudinal size of PLA stent with NPR structure decreased simultaneously when the stent was crimped under deformation temperature. The PLA stent could expand in both radial and longitudinal direction under recovery temperature. When the deformation temperature and recovery temperature were both 65 °C, the diameter recovery ratio of stent was more than 95% and the maximum could reach 98%. The length recovery ratio was above 97%. This indicated the feasibility of utilizing the shape memory effect (SME) of PLA to realize the expansion of 3D-printed PLA vascular stent under temperature excitation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1360: Effect of Annealing Temperature on ECD Grown Hexagonal-Plane Zinc Oxide Materials doi: 10.3390/ma11081360 Authors: Sukrit Sucharitakul Rangsan Panyathip Supab Choopun Zinc oxide (ZnO) offers a great potential in several applications from sensors to Photovoltaic cells thanks to the material’s dependency, to its optical and electrical properties and crystalline structure architypes. Typically, ZnO powder tends to be grown in the form of a wurtzite structure allowing versatility in the phase of material growths; albeit, whereas in this work we introduce an alternative in scalable yet relatively simple 2D hexagonal planed ZnO nanoflakes via the electrochemical deposition of commercially purchased Zn(NO3)2 and KCl salts in an electrochemical process. The resulting grown materials were analyzed and characterized via a series of techniques prior to thermal annealing to increase the grain size and improve the crystal quality. Through observation via scanning electron microscope (SEM) images, we have analyzed the statistics of the grown flakes’ hexagonal plane’s size showing a non-monotonal strong dependency of the average flake’s hexagonal flakes’ on the annealing temperature, whereas at 300 °C annealing temperature, average flake size was found to be in the order of 300 μm2. The flakes were further analyzed via transmission electron microscopy (TEM) to confirm its hexagonal planes and spectroscopy techniques, such as Raman Spectroscopy and photo luminescence were applied to analyze and confirm the ZnO crystal signatures. The grown materials also underwent further characterization to gain insights on the material, electrical, and optical properties and, hence, verify the quality of the material for Photovoltaic cells’ electron collection layer application. The role of KCl in aiding the growth of the less preferable (0001) ZnO is also investigated via various prospects discussed in our work. Our method offers a relatively simple and mass-producible method for synthesizing a high quality 2D form of ZnO that is, otherwise, technically difficult to grow or control.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-08-07
    Description: Materials, Vol. 11, Pages 1365: Composites of Laponite and Cu–Mn Hopcalite-Related Mixed Oxides Prepared from Inverse Microemulsions as Catalysts for Total Oxidation of Toluene Materials doi: 10.3390/ma11081365 Authors: Bogna D. Napruszewska Alicja Michalik Anna Walczyk Dorota Duraczyńska Roman Dula Wojciech Rojek Lidia Lityńska-Dobrzyńska Krzysztof Bahranowski Ewa M. Serwicka Composites of Laponite and Cu–Mn hopcalite-related mixed oxides, prepared from hydrotalcite-like (Htlc) precursors obtained in inverse microemulsions, were synthesized and characterized with XRF, XRD, SEM, TEM, H2 temperature-programmed reduction (TPR), and N2 adsorption/desorption at −196 °C. The Htlc precursors were precipitated either with NaOH or tetrabutylammonium hydroxide (TBAOH). Al was used as an element facilitating Htlc structure formation, and Ce and/or Zr were added as promoters. The composites calcined at 600 °C are mesoporous structures with similar textural characteristics. The copper–manganite spinel phases formed from the TBAOH-precipitated precursors are less crystalline and more susceptible to reduction than the counterparts obtained from the precursors synthesized with NaOH. The Cu–Mn-based composites are active in the combustion of toluene, and their performance improves further upon the addition of promoters in the following order: Ce < Zr < Zr + Ce. The composites whose active phases are prepared with TBAOH are more active than their counterparts obtained with the use of the precursors precipitated with NaOH, due to the better reducibility of the less crystalline mixed oxide active phase.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-08-08
    Description: Sensors, Vol. 18, Pages 2589: Design of Novel Ceramic Preconcentrator and Integration in Gas Chromatographic System for Detection of Ethylene Gas from Ripening Bananas Sensors doi: 10.3390/s18082589 Authors: Nayyer Zaidi Muhammad Tahir Micheal Vellekoop Walter Lang In this paper, a novel ceramic preconcentrator is manufactured using aluminum nitride (ALN) ceramics. The preconcentrator consists of a heater, a preconcentrator body, a gas inlet and a gas outlet. The adsorption material, Carbosieve SII, is loaded into the preconcentrator. The preconcentrator is integrated with a previously developed micro gas chromatographic system filled with ethylene. When operated, adequate ethylene gas is adsorbed into the preconcentrator. The application of heat pulse also successfully desorbs the ethylene gas. Tests are conducted with ethylene gas at concentrations of 10 ppm, 5 ppm and 2.5 ppm and 400 ppb, respectively. The system is also tested with ethylene gas from ripening bananas over a period of three days. No interference signal is observed in the chromatogram because of other ripening gases (e.g., carbon dioxide, oxygen, alcohol) and humidity. A detection limit of 25 ppb is realized with this system. The developed preconcentrator has several applications, e.g., in food industry and environmental monitoring.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-08-08
    Description: Sensors, Vol. 18, Pages 2580: Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal Sensors doi: 10.3390/s18082580 Authors: Tri Dev Acharya Anoj Subedi Dong Ha Lee Accurate and frequent updates of surface water have been made possible by remote sensing technology. Index methods are mostly used for surface water estimation which separates the water from the background based on a threshold value. Generally, the threshold is a fixed value, but can be challenging in the case of environmental noise, such as shadow, forest, built-up areas, snow, and clouds. One such challenging scene can be found in Nepal where no such evaluation has been done. Taking that in consideration, this study evaluates the performance of the most widely used water indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI), and Automated Water Extraction Index (AWEI) in a Landsat 8 scene of Nepal. The scene, ranging from 60 m to 8848 m, contains various types of water bodies found in Nepal with different forms of environmental noise. The evaluation was conducted based on measures from a confusion matrix derived using validation points. Comparing visually and quantitatively, not a single method was able to extract surface water in the entire scene with better accuracy. Upon selecting optimum thresholds, the overall accuracy (OA) and kappa coefficient (kappa) was improved, but not satisfactory. NDVI and NDWI showed better results for only pure water pixels, whereas MNDWI and AWEI were unable to reject snow cover and shadows. Combining NDVI with NDWI and AWEI with shadow improved the accuracy but inherited the NDWI and AWEI characteristics. Segmenting the test scene with elevations above and below 665 m, and using NDVI and NDWI for detecting water, resulted in an OA of 0.9638 and kappa of 0.8979. The accuracy can be further improved with a smaller interval of categorical characteristics in one or multiple scenes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-08-08
    Description: Sensors, Vol. 18, Pages 2581: The Shared Bicycle and Its Network—Internet of Shared Bicycle (IoSB): A Review and Survey Sensors doi: 10.3390/s18082581 Authors: Shu Shen Zhao-Qing Wei Li-Juan Sun Yang-Qing Su Ru-Chuan Wang Han-Ming Jiang With the expansion of Intelligent Transport Systems (ITS) in smart cities, the shared bicycle has developed quickly as a new green public transportation mode, and is changing the travel habits of citizens heavily across the world, especially in China. The purpose of the current paper is to provide an inclusive review and survey on shared bicycle besides its benefits, history, brands and comparisons. In addition, it proposes the concept of the Internet of Shared Bicycle (IoSB) for the first time, as far as we know, to find a feasible solution for those technical problems of the shared bicycle. The possible architecture of IoSB in our opinion is presented, as well as most of key IoT technologies, and their capabilities to merge into and apply to the different parts of IoSB are introduced. Meanwhile, some challenges and barriers to IoSB’s implementation are expressed thoroughly too. As far as the advice for overcoming those barriers be concerned, the IoSB’s potential aspects and applications in smart city with respect to technology development in the future provide another valuable further discussion in this paper.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-12
    Description: Materials, Vol. 11, Pages 991: Cononsolvency Transition of Polymer Brushes: A Combined Experimental and Theoretical Study Materials doi: 10.3390/ma11060991 Authors: Huaisong Yong Sebastian Rauch Klaus-Jochen Eichhorn Petra Uhlmann Andreas Fery Jens-Uwe Sommer In this study, the cononsolvency transition of poly(N-isopropylacrylamide) (PNiPAAm) brushes in aqueous ethanol mixtures was studied by using Vis-spectroscopic ellipsometry (SE) discussed in conjunction with the adsorption-attraction model. We proved that the cononsolvency transition of PNiPAAm brushes showed features of a volume phase transition, such as a sharp collapse, reaching a maximum decrease in thickness for a very narrow ethanol volume composition range of 15% to 17%. These observations are in agreement with the recently published preferential adsorption model of the cononsolvency effect.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-12
    Description: Materials, Vol. 11, Pages 989: Wheat Straw-Derived N-, O-, and S-Tri-doped Porous Carbon with Ultrahigh Specific Surface Area for Lithium-Sulfur Batteries Materials doi: 10.3390/ma11060989 Authors: Feng Chen Lulu Ma Jiangang Ren Mou Zhang Xinyu Luo Bing Li Zhiming Song Xiangyang Zhou Recently, lithium-sulfur (Li-S) batteries have been greeted by a huge ovation owing to their very high theoretical specific capacity (1675 mAh·g−1) and theoretical energy density (2600 Wh·kg−1). However, the full commercialization of Li-S batteries is still hindered by dramatic capacity fading resulting from the notorious “shuttle effect” of polysulfides. Herein, we first describe the development of a facile, inexpensive, and high-producing strategy for the fabrication of N-, O-, and S-tri-doped porous carbon (NOSPC) via pyrolysis of natural wheat straw, followed by KOH activation. The as-obtained NOSPC shows characteristic features of a highly porous carbon frame, ultrahigh specific surface area (3101.8 m2·g−1), large pore volume (1.92 cm3·g−1), good electrical conductivity, and in situ nitrogen (1.36 at %), oxygen (7.43 at %), and sulfur (0.7 at %) tri-doping. The NOSPC is afterwards selected to fabricate the NOSPC-sulfur (NOSPC/S) composite for the Li-S batteries cathode material. The as-prepared NOSPC/S cathode delivers a large initial discharge capacity (1049.2 mAh·g−1 at 0.2 C), good cycling stability (retains a reversible capacity of 454.7 mAh·g−1 over 500 cycles at 1 C with a low capacity decay of 0.088% per cycle), and superior rate performance (619.2 mAh·g−1 at 2 C). The excellent electrochemical performance is mainly attributed to the synergistic effects of structural restriction and multidimensional chemical adsorptions for cooperatively repressing the polysulfides shuttle.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-12
    Description: Materials, Vol. 11, Pages 987: Rapid Sintering of Li2O-Nb2O5-TiO2 Solid Solution by Air Pressure Control and Clarification of Its Mechanism Materials doi: 10.3390/ma11060987 Authors: Hiromi Nakano Konatsu Kamimoto Takahisa Yamamoto Yoshio Furuta We first successfully synthesized Li1+x−yNb1−x−3yTix+4yO3 (LNT) solid solutions (0.13 ≤ x ≤ 0.18, 0 ≤ y ≤ 0.06) rapidly at 1373 K for one hour under 0.35 MPa by the controlling of air pressure using an air-pressure control atmosphere furnace. The composition is a formation area of a superstructure for LNT, in which the periodical intergrowth layer was formed in the matrix, and where it can be controlled by Ti content. Therefore, the sintering time depended on Ti content, and annealing was repeated for over 24 h until a homogeneous structure was formed using a conventional electric furnace. We clarified the mechanism of the rapid sintering using various microscale to nanoscale characterization techniques: X-ray diffraction, a scanning electron microscope, a transmission electron microscope (TEM), a Cs-corrected scanning TEM equipped with electron energy-loss spectroscopy, and X-ray absorption fine structure spectroscopy.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 998: Versatile Poly(Diallyl Dimethyl Ammonium Chloride)-Layered Nanocomposites for Removal of Cesium in Water Purification Materials doi: 10.3390/ma11060998 Authors: Sung-Chan Jang Sung-Min Kang Gi Yong Kim Muruganantham Rethinasabapathy Yuvaraj Haldorai Ilsong Lee Young-Kyu Han Joanna C. Renshaw Changhyun Roh Yun Suk Huh In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe3O4 nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m2/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 993: Investigation of Tensile Creep of a Normal Strength Overlay Concrete Materials doi: 10.3390/ma11060993 Authors: Martin Drexel Yvonne Theiner Günter Hofstetter The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 992: Damping Analysis of Some Inorganic Particles on Poly(butyl-methacrylate) Materials doi: 10.3390/ma11060992 Authors: Saisai Zhou Chunhua Yang Jia Hu Xianru He Rui Zhang Viscoelastic polymers can be used as damping materials to control unexpected vibration and noise through energy dissipation. To investigate the effect of an inorganic filler on damping property, a series of inorganic particles, Ferriferous oxide(Fe3O4), Graphene/Fe3O4(GF), and Fe3O4 of demagnetization(α-Fe2O3) were incorporated into poly(butyl-methacrylate) (PBMA). The effects of the dispersion of particles, as well as the interaction between particles and the PBMA matrix on the damping property of composites, were systematically studied. Results revealed that the addition of three types of particles can effectively improve the damping properties and broaden the effective damping temperature range. Dispersion of α-Fe2O3 in the PBMA matrix is better than that of Fe3O4. As a result, the damping peak can be increased more. The interaction between GF and the PBMA matrix is stronger than that between Fe3O4 and the PBMA. The damping peak of the composites can be suppressed by GF, which is opposite to Fe3O4 and α-Fe2O3. In addition, glass transition temperature (Tg) of all composites in the study shifted to low temperatures.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 997: Preparation and Properties of C/C Hollow Spheres and the Energy Absorption Capacity of the Corresponding Aluminum Syntactic Foams Materials doi: 10.3390/ma11060997 Authors: Qiyong Yu Yan Zhao Anqi Dong Ye Li The present study focuses on the preparation and characterization of lab-scale aluminum syntactic foams (ASFs) filled with hollow carbon spheres (HCSs). A new and original process for the fabrication of HCSs was explored. Firstly, expanded polystyrene beads with an average diameter of 6 mm and coated with carbon fibers/thermoset phenolic resin were produced by the “rolling ball” method. In the next step, the spheres were cured and post-cured, and then carbonized at 1050 °C under vacuum to form the HCSs. The porosity in the shell of the HCSs was decreased by increasing the number of impregnation–carbonization cycles. The aluminum syntactic foams were fabricated by casting the molten aluminum into a crucible filled with HCSs. The morphology of the hollow spheres before and after carbonization was investigated by scanning electron microscope (SEM). The compressive properties of the ASF were tested and the energy absorption capacities were calculated according to stress–strain curves. The results showed that the ASF filled with HCSs which had been treated by more cycles of impregnation–carbonization had higher energy absorption capacity. The aluminum syntactic foam absorbed 34.9 MJ/m3 (28.8 KJ/Kg) at 60% strain, which was much higher than traditional closed cell aluminum foams without particles. The HCSs have a promising future in producing a novel family of metal matrix syntactic foams.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-13
    Description: Materials, Vol. 11, Pages 995: Synthesis of Various TiO2 Micro-/Nano-Structures and Their Photocatalytic Performance Materials doi: 10.3390/ma11060995 Authors: Anquan Deng Yufu Zhu Xin Guo Lei Zhou Qingsong Jiang TiO2 micro-/nano-structures with different morphologies have been successfully synthesized via a hydrothermal method. The effects of the solvents on the morphology and structure of the obtained products have been studied. The objective of the present paper is to compare the photocatalytic properties of the obtained TiO2 products. During the synthesis process, the tetrabutyl titanate and titanium (IV) fluoride were used as the titanium source. The obtained micro-/nano-structures were characterized by field-emission scanning electron microscopy, X-ray diffraction analysis, and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the samples was evaluated by the degradation of Rhodamine B solution under simulated solar irradiation. It is found that the morphologies and structures of TiO2 have a great influence on its photocatalytic activity. Compared with other samples, TiO2 flower clusters assembled with nanorods exhibited a superior photocatalytic activity in the degradation of Rhodamine B.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-13
    Description: Sensors, Vol. 18, Pages 1915: Measurement Uncertainty Calculations for pH Value Obtained by an Ion-Selective Electrode Sensors doi: 10.3390/s18061915 Authors: Józef Wiora Alicja Wiora An assessment of measurement uncertainty is a task, which has to be the final step of every chemical assay. Apart from a commonly applied typical assessment method, Monte Carlo (MC) simulations may be used. The simulations are frequently performed by a computer program, which has to be written, and therefore some programming skills are required. It is also possible to use a commonly known spreadsheet and perform such simulations without writing any code. Commercial programs dedicated for the purpose are also available. In order to show the advantages and disadvantages of the ways of uncertainty evaluation, i.e., the typical method, the MC method implemented in a program and in a spreadsheet, and commercial programs, a case of pH measurement after two-point calibration is considered in this article. The ways differ in the required mathematical transformations, degrees of software usage, the time spent for the uncertainty calculations, and cost of software. Since analysts may have different mathematical and coding skills and practice, it is impossible to point out the best way of uncertainty assessment—all of them are just as good and give comparable assessments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-13
    Description: Sensors, Vol. 18, Pages 1916: Automatic Railway Traffic Object Detection System Using Feature Fusion Refine Neural Network under Shunting Mode Sensors doi: 10.3390/s18061916 Authors: Tao Ye Baocheng Wang Ping Song Juan Li Many accidents happen under shunting mode when the speed of a train is below 45 km/h. In this mode, train attendants observe the railway condition ahead using the traditional manual method and tell the observation results to the driver in order to avoid danger. To address this problem, an automatic object detection system based on convolutional neural network (CNN) is proposed to detect objects ahead in shunting mode, which is called Feature Fusion Refine neural network (FR-Net). It consists of three connected modules, i.e., the depthwise-pointwise convolution, the coarse detection module, and the object detection module. Depth-wise-pointwise convolutions are used to improve the detection in real time. The coarse detection module coarsely refine the locations and sizes of prior anchors to provide better initialization for the subsequent module and also reduces search space for the classification, whereas the object detection module aims to regress accurate object locations and predict the class labels for the prior anchors. The experimental results on the railway traffic dataset show that FR-Net achieves 0.8953 mAP with 72.3 FPS performance on a machine with a GeForce GTX1080Ti with the input size of 320 × 320 pixels. The results imply that FR-Net takes a good tradeoff both on effectiveness and real time performance. The proposed method can meet the needs of practical application in shunting mode.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-13
    Description: Sensors, Vol. 18, Pages 1910: Data Fusion Architectures for Orthogonal Redundant Inertial Measurement Units Sensors doi: 10.3390/s18061910 Authors: Eric Gagnon Alexandre Vachon Yanick Beaudoin This work looks at the exploitation of large numbers of orthogonal redundant inertial measurement units. Specifically, the paper analyses centralized and distributed architectures in the context of data fusion algorithms for those sensors. For both architectures, data fusion algorithms based on Kalman filter are developed. Some of those algorithms consider sensors location, whereas the others do not, but all estimate the sensors bias. A fault detection algorithm, based on residual analysis, is also proposed. Monte-Carlo simulations show better performance for the centralized architecture with an algorithm considering sensors location. Due to a better estimation of the sensors bias, the latter provides the most precise and accurate estimates and the best fault detection. However, it requires a much longer computational time. An analysis of the sensors bias correlation is also done. Based on the simulations, the biases correlation has a small effect on the attitude rate estimation, but a very significant one on the acceleration estimation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-12
    Description: Sensors, Vol. 18, Pages 1898: Coastline Detection with Gaofen-3 SAR Images Using an Improved FCM Method Sensors doi: 10.3390/s18061898 Authors: Meng An Qian Sun Jun Hu Yuqi Tang Ziwei Zhu The coastline detection is one of the main applications of the Gaofen-3 satellite in the ocean field. However, the capability of Gaofen-3 SAR image in coastline detection has not yet been validated. In this paper, two Gaofen-3 SAR images, acquired in 2016, were used to extract the coastlines of the regions of Bohai and Taihu in China, respectively. The classical Fuzzy C-means (FCM) method was used in the coastline detection, but had been improved by combining the Wavelet decomposition algorithm to better suppress the inherent speckle noises of SAR image. Coastline detection results obtained from two Sentinel-1 SAR images acquired on the same regions were compared with those of the Gaofen-3 images. By using the manually delineated coastlines as the standards in the qualitative evaluations, improvements of about 12.0%, 8.3%, 23.8%, and 9.4% can be achieved by the improved FCM method with respect to the indicators of mean, RMSE, PGSD, and P90%, respectively; demonstrating that the Gaofen-3 data is superior to the Sentinel-1 data in the detection of coastline.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-12
    Description: Sensors, Vol. 18, Pages 1897: An IBeacon-Based Location System for Smart Home Control Sensors doi: 10.3390/s18061897 Authors: Qinghe Liu Xinshuang Yang Lizhen Deng Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1815: Sparse Method for Direction of Arrival Estimation Using Denoised Fourth-Order Cumulants Vector Sensors doi: 10.3390/s18061815 Authors: Yangyu Fan Jianshu Wang Rui Du Guoyun Lv Fourth-order cumulants (FOCs) vector-based direction of arrival (DOA) estimation methods of non-Gaussian sources may suffer from poor performance for limited snapshots or difficulty in setting parameters. In this paper, a novel FOCs vector-based sparse DOA estimation method is proposed. Firstly, by utilizing the concept of a fourth-order difference co-array (FODCA), an advanced FOCs vector denoising or dimension reduction procedure is presented for arbitrary array geometries. Then, a novel single measurement vector (SMV) model is established by the denoised FOCs vector, and efficiently solved by an off-grid sparse Bayesian inference (OGSBI) method. The estimation errors of FOCs are integrated in the SMV model, and are approximately estimated in a simple way. A necessary condition regarding the number of identifiable sources of our method is presented that, in order to uniquely identify all sources, the number of sources K must fulfill K ≤ ( M 4 − 2 M 3 + 7 M 2 − 6 M ) / 8 . The proposed method suits any geometry, does not need prior knowledge of the number of sources, is insensitive to associated parameters, and has maximum identifiability O ( M 4 ) , where M is the number of sensors in the array. Numerical simulations illustrate the superior performance of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1818: Dynamics and Embedded Internet of Things Input Shaping Control for Overhead Cranes Transporting Multibody Payloads Sensors doi: 10.3390/s18061818 Authors: Gerardo Peláez Joshua Vaugan Pablo Izquierdo Higinio Rubio Juan García-Prada Input shaping is an Optimal Control feedforward strategy whose ability to define how and when a flexible dynamical system defined by Ordinary Differential Equations (ODEs) and computer controlled would move into its operative space, without command induced unwanted dynamics, has been exhaustively demonstrated. This work examines the issue of Embedded Internet of Things (IoT) Input Shaping with regard to real time control of multibody oscillatory systems whose dynamics are better described by differential algebraic equations (DAEs). An overhead crane hanging a double link multibody payload has been appointed as a benchmark case; it is a multibody, multimode system. This might be worst scenario to implement Input Shaping. The reasons can be found in the wide array of constraints that arise. Firstly, the reliability of the multibody model was tested on a Functional Mock-Up Interface (FMI) with the two link payload suspended from the trolley by comparing the experimental video tapping signals in time domain faced with the signals extracted from the multibody model. The FFTs of the simulated and the experimental signal contain the same frequency harmonics only with somewhat different power due to the real world light damping in the joints. The application of this approach may be extended to other cases i.e., the usefulness of mobile hydraulic cranes is limited because the payload is supported by an overhead cable under tension that allows oscillation to occur during crane motion. If the payload size is not negligible small when compared with the cable length may introduce an additional oscillatory mode that creates a multibody double pendulum. To give the insight into the double pendulum dynamics by Lagrangian methods two slender rods as payloads are analyzed dealing with the overhead crane and a composite revolute-revolute joint is proposed to model the cable of the hydraulic crane, both assumptions facilitates an affordable analysis. This allows developing a general study of this type of multibody payloads dynamics including its normal modes, modes ratios plus ranges of frequencies expected. Input Shapers were calculated for those multimodes of vibration by convolving Specified Insensitivity (SI) shapers for each mode plus a novel Direct SI-SI shaper well suited to reduce the computational requirements, i.e., the number of the shaper taps, to carry out the convolution sum in real time by the IoT device based on a single microcontroller working as the command generator. Several comparisons are presented for the shaped and unshaped responses using both the multibody model, the experimental FMI set-up and finally a real world hydraulic crane under slewing motion commanded by an analog Joystick connected by two RF modules 802.15.4 to the IoT device that carry out the convolution sum in real time. Input Shaping improves the performances for all the cases.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1810: A Comparison between the Decimated Padé Approximant and Decimated Signal Diagonalization Methods for Leak Detection in Pipelines Equipped with Pressure Sensors Sensors doi: 10.3390/s18061810 Authors: Aimé Lay-Ekuakille Laura Fabbiano Gaetano Vacca Joël Kidiamboko Kitoko Patrice Bibala Kulapa Vito Telesca Pipelines conveying fluids are considered strategic infrastructures to be protected and maintained. They generally serve for transportation of important fluids such as drinkable water, waste water, oil, gas, chemicals, etc. Monitoring and continuous testing, especially on-line, are necessary to assess the condition of pipelines. The paper presents findings related to a comparison between two spectral response algorithms based on the decimated signal diagonalization (DSD) and decimated Padé approximant (DPA) techniques that allow to one to process signals delivered by pressure sensors mounted on an experimental pipeline.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1813: An Overview of High-k Oxides on Hydrogenated-Diamond for Metal-Oxide-Semiconductor Capacitors and Field-Effect Transistors Sensors doi: 10.3390/s18061813 Authors: Jiangwei Liu Yasuo Koide Thanks to its excellent intrinsic properties, diamond is promising for applications of high-power electronic devices, ultraviolet detectors, biosensors, high-temperature tolerant gas sensors, etc. Here, an overview of high-k oxides on hydrogenated-diamond (H-diamond) for metal-oxide-semiconductor (MOS) capacitors and MOS field-effect transistors (MOSFETs) is demonstrated. Fabrication routines for the H-diamond MOS capacitors and MOSFETs, band configurations of oxide/H-diamond heterointerfaces, and electrical properties of the MOS and MOSFETs are summarized and discussed. High-k oxide insulators are deposited using atomic layer deposition (ALD) and sputtering deposition (SD) techniques. Electrical properties of the H-diamond MOS capacitors with high-k oxides of ALD-Al2O3, ALD-HfO2, ALD-HfO2/ALD-Al2O3 multilayer, SD-HfO2/ALD-HfO2 bilayer, SD-TiO2/ALD-Al2O3 bilayer, and ALD-TiO2/ALD-Al2O3 bilayer are discussed. Analyses for capacitance-voltage characteristics of them show that there are low fixed and trapped charge densities for the ALD-Al2O3/H-diamond and SD-HfO2/ALD-HfO2/H-diamond MOS capacitors. The k value of 27.2 for the ALD-TiO2/ALD-Al2O3 bilayer is larger than those of the other oxide insulators. Drain-source current versus voltage curves show distinct pitch-off and p-type channel characteristics for the ALD-Al2O3/H-diamond, SD-HfO2/ALD-HfO2/H-diamond, and ALD-TiO2/ALD-Al2O3/H-diamond MOSFETs. Understanding of fabrication routines and electrical properties for the high-k oxide/H-diamond MOS electronic devices is meaningful for the fabrication of high-performance H-diamond MOS capacitor and MOSFET gas sensors.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1819: Sensor Design Optimization for Ultrasonic Spectroscopy Cure Monitoring Sensors doi: 10.3390/s18061819 Authors: Christian Pommer Michael Sinapius In the field of cure monitoring, resonant ultrasonic cure monitoring is a unique technique to measure the progression of cure of composites in fully or partially closed tools. It allows for the use of electronic hardware that is less sophisticated than traditional pulse-based ultrasonic systems to obtain accurate results. While this technique is not new, it has been used very rarely. One reason for this is the lack of optimized sensors. Commercially available sensors are optimized for pulse-based ultrasonic testing. This paper establishes a possible optimized sensor design for resonant ultrasound cure monitoring using a multi-parameter FE model.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1808: Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy Sensors doi: 10.3390/s18061808 Authors: Everardo Vargas-Rodriguez Ana Dinora Guzman-Chavez Roberto Baeza-Serrato In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1809: Cooperative Feedback Bits Allocation and Transmit Power Control in Underlay Cognitive Radio Networks Sensors doi: 10.3390/s18061809 Authors: Deokhui Lee Jaewoo So In this paper, we consider an underlay cognitive radio network where the spectrum is shared with the primary network. Due to the coexistence of primary and secondary networks, primary users (PUs) are interfered with by the inter-network interference, at the same time secondary users (SUs) counteract the intra-network (inter-user) interference. Based on the cooperative feedback between the primary network and the secondary network, the secondary transmitter (ST) applies the cognitive beamforming to suppress the interference to PUs while improving the sum rate of SUs. We herein propose an adaptive feedback bits allocation among multiple PUs and SUs where the quantized channel direction information (CDI) for the interference channel is forwarded to the ST in order to utilize the beamforming. Moreover, based on the cognitive beamforming, we adjust the transmit power of the ST under the constraint of the average interference at PUs. To jointly solve the feedback bits allocation and the transmit power control problems, we formulate an optimization problem which requires a little iterations compared with the separated feedback bits allocation and the transmit power control problems. Numerical results show that the proposed scheme significantly improves the sum rate of SUs while satisfying the average interference constraint at PUs.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1814: Centralized Duplicate Removal Video Storage System with Privacy Preservation in IoT Sensors doi: 10.3390/s18061814 Authors: Hongyang Yan Xuan Li Yu Wang Chunfu Jia In recent years, the Internet of Things (IoT) has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud computing. To further reduce the communication bandwidth and storage space, data deduplication has been widely adopted to eliminate the redundant data. However, since data collected in IoT are sensitive and closely related to users’ personal information, the privacy protection of users’ information becomes a challenge. As the channels, like the wireless channels between the terminals and the cloud servers in IoT, are public and the cloud servers are not fully trusted, data have to be encrypted before being uploaded to the cloud. However, encryption makes the performance of deduplication by the cloud server difficult because the ciphertext will be different even if the underlying plaintext is identical. In this paper, we build a centralized privacy-preserving duplicate removal storage system, which supports both file-level and block-level deduplication. In order to avoid the leakage of statistical information of data, Intel Software Guard Extensions (SGX) technology is utilized to protect the deduplication process on the cloud server. The results of the experimental analysis demonstrate that the new scheme can significantly improve the deduplication efficiency and enhance the security. It is envisioned that the duplicated removal system with privacy preservation will be of great use in the centralized storage environment of IoT.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1811: Pedestrian Dead Reckoning Based on Motion Mode Recognition Using a Smartphone Sensors doi: 10.3390/s18061811 Authors: Boyuan Wang Xuelin Liu Baoguo Yu Ruicai Jia Xingli Gan This paper presents a pedestrian dead reckoning (PDR) approach based on motion mode recognition using a smartphone. The motion mode consists of pedestrian movement state and phone pose. With the support vector machine (SVM) and the decision tree (DT), the arbitrary combinations of movement state and phone pose can be recognized successfully. In the traditional principal component analysis based (PCA-based) method, the obtained horizontal accelerations in one stride time interval cannot be guaranteed to be horizontal and the pedestrian’s direction vector will be influenced. To solve this problem, we propose a PCA-based method with global accelerations (PCA-GA) to infer pedestrian’s headings. Besides, based on the further analysis of phone poses, an ambiguity elimination method is also developed to calibrate the obtained headings. The results indicate that the recognition accuracy of the combinations of movement states and phone poses can be 92.4%. The 50% and 75% absolute estimation errors of pedestrian’s headings are 5.6° and 9.2°, respectively. This novel PCA-GA based method can achieve higher accuracy than traditional PCA-based method and heading offset method. The localization error can reduce to around 3.5 m in a trajectory of 164 m for different movement states and phone poses.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1807: Considerations about the Determination of the Depolarization Calibration Profile of a Two-Telescope Lidar and Its Implications for Volume Depolarization Ratio Retrieval Sensors doi: 10.3390/s18061807 Authors: Adolfo Comerón Alejandro Rodríguez-Gómez Michaël Sicard Rubén Barragán Constantino Muñoz-Porcar Francesc Rocadenbosch María José Granados-Muñoz We propose a new method for calculating the volume depolarization ratio of light backscattered by the atmosphere and a lidar system that employs an auxiliary telescope to detect the depolarized component. It takes into account the possible error in the positioning of the polarizer used in the auxiliary telescope. The theory of operation is presented and then applied to a few cases for which the actual position of the polarizer is estimated, and the improvement of the volume depolarization ratio in the molecular region is quantified. In comparison to the method used before, i.e., without correction, the agreement between the volume depolarization ratio with correction and the theoretical value in the molecular region is improved by a factor of 2–2.5.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-14
    Description: Sensors, Vol. 18, Pages 1926: A Smart Collaborative Routing Protocol for Reliable Data Diffusion in IoT Scenarios Sensors doi: 10.3390/s18061926 Authors: Zheng-Yang Ai Yu-Tong Zhou Fei Song It is knotty for current routing protocols to meet the needs of reliable data diffusion during the Internet of Things (IoT) deployments. Due to the random placement, limited resources and unattended features of existing sensor nodes, the wireless transmissions are easily exposed to unauthorized users, which becomes a vulnerable area for various malicious attacks, such as wormhole and Sybil attacks. However, the scheme based on geographic location is a suitable candidate to defend against them. This paper is inspired to propose a smart collaborative routing protocol, Geographic energy aware routing and Inspecting Node (GIN), for guaranteeing the reliability of data exchanging. The proposed protocol integrates the directed diffusion routing, Greedy Perimeter Stateless Routing (GPSR), and the inspecting node mechanism. We first discuss current wireless routing protocols from three diverse perspectives (improving transmission rate, shortening transmission range and reducing transmission consumption). Then, the details of GIN, including the model establishment and implementation processes, are presented by means of the theoretical analysis. Through leveraging the game theory, the inspecting node is elected to monitor the network behaviors. Thirdly, we evaluate the network performances, in terms of transmission delay, packet loss ratio, and throughput, between GIN and three traditional schemes (i.e., Flooding, GPSR, and GEAR). The simulation results illustrate that the proposed protocol is able to outperform the others.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-06
    Description: Materials, Vol. 11, Pages 955: E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control Materials doi: 10.3390/ma11060955 Authors: Bahareh Moradi Raul Fernández-García Ignacio Gil In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices’ description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than −30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-15
    Description: Materials, Vol. 11, Pages 1015: Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM Materials doi: 10.3390/ma11061015 Authors: Qi Shen Zhanqiang Liu Yang Hua Jinfu Zhao Woyun Lv Aziz Ul Hassan Mohsan Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K, and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-15
    Description: Materials, Vol. 11, Pages 1009: Health Degradation Monitoring and Early Fault Diagnosis of a Rolling Bearing Based on CEEMDAN and Improved MMSE Materials doi: 10.3390/ma11061009 Authors: Yong Lv Rui Yuan Tao Wang Hewenxuan Li Gangbing Song Rolling bearings play a crucial role in rotary machinery systems, and their operating state affects the entire mechanical system. In most cases, the fault of a rolling bearing can only be identified when it has developed to a certain degree. At that moment, there is already not much time for maintenance, and could cause serious damage to the entire mechanical system. This paper proposes a novel approach to health degradation monitoring and early fault diagnosis of rolling bearings based on a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved multivariate multiscale sample entropy (MMSE). The smoothed coarse graining process was proposed to improve the conventional MMSE. Numerical simulation results indicate that CEEMDAN can alleviate the mode mixing problem and enable accurate intrinsic mode functions (IMFs), and improved MMSE can reflect intrinsic dynamic characteristics of the rolling bearing more accurately. During application studies, rolling bearing signals are decomposed by CEEMDAN to obtain IMFs. Then improved MMSE values of effective IMFs are computed to accomplish health degradation monitoring of rolling bearings, aiming at identifying the early weak fault phase. Afterwards, CEEMDAN is performed to extract the fault characteristic frequency during the early weak fault phase. The experimental results indicate the proposed method can obtain a better performance than other techniques in objective analysis, which demonstrates the effectiveness of the proposed method in practical application. The theoretical derivations, numerical simulations, and application studies all confirmed that the proposed health degradation monitoring and early fault diagnosis approach is promising in the field of prognostic and fault diagnosis of rolling bearings.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...