ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (36)
  • Chemical Engineering
  • Column liquid chromatography
  • Electron microscopy
  • Electronic structure and strongly correlated systems
  • Saccharomyces cerevisiae
  • pharmacokinetics
  • phosphorus
  • Science. 217(4554): 59-61.  (1)
  • Science. 230(4721): 78-82.  (1)
  • Science. 234(4773): 179-86.  (1)
  • Science. 236(4805): 1043-4.  (1)
  • Science. 237(4818): 992-8.  (1)
  • Science. 241(4872): 1489-92.  (1)
  • Science. 242(4881): 1028-35.  (1)
  • Science. 245(4924): 1358-65.  (1)
  • Science. 255(5048): 1130-2.  (1)
  • Science. 264(5164): 1427-33.  (1)
  • Science. 265(5172): 674-6.  (1)
  • Science. 265(5176): 1241-3.  (1)
  • Science. 265(5179): 1716-9.  (1)
  • Science. 270(5243): 1809-11.  (1)
  • Science. 272(5260): 408-11.  (1)
  • Science. 273(5274): 513-6.  (1)
  • Science. 274(5288): 774-7.  (1)
  • Science. 281(5377): 698-700.  (1)
  • Science. 283(5404): 996-8.  (1)
  • 25
Collection
  • Articles  (36)
Keywords
Journal
  • 1
    Publication Date: 2016-03-19
    Description: Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pakulska, Malgosia M -- Miersch, Shane -- Shoichet, Molly S -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):aac4750. doi: 10.1126/science.aac4750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989257" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Engineering ; Combinatorial Chemistry Techniques ; Delayed-Action Preparations/*chemistry ; Directed Molecular Evolution ; *Drug Design ; Humans ; Lactic Acid/*chemistry ; Microspheres ; Polyglycolic Acid/*chemistry ; Proteins/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-05
    Description: Fusion of intracellular transport vesicles requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18-family (SM) proteins. Membrane-bridging SNARE complexes are critical for fusion, but their spontaneous assembly is inefficient and may require SM proteins in vivo. We report x-ray structures of Vps33, the SM subunit of the yeast homotypic fusion and vacuole protein-sorting (HOPS) complex, bound to two individual SNAREs. The two SNAREs, one from each membrane, are held in the correct orientation and register for subsequent complex assembly. Vps33 and potentially other SM proteins could thus act as templates for generating partially zipped SNARE assembly intermediates. HOPS was essential to mediate SNARE complex assembly at physiological SNARE concentrations. Thus, Vps33 appears to catalyze SNARE complex assembly through specific SNARE motif recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727825/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727825/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Richard W -- Jeffrey, Philip D -- Zick, Michael -- Phillips, Ben P -- Wickner, William T -- Hughson, Frederick M -- GM071574/GM/NIGMS NIH HHS/ -- GM23377/GM/NIGMS NIH HHS/ -- R01 GM071574/GM/NIGMS NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1111-4. doi: 10.1126/science.aac7906.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. ; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. hughson@princeton.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339030" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Membrane Proteins/chemistry/metabolism ; Munc18 Proteins/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Qa-SNARE Proteins/*metabolism ; R-SNARE Proteins/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism/ultrastructure ; Synaptosomal-Associated Protein 25/chemistry/metabolism ; Vesicular Transport Proteins/chemistry/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-04
    Description: Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Felix H -- Ghaderi, Adel -- Fink, Gerald R -- Stephanopoulos, Gregory -- R01 GM035010/GM/NIGMS NIH HHS/ -- R01-GM035010/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):71-5. doi: 10.1126/science.1257859. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. Whitehead Institute for Biomedical Research, Cambridge, MA, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278607" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cation Transport Proteins/genetics ; Cell Culture Techniques ; Cell Membrane/metabolism ; Chemical Engineering ; *Drug Resistance, Fungal/genetics ; Ethanol/*metabolism/pharmacology ; Fermentation ; Genetic Engineering ; Glucose/metabolism ; Hydrogen-Ion Concentration ; Phosphates/*metabolism ; Potassium Compounds/*metabolism ; Proton Pumps/genetics ; Proton-Translocating ATPases/genetics ; Saccharomyces cerevisiae/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Up-Regulation ; Xylose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langer, Robert S -- Gura, Trisha -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1146. doi: 10.1126/science.346.6213.1146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trisha Gura is a freelance writer who lives in Boston. For more on life and careers visit www.sciencecareers.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430772" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology ; *Career Choice ; Chemical Engineering ; *Entrepreneurship ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-10
    Description: The last step in eukaryotic translational initiation involves the joining of the large and small subunits of the ribosome, with initiator transfer RNA (Met-tRNA(i)(Met)) positioned over the start codon of messenger RNA in the P site. This step is catalyzed by initiation factor eIF5B. We used recent advances in cryo-electron microscopy (cryo-EM) to determine a structure of the eIF5B initiation complex to 6.6 angstrom resolution from 〈3% of the population, comprising just 5143 particles. The structure reveals conformational changes in eIF5B, initiator tRNA, and the ribosome that provide insights into the role of eIF5B in translational initiation. The relatively high resolution obtained from such a small fraction of a heterogeneous sample suggests a general approach for characterizing the structure of other dynamic or transient biological complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Israel S -- Bai, Xiao-Chen -- Hussain, Tanweer -- Kelley, Ann C -- Lorsch, Jon R -- Ramakrishnan, V -- Scheres, Sjors H W -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):1240585. doi: 10.1126/science.1240585. Epub 2013 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24200810" target="_blank"〉PubMed〈/a〉
    Keywords: Analytic Sample Preparation Methods ; Cryoelectron Microscopy/methods ; Eukaryotic Initiation Factors/*chemistry ; Humans ; *Peptide Chain Initiation, Translational ; Protein Conformation ; RNA, Transfer, Met/chemistry ; Ribosomes/*chemistry ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savage, Phillip E -- New York, N.Y. -- Science. 2012 Nov 23;338(6110):1039-40. doi: 10.1126/science.1224310.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA. psavage@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23180853" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cell Culture Techniques ; Chemical Engineering ; Chlorophyta/*chemistry/growth & development ; *Hot Temperature ; *Hydrostatic Pressure ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-30
    Description: In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr(1) phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr(1), Ser(2), and Ser(5).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayer, Andreas -- Heidemann, Martin -- Lidschreiber, Michael -- Schreieck, Amelie -- Sun, Mai -- Hintermair, Corinna -- Kremmer, Elisabeth -- Eick, Dirk -- Cramer, Patrick -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1723-5. doi: 10.1126/science.1219651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745433" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Chromatin Immunoprecipitation ; HeLa Cells ; Humans ; Peptide Termination Factors/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; RNA Polymerase II/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Transcriptional Elongation Factors/metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-12
    Description: DNA topoisomerase II completely removes DNA intertwining, or catenation, between sister chromatids before they are segregated during cell division. How this occurs throughout the genome is poorly understood. We demonstrate that in yeast, centromeric plasmids undergo a dramatic change in their topology as the cells pass through mitosis. This change is characterized by positive supercoiling of the DNA and requires mitotic spindles and the condensin factor Smc2. When mitotic positive supercoiling occurs on decatenated DNA, it is rapidly relaxed by topoisomerase II. However, when positive supercoiling takes place in catenated plasmid, topoisomerase II activity is directed toward decatenation of the molecules before relaxation. Thus, a topological change on DNA drives topoisomerase II to decatenate molecules during mitosis, potentially driving the full decatenation of the genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, J -- Sen, N -- Martinez, V Lopez -- De Carandini, M E Monturus -- Schvartzman, J B -- Diffley, J F X -- Aragon, L -- MC_U120074328/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1328-32. doi: 10.1126/science.1201538.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK. Jon.Baxter@sussex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393545" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Chromosome Segregation ; DNA Replication ; DNA Topoisomerases, Type II/*metabolism ; DNA, Catenated/*chemistry/metabolism ; DNA, Fungal/*chemistry/metabolism ; DNA, Superhelical/*chemistry/metabolism ; Dimerization ; *Mitosis ; Nucleic Acid Conformation ; Plasmids ; Saccharomyces cerevisiae ; Spindle Apparatus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-11
    Description: It is not known whether evolution will usually be rapid enough to allow a species to adapt and persist in a deteriorating environment. We tracked the eco-evolutionary dynamics of metapopulations with a laboratory model system of yeast exposed to salt stress. Metapopulations experienced environmental deterioration at three different rates and their component populations were either unconnected or connected by local dispersal or by global dispersal. We found that adaptation was favored by gradual deterioration and local dispersal. After further abrupt deterioration, the frequency of evolutionary rescue depended on both the prior rate of deterioration and the rate of dispersal. Adaptation was surprisingly frequent and rapid in small peripheral populations. Thus, evolutionary dynamics affect both the persistence and the range of a species after environmental deterioration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Graham -- Gonzalez, Andrew -- New York, N.Y. -- Science. 2011 Jun 10;332(6035):1327-30. doi: 10.1126/science.1203105.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, Quebec H3A 1B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659606" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; *Biological Evolution ; Directed Molecular Evolution ; *Environment ; Models, Biological ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-06-27
    Description: Communication between organelles is an important feature of all eukaryotic cells. To uncover components involved in mitochondria/endoplasmic reticulum (ER) junctions, we screened for mutants that could be complemented by a synthetic protein designed to artificially tether the two organelles. We identified the Mmm1/Mdm10/Mdm12/Mdm34 complex as a molecular tether between ER and mitochondria. The tethering complex was composed of proteins resident of both ER and mitochondria. With the use of genome-wide mapping of genetic interactions, we showed that the components of the tethering complex were functionally connected to phospholipid biosynthesis and calcium-signaling genes. In mutant cells, phospholipid biosynthesis was impaired. The tethering complex localized to discrete foci, suggesting that discrete sites of close apposition between ER and mitochondria facilitate interorganelle calcium and phospholipid exchange.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kornmann, Benoit -- Currie, Erin -- Collins, Sean R -- Schuldiner, Maya -- Nunnari, Jodi -- Weissman, Jonathan S -- Walter, Peter -- R01 GM032384/GM/NIGMS NIH HHS/ -- R01 GM032384-27/GM/NIGMS NIH HHS/ -- R01 GM062942/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):477-81. doi: 10.1126/science.1175088. Epub 2009 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA. benoit.kornmann@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19556461" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Signaling/genetics ; Endoplasmic Reticulum/*physiology ; Membrane Proteins/*metabolism ; Mice ; Mitochondria/*physiology ; Mitochondrial Proteins/*metabolism ; Phospholipids/biosynthesis ; Recombinant Fusion Proteins/genetics/metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2008-05-31
    Description: Ferritins are the main iron storage proteins found in animals, plants, and bacteria. The capacity to store iron in ferritin is essential for life in mammals, but the mechanism by which cytosolic iron is delivered to ferritin is unknown. Human ferritins expressed in yeast contain little iron. Human poly (rC)-binding protein 1 (PCBP1) increased the amount of iron loaded into ferritin when expressed in yeast. PCBP1 bound to ferritin in vivo and bound iron and facilitated iron loading into ferritin in vitro. Depletion of PCBP1 in human cells inhibited ferritin iron loading and increased cytosolic iron pools. Thus, PCBP1 can function as a cytosolic iron chaperone in the delivery of iron to ferritin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2505357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2505357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Haifeng -- Bencze, Krisztina Z -- Stemmler, Timothy L -- Philpott, Caroline C -- R01 DK068139/DK/NIDDK NIH HHS/ -- R01 DK068139-01A1/DK/NIDDK NIH HHS/ -- Z01 DK054510-03/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 May 30;320(5880):1207-10. doi: 10.1126/science.1157643.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18511687" target="_blank"〉PubMed〈/a〉
    Keywords: Cytosol/metabolism ; Ferritins/metabolism ; Heterogeneous-Nuclear Ribonucleoproteins/genetics/*metabolism ; Humans ; Iron/metabolism ; Molecular Chaperones/genetics/*metabolism ; Protein Binding ; Recombinant Fusion Proteins/genetics/metabolism ; Saccharomyces cerevisiae ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-11-17
    Description: Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, David Yu -- Turberfield, Andrew J -- Yurke, Bernard -- Winfree, Erik -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computation and Neural Systems, California Institute of Technology, MC 136-93, 1200 East California Boulevard, Pasadena, CA91125, USA. dzhang@dna.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Chemical Engineering ; *Computers, Molecular ; DNA/*chemistry ; Entropy ; Equipment Design ; Feedback, Physiological ; Mice ; Nanotechnology ; Nucleic Acid Hybridization ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2006-06-10
    Description: Transport of metabolites across the mitochondrial inner membrane is highly selective, thereby maintaining the electrochemical proton gradient that functions as the main driving force for cellular adenosine triphosphate synthesis. Mitochondria import many preproteins via the presequence translocase of the inner membrane. However, the reconstituted Tim23 protein constitutes a pore remaining mainly in its open form, a state that would be deleterious in organello. We found that the intermembrane space domain of Tim50 induced the Tim23 channel to close. Presequences overcame this effect and activated the channel for translocation. Thus, the hydrophilic cis domain of Tim50 maintains the permeability barrier of mitochondria by closing the translocation pore in a presequence-regulated manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meinecke, Michael -- Wagner, Richard -- Kovermann, Peter -- Guiard, Bernard -- Mick, David U -- Hutu, Dana P -- Voos, Wolfgang -- Truscott, Kaye N -- Chacinska, Agnieszka -- Pfanner, Nikolaus -- Rehling, Peter -- New York, N.Y. -- Science. 2006 Jun 9;312(5779):1523-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysik, Universitat Osnabruck, FB Biologie/Chemie, D-49034 Osnabruck, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16763150" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane Permeability ; Liposomes ; Membrane Transport Proteins/metabolism ; Mitochondrial Membrane Transport Proteins/*metabolism ; Mitochondrial Membranes/*metabolism ; Protein Structure, Tertiary ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-25
    Description: Real-time fluorescence microscopy has emerged as a powerful tool for examining chromatin dynamics. The initial lesson is that much of the genome, particularly in yeast, is highly dynamic. Its movement within the interphase nucleus is correlated with metabolic activity. Nonetheless, the nucleus is an organelle with conserved rules of organization. Determining the distribution and regulation of mobile domains in interphase chromosomes, and characterizing sites of anchorage, will undoubtedly shed new light on the function of nuclear order.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gasser, Susan M -- New York, N.Y. -- Science. 2002 May 24;296(5572):1412-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland. susan.gasser@molbio.unige.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/physiology/*ultrastructure ; Centromere/physiology/ultrastructure ; Chromatin/*physiology/*ultrastructure ; Chromosomes/*physiology/ultrastructure ; DNA/genetics/metabolism ; Drosophila ; Gene Expression Regulation ; *Interphase ; Microscopy, Confocal ; Microscopy, Fluorescence ; Nuclear Envelope/metabolism/ultrastructure ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae ; Telomere/physiology/ultrastructure ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: Important human pathogens invade and harm simple organisms. What's more, these infections require many of the same bacterial genes needed to make mammals sick. These observations suggest that even though simple organisms aren't perfect models for complex hosts such as mammals, the basic mechanisms by which bacteria establish infections in the various organisms may be similar. As a result, the work may help microbiologists identify the host proteins involved in infections, thereby providing potential new targets for antibacterial drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, E -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2245-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11188717" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/*microbiology ; Bacteria/genetics/*pathogenicity ; Bacterial Infections/microbiology ; Bacterial Physiological Phenomena ; Bacterial Proteins/genetics/metabolism ; Caenorhabditis elegans/*microbiology ; Dictyostelium/*microbiology ; Drosophila/genetics/immunology/*microbiology ; Genes, Bacterial ; Immunity, Innate ; Plant Diseases/microbiology ; Proteins/*physiology ; Saccharomyces cerevisiae ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2001-09-05
    Description: The seven-subunit Arp2/3 complex choreographs the formation of branched actin networks at the leading edge of migrating cells. When activated by Wiskott-Aldrich Syndrome protein (WASp), the Arp2/3 complex initiates actin filament branches from the sides of existing filaments. Electron cryomicroscopy and three-dimensional reconstruction of Acanthamoeba castellanii and Saccharomyces cerevisiae Arp2/3 complexes bound to the WASp carboxy-terminal domain reveal asymmetric, oblate ellipsoids. Image analysis of actin branches indicates that the complex binds the side of the mother filament, and Arp2 and Arp3 (for actin-related protein) are the first two subunits of the daughter filament. Comparison to the actin-free, WASp-activated complexes suggests that branch initiation involves large-scale structural rearrangements within Arp2/3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkmann, N -- Amann, K J -- Stoilova-McPhie, S -- Egile, C -- Winter, D C -- Hazelwood, L -- Heuser, J E -- Li, R -- Pollard, T D -- Hanein, D -- New York, N.Y. -- Science. 2001 Sep 28;293(5539):2456-9. Epub 2001 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533442" target="_blank"〉PubMed〈/a〉
    Keywords: Acanthamoeba ; Actin Cytoskeleton/*metabolism/ultrastructure ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*chemistry/*metabolism ; Animals ; Cryoelectron Microscopy ; *Cytoskeletal Proteins ; Fourier Analysis ; Image Processing, Computer-Assisted ; Microscopy, Electron ; Models, Molecular ; Proteins/metabolism ; Saccharomyces cerevisiae ; Wiskott-Aldrich Syndrome Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sikorski, R -- Peters, R -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1868.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10515792" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Genetic Techniques ; Protein Binding ; Proteins/*isolation & purification/metabolism ; Recombinant Fusion Proteins/metabolism ; Ribonucleoproteins, Small Nuclear/metabolism ; Saccharomyces cerevisiae ; Sequence Analysis/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1999-02-12
    Description: The ETR1 receptor from Arabidopsis binds the gaseous hormone ethylene. A copper ion associated with the ethylene-binding domain is required for high-affinity ethylene-binding activity. A missense mutation in the domain that renders the plant insensitive to ethylene eliminates both ethylene binding and the interaction of copper with the receptor. A sequence from the genome of the cyanobacterium Synechocystis sp. strain 6803 that shows homology to the ethylene-binding domain of ETR1 encodes a functional ethylene-binding protein. On the basis of sequence conservation between the Arabidopsis and the cyanobacterial ethylene-binding domains and on in vitro mutagenesis of ETR1, a structural model for this copper-based ethylene sensor domain is presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, F I -- Esch, J J -- Hall, A E -- Binder, B M -- Schaller, G E -- Bleecker, A B -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):996-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Arabidopsis/genetics/*metabolism ; Bacterial Proteins/chemistry/genetics ; Binding Sites ; Conserved Sequence ; Copper/analysis/*metabolism ; Copper Sulfate/pharmacology ; Cyanobacteria/genetics/metabolism ; Dimerization ; Ethylenes/*metabolism ; Models, Molecular ; Mutagenesis ; Open Reading Frames ; Plant Proteins/chemistry/genetics/isolation & purification/*metabolism ; Receptors, Cell Surface/chemistry/genetics/isolation & purification/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae ; Silver/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-31
    Description: Protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus involves specific uptake into coat protein complex II (COPII)-coated vesicles of secretory and of vesicle targeting (v-SNARE) proteins. Here, two ER to Golgi v-SNAREs, Bet1p and Bos1p, were shown to interact specifically with Sar1p, Sec23p, and Sec24p, components of the COPII coat, in a guanine nucleotide-dependent fashion. Other v-SNAREs, Sec22p and Ykt6p, might interact more weakly with the COPII coat or interact indirectly by binding to Bet1p or Bos1p. The data suggest that transmembrane proteins can be taken up into COPII vesicles by direct interactions with the coat proteins and may play a structural role in the assembly of the COPII coat complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Springer, S -- Schekman, R -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):698-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685263" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; COP-Coated Vesicles ; Carrier Proteins/*metabolism ; Endoplasmic Reticulum/*metabolism ; Fungal Proteins/*metabolism ; GTP Phosphohydrolases/metabolism ; GTP-Binding Proteins/*metabolism ; GTPase-Activating Proteins ; Golgi Apparatus/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Guanylyl Imidodiphosphate/metabolism/pharmacology ; Membrane Proteins/*metabolism ; *Membrane Transport Proteins ; *Monomeric GTP-Binding Proteins ; Qb-SNARE Proteins ; Qc-SNARE Proteins ; R-SNARE Proteins ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1996-07-26
    Description: The SWI/SNF complex participates in the restructuring of chromatin for transcription. The function of the yeast SWI/SNF complex in the remodeling of a nucleosome array has now been analyzed in vitro. Binding of the purified SWI/SNF complex to a nucleosome array disrupted multiple nucleosomes in an adenosine triphosphate-dependent reaction. However, removal of SWI/SNF left a deoxyribonuclease I-hypersensitive site specifically at a nucleosome that was bound by derivatives of the transcription factor Gal4p. Analysis of individual nucleosomes revealed that the SWI/SNF complex catalyzed eviction of histones from the Gal4-bound nucleosomes. Thus, the transient action of the SWI/SNF complex facilitated irreversible disruption of transcription factor-bound nucleosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Owen-Hughes, T -- Utley, R T -- Cote, J -- Peterson, C L -- Workman, J L -- GM47867/GM/NIGMS NIH HHS/ -- R01 GM049650/GM/NIGMS NIH HHS/ -- R37 GM049650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology and Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802-4500, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662543" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases ; Adenosine Triphosphate/metabolism ; Base Sequence ; Binding Sites ; DNA, Fungal/metabolism ; DNA-Binding Proteins/*metabolism ; Deoxyribonuclease I/metabolism ; Fungal Proteins/*metabolism ; Histones/metabolism ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleosomes/*metabolism/ultrastructure ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-11-01
    Description: The neurotransmitter functions of nitric oxide are dependent on dynamic regulation of its biosynthetic enzyme, neuronal nitric oxide synthase (nNOS). By means of a yeast two-hybrid screen, a 10-kilodalton protein was identified that physically interacts with and inhibits the activity of nNOS. This inhibitor, designated PIN, appears to be one of the most conserved proteins in nature, showing 92 percent amino acid identity with the nematode and rat homologs. Binding of PIN destabilizes the nNOS dimer, a conformation necessary for activity. These results suggest that PIN may regulate numerous biological processes through its effects on nitric oxide synthase activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaffrey, S R -- Snyder, S H -- DA00074/DA/NIDA NIH HHS/ -- GM-07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):774-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864115" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism/pharmacology ; Cell Line ; Cyclic GMP/metabolism ; Dimerization ; *Drosophila Proteins ; Dyneins ; Enzyme Inhibitors/chemistry/*metabolism/pharmacology ; Humans ; Molecular Sequence Data ; Molecular Weight ; Neurons/enzymology ; Nitric Oxide Synthase/*antagonists & inhibitors/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism/pharmacology ; Saccharomyces cerevisiae ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1996-04-19
    Description: Trapoxin is a microbially derived cyclotetrapeptide that inhibits histone deacetylation in vivo and causes mammalian cells to arrest in the cell cycle. A trapoxin affinity matrix was used to isolate two nuclear proteins that copurified with histone deacetylase activity. Both proteins were identified by peptide microsequencing, and a complementary DNA encoding the histone deacetylase catalytic subunit (HD1) was cloned from a human Jurkat T cell library. As the predicted protein is very similar to the yeast transcriptional regulator Rpd3p, these results support a role for histone deacetylase as a key regulator of eukaryotic transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taunton, J -- Hassig, C A -- Schreiber, S L -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602529" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents/metabolism/pharmacology ; Cattle ; Cell Cycle/drug effects ; Cloning, Molecular ; Enzyme Inhibitors/metabolism/pharmacology ; Fungal Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation ; Histone Deacetylase Inhibitors ; Histone Deacetylases/chemistry/genetics/isolation & purification/*metabolism ; Humans ; Hydroxamic Acids/metabolism/pharmacology ; Molecular Sequence Data ; Molecular Weight ; *Peptides ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins ; T-Lymphocytes/enzymology ; Transcription Factors/chemistry/genetics/isolation & purification/*metabolism ; *Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-12-15
    Description: Mutations in the ETR1 gene of Arabidopsis thaliana confer insensitivity to ethylene, which indicates a role for the gene product in ethylene signal transduction. Saturable binding sites for [14C]ethylene were detected in transgenic yeast expressing the ETR1 protein, whereas control yeast lacking ETR1 showed no detectable ethylene binding. Yeast expressing a mutant form of ETR1 (etr1-1) also showed no detectable ethylene binding, which provides an explanation for the ethylene-insensitive phenotype observed in plants carrying this mutation. Expression of truncated forms of ETR1 in yeast provided evidence that the amino-terminal hydrophobic domain of the protein is the site of ethylene binding. It was concluded from these results that ETR1 acts as an ethylene receptor in Arabidopsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaller, G E -- Bleecker, A B -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1809-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Wisconsin, Madison 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525372" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Binding Sites ; Cloning, Molecular ; Ethylenes/*metabolism ; Genes, Plant ; Mutagenesis, Site-Directed ; Peptide Fragments/genetics/metabolism ; Plant Proteins/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Proteins/genetics/metabolism ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1994-06-03
    Description: Multi-wavelength anomalous diffraction (MAD) has been used to determine the structure of the regulatory enzyme of de novo synthesis of purine nucleotides, glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase, from Bacillus subtilis. This allosteric enzyme, a 200-kilodalton tetramer, is subject to end product regulation by purine nucleotides. The metalloenzyme from B. subtilis is a paradigm for the higher eukaryotic enzymes, which have been refractory to isolation in stable form. The two folding domains of the polypeptide are correlated with functional domains for glutamine binding and for transfer of ammonia to the substrate PRPP. Eight molecules of the feedback inhibitor adenosine monophosphate (AMP) are bound to the tetrameric enzyme in two types of binding sites: the PRPP catalytic site of each subunit and an unusual regulatory site that is immediately adjacent to each active site but is between subunits. An oxygen-sensitive [4Fe-4S] cluster in each subunit is proposed to regulate protein turnover in vivo and is distant from the catalytic site. Oxygen sensitivity of the cluster is diminished by AMP, which blocks a channel through the protein to the cluster. The structure is representative of both glutamine amidotransferases and phosphoribosyltransferases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J L -- Zaluzec, E J -- Wery, J P -- Niu, L -- Switzer, R L -- Zalkin, H -- Satow, Y -- DK-42303/DK/NIDDK NIH HHS/ -- GM-24658/GM/NIGMS NIH HHS/ -- R37 DK042303/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1427-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197456" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Allosteric Regulation ; Amidophosphoribosyltransferase/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Bacillus subtilis/*enzymology ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Oxygen/pharmacology ; Protein Folding ; Protein Structure, Secondary ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1994-07-29
    Description: Transforming growth factor-beta (TGF-beta) family members bind to receptors that consist of heteromeric serine-threonine kinase subunits (type I and type II). In a yeast genetic screen, the immunophilin FKBP-12, a target of the macrolides FK506 and rapamycin, interacted with the type I receptor for TGF-beta and with other type I receptors. Deletion, point mutation, and co-immunoprecipitation studies further demonstrated the specificity of the interaction. Excess FK506 competed with type I receptors for binding to FKBP-12, which suggests that these receptors share or overlap the macrolide binding site on FKBP-12, and therefore they may represent its natural ligand. The specific interaction between the type I receptors and FKBP-12 suggests that FKBP-12 may play a role in type I receptor-mediated signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, T -- Donahoe, P K -- Zervos, A S -- CA17393/CA/NCI NIH HHS/ -- NICHD P-30 HD28138/HD/NICHD NIH HHS/ -- NICHD P-32 HD07396/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1994 Jul 29;265(5172):674-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7518616" target="_blank"〉PubMed〈/a〉
    Keywords: Binding, Competitive ; Carrier Proteins/*metabolism ; Heat-Shock Proteins/*metabolism ; Point Mutation ; Precipitin Tests ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Transforming Growth Factor beta/*metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae ; Tacrolimus/metabolism ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1994-09-16
    Description: Intracellular signaling from receptor tyrosine kinases in mammalian cells results in activation of a signal cascade that includes the guanine nucleotide-binding protein Ras and the protein kinases Raf, MEK [mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) kinase], and MAPK. MAPK activation that is dependent on the coupling of Ras and Raf was reconstituted in yeast. Yeast genes were isolated that, when overexpressed, enhanced the function of Raf. One of them is identical to BMH1, which encodes a protein similar to members of the mammalian 14-3-3 family. Bacterially synthesized mammalian 14-3-3 protein stimulated the activity of Raf prepared from yeast cells expressing c-Raf-1. Thus, the 14-3-3 protein may participate in or be required for activation of Raf.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irie, K -- Gotoh, Y -- Yashar, B M -- Errede, B -- Nishida, E -- Matsumoto, K -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1716-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Faculty of Science, Nagoya University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085159" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Enzyme Activation ; Fungal Proteins/genetics/*metabolism ; GTP-Binding Proteins/genetics/metabolism ; Molecular Sequence Data ; Nerve Tissue Proteins/genetics/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Proto-Oncogene Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins c-raf ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae ; *Saccharomyces cerevisiae Proteins ; *Tyrosine 3-Monooxygenase ; *ras Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-26
    Description: The RAD51 gene of Saccharomyces cerevisiae is required for genetic recombination and DNA double-strand break repair. Here it is demonstrated that RAD51 protein pairs circular viral single-stranded DNA from phi X 174 or M13 with its respective homologous linear double-stranded form. The product of synapsis between these DNA partners is further processed by RAD51 to yield nicked circular duplex DNA, which indicates that RAD51 can catalyze strand exchange. The pairing and strand exchange reaction requires adenosine triphosphate, a result consistent with the presence of a DNA-dependent adenosine triphosphatase activity in RAD51 protein. Thus, RAD51 is a eukaryotic recombination protein that can catalyze the strand exchange reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sung, P -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1241-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston 77555-1061.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066464" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Bacteriophage M13 ; Bacteriophage phi X 174 ; Base Composition ; Catalysis ; DNA, Circular/*metabolism ; DNA, Single-Stranded/*metabolism ; DNA, Viral/*metabolism ; DNA-Binding Proteins/*metabolism ; Fungal Proteins/*metabolism ; Rad51 Recombinase ; Replication Protein A ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-02-28
    Description: Transcription factor IID (TFIID) recognizes the TATA element of promoters transcribed by RNA polymerase II (RNAPII) and serves as the base for subsequent association by other general transcription factors and RNAPII. The carboxyl-terminal domain of TFIID is highly conserved and contains an imperfect repetition of a 60-amino acid sequence. These repeats are separated by a region rich in basic amino acids. Mutagenesis of the lysines in this region resulted in a conditioned phenotype in vivo, and the mutant proteins were defective for interactions with transcription factor IIA in vitro. Binding of TFIID to DNA was unaffected. These results suggest that the basic domain of TFIID is important for protein-protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buratowski, S -- Zhou, H -- R29-GM46498/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 28;255(5048):1130-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Fungal Proteins/genetics/metabolism ; Humans ; In Vitro Techniques ; Macromolecular Substances ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA Polymerase II/metabolism ; Saccharomyces cerevisiae ; Transcription Factor TFIIA ; Transcription Factor TFIID ; Transcription Factors/*genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-09-22
    Description: Yeast mutants deficient in the clathrin heavy chain secrete a precursor form of the alpha-factor, a peptide-mating pheromone. Analysis of this defect indicates that the endoprotease Kex2p, which is responsible for initiating proteolytic maturation of the alpha-factor precursor in the Golgi apparatus, is unexpectedly present at the plasma membrane in mutant cells. This result suggest that clathrin is required for the retention of Kex2p in the Golgi apparatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payne, G S -- Schekman, R -- GM 36881/GM/NIGMS NIH HHS/ -- GM 39040/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 22;245(4924):1358-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, UCLA School of Medicine 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2675311" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Compartmentation ; Clathrin/*physiology ; Golgi Apparatus/*physiology ; Intracellular Membranes/*physiology ; Membrane Proteins/*physiology ; Peptide Hydrolases/metabolism ; Peptides/metabolism ; Protein Precursors/metabolism ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1988-09-16
    Description: In the proposed "zinc finger" DNA-binding motif, each repeat unit binds a zinc metal ion through invariant Cys and His residues and this drives the folding of each 30-residue unit into an independent nucleic acid-binding domain. To obtain structural information, we synthesized single and double zinc finger peptides from the yeast transcription activator ADR1, and assessed the metal-binding and DNA-binding properties of these peptides, as well as the solution structure of the metal-stabilized domains, with the use of a variety of spectroscopic techniques. A single zinc finger can exist as an independent structure sufficient for zinc-dependent DNA binding. An experimentally determined model of the single finger is proposed that is consistent with circular dichroism, one- and two-dimensional nuclear magnetic resonance, and visual spectroscopy of the single-finger peptide reconstituted in the presence of zinc.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parraga, G -- Horvath, S J -- Eisen, A -- Taylor, W E -- Hood, L -- Young, E T -- Klevit, R E -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1489-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3047872" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; DNA Mutational Analysis ; *DNA-Binding Proteins ; Magnetic Resonance Spectroscopy ; Metalloproteins ; Protein Conformation ; Saccharomyces cerevisiae ; Structure-Activity Relationship ; *Transcription Factors ; Zinc/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-18
    Description: Splicing of nuclear precursor messenger RNA (pre-mRNA) occurs on a large ribonucleoprotein complex, the spliceosome. Several small nuclear ribonucleoproteins (snRNP's) are subunits of this complex that assembles on the pre-mRNA. Although the U1 snRNP is known to recognize the 5' splice site, its roles in spliceosome formation and splice site alignment have been unclear. A new affinity purification method for the spliceosome is described which has provided insight into the very early stages of spliceosome formation in a yeast in vitro splicing system. Surprisingly, the U1 snRNP initially recognizes sequences at or near both splice junctions in the intron. This interaction must occur before the other snRNP's (U2, U4, U5, and U6) can join the complex. The results suggest that interaction of the two splice site regions occurs at an early stage of spliceosome formation and is probably mediated by U1 snRNP and perhaps other factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruby, S W -- Abelson, J -- GM32637/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 18;242(4881):1028-35.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2973660" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/genetics ; Adenosine Triphosphate/metabolism ; Cell-Free System ; DNA Mutational Analysis ; Macromolecular Substances ; Protein Binding ; *RNA Splicing ; RNA, Messenger/*physiology ; Ribonucleoproteins/*physiology ; Ribonucleoproteins, Small Nuclear ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-08-28
    Description: Tandem mass spectrometry can be used to solve a number of protein structural problems that are not amenable to conventional methods for amino acid sequencing. Typical problems that use this approach involve characterization of peptides with blocked amino termini or peptides that have been otherwise posttranslationally processed, such as, by phosphorylation or sulfation. The structure and homogeneity of synthetic peptides can also be evaluated. Since peptides can be selectively characterized in the presence of other peptides or contaminants, the need for extensive purification is reduced or eliminated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biemann, K -- Scoble, H A -- GM05472/GM/NIGMS NIH HHS/ -- RR00317/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1987 Aug 28;237(4818):992-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3303336" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Amino Acyl-tRNA Synthetases ; Escherichia coli ; Humans ; *Mass Spectrometry ; Phosphorylation ; Protein Processing, Post-Translational ; Proteins ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-05-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, F -- New York, N.Y. -- Science. 1987 May 29;236(4805):1043-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3554513" target="_blank"〉PubMed〈/a〉
    Keywords: Dictyostelium/genetics ; Muscles/physiology ; Mutation ; Myosins/genetics/*physiology ; Phenotype ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-10-10
    Description: When a chimeric gene encoding a ubiquitin-beta-galactosidase fusion protein is expressed in the yeast Saccharomyces cerevisiae, ubiquitin is cleaved off the nascent fusion protein, yielding a deubiquitinated beta-galactosidase (beta gal). With one exception, this cleavage takes place regardless of the nature of the amino acid residue of beta gal at the ubiquitin-beta gal junction, thereby making it possible to expose different residues at the amino-termini of the otherwise identical beta gal proteins. The beta gal proteins thus designed have strikingly different half-lives in vivo, from more than 20 hours to less than 3 minutes, depending on the nature of the amino acid at the amino-terminus of beta gal. The set of individual amino acids can thus be ordered with respect to the half-lives that they confer on beta gal when present at its amino-terminus (the "N-end rule"). The currently known amino-terminal residues in long-lived, noncompartmentalized intracellular proteins from both prokaryotes and eukaryotes belong exclusively to the stabilizing class as predicted by the N-end rule. The function of the previously described posttranslational addition of single amino acids to protein amino-termini may also be accounted for by the N-end rule. Thus the recognition of an amino-terminal residue in a protein may mediate both the metabolic stability of the protein and the potential for regulation of its stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bachmair, A -- Finley, D -- Varshavsky, A -- GM31530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1986 Oct 10;234(4773):179-86.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3018930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Escherichia coli ; Half-Life ; Methionine/metabolism ; Models, Biological ; Protein Processing, Post-Translational ; Proteins/*metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae ; Ubiquitins/metabolism ; beta-Galactosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1985-10-04
    Description: A model was developed for the structure of p21, the protein with a molecular weight of 21,000 that is produced by the ras genes. This model predicts that p21 consists of a central core of beta-sheet structure, connected by loops and alpha helices. Four of these loops comprise the guanine nucleotide binding site. The phosphoryl binding region is made up of amino acid sequences from 10 to 16 and from 57 to 63 of p21. The latter sequence may contain a site for magnesium binding. Amino acids defining guanine specificity are Asn-116 and Asp-119, and sequences around amino acid 145 may contribute to guanine binding. The model makes it possible to visualize how oncogenic mutations of p21 affect interaction with guanine nucleotides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCormick, F -- Clark, B F -- la Cour, T F -- Kjeldgaard, M -- Norskov-Lauritsen, L -- Nyborg, J -- New York, N.Y. -- Science. 1985 Oct 4;230(4721):78-82.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3898366" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/analysis ; Animals ; *Aspartate Carbamoyltransferase ; Base Sequence ; Binding Sites ; *Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) ; Cattle ; *Dihydroorotase ; Escherichia coli ; Guanine Nucleotides/metabolism ; Humans ; Macromolecular Substances ; Magnesium/metabolism ; Membrane Proteins/analysis ; Models, Chemical ; *Multienzyme Complexes ; Mutation ; *Oncogenes ; Peptide Elongation Factor Tu ; Peptide Elongation Factors/analysis ; Protein Conformation ; Proteins/*analysis ; RNA, Transfer, Amino Acyl/metabolism ; Saccharomyces cerevisiae ; Transducin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1982-07-02
    Description: Liposomes were used to deliver ribosomal RNA's from the different organisms into cultivated mouse plasmacytoma cells. Ribosomal RNA from Escherichia coli was degraded intracellularly within 1 hour, whereas mouse and yeast ribosomal RNA's were degraded more slowly. This indicates that cells can discriminated between different ribosomal RNA's.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lavelle, D -- Ostro, M J -- Giacomoni, D -- GM 27935/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1982 Jul 2;217(4554):59-61.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6178157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Escherichia coli ; Kinetics ; *Liposomes ; Mice ; Molecular Weight ; Neoplasms, Experimental/metabolism ; Plasmacytoma/*metabolism ; RNA, Bacterial/metabolism ; RNA, Ribosomal/*metabolism ; Saccharomyces cerevisiae ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...