ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: Sensors, Vol. 18, Pages 1813: An Overview of High-k Oxides on Hydrogenated-Diamond for Metal-Oxide-Semiconductor Capacitors and Field-Effect Transistors Sensors doi: 10.3390/s18061813 Authors: Jiangwei Liu Yasuo Koide Thanks to its excellent intrinsic properties, diamond is promising for applications of high-power electronic devices, ultraviolet detectors, biosensors, high-temperature tolerant gas sensors, etc. Here, an overview of high-k oxides on hydrogenated-diamond (H-diamond) for metal-oxide-semiconductor (MOS) capacitors and MOS field-effect transistors (MOSFETs) is demonstrated. Fabrication routines for the H-diamond MOS capacitors and MOSFETs, band configurations of oxide/H-diamond heterointerfaces, and electrical properties of the MOS and MOSFETs are summarized and discussed. High-k oxide insulators are deposited using atomic layer deposition (ALD) and sputtering deposition (SD) techniques. Electrical properties of the H-diamond MOS capacitors with high-k oxides of ALD-Al2O3, ALD-HfO2, ALD-HfO2/ALD-Al2O3 multilayer, SD-HfO2/ALD-HfO2 bilayer, SD-TiO2/ALD-Al2O3 bilayer, and ALD-TiO2/ALD-Al2O3 bilayer are discussed. Analyses for capacitance-voltage characteristics of them show that there are low fixed and trapped charge densities for the ALD-Al2O3/H-diamond and SD-HfO2/ALD-HfO2/H-diamond MOS capacitors. The k value of 27.2 for the ALD-TiO2/ALD-Al2O3 bilayer is larger than those of the other oxide insulators. Drain-source current versus voltage curves show distinct pitch-off and p-type channel characteristics for the ALD-Al2O3/H-diamond, SD-HfO2/ALD-HfO2/H-diamond, and ALD-TiO2/ALD-Al2O3/H-diamond MOSFETs. Understanding of fabrication routines and electrical properties for the high-k oxide/H-diamond MOS electronic devices is meaningful for the fabrication of high-performance H-diamond MOS capacitor and MOSFET gas sensors.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...