ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7,046)
  • MDPI Publishing  (7,046)
  • American Association for the Advancement of Science
  • American Institute of Physics (AIP)
  • Water  (3,874)
  • Entropy  (3,172)
  • 125281
  • 6431
Collection
  • Articles  (7,046)
Publisher
Years
  • 1
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 969: Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales Water doi: 10.3390/w10080969 Authors: Meizhao Lv Hui Lu Kun Yang Zhongfeng Xu Meixia Lv Xiaomeng Huang The current evaluations of global land data assimilation system (GLDAS) runoff were generally limited to the observation-rich areas. At the global and hemispheric scales, we assessed different runoff components performance of GLDAS (1.0 and 2.1) using the University of New Hampshire and Global Runoff Data Centre (UNH-GRDC) dataset. The results suggest that GLDAS simulations show considerable uncertainties, particularly in partition of surface and subsurface runoffs, in snowmelt runoff modeling, and in capturing the northern peak time. GLDAS1.0-CLM (common land model) produced more surface runoff almost globally; GLDAS-Noah generated more surface runoff over the northern middle-high latitudes and more subsurface runoff in the remaining areas; while the partition in GLDAS1.0-VIC (variable infiltration capacity) is almost opposite to that in Noah. Comparing to GLDAS1.0-Noah, GLDAS2.1-Noah improved the premature snow-melting tendency, but its snowmelt-runoff peak magnitude was excessively high in June and July. The discrepancies in northern primary peak times among precipitation and runoff is partly caused by the combination of rainfall and melting-snow over high-latitude, as well as the very different temporal–spatial distributions for snowmelt runoff simulated by GLDAS models. This paper can provide valuable guidance for GLDAS users, and contribute to the further improvement of hydrological parameterized schemes.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 550: Information Geometry of Nonlinear Stochastic Systems Entropy doi: 10.3390/e20080550 Authors: Rainer Hollerbach Donovan Dimanche Eun-jin Kim We elucidate the effect of different deterministic nonlinear forces on geometric structure of stochastic processes by investigating the transient relaxation of initial PDFs of a stochastic variable x under forces proportional to -xn (n=3,5,7) and different strength D of δ-correlated stochastic noise. We identify the three main stages consisting of nondiffusive evolution, quasi-linear Gaussian evolution and settling into stationary PDFs. The strength of stochastic noise is shown to play a crucial role in determining these timescales as well as the peak amplitude and width of PDFs. From time-evolution of PDFs, we compute the rate of information change for a given initial PDF and uniquely determine the information length L(t) as a function of time that represents the number of different statistical states that a system evolves through in time. We identify a robust geodesic (where the information changes at a constant rate) in the initial stage, and map out geometric structure of an attractor as L(t→∞)∝μm, where μ is the position of an initial Gaussian PDF. The scaling exponent m increases with n, and also varies with D (although to a lesser extent). Our results highlight ubiquitous power-laws and multi-scalings of information geometry due to nonlinear interaction.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 553: Hierarchical Structure of Generalized Thermodynamic and Informational Entropy Entropy doi: 10.3390/e20080553 Authors: Pierfrancesco Palazzo The present research aimed at discussing the thermodynamic and informational aspects of entropy concept to propose a unitary perspective of its definitions as an inherent property of any system in any state. The dualism and the relation between physical nature of information and the informational content of physical states of matter and phenomena play a fundamental role in the description of multi-scale systems characterized by hierarchical configurations. A method is proposed to generalize thermodynamic and informational entropy property and characterize the hierarchical structure of its canonical definition at macroscopic and microscopic levels of a system described in the domain of classical and quantum physics. The conceptual schema is based on dualisms and symmetries inherent to the geometric and kinematic configurations and interactions occurring in many-particle and few-particle thermodynamic systems. The hierarchical configuration of particles and sub-particles, representing the constitutive elements of physical systems, breaks down into levels characterized by particle masses subdivision, implying positions and velocities degrees of freedom multiplication. This hierarchy accommodates the allocation of phenomena and processes from higher to lower levels in the respect of the equipartition theorem of energy. However, the opposite and reversible process, from lower to higher level, is impossible by virtue of the Second Law, expressed as impossibility of Perpetual Motion Machine of the Second Kind (PMM2) remaining valid at all hierarchical levels, and the non-existence of Maxwell’s demon. Based on the generalized definition of entropy property, the hierarchical structure of entropy contribution and production balance, determined by degrees of freedom and constraints of systems configuration, is established. Moreover, as a consequence of the Second Law, the non-equipartition theorem of entropy is enunciated, which would be complementary to the equipartition theorem of energy derived from the First Law.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    MDPI Publishing
    In: Entropy
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 552: The Gibbs Paradox Entropy doi: 10.3390/e20080552 Authors: Simon Saunders The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics. They have a variety of answers, some restricted to quantum theory (there is no classical solution), some to classical theory (the quantum case is different). The solution offered here applies to both in equal measure, and is based on the concept of particle indistinguishability (in the classical case, Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations. ‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a mathematically convenient, but physically muddled, fiction.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 549: Entropy-Based Feature Extraction for Electromagnetic Discharges Classification in High-Voltage Power Generation Entropy doi: 10.3390/e20080549 Authors: Imene Mitiche Gordon Morison Alan Nesbitt Brian G. Stewart Philip Boreham This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-26
    Description: Water, Vol. 10, Pages 981: Scenario-Based Economic Impact Analysis for Bridge Closures Due to Flooding: A Case Study of North Gyeongsang Province, South Korea Water doi: 10.3390/w10080981 Authors: Byungil Kim Sha Chul Shin Du Yon Kim Flooding has the ability to severely reduce the capacity of a transportation network. The closure of even a single bridge, which often acts as a critical link in transportation networks, can have a severe impact on the entire network. This impact can lead to significant economic costs resulting from increased travel distances for drivers. Despite the significance of these costs, however, notably few studies have been conducted to determine the societal economic cost that would be incurred due to bridge closures. One possible reason for the lack of studies investigating bridge closures due to flooding could stem from the difficultly in collecting data. To address this issue, the methodology presented in this paper uses modeling and data resources that are available for major cities in most developed countries, including those in South Korea. We evaluate the economic impact of the bridge closures using the new administrative capital of North Gyeongsang Province, South Korea as a case study. Scenarios for the closure of bridges are derived from channel surveys and hydraulic analyses. These methods are used to overcome a lack of adequate data on historical floods in the new city. Traffic is forecasted to estimate the number of road users that would be forced to take detours due to inundated bridges. Contrasting travel distances when bridges are and are not operational, economic costs incurred by bridge closures due to flooding are estimated. The results indicated that bridge closures would result in an economic cost of 1563 USD to 44,180 USD per day, depending on how many bridges are closed and how many people are living in the new city. The estimates from this study will act as guidelines for identifying cost-effective mitigation and preparedness strategies aimed at reducing the frequency and impact of bridge closures due to flooding.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-26
    Description: Water, Vol. 10, Pages 972: Microbial Function and Hydrochemistry within a Stratified Anchialine Sinkhole: A Window into Coastal Aquifer Interactions Water doi: 10.3390/w10080972 Authors: Madison C. Davis James R. Garey Anchialine sinkholes provide insight into coastal aquifer systems and coastal mixing processes. Aquifer microbial community function is usually inferred from hydrochemical information, but there are few direct studies of microbial communities in the Floridan Aquifer. Hospital Hole is a 43 m-deep stratified sinkhole under the Weeki Wachee River, FL, with three distinct brackish layers: a hypoxic layer, a chemocline and a sulfidic anoxic layer. Illumina sequencing and bioinformatic tools were used to reconstruct metabolic functions and interactions of microbial communities in each layer. Each layer appears to originate from different parts of the coastal mixing zone and has a distinct microbial community with unique functions, which are influenced by the respective hydrochemistry. Sulfide oxidation and nitrate reduction are the most abundant functions. Syntrophy between methane oxidizers, methanogens and sulfate reducers is present. Similarities between the hydrochemistry and potential connectivity of Hospital Hole and the Floridan Aquifer coastal mixing zone suggest that microbial communities of Hospital Hole could be a surrogate for the coastal mixing zone of the aquifer in the absence of direct studies. Understanding how groundwater microbial communities react to saltwater intrusion and nutrient flux will be useful in predicting how coastal aquifer regions might react to anthropogenic change.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-27
    Description: Entropy, Vol. 20, Pages 555: Quantum Games with Unawareness Entropy doi: 10.3390/e20080555 Authors: Piotr Frąckiewicz Games with unawareness model strategic situations in which players’ perceptions about the game are limited. They take into account the fact that the players may be unaware of some of the strategies available to them or their opponents as well as the players may have a restricted view about the number of players participating in the game. The aim of the paper is to introduce this notion into theory of quantum games. We focus on games in strategic form and Eisert–Wilkens–Lewenstein type quantum games. It is shown that limiting a player’s perception in the game enriches the structure of the quantum game substantially and allows the players to obtain results that are unattainable when the game is played in a quantum way by means of previously used methods.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 989: Computational Study of a Vertical Plunging Jet into Still Water Water doi: 10.3390/w10080989 Authors: Zegao Yin Qianqian Jia Yuan Li Yanxu Wang Dejun Yang The behavior of a vertical plunging jet was numerically investigated using the coupled Level Set and Volume of Fluid method. The computational results were in good agreement with the experimental results reported in the related literature. Vertical plunging jet characteristics, including the liquid velocity field, air void fraction, and turbulence kinetic energy, were explored by varying the distance between the nozzle exit and the still water level. It was found that the velocity at the nozzle exit plays an unimportant role in the shape and size of ascending bubbles. A modified prediction equation between the centerline velocity ratio and the axial distance ratio was developed using the data of the coupled Level Set and Volume of Fluid method, and it showed a better predicting ability than the Level Set and Mixture methods. The characteristics of turbulence kinetic energy, including its maximum value location and its radial and vertical distribution, were also compared with that of submerged jets.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 984: Vulnerability Analysis of the Venetian Littoral and Adopted Mitigation Strategy Water doi: 10.3390/w10080984 Authors: Piero Ruol Luca Martinelli Chiara Favaretto This paper discusses the key aspects of the recent Coastal Plan of the Veneto Region (IT). Its aim is to propose a single mitigation strategy for coastal erosion that is valid for the whole Veneto Region, and possibly elsewhere, as well as a method to assign a priority level to any action. The suggested mitigation action against erosion depends on urbanization level, beach width, as well as cross-shore and long-shore sediment transport. The criterion used to give a priority level to mitigation actions is based on a vulnerability index that takes into account erosive tendency, existing coastal flooding hazards, coast value, environmental relevance, tourist pressure, urbanization level, the presence of production activities, and cultural heritage. A sample case featuring the littoral of Rosolina is also provided and includes a site description, the sediment budget, critical issues and possible mitigation measures.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 982: Multivariate Chemometric Analysis of Membrane Fouling Patterns in Biofilm Ceramic Membrane Bioreactor Water doi: 10.3390/w10080982 Authors: Olga Kulesha Zakhar Maletskyi Harsha Ratnaweera Membrane fouling highly limits the development of Membrane bioreactor technology (MBR), which is among the key solutions to water scarcity. The current study deals with the determination of the fouling propensity of filtered biomass in a pilot-scale biofilm membrane bioreactor to enable the prediction of fouling intensity. The system was designed to treat domestic wastewater with the application of ceramic microfiltration membranes. Partial least squares regression analysis of the data obtained during the long-term operation of the biofilm-MBR (BF-MBR) system demonstrated that Mixed liquor suspended solids (MLSS), diluted sludge volume index (DSVI), chemical oxygen demand (COD), and their slopes are the most significant for the estimation and prediction of fouling intensity, while normalized permeability and its slope were found to be the most reliable fouling indicators. Three models were derived depending on the applied operating conditions, which enabled an accurate prediction of the fouling intensities in the system. The results will help to prevent severe membrane fouling via the change of operating conditions to prolong the effective lifetime of the membrane modules and to save energy and resources for the maintenance of the system.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-27
    Description: Water, Vol. 10, Pages 983: The Mechanical Properties of High Strength Reinforced Cured-in-Place Pipe (CIPP) Liner Composites for Urban Water Infrastructure Rehabilitation Water doi: 10.3390/w10080983 Authors: Hyun Wook Ji Sung Soo Yoo Jonghoon Kim Dan Daehyun Koo Most urban areas in the world have water infrastructure systems, including the buried sewer and water pipelines, which are assessed as in need of extensive rehabilitation. Deterioration by many other factors affects structural integrity. Trenchless technologies such as Cured-in-Place Pipe (CIPP) are now applied in numerous projects while minimizing disturbance in an urban environment. The main purpose of this study is to develop a high strength CIPP material using various composite materials (e.g., glass fiber, carbon fiber, polyester felt, unsaturated polyester resin, and others). Composite samples were made of the materials and tested using three-point bend apparatus to find mechanical properties, which include the flexural modulus, strength, and deflection. A composite combination with glass fibers with thin felt layers shows the best results in mechanical properties. Flexural modulus is a key factor for CIPP liner thickness design. Glass fiber composite yields between four and nine times higher values than the minimum value specified in the American Society for Testing and Materials (ASTM) F1216. This study provides a fundamental baseline for high strength CIPP liners that are capable of using conventional curing technologies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-07-28
    Description: Entropy, Vol. 20, Pages 560: Ensemble Estimation of Information Divergence † Entropy doi: 10.3390/e20080560 Authors: Kevin R. Moon Kumar Sricharan Kristjan Greenewald Alfred O. Hero Recent work has focused on the problem of nonparametric estimation of information divergence functionals between two continuous random variables. Many existing approaches require either restrictive assumptions about the density support set or difficult calculations at the support set boundary which must be known a priori. The mean squared error (MSE) convergence rate of a leave-one-out kernel density plug-in divergence functional estimator for general bounded density support sets is derived where knowledge of the support boundary, and therefore, the boundary correction is not required. The theory of optimally weighted ensemble estimation is generalized to derive a divergence estimator that achieves the parametric rate when the densities are sufficiently smooth. Guidelines for the tuning parameter selection and the asymptotic distribution of this estimator are provided. Based on the theory, an empirical estimator of Rényi-α divergence is proposed that greatly outperforms the standard kernel density plug-in estimator in terms of mean squared error, especially in high dimensions. The estimator is shown to be robust to the choice of tuning parameters. We show extensive simulation results that verify the theoretical results of our paper. Finally, we apply the proposed estimator to estimate the bounds on the Bayes error rate of a cell classification problem.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-07-28
    Description: Entropy, Vol. 20, Pages 556: Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems Entropy doi: 10.3390/e20080556 Authors: Shaobo He Chunbiao Li Kehui Sun Sajad Jafari Designing a chaotic system with infinitely many attractors is a hot topic. In this paper, multiscale multivariate permutation entropy (MMPE) and multiscale multivariate Lempel–Ziv complexity (MMLZC) are employed to analyze the complexity of those self-reproducing chaotic systems with one-directional and two-directional infinitely many chaotic attractors. The analysis results show that complexity of this class of chaotic systems is determined by the initial conditions. Meanwhile, the values of MMPE are independent of the scale factor, which is different from the algorithm of MMLZC. The analysis proposed here is helpful as a reference for the application of the self-reproducing systems.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-07-28
    Description: Water, Vol. 10, Pages 993: Understanding Fundamental Phenomena Affecting the Water Conservation Technology Adoption of Residential Consumers Using Agent-Based Modeling Water doi: 10.3390/w10080993 Authors: Kambiz Rasoulkhani Brianne Logasa Maria Presa Reyes Ali Mostafavi More than one billion people will face water scarcity within the next ten years due to climate change and unsustainable water usage, and this number is only expected to grow exponentially in the future. At current water use rates, supply-side demand management is no longer an effective way to combat water scarcity. Instead, many municipalities and water agencies are looking to demand-side solutions to prevent major water loss. While changing conservation behavior is one demand-based strategy, there is a growing movement toward the adoption of water conservation technology as a way to solve water resource depletion. Installing technology into one’s household requires additional costs and motivation, creating a gap between the overall potential households that could adopt this technology, and how many actually do. This study identified and modeled a variety of demographic and household characteristics, social network influence, and external factors such as water price and rebate policy to see their effect on residential water conservation technology adoption. Using Agent-based Modeling and data obtained from the City of Miami Beach, the coupled effects of these factors were evaluated to examine the effectiveness of different pathways towards the adoption of more water conservation technologies. The results showed that income growth and water pricing structure, more so than any of the demographic or building characteristics, impacted household adoption of water conservation technologies. The results also revealed that the effectiveness of rebate programs depends on conservation technology cost and the affluence of the community. Rebate allocation did influence expensive technology adoption, with the potential to increase the adoption rate by 50%. Additionally, social network connections were shown to have an impact on the rate of adoption independent of price strategy or rebate status. These findings will lead the way for municipalities and other water agencies to more strategically implement interventions to encourage household technology adoption based on the characteristics of their communities.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-07-28
    Description: Water, Vol. 10, Pages 994: Predicting Lake Eutrophication Responses to Multiple Scenarios of Lake Restoration: A Three-Dimensional Modeling Approach Water doi: 10.3390/w10080994 Authors: Yanping Wang Weiping Hu Zhaoliang Peng Ye Zeng Karsten Rinke To improve the water quality and alleviate the eutrophication of Lake Yangchenghu, the third largest freshwater body within the Lake Taihu basin in China and an important source of drinking water, nutrient reduction strategies should be urgently addressed by decision makers, since virtually no improvement of water quality has taken place since the mid-1990s. Due to the lack of sufficient observation data and simulation results, a vertically compressed three-dimensional numerical model, the EcoTaihu model, was used to study the impact of three restoration measures on the water quality—namely, total nitrogen (TN), total phosphorus (TP) and biomass of phytoplankton (BP)—of Lake Yangchenghu: (i) total nutrient reduction, (ii) intensification of flushing by water transfer, and (iii) spatial adjustment of inflow channels. In particular, the spatial effects of the three restoration measures on the water quality were investigated. The results showed that the EcoTaihu model is applicable to other shallow lakes in China. The water quality responses to the different restoration scenarios showed significant spatio-temporal differences. The reduction of nutrient loads from inflows appeared to be the most effective measure for controlling the eutrophication and algal blooms in Lake Yangchenghu. The effectiveness of water transfer on the improvement of water quality for TN and TP was more influenced by the differences of nutrient concentrations between the transferred water and lake water, rather than flow rate, since no proportionate increase of improvement was observable in the case of larger transferred rates (60 m3 s−1). The spatial narrowing of inflowing rivers in the southwestern lake could preferentially improve the water quality in the southern bay of the western lake, but would also result in a deterioration trend of water quality in the total lake and drinking water abstraction areas.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-07-29
    Description: Entropy, Vol. 20, Pages 564: A New Fractional-Order Chaotic System with Different Families of Hidden and Self-Excited Attractors Entropy doi: 10.3390/e20080564 Authors: Jesus Munoz-Pacheco Ernesto Zambrano-Serrano Christos Volos Sajad Jafari Jacques Kengne Karthikeyan Rajagopal In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a `hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-07-29
    Description: Entropy, Vol. 20, Pages 561: Statistical Significance of Earth’s Electric and Magnetic Field Variations Preceding Earthquakes in Greece and Japan Revisited Entropy doi: 10.3390/e20080561 Authors: Nicholas Sarlis By analyzing the seismicity in a new time domain, termed natural time, we recently found that the change of the entropy under time reversal (Physica A2018, 506, 625–634) and the relevant complexity measures (Entropy2018, 20, 477) exhibit pronounced variations before the occurrence of the M8.2 earthquake in Mexico on 7 September 2017. Here, the statistical significance of precursory phenomena associated with other physical properties and in particular the anomalous variations observed in the Earth’s electric and magnetic fields before earthquakes in different regions of the world and in particular in Greece since 1980s and Japan during 2001–2010 are revisited (the latter, i.e., the magnetic field variations are alternatively termed ultra low frequency (ULF) seismo-magnetic phenomena). Along these lines we employ modern statistical tools like the event coincidence analysis and the receiver operating characteristics technique. We find that these precursory variations are far beyond chance and in addition their lead times fully agree with the experimental findings in Greece since the 1980s.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-07-29
    Description: Entropy, Vol. 20, Pages 563: A New Underwater Acoustic Signal Denoising Technique Based on CEEMDAN, Mutual Information, Permutation Entropy, and Wavelet Threshold Denoising Entropy doi: 10.3390/e20080563 Authors: Yuxing Li Yaan Li Xiao Chen Jing Yu Hong Yang Long Wang Owing to the complexity of the ocean background noise, underwater acoustic signal denoising is one of the hotspot problems in the field of underwater acoustic signal processing. In this paper, we propose a new technique for underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), mutual information (MI), permutation entropy (PE), and wavelet threshold denoising. CEEMDAN is an improved algorithm of empirical mode decomposition (EMD) and ensemble EMD (EEMD). First, CEEMDAN is employed to decompose noisy signals into many intrinsic mode functions (IMFs). IMFs can be divided into three parts: noise IMFs, noise-dominant IMFs, and real IMFs. Then, the noise IMFs can be identified on the basis of MIs of adjacent IMFs; the other two parts of IMFs can be distinguished based on the values of PE. Finally, noise IMFs were removed, and wavelet threshold denoising is applied to noise-dominant IMFs; we can obtain the final denoised signal by combining real IMFs and denoised noise-dominant IMFs. Simulation experiments were conducted by using simulated data, chaotic signals, and real underwater acoustic signals; the proposed denoising technique performs better than other existing denoising techniques, which is beneficial to the feature extraction of underwater acoustic signal.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-07-31
    Description: Entropy, Vol. 20, Pages 567: Nonlocality in Bell’s Theorem, in Bohm’s Theory, and in Many Interacting Worlds Theorising Entropy doi: 10.3390/e20080567 Authors: Mojtaba Ghadimi Michael J. W. Hall Howard M. Wiseman “Locality” is a fraught word, even within the restricted context of Bell’s theorem. As one of us has argued elsewhere, that is partly because Bell himself used the word with different meanings at different stages in his career. The original, weaker, meaning for locality was in his 1964 theorem: that the choice of setting by one party could never affect the outcome of a measurement performed by a distant second party. The epitome of a quantum theory violating this weak notion of locality (and hence exhibiting a strong form of nonlocality) is Bohmian mechanics. Recently, a new approach to quantum mechanics, inspired by Bohmian mechanics, has been proposed: Many Interacting Worlds. While it is conceptually clear how the interaction between worlds can enable this strong nonlocality, technical problems in the theory have thus far prevented a proof by simulation. Here we report significant progress in tackling one of the most basic difficulties that needs to be overcome: correctly modelling wavefunctions with nodes.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-07-31
    Description: Water, Vol. 10, Pages 1008: Inherent Relationship between Flow Duration Curves at Different Time Scales: A Perspective on Monthly Flow Data Utilization in Daily Flow Duration Curve Estimation Water doi: 10.3390/w10081008 Authors: Lei Ye Wei Ding Xiaofan Zeng Zhuohang Xin Jian Wu Chi Zhang Modelling flow duration curves (FDCs) has long been a topic of interest since it is widely used in various hydrological applications. Most studies related to the estimation of FDCs in ungauged or partial gauged basins focus primarily on using climate and catchment characteristics to regionalize FDC at some single time scale. However, the relationship of FDCs at various time scales are rarely analyzed or studied. Here, we propose two methods, which are Modelled FDC Parameter comparison (M-FDC-P) and Empirical FDC Ratio comparison (E-FDC-R), to study the quantitative relationship between daily and monthly FDCs. One method M-FDC-P, selects a Kappa (KAP) distribution to represent the characteristics of the FDCs and then analyzes the relationship between KAP parameters of modelled FDCs at different time scales. Results indicate that three out of four parameters have strong correlations between FDCs at daily and monthly time scales. The other method, E-FDC-R, compares the quantitative relationship between daily and monthly empirical FDCs with given exceedance probabilities. The Power function is used for fitting the ratio-exceedance probability curves. In addition, the simulated daily FDC derived from monthly FDC can be very consistent with the observed daily flow records when the two parameters of power function are quantified precisely. These results clearly indicate that there are strong connections between daily and monthly FDCs, and monthly FDC can provide valuable information for daily FDC estimation. Since flow records at a large time scale are easier to obtain, daily FDC could be derived from monthly FDC by considering the inherent relationships between FDCs at different time scales, which is not sufficiently realized in previous studies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-07-31
    Description: Water, Vol. 10, Pages 1006: Validation of TRMM 3B42V7 Rainfall Product under Complex Topographic and Climatic Conditions over Hexi Region in the Northwest Arid Region of China Water doi: 10.3390/w10081006 Authors: Xiuna Wang Yongjian Ding Chuancheng Zhao Jian Wang Continuous and accurate spatiotemporal precipitation data plays an important role in regional climate and hydrology research, particularly in the arid inland regions where rain gauges are sparse and unevenly distributed. The main objective of this study is to evaluate and bias-correct the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 rainfall product under complex topographic and climatic conditions over the Hexi region in the northwest arid region of China with the reference of rain gauge observation data during 2009–2015. A series of statistical indicators were adopted to quantitatively evaluate the error of 3B42V7 and its ability in detecting precipitation events. Overall, the 3B42V7 overestimates the precipitation with Bias of 11.16%, and its performance generally becomes better with the increasing of time scale. The agreements between the rain gauge data and 3B42V7 are very low in cold season, and moderate in warm season. The 3B42V7 shows better correlation with rain gauges located in the southern mountainous and central oasis areas than in the northern extreme arid regions, and is more likely to underestimate the precipitation in high-altitude mountainous areas and overestimate the precipitation in low-elevation regions. The distribution of the error on the daily scale is more related to the elevation and rainfall than in monthly and annual scale. The 3B42V7 significantly overestimates the precipitation events, and the overestimation mainly focuses on tiny amounts of rainfall (0–1 mm/d), which is also the range of false alarm concentration. Bias correction for 3B42V7 was carried out based on the deviation of the average monthly precipitation data during 2009–2015. The bias-corrected 3B42V7 was significantly improved compared with the original product. Results suggest that regional assessment and bias correction of 3B42V7 rainfall product are of vital importance and will provide substantive reference for regional hydrological studies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-08-03
    Description: Water, Vol. 10, Pages 1025: Monitoring the Chloride Concentration in International Scheldt River Basin District Water Using a Low-Cost Multifunction Data Acquisition Board Water doi: 10.3390/w10081025 Authors: Wanda J. Guedens Monique Reynders Koen Van Vinckenroye Jan Yperman Robert Carleer In analytical chemistry laboratories, to gather in the shortest time as many data as possible with the utmost accuracy and precision, high throughput automated setups are indispensable. In the present study, to determine the chloride concentration in the international Scheldt river basin district, experiments are carried out utilizing a thermostatically controlled semi-automated setup. A novel ICT-based method is developed using a low-cost multifunction Data Acquisition Board (DAQ) controlled by a homebuilt LabVIEW™ program. Specifically, this approach enables a correlation between different parameters i.e., droplet volume, temperature, A/D voltage conversions. Here, processing experimental data of a potentiometric precipitation titration utilizing a silver nitrate standard solution as titrant in a manual burette equipped with a controllable electronic valve allows for a preliminary indication of the titration end point via the Virtual Instrument (VI) numerical first derivative tool in the LabVIEW software. The LabVIEW tool is compared with the well-known Gran method implemented in the LabVIEW program, emphasizing an accurate performance of the setup to determine the chloride concentration in fresh river water. We are confident that our findings are evidence of the versatile and powerful features of the LabVIEW controlled DAQ in the analytical chemistry laboratory.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-08-07
    Description: Water, Vol. 10, Pages 1040: Storm Water Management and Flood Control in Sponge City Construction of Beijing Water doi: 10.3390/w10081040 Authors: Shuhan Zhang Yongkun Li Meihong Ma Ting Song Ruining Song To solve the problems of increasing local flooding, water shortage, and water pollution caused by the traditional model of urban development, the Chinese government proposed a new model of urban development—the Sponge City. In Beijing, the capital of China, research on storm water management in urban areas has been carried out since 1989 and has put forward the concept of urban storm water harvesting and flood control. The further research and demonstration application started in 2000. So far, a series of policies and technology standards on storm water management have been formulated, which promote the application of technologies on comprehensive urban storm water harvesting and flood control. A significant number of storm water harvesting and flood control projects have been built in Beijing, which are now playing important roles in runoff reduction, local flood control, non-point source pollution reduction, and storm water utilization. However, it does not solve the above problem completely. Storm water management and flood control needs to be further strengthened. The “Sponge City” is based on natural and ecological laws, which allows storm water to be managed with natural infiltration, natural retention and detention, and natural cleaning facilities. Through in-depth analysis of the connotation, characteristics, and construction path of “Sponge City”, this paper summarizes the status quo of urban rainwater flooding, flood control technology development and application, and Beijing policy and engineering to introduce the overall ideas and methods of Sponge City construction. All the above will provide a reference for cities with similar problems in the construction of sponge cities.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1037: Multivariate and Spatial Analysis of Physicochemical Parameters in an Irrigation District, Chihuahua, Mexico Water doi: 10.3390/w10081037 Authors: Jesús Alejandro Prieto-Amparán Beatriz Adriana Rocha-Gutiérrez María de Lourdes Ballinas-Casarrubias María Cecilia Valles-Aragón María del Rosario Peralta-Pérez Alfredo Pinedo-Alvarez Water quality is relevant due to the complexity of the interaction of physicochemical and biological parameters. The Irrigation District 005 (ID005) is one of the most important agricultural region in Chihuahua, México; for that reason, it was proposed to investigate the water quality of the site. Water samples were collected in two periods: Summer (S1) and Fall (S2). The samples were taken from 65 wells in S1, and 54 wells in S2. Physicochemical parameters (PhP) such as Arsenic (As), Temperature, Electrical Conductivity (EC), Oxide Reduction Potential (ORP), Hardness, pH, Total Dissolved Solids (TDS), and Turbidity were analyzed. The data were subjected to statistical principal component analysis (PCA), cluster analysis (CA) and spatial variability tests. In both seasons, the TDS exceeded the Mexican maximum permissible level (MPL) (35% S1, 39% S2). Turbidity exceeded the MPL in S1 (29%) and in S2 (12%). Arsenic was above the MPL for water of agricultural use in 9% (S1) and 13% (S2) of the wells. The PCA results suggested that most variations in water quality in S1 were due to As, pH and Temperature, followed by EC, TDS and Hardness; while in S2 to EC, TDS and Hardness, followed by As and pH.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1036: Hydraulic Conductivity Characteristics of Desert Plant Organs: Coping with Drought Tolerance Strategy Water doi: 10.3390/w10081036 Authors: Shanjia Li Peixi Su Haina Zhang Zijuan Zhou Rui Shi Wei Gou Plant hydraulic conductivity (K) refers to the rate of water flow (kg s−1) per unit pressure drop (MPa), which drives flow through the plant organ system. It is an important eco-physiology index for measuring plant water absorption and transport capacity. A field study was conducted in the arid region of the Heihe River Basin in northwestern China, plant hydraulic conductivity was measured by high-pressure flowmeter (HPFM) to investigate the characteristics of hydraulic conductivity of typical dominant desert plants (Reaumuria soongarica M., Nitraria sphaerocarpa M., and Sympegma regelii B.) and their relationship with functional traits of leaves, stems, and roots, and explaining their adaptation strategies to desert environment from the perspective of plant organs hydraulic conductivity. The results showed that the hydraulic conductivity of the leaves and stems of R. soongarica and N. sphaerocarpa (KLA, leaf hydraulic conductivity per unit leaf area; KLW, leaf hydraulic conductivity per unit leaf weight; KSLA, stem hydraulic conductivity per unit leaf area; KSLW, stem hydraulic conductivity per unit leaf weight) were significantly lower than those of S. regelii, while their fine root (KRL, root hydraulic conductivity per unit leaf length; KRSA, root hydraulic conductivity per unit root surface area) and whole root (KTRW, whole root hydraulic conductivity per unit root weight) of hydraulic conductivity were significantly higher than those of S. regelii. In addition, KLA and KLW, KSLA and KSLW, and KRL and KRSA in three desert plants all exhibited consistent trends. Correlation analysis illustrated that the hydraulic conductivity of leaves and stems had a significantly positive correlation, but they had no significant negative correlation with the specific leaf weight (SLW, specific leaf weight). The hydraulic conductivity of fine root weight (KRW, root hydraulic conductivity per unit root weight) and specific root surface area (SRSA, specific root surface area) showed significantly positive correlation (r = 0.727, P < 0.05). The results demonstrated that the R. soongarica and N. sphaerocarpa preserved their water content through the strong leaf absorption capacity of soil water and the low water dispersion rates of leaves to adapt to the harsher arid habitat, which is more drought tolerant than S. regelii.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1038: Simple and Low-Cost Procedure for Monthly and Yearly Streamflow Forecasts during the Current Hydrological Year Water doi: 10.3390/w10081038 Authors: Fernando Delgado-Ramos Carmen Hervás-Gámez Accurately forecasting streamflow values is essential to achieve an efficient, integrated water resources management strategy and to provide consistent support to water decision-makers. We present a simple, low-cost, and robust approach for forecasting monthly and yearly streamflows during the current hydrological year, which is applicable to headwater catchments. The procedure innovatively combines the use of well-known regression analysis techniques, the two-parameter Gamma continuous cumulative probability distribution function and the Monte Carlo method. Several model performance statistics metrics (including the Coefficient of Determination R2; the Root-Mean-Square Error RMSE; the Mean Absolute Error MAE; the Index of Agreement IOA; the Mean Absolute Percent Error MAPE; the Coefficient of Nash-Sutcliffe Efficiency NSE; and the Inclusion Coefficient IC) were used and the results showed good levels of accuracy (improving as the number of observed months increases). The model forecast outputs are the mean monthly and yearly streamflows along with the 10th and 90th percentiles. The methodology has been successfully applied to two headwater reservoirs within the Guadalquivir River Basin in southern Spain, achieving an accuracy of 92% and 80% in March 2017. These risk-based predictions are of great value, especially before the intensive irrigation campaign starts in the middle of the hydrological year, when Water Authorities have to ensure that the right decision is made on how to best allocate the available water volume between the different water users and environmental needs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1046: Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China Water doi: 10.3390/w10081046 Authors: Min Luo Tie Liu Fanhao Meng Yongchao Duan Amaury Frankl Anming Bao Philippe De Maeyer The systemic biases of Regional Climate Models (RCMs) impede their application in regional hydrological climate-change effects analysis and lead to errors. As a consequence, bias correction has become a necessary prerequisite for the study of climate change. This paper compares the performance of available bias correction methods that focus on the performance of precipitation and temperature projections. The hydrological effects of these correction methods are evaluated by the modelled discharges of the Kaidu River Basin. The results show that all used methods improve the performance of the original RCM precipitation and temperature simulations across a number of levels. The corrected results obtained by precipitation correction methods demonstrate larger diversities than those produced by the temperature correction methods. The performance of hydrological modelling is highly influenced by the choice of precipitation correction methods. Furthermore, no substantial differences can be identified from the results of the temperature-corrected methods. The biases from input data are often greater from the works of hydrological modelling. The suitability of these approaches depends upon the regional context and the RCM model, while their application procedure and a number of results can be adapted from region to region.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1047: Assessing Decadal Trends of a Nitrate-Contaminated Shallow Aquifer in Western Nebraska Using Groundwater Isotopes, Age-Dating, and Monitoring Water doi: 10.3390/w10081047 Authors: Martin J. Wells Troy E. Gilmore Aaron R. Mittelstet Daniel Snow Steven S. Sibray Shallow aquifers are prone to nitrate contamination worldwide. In western Nebraska, high groundwater nitrate concentrations ([NO3−]) have resulted in the exploration of new groundwater and nitrogen management regulations in the North Platte Natural Resources District (NPNRD). A small region of NPNRD (“Dutch Flats”) was the focus of intensive groundwater sampling by the United States Geological Survey from 1995 to 1999. Nearly two decades later, notable shifts have occurred in variables related to groundwater recharge and [NO3−], including irrigation methods. The objective of this study was to evaluate how changes in these variables, in part due to regulatory changes, have impacted nitrate-contaminated groundwater in the Dutch Flats area. Groundwater samples were collected to assess changes in: (1) recharge rates; (2) biogeochemical processes; and (3) [NO3−]. Groundwater age increased in 63% of wells and estimated recharge rates were lower for 88% of wells sampled (n = 8). However, mean age and recharge rate estimated in 2016 (19.3 years; R = 0.35 m/year) did not differ significantly from mean values determined in 1998 (15.6 years; R = 0.50 m/year). δ15N-NO3− (n = 14) and dissolved oxygen data indicate no major changes in biogeochemical processes. Available long-term data suggest a downward trend in normalized [NO3−] from 1998 to 2016, and lower [NO3−] was observed in 60% of wells sampled in both years (n = 87), but median values were not significantly different. Collectively, results suggest the groundwater system is responding to environmental variables to a degree that is detectable (e.g., trends in [NO3−]), although more time and/or substantial changes may be required before it is possible to detect significantly different mean recharge.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-12
    Description: Entropy, Vol. 20, Pages 455: A Novel Fault Diagnosis Method of Rolling Bearings Based on AFEWT-KDEMI Entropy doi: 10.3390/e20060455 Authors: Mingtao Ge Jie Wang Fangfang Zhang Ke Bai Xiangyang Ren According to the dynamic characteristics of the rolling bearing vibration signal and the distribution characteristics of its noise, a fault identification method based on the adaptive filtering empirical wavelet transform (AFEWT) and kernel density estimation mutual information (KDEMI) classifier is proposed. First, we use AFEWT to extract the feature of the rolling bearing vibration signal. The hypothesis test of the Gaussian distribution is carried out for the sub-modes that are obtained by the twice decomposition of EWT, and Gaussian noise is filtered out according to the test results. In this way, we can overcome the noise interference and avoid the mode selection problem when we extract the feature of the signal. Then we combine the advantages of kernel density estimation (KDE) and mutual information (MI) and put forward a KDEMI classifier. The mutual information of the probability density combining the unknown signal feature vector and the probability density of the known type signal is calculated. The type of the unknown signal is determined via the value of the mutual information, so as to achieve the purpose of fault identification of the rolling bearing. In order to verify the effectiveness of AFEWT in feature extraction, we extract signal features using three methods, AFEWT, EWT, and EMD, and then use the same classifier to identify fault signals. Experimental results show that the fault signal has the highest recognition rate by using AFEWT for feature extraction. At the same time, in order to verify the performance of the AFEWT-KDEMI method, we compare two classical fault signal identification methods, SVM and BP neural network, with the AFEWT-KDEMI method. Through experimental analysis, we found that the AFEWT-KDEMI method is more stable and effective.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-14
    Description: Entropy, Vol. 20, Pages 458: Vacuum Landscaping: Cause of Nonlocal Influences without Signaling Entropy doi: 10.3390/e20060458 Authors: Gerhard Grössing Siegfried Fussy Johannes Mesa Pascasio Herbert Schwabl In the quest for an understanding of nonlocality with respect to an appropriate ontology, we propose a “cosmological solution”. We assume that from the beginning of the universe each point in space has been the location of a scalar field representing a zero-point vacuum energy that nonlocally vibrates at a vast range of different frequencies across the whole universe. A quantum, then, is a nonequilibrium steady state in the form of a “bouncer” coupled resonantly to one of those (particle type dependent) frequencies, in remote analogy to the bouncing oil drops on an oscillating oil bath as in Couder’s experiments. A major difference to the latter analogy is given by the nonlocal nature of the vacuum oscillations. We show with the examples of double- and n-slit interference that the assumed nonlocality of the distribution functions alone suffices to derive the de Broglie–Bohm guiding equation for N particles with otherwise purely classical means. In our model, no influences from configuration space are required, as everything can be described in 3-space. Importantly, the setting up of an experimental arrangement limits and shapes the forward and osmotic contributions and is described as vacuum landscaping.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-12
    Description: Water, Vol. 10, Pages 759: Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel Water doi: 10.3390/w10060759 Authors: Jiangyu Dai Shiqiang Wu Xiufeng Wu Wanyun Xue Qianqian Yang Senlin Zhu Fangfang Wang Dan Chen To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 731: What Germany’s University Beginners Think about Water Reuse Water doi: 10.3390/w10060731 Authors: Sarah Schmid Franz X. Bogner Water reuse is a new technology, not yet implemented, but discussed for use in Germany. Public opinion plays a major role in the success of the introduction of this new technology and was not yet analyzed for Germany. When monitoring 340 university beginners’ conceptions regarding water reuse, a variety of conceptions appeared. While usage of tap water is accepted for drinking purposes, acceptance of recycled water for oral consumption was low. When asked for reasons for (not) using recycled water, three groups of respondents were extracted: (a) The acceptors (convinced of quality, or naming sustainability as a reason); (b) the undecided (doubts about quality, rejection of its use for consumption, and psychological conflicts of logic and disgust); (c) the non-acceptors (unconvinced of quality and preference for bottled water). When asked about factors that would lead to accepting the use of recycled water, insights into treatment processes were identified as the most convincing, followed by educational films and guided tours. Participants showed high conviction about currently existing tap-water qualities. Having water that is cleaned before it reaches the consumer was reported to have high priority. To increase acceptance of water reuse, recommendations for appropriate outreach programs are discussed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 730: A Comparative Study of Groundwater Level Forecasting Using Data-Driven Models Based on Ensemble Empirical Mode Decomposition Water doi: 10.3390/w10060730 Authors: Yicheng Gong Zhongjing Wang Guoyin Xu Zixiong Zhang The reliable and accurate prediction of groundwater levels is important to improve water-use efficiency in the development and management of water resources. Three nonlinear time-series intelligence hybrid models were proposed to predict groundwater level fluctuations through a combination of ensemble empirical mode decomposition (EEMD) and data-driven models (i.e., artificial neural networks (ANN), support vector machines (SVM) and adaptive neuro fuzzy inference systems (ANFIS)), respectively. The prediction capability of EEMD-ANN, EEMD-SVM, and EEMD-ANFIS hybrid models was investigated using a monthly groundwater level time series collected from two observation wells near Lake Okeechobee in Florida. The statistical parameters correlation coefficient (R), normalized mean square error (NMSE), root mean square error (RMSE), Nash–Sutcliffe efficiency coefficient (NS), and Akaike information criteria (AIC) were used to assess the performance of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models. The results achieved from the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models were compared with those from the ANN, SVM and ANFIS models. The three hybrid models (i.e., EEMD-ANN, EEMD-SVM, and EEMD-ANFIS) proved to be applicable to forecast the groundwater level fluctuations. The values of the statistical parameters indicated that the EEMD-ANFIS and EEMD-SVM models achieved better prediction results than the EEMD-ANN model. Meanwhile, the three models coupled with EEMD were found have better prediction results than the models that were not. The findings from this study indicate that the proposed nonlinear time-series intelligence hybrid models could improve the prediction capability in forecasting groundwater level fluctuations, and serve as useful and helpful guidelines for the management of sustainable water resources.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 729: Geothermometry and Isotope Geochemistry of CO2-Rich Thermal Waters in Choygan, East Tuva, Russia Water doi: 10.3390/w10060729 Authors: Anastasia Shestakova Natalia Guseva Yulia Kopylova Albina Khvaschevskaya David A. Polya Igor Tokarev The Choygan area of southern Siberia, Russia hosts a variety of CO2-rich thermal mineral and other waters emerging from springs at temperatures between 7 °C and 39 °C. Chemical analyses of the spring waters (n = 33) were carried out to characterise the waters and determine their origin. A continuum of compositions was observed between relatively lower temperature (7 °C) HCO3-Ca-Na dominated waters with relatively low amount of total dissolved solids (TDS) and high Eh, and higher temperature (39 °C) HCO3-Na-Ca dominated waters with higher TDS and lower Eh—this reflects largely conservative mixing of these components between near surface low temperature, oxidising groundwaters and higher temperature, more reducing thermal waters derived from a deeper geothermal reservoir. Stable isotopic data are consistent with all the water ultimately being derived from meteoric water that has undergone varying degrees of isotopic fractionation following evaporation. The inferred δ18O and δ2H isotopic composition of the unfractionationed meteoric waters is lighter than that expected that of mean annual local precipitation, which together with a strong negative correlation between δ18O and the elevation of the sampled discharging springs, suggests recharge at higher elevations (1600 m to 3000 m; average 2600 m). Reservoir temperature, calculated using geothermometers and an analysis of saturation indices of plausible reservoir minerals, ranged from 70 °C to 100 °C at an inferred depth of 2 to 3 km. Not all chemical components were found to follow conservative mixing behaviour. In particular, (i) the CO2 contents of the waters were highly variable, suggesting either varying degrees of degassing and/or near discharge admixture with air, and (ii) SO4 concentrations in the lower temperature thermal CO2-rich waters were highly variable, suggesting a role of near surface oxidation processes, for example of pyrite, in modifying the concentration of redox sensitive components. Limited δ13C data are consistent with the CO2 predominately being derived from dissolution of metamorphic/igneous carbonate minerals in the reservoir. Based on geological conditions, isotope and chemical data, a conceptual circulation model of the Choygan hydrothermal system is proposed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-05
    Description: Water, Vol. 10, Pages 728: An Integration Approach for Mapping Field Capacity of China Based on Multi-Source Soil Datasets Water doi: 10.3390/w10060728 Authors: Xiaotao Wu Guihua Lu Zhiyong Wu Hai He Jianhong Zhou Zhenchen Liu Field capacity is one of the most important soil hydraulic properties in water cycle, agricultural irrigation, and drought monitoring. It is difficult to obtain the distribution of field capacity on a large scale using manual measurements that are both time-consuming and labor-intensive. In this study, the field capacity ensemble members were established using existing pedotransfer functions (PTFs) and multiple linear regression (MLR) based on three soil datasets and 2388 in situ field capacity measurements in China. After evaluating the accuracy of each ensemble member, an integration approach was proposed for estimating the field capacity distribution and development of a 250 m gridded field capacity dataset in China. The spatial correlation coefficient (R) and root mean square error (RMSE) between the in situ field capacity and ensemble field capacity were 0.73 and 0.048 m3·m−3 in region scale, respectively. The ensemble field capacity shows great consistency with practical distribution of field capacity, and the deviation is revised when compared with field capacity datasets provided by previous researchers. It is a potential product for estimating field capacity in hydrological and agricultural practices on both large and fine scales, especially in ungauged regions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 436: Information Geometry of κ-Exponential Families: Dually-Flat, Hessian and Legendre Structures Entropy doi: 10.3390/e20060436 Authors: Antonio M. Scarfone Hiroshi Matsuzoe Tatsuaki Wada In this paper, we present a review of recent developments on the κ -deformed statistical mechanics in the framework of the information geometry. Three different geometric structures are introduced in the κ -formalism which are obtained starting from three, not equivalent, divergence functions, corresponding to the κ -deformed version of Kullback–Leibler, “Kerridge” and Brègman divergences. The first statistical manifold derived from the κ -Kullback–Leibler divergence form an invariant geometry with a positive curvature that vanishes in the κ → 0 limit. The other two statistical manifolds are related to each other by means of a scaling transform and are both dually-flat. They have a dualistic Hessian structure endowed by a deformed Fisher metric and an affine connection that are consistent with a statistical scalar product based on the κ -escort expectation. These flat geometries admit dual potentials corresponding to the thermodynamic Massieu and entropy functions that induce a Legendre structure of κ -thermodynamics in the picture of the information geometry.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 440: On a Common Misconception Regarding the de Broglie–Bohm Theory Entropy doi: 10.3390/e20060440 Authors: Oliver Passon We discuss a common misconception regarding the de Broglie–Bohm (dBB) theory; namely, that it not only assigns a position to each quantum object but also contains the momenta as “hidden variables”. Sometimes this alleged property of the theory is even used to argue that the dBB theory is inconsistent with quantum theory. We explain why this claim is unfounded and show in particular how this misconception veils the true novelty of the dBB theory.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 438: Analysis of Cell Signal Transduction Based on Kullback–Leibler Divergence: Channel Capacity and Conservation of Its Production Rate during Cascade Entropy doi: 10.3390/e20060438 Authors: Tatsuaki Tsuruyama Kullback–Leibler divergence (KLD) is a type of extended mutual entropy, which is used as a measure of information gain when transferring from a prior distribution to a posterior distribution. In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the ratio of the prior selection probability of the signaling molecule to the posterior selection probability. Moreover, the information gain during the entire channel is shown to be adequately described by average KLD production rate. Thus, this approach provides a framework for the quantitative analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade for a signaling network.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 437: Complexity Analysis of Global Temperature Time Series Entropy doi: 10.3390/e20060437 Authors: António M. Lopes J. A. Tenreiro Machado Climate has complex dynamics due to the plethora of phenomena underlying its evolution. These characteristics pose challenges to conducting solid quantitative analysis and reaching assertive conclusions. In this paper, the global temperature time series (TTS) is viewed as a manifestation of the climate evolution, and its complexity is calculated by means of four different indices, namely the Lempel–Ziv complexity, sample entropy, signal harmonics power ratio, and fractal dimension. In the first phase, the monthly mean TTS is pre-processed by means of empirical mode decomposition, and the TTS trend is calculated. In the second phase, the complexity of the detrended signals is estimated. The four indices capture distinct features of the TTS dynamics in a 4-dim space. Hierarchical clustering is adopted for dimensional reduction and visualization in the 2-dim space. The results show that TTS complexity exhibits space-time variability, suggesting the presence of distinct climate forcing processes in both dimensions. Numerical examples with real-world data demonstrate the effectiveness of the approach.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 439: Factoid Question Answering with Distant Supervision Entropy doi: 10.3390/e20060439 Authors: Hongzhi Zhang Xiao Liang Guangluan Xu Kun Fu Feng Li Tinglei Huang Automatic question answering (QA), which can greatly facilitate the access to information, is an important task in artificial intelligence. Recent years have witnessed the development of QA methods based on deep learning. However, a great amount of data is needed to train deep neural networks, and it is laborious to annotate training data for factoid QA of new domains or languages. In this paper, a distantly supervised method is proposed to automatically generate QA pairs. Additional efforts are paid to let the generated questions reflect the query interests and expression styles of users by exploring the community QA. Specifically, the generated questions are selected according to the estimated probabilities they are asked. Diverse paraphrases of questions are mined from community QA data, considering that the model trained on monotonous synthetic questions is very sensitive to variants of question expressions. Experimental results show that the model solely trained on generated data via the distant supervision and mined paraphrases could answer real-world questions with the accuracy of 49.34%. When limited annotated training data is available, significant improvements could be achieved by incorporating the generated data. An improvement of 1.35 absolute points is still observed on WebQA, a dataset with large-scale annotated training samples.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 434: Complexity Analysis of Carbon Market Using the Modified Multi-Scale Entropy Entropy doi: 10.3390/e20060434 Authors: Jiuli Yin Cui Su Yongfen Zhang Xinghua Fan Carbon markets provide a market-based way to reduce climate pollution. Subject to general market regulations, the major existing emission trading markets present complex characteristics. This paper analyzes the complexity of carbon market by using the multi-scale entropy. Pilot carbon markets in China are taken as the example. Moving average is adopted to extract the scales due to the short length of the data set. Results show a low-level complexity inferring that China’s pilot carbon markets are quite immature in lack of market efficiency. However, the complexity varies in different time scales. China’s carbon markets (except for the Chongqing pilot) are more complex in the short period than in the long term. Furthermore, complexity level in most pilot markets increases as the markets developed, showing an improvement in market efficiency. All these results demonstrate that an effective carbon market is required for the full function of emission trading.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-14
    Description: Water, Vol. 10, Pages 779: Study of the Scale Effect on Permeability in the Interlayer Shear Weakness Zone Using Sequential Indicator Simulation and Sequential Gaussian Simulation Water doi: 10.3390/w10060779 Authors: Meng Chen Zhifang Zhou Lei Zhao Mu Lin Qiaona Guo Mingwei Li The interlayer shear weakness zone (ISWZ) is a deformation zone in stratified rock masses, with different width and spacing, due to tectonic stresses. It represents the main flow path in rocks due to higher permeability compared with massive rocks. The permeability values of an ISWZ can vary significantly depending on the scale. This study focuses on the correlations between the permeability properties of ISWZs and their geometry properties. A range of realistic 3-D numerical models of ISWZs is developed using geostatistical modeling, with fine-scale geometry and permeability information taken into consideration. These ISWZs represent a set of mud content and width distributions that are typical for ISWZs. Horizontal and vertical permeability values for all ISWZs are found to change in small-scale samples, whereas these fluctuations decrease with increasing sample size. For different types of ISWZs, the results show that ISWZs with variable width will show a significantly larger scale effect on the permeability than that of ISWZs with constant width. Furthermore, ISWZs with a higher mud content display greater variation in horizontal permeability, while the opposite is true for vertical permeability. Based on the coefficient of permeability variation, a criterion is proposed to identify the calculated permeability of a sample is locally homogeneous. The size for this sample relies on the properties estimated (horizontal and vertical permeability) and geometry features. These findings could provide a basis for the selection of permeability values of an ISWZ in hydraulic engineering. Additionally, the procedures used in this article can be applied to any type of ISWZs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-14
    Description: Water, Vol. 10, Pages 774: Development of an Integrated Modelling System for Evaluating Water Quantity and Quality Effects of Individual Wetlands in an Agricultural Watershed Water doi: 10.3390/w10060774 Authors: Yongbo Liu Wanhong Yang Hui Shao Zhiqiang Yu John Lindsay A GIS-based fully-distributed model, IMWEBs-Wetland (Integrated Modelling for Watershed Evaluation of BMPs—Wetland), is developed to simulate hydrologic processes of site-specific wetlands in an agricultural watershed. This model, powered by the open-source GIS Whitebox Geospatial Analysis Tools (GAT) and advanced database technologies, allows users to simulate and assess water quantity and quality effects of individual wetlands at site and watershed scales. A case study of the modelling system is conducted in a subbasin of the Broughton’s Creek Watershed in southern Manitoba of Canada. Modelling results show that the model is capable of simulating wetland processes in a complex watershed with various land management practices. The IMWEBs-Wetland model is unique in simulating the water quantity and quality effects of individual wetlands, which can be used to examine location-specific targeting of wetland retention and restoration at a watershed scale.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-15
    Description: Entropy, Vol. 20, Pages 462: On Bohmian Mechanics, Particle Creation, and Relativistic Space-Time: Happy 100th Birthday, David Bohm! Entropy doi: 10.3390/e20060462 Authors: Roderich Tumulka The biggest and most lasting among David Bohm’s (1917–1992) many achievements is to have proposed a picture of reality that explains the empirical rules of quantum mechanics. This picture, known as pilot wave theory or Bohmian mechanics among other names, is still the simplest and most convincing explanation available. According to this theory, electrons are point particles in the literal sense and move along trajectories governed by Bohm’s equation of motion. In this paper, I describe some more recent developments and extensions of Bohmian mechanics, concerning in particular relativistic space-time and particle creation and annihilation.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-15
    Description: Entropy, Vol. 20, Pages 465: Ontological Clarity via Canonical Presentation: Electromagnetism and the Aharonov–Bohm Effect Entropy doi: 10.3390/e20060465 Authors: Tim Maudlin Quantum physics demands some radical revision of our fundamental beliefs about physical reality. We know that because there are certain verified physical phenomena—two-slit interference, the disappearance of interference upon monitoring, violations of Bell’s inequality—that have no classical analogs. But the exact nature of that revision has been under dispute since the foundation of quantum theory. I offer a method of clarifying what the commitments of a clearly formulated physical theory are, and apply it to a discussion of some options available to account for another non-classical phenomenon: the Aharonov–Bohm effect.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-15
    Description: Entropy, Vol. 20, Pages 464: Non-Quadratic Distances in Model Assessment Entropy doi: 10.3390/e20060464 Authors: Marianthi Markatou Yang Chen One natural way to measure model adequacy is by using statistical distances as loss functions. A related fundamental question is how to construct loss functions that are scientifically and statistically meaningful. In this paper, we investigate non-quadratic distances and their role in assessing the adequacy of a model and/or ability to perform model selection. We first present the definition of a statistical distance and its associated properties. Three popular distances, total variation, the mixture index of fit and the Kullback-Leibler distance, are studied in detail, with the aim of understanding their properties and potential interpretations that can offer insight into their performance as measures of model misspecification. A small simulation study exemplifies the performance of these measures and their application to different scientific fields is briefly discussed.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-13
    Description: Water, Vol. 10, Pages 770: Electrochemical Degradation of Phenol and Resorcinol Molecules through the Dissolution of Sacrificial Anodes of Macro-Corrosion Galvanic Cells Water doi: 10.3390/w10060770 Authors: Boguslaw Pierozynski Grazyna Piotrowska This paper reports on the processes of phenol and resorcinol electrodegradation carried-out through continuous anodic dissolution of aluminum alloy and carbon steel sacrificial anodes for artificially aerated Cu-Al alloy and Cu-Fe-based galvanic (macro-corrosion) cells and synthetically prepared wastewater solutions. Electrochemical experiments were carried-out by means of a laboratory size, PMMA (Poly-methyl methacrylate)-made electrolyser unit, where significant degrees of phenol (10–89%) and resorcinol (13–37%) decomposition were obtained and visualized through the respective chemical/spectroscopy analyses. In addition, quantitative determination of phenol, as well as resorcinol (and possible electrodegradation products) for the selected experimental conditions was performed by means of instrumental high-performance liquid chromatography/mass spectrometry analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-13
    Description: Water, Vol. 10, Pages 766: The Influences of Sponge City on Property Values in Wuhan, China Water doi: 10.3390/w10060766 Authors: Shiying Zhang Chris Zevenbergen Paul Rabé Yong Jiang Rapid urbanization in China and global climate change have increased urban flood exposure in Wuhan, and the increased flood risk has reduced property values in flood-prone areas. The central government of China is promoting the application of the sponge city concept to reduce urban flood risk and improve the environment in cities. Wuhan is one of the pilot cities of this initiative. A shortage of funds is one of the main obstacles to sponge city construction, as is the lack of a suitable business model. To test residents’ willingness to pay for sponge city construction, this research analyzed the impact of sponge city construction on the housing values of areas covered by sponge city interventions. The authors conducted interviews and analyzed secondary data to gauge residents’ awareness and perceptions of sponge city interventions. The results show that more than half of residents in Wuhan are willing to pay for sponge city measures, but the amount they are willing to pay is limited. Residents are more willing to pay for improvements of their living environment than for flood reduction measures.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-16
    Description: Entropy, Vol. 20, Pages 466: The Gibbs Paradox and Particle Individuality Entropy doi: 10.3390/e20060466 Authors: Dennis Dieks A consensus seems to have developed that the Gibbs paradox in classical thermodynamics (the discontinuous drop in the entropy of mixing when the mixed gases become equal to each other) is unmysterious: in any actual situation, two gases can be separated or not, and the associated harmless discontinuity from “yes” to “no” is responsible for the discontinuity. By contrast, the Gibbs paradox in statistical physics continues to attract attention. Here, the problem is that standard calculations in statistical mechanics predict a non-vanishing value of the entropy of mixing even when two gases of the same kind are mixed, in conflict with thermodynamic predictions. This version of the Gibbs paradox is often seen as a sign that there is something fundamentally wrong with either the traditional expression S=klnW or with the way W is calculated. It is the aim of this article to review the situation from the orthodox (as opposed to information theoretic) standpoint. We demonstrate how the standard formalism is not only fully capable of dealing with the paradox, but also provides an intuitively clear picture of the relevant physical mechanisms. In particular, we pay attention to the explanatory relevance of the existence of particle trajectories in the classical context. We also discuss how the paradox survives the transition to quantum mechanics, in spite of the symmetrization postulates.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-16
    Description: Water, Vol. 10, Pages 794: Navigating the Water-Energy Governance Landscape and Climate Change Adaptation Strategies in the Northern Patagonia Region of Argentina Water doi: 10.3390/w10060794 Authors: Laura Forni Marisa Escobar Pablo Cello Marta Marizza Gustavo Nadal Leonidas Girardin Fernando Losano Lisandro Bucciarelli Charles Young David Purkey Water scientists often find themselves interacting with decision-makers with varying levels of technical background. The sustainable management of water resources is complex by nature, and future conditions are highly uncertain, requiring modeling approaches capable of accommodating a variety of parameters and scenarios. Technical findings from these analyses need to be positioned and conducted within the governance institutions to ensure decision-makers utilize them. This paper examines the water resource challenges for a large basin in northern Patagonia, Argentina and utilizes the Robust Decision Support (RDS) framework to evaluate trade-offs and strategies in a participatory process that included researchers and decision-makers. Integrated water resources models using simulation modeling and decision space visualization show significant climate change impacts, which are augmented with irrigated agriculture expansion and increasing hydropower production.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-16
    Description: Water, Vol. 10, Pages 789: Spatio-Temporal Analysis of Meteorological Elements in the North China District of China during 1960–2015 Water doi: 10.3390/w10060789 Authors: Jinsong Ti Yuhao Yang Xiaogang Yin Jing Liang Liangliang Pu Yulin Jiang Xinya Wen Fu Chen The North China District (NCD) is one of the main grain production regions in China. The double cropping system of irrigation has been leading to the groundwater table decline at the speed of 1–2 m per year. Climate change leads to uncertainty surrounding the future of the NCD agricultural system, which will have great effects on crop yields and crop water demands. In this research, the Meteorological dataset from 54 weather station sites over the period 1960–2015 were collected to quantify the long-term spatial and temporal trends of meteorological data, including daily minimum temperature (Tmin), maximum temperature (Tmax), precipitation, solar radiation, reference evapotranspiration (ET0), and aridity index (AI). The results show that the long-term wheat and maize growing season and annual average air temperatures (Tmin and Tmax) showed strong north to south increasing trends throughout the NCD. The average annual precipitation was 632.9 mm across the NCD, more than 70% of which was concentrated in the maize growing season. The regional average annual ET0 was 1026.1 mm, which was 531.2 and 497.4 mm for the wheat and maize growing season, respectively. The regional precipitation decreased from northwest to southeast in each growing season and annual timescale. The funnel areas have lower precipitation and higher ET0 than the regional average, which may lead to the mining of the groundwater funnel area. The regional average annual AI is 0.63, which lies in the humid class. For temporal analysis, the regional average trends in annual Tmin, Tmax, solar radiation, ET0, precipitation, and AI were 0.37 °C/10a, 0.15 °C/10a, −0.28 MJ/day/m2/10a, −2.98 mm/10a, −12.04 mm/10a, and 0.005/10a, respectively. The increasing trend of temperature and the decreasing trend of solar radiation may have a negative effect on the regional food security. The funnel area AI showed a significant increasing trend for the winter wheat growing season and a decreasing trend for maize, which indicated that more irrigation will be needed for the maize growing season and the winter fallow policy may lead to the increasing trend precipitation being wasted. Analyzing the growing season and the annual meteorological elements of the spatiotemporal trends can help us better understand the influence of climate change on the natural resources and agricultural development in both the past and the future, and will provide us with invaluable information for the modification of cropping patterns to protect the regional and national water and food security.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-17
    Description: Water, Vol. 10, Pages 797: Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control Water doi: 10.3390/w10060797 Authors: Huma Ilyas Ilyas Masih Jan Peter van der Hoek This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO), ultraviolet (UV) irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2), UV/H2O2/chlorine, ozone (O3)/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs): trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), trihaloacetaldehydes (THAs) and chloramines (CAMs). The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs) with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-18
    Description: Entropy, Vol. 20, Pages 470: Noise Enhanced Signal Detection of Variable Detectors under Certain Constraints Entropy doi: 10.3390/e20060470 Authors: Ting Yang Shujun Liu Wenguo Liu Jishun Guo Pin Wang In this paper, a noise enhanced binary hypothesis-testing problem was studied for a variable detector under certain constraints in which the detection probability can be increased and the false-alarm probability can be decreased simultaneously. According to the constraints, three alternative cases are proposed, the first two cases concerned minimization of the false-alarm probability and maximization of the detection probability without deterioration of one by the other, respectively, and the third case was achieved by a randomization of two optimal noise enhanced solutions obtained in the first two limit cases. Furthermore, the noise enhanced solutions that satisfy the three cases were determined whether randomization between different detectors was allowed or not. In addition, the practicality of the third case was proven from the perspective of Bayes risk. Finally, numerous examples and conclusions are presented.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-18
    Description: Water, Vol. 10, Pages 802: The Impact of Climate on Hydrological Extremes Water doi: 10.3390/w10060802 Authors: Salvatore Manfreda Vito Iacobellis Andrea Gioia Mauro Fiorentino Krzysztof Kochanek High and low flows and associated floods and droughts are extreme hydrological phenomena mainly caused by meteorological anomalies and modified by catchment processes and human activities. They exert increasing on human, economic, and natural environmental systems around the world. In this context, global climate change along with local fluctuations may eventually trigger a disproportionate response in hydrological extremes. This special issue focuses on observed extreme events in the recent past, how these extremes are linked to a changing global/regional climate, and the manner in which they may shift in the coming years.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-18
    Description: Water, Vol. 10, Pages 800: Quantification of Seasonal Precipitation over the upper Chao Phraya River Basin in the Past Fifty Years Based on Monsoon and El Niño/Southern Oscillation Related Climate Indices Water doi: 10.3390/w10060800 Authors: Tsuyoshi Kinouchi Gakuji Yamamoto Atchara Komsai Winai Liengcharernsit For better water resources management, we proposed a method to estimate basin-scale seasonal rainfall over selected areas of the Chao Phraya River Basin, Thailand, from existing climate indices that represent variations in the Asian summer monsoon, the El Niño/Southern Oscillation, and sea surface temperatures (SST) in the Pacific Ocean. The basin-scale seasonal rainfall between 1965 and 2015 was calculated for the upper Ping River Basin (PRB) and the upper Nan River Basin (NRB) from a gridded rainfall dataset and rainfall data collected at several gauging stations. The corresponding climate indices, i.e., the Equatorial-Southern Oscillation Index (EQ-SOI), Indian Monsoon Index (IMI), and SST-related indices, were examined to quantify seasonal rainfall. Based on variations in the rainfall anomaly and each climate index, we found that IMI is the primary variable that can explain variations in seasonal rainfall when EQ-SOI is negative. Through a multiple regression analysis, we found that EQ-SOI and two SST-related indices, i.e., Pacific Decadal Oscillation Index (PDO) and SST anomalies in the tropical western Pacific (SSTNW), can quantify the seasonal rainfall for years with positive EQ-SOI. The seasonal rainfall calculated for 1975 to 2015 based on the proposed method was highly correlated with the observed rainfall, with correlation coefficients of 0.8 and 0.86 for PRB and NRB, respectively. These results suggest that the existing indices are useful for quantifying basin-scale seasonal rainfall, provided a proper classification and combination of the climate indices are introduced. The developed method could forecast seasonal rainfall over the target basins if well-forecasted climate indices are provided with sufficient leading time.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-20
    Description: Water, Vol. 10, Pages 811: Simulation of Fluid and Complex Obstacle Coupling Based on Narrow Band FLIP Method Water doi: 10.3390/w10060811 Authors: Changjun Zou Yong Yin With the continuous development of fluid simulation theory and technology, there are increasingly higher requirements for simulation of complex fluid interaction. Fluid simulation based on the Eulerian method is limited by the grid resolution, and the sawtooth phenomenon occurs near the obstacle boundary. To enhance the fluid interaction performance with complex obstacle, an advanced fluid interaction method was proposed based on NBFLIP. Improved from FLIP method, the NBFLIP method combines the advantages of Euler method and Lagrangian method. The SDF method is proposed in complex obstacle discretion, with an expectation to facilitate the processing with obstacle boundary and efficiency improvement. Compared with FLIP method, particle number in NBFLIP method is reduced by 86.2% and the average running time per frame is reduced by 36.1%.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-21
    Description: Water, Vol. 10, Pages 817: Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment Water doi: 10.3390/w10060817 Authors: Cristina-Alejandra Villamar Ismael Vera-Puerto Diego Rivera Felipe De la Hoz Chile is an agricultural power, but also one of the most vulnerable countries to climate change and water shortage. About 50% of the irrigated agriculture land in Chile is in the central zone, thanks to its agricultural-climatic characteristics that provide an adequate water supply (100–4000 m3/s). However, the vulnerability scenario in this zone is high due to the seasonal availability of water resources. Therefore, opportunities to use non-conventional alternative sources (e.g., wastewater) become an appealing and feasible option due to the high population and animal density (>76%) in this part of the country. Moreover, the physicochemical characteristics of the municipal and livestock wastewater suggest that there are potential opportunities to recycle nutrients for agricultural production. In Chile, wastewater reuse opportunities are noted by the wide coverage of wastewater treatment programs, with municipal and intensified livestock production taking up most of the percentage (>99%). Nevertheless, more than 70% of wastewater treatment systems reach biological secondary treatment, which suggests reuse possibilities only for non-food crops. Therefore, this paper is focused on a preliminary analysis of the potential of reusing and recycling municipal and livestock wastewater for Chilean agriculture. There is some reuse work occurring in Chile, specifically in the use of municipal and livestock wastewater for cereal crops (animal feed), forests, and grasslands. However, aspects related to the long-term effects of these practices have not yet been evaluated. Therefore, municipal and livestock wastewater in Chile could be re-valued in agriculture, but the current quality and condition of treated wastewater do not ensure its safe use in food crops. In addition, state policies are needed to provide sustainability (circular and ethic economy) to water reusing/recycling in agriculture.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-19
    Description: Water, Vol. 10, Pages 806: Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony–Backpropagation Neural Network Water doi: 10.3390/w10060806 Authors: Siyu Chen Guohua Fang Xianfeng Huang Yuhong Zhang Prediction of water quality which can ensure the water supply and prevent water pollution is essential for a successful water transfer project. In recent years, with the development of artificial intelligence, the backpropagation (BP) neural network has been increasingly applied for the prediction and forecasting field. However, the BP neural network frame cannot satisfy the demand of higher accuracy. In this study, we extracted monitoring data from the water transfer channel of both the water resource and the intake area as training samples and selected some distinct indices as input factors to establish a BP neural network whose connection weight values between network layers and the threshold of each layer had already been optimized by an improved artificial bee colony (IABC) algorithm. Compared with the traditional BP and ABC-BP neural network model, it was shown that the IABC-BP neural network has a greater ability for forecasting and could achieve much better accuracy, nearly 25% more precise than the BP neural network. The new model is particularly practical for the water quality prediction of a water diversion project and could be readily applied in this field.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-22
    Description: Entropy, Vol. 20, Pages 483: Non-Commutative Worlds and Classical Constraints Entropy doi: 10.3390/e20070483 Authors: Louis Kauffman This paper reviews results about discrete physics and non-commutative worlds and explores further the structure and consequences of constraints linking classical calculus and discrete calculus formulated via commutators. In particular, we review how the formalism of generalized non-commutative electromagnetism follows from a first order constraint and how, via the Kilmister equation, relationships with general relativity follow from a second order constraint. It is remarkable that a second order constraint, based on interlacing the commutative and non-commutative worlds, leads to an equivalent tensor equation at the pole of geodesic coordinates for general relativity.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-22
    Description: Entropy, Vol. 20, Pages 481: Relating Vertex and Global Graph Entropy in Randomly Generated Graphs Entropy doi: 10.3390/e20070481 Authors: Philip Tee George Parisis Luc Berthouze Ian Wakeman Combinatoric measures of entropy capture the complexity of a graph but rely upon the calculation of its independent sets, or collections of non-adjacent vertices. This decomposition of the vertex set is a known NP-Complete problem and for most real world graphs is an inaccessible calculation. Recent work by Dehmer et al. and Tee et al. identified a number of vertex level measures that do not suffer from this pathological computational complexity, but that can be shown to be effective at quantifying graph complexity. In this paper, we consider whether these local measures are fundamentally equivalent to global entropy measures. Specifically, we investigate the existence of a correlation between vertex level and global measures of entropy for a narrow subset of random graphs. We use the greedy algorithm approximation for calculating the chromatic information and therefore Körner entropy. We are able to demonstrate strong correlation for this subset of graphs and outline how this may arise theoretically.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-23
    Description: Entropy, Vol. 20, Pages 485: Symmetric Logarithmic Derivative of Fermionic Gaussian States Entropy doi: 10.3390/e20070485 Authors: Angelo Carollo Bernardo Spagnolo Davide Valenti In this article, we derive a closed form expression for the symmetric logarithmic derivative of Fermionic Gaussian states. This provides a direct way of computing the quantum Fisher Information for Fermionic Gaussian states. Applications range from quantum Metrology with thermal states to non-equilibrium steady states with Fermionic many-body systems.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-23
    Description: Water, Vol. 10, Pages 827: Optimization of Nitrogen Removal in Solid Carbon Source SND for Treatment of Low-Carbon Municipal Wastewater with RSM Method Water doi: 10.3390/w10070827 Authors: Liqiu Zhang Youwen Huang Shugeng Li Peifen He Dengmin Wang In this work, a loofah sponge was used as the solid carbon source and the carrier in a biofilm reactor. Simultaneous nitrification and denitrification (SND) technology was used to achieve nitrogen removal in low-carbon municipal wastewater in a sequencing batch biofilm reactor (SBBR). At room temperature, the effects of filling ratio, dissolved oxygen (DO), pH, C/N(CODCr/TN), and aeration time on the removal of nitrogen were systematically studied. In addition, the removal efficiency of total nitrogen (TN) was used as the evaluation index in response surface models (RSM) for optimization of nitrogen removal. The results showed that DO, pH, and aeration time affected nitrogen removal significantly. Therefore, DO, pH, and aeration time were used as the independent variables in RSM. The optimum conditions for nitrogen removal were found to be as follows in RSM: DO = 4.09 mg/L, pH = 7.58, aeration time = 10.47 h. Under the optimum conditions, the maximum TN removal efficiency reached 86.27%. The results also demonstrated that the deviation between the experimental and predicted TN removal efficiency was only 0.58%, the predicted model was reliable for future application.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-24
    Description: Entropy, Vol. 20, Pages 489: A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data Entropy doi: 10.3390/e20070489 Authors: N. Alex Cayco-Gajic Joel Zylberberg Eric Shea-Brown Correlations in neural activity have been demonstrated to have profound consequences for sensory encoding. To understand how neural populations represent stimulus information, it is therefore necessary to model how pairwise and higher-order spiking correlations between neurons contribute to the collective structure of population-wide spiking patterns. Maximum entropy models are an increasingly popular method for capturing collective neural activity by including successively higher-order interaction terms. However, incorporating higher-order interactions in these models is difficult in practice due to two factors. First, the number of parameters exponentially increases as higher orders are added. Second, because triplet (and higher) spiking events occur infrequently, estimates of higher-order statistics may be contaminated by sampling noise. To address this, we extend previous work on the Reliable Interaction class of models to develop a normalized variant that adaptively identifies the specific pairwise and higher-order moments that can be estimated from a given dataset for a specified confidence level. The resulting “Reliable Moment” model is able to capture cortical-like distributions of population spiking patterns. Finally, we show that, compared with the Reliable Interaction model, the Reliable Moment model infers fewer strong spurious higher-order interactions and is better able to predict the frequencies of previously unobserved spiking patterns.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-24
    Description: Water, Vol. 10, Pages 835: Hydrogeologic and Paleo-Geographic Characteristics of Riverside Alluvium at an Artificial Recharge Site in Korea Water doi: 10.3390/w10070835 Authors: Soo-Hyoung Lee Se-Yeong Hamm Kyoochul Ha YongCheol Kim Dong-Chan Koh Heesung Yoon Sung-Wook Kim This study showed the hydrogeological characteristics of an alluvial aquifer that is composed of sand, silt, and clay layers in a small domain. It can be classified into a lower high-salinity layer and an upper freshwater layer and contains shells and remnant paleo-seawater (average 5000 μS/cm) due to sea level fluctuation. Geological and electrical conductivity logging, a long-term pumping test, and multi-depth water quality measurements were conducted at pumping, injection, and observational wells to evaluate the hydrogeologic properties, identify the optimal recharge rate, and assess artificial recharge. Using a hydraulic test, a large difference in drawdown and salinity appeared at the radially located observational wells because of the difference in hydraulic connectivity between the wells in the small study area. It was concluded that the hydraulic anisotropy and heterogeneity of the alluvial aquifer should be carefully examined when locating an injection well and considering the efficient design of artificial recharge.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 819: Nonstationary Flood Frequency Analysis Using Univariate and Bivariate Time-Varying Models Based on GAMLSS Water doi: 10.3390/w10070819 Authors: Ting Zhang Yixuan Wang Bing Wang Senming Tan Ping Feng With the changing environment, a number of researches have revealed that the assumption of stationarity of flood sequences is questionable. In this paper, we established univariate and bivariate models to investigate nonstationary flood frequency with distribution parameters changing over time. Flood peak Q and one-day flood volume W1 of the Wangkuai Reservoir catchment were used as basic data. In the univariate model, the log-normal distribution performed best and tended to describe the nonstationarity in both flood peak and volume sequences reasonably well. In the bivariate model, the optimal log-normal distributions were taken as marginal distributions, and copula functions were addressed to construct the dependence structure of Q and W1. The results showed that the Gumbel-Hougaard copula offered the best joint distribution. The most likely events had an undulating behavior similar to the univariate models, and the combination values of flood peak and volume under the same OR-joint and AND-joint exceedance probability both displayed a decreasing trend. Before 1970, the most likely combination values considering the variation of distribution parameters over time were larger than fixed parameters (stationary), while it became the opposite after 1980. The results highlight the necessity of nonstationary flood frequency analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 818: Efficient Low-Cost Anaerobic Treatment of Wastewater Using Biochar and Woodchip Filters Water doi: 10.3390/w10070818 Authors: Korbinian Kaetzl Manfred Lübken Tito Gehring Marc Wichern Access to improved sanitation is often lacking in many low-income countries, and approximately 90% of the sewage is discharged without treatment into receiving water bodies. The aim of this study was the development and evaluation of an efficient low-cost wastewater treatment system for developing countries. Biochar and woodchips, potential locally available and inexpensive materials, were used for anaerobic wastewater filtration and their suitability evaluated in comparison to gravel as a common reference material. Filters were fed with raw sewage from a municipal full-scale wastewater treatment plant in Germany at 22 °C room temperature with a hydraulic loading rate (HLR) of 0.05 m∙h−1. This resulted in a mean organic loading rate (OLR) of 252 gCOD∙m−3∙d−1 and a mean organic surface load of 456 gCOD∙m−2∙d−1. To determine the influence of different filter materials, the removal efficiency of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and faecal indicator bacteria (FIB) E. coli and enterococci were tested. It was found that COD (up to 90%), TOC (up to 80%), FIB (up to 1.7 log10-units), and turbidity (effluent turbidity below 35 NTU) could be significantly reduced. The findings of this study demonstrate the potential of anaerobic filters (AFs) for wastewater treatment in low-income countries to reduce water pollution and comprehensively improve water quality. The performance of biochar filters was significantly better over the entire experiment compared to woodchip and gravel filters with respect to COD, TOC, turbidity, and FIB removal, indicating the superior properties of biochar for wastewater treatment.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 821: Changes in the Carbon and Water Fluxes of Subtropical Forest Ecosystems in South-Western China Related to Drought Water doi: 10.3390/w10070821 Authors: Lei Zhou Shaoqiang Wang Yonggang Chi Weimin Ju Kun Huang Robert A. Mickler Miaomiao Wang Quanzhou Yu Drought impacts carbon and water fluxes of terrestrial ecosystems, which are strongly coupled. However, the magnitudes of response of carbon and water fluxes to drought are dependent on many processes, which are more complex than previously expected. Southern China experienced regional climatic perturbation events in the past decade and a two-year drought in 2009–2010. We used a terrestrial ecosystem model coupled with remotely sensed observations and metrological data to simulate the variations of net primary productivity (NPP), evapotranspiration (ET), and water-use efficiency (WUE) (i.e., NPP/ET) in south-western China during the period 2001–2010. Using the standard precipitation index (SPI) classifying different drought stresses, we also quantified the effect of drought on the ecosystem by comparing changes in modelled estimates of monthly WUE, NPP and ET under normal (i.e., baseline) and drought conditions (i.e., 2009 and 2010). The results indicated that NPP and ET showed synchronized declines in drought periods, with time-lag effects. Furthermore, drought-induced NPP decline was larger than ET reduction. An increasing trend in WUE from the moderate to extreme drought classes occurred not only in baseline conditions but also in drought conditions. Especially in the extreme drought period (January, 2010), WUE for the forest ecosystem typically showed a positive response to drought, indicating a drought-resilient forest ecosystem. Our study has important implications for understanding climate extreme effects on the carbon and water cycle of the forest ecosystem.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-28
    Description: Entropy, Vol. 20, Pages 498: Assessing Information Transmission in Data Transformations with the Channel Multivariate Entropy Triangle Entropy doi: 10.3390/e20070498 Authors: Francisco J. Valverde-Albacete Carmen Peláez-Moreno Data transformation, e.g., feature transformation and selection, is an integral part of any machine learning procedure. In this paper, we introduce an information-theoretic model and tools to assess the quality of data transformations in machine learning tasks. In an unsupervised fashion, we analyze the transformation of a discrete, multivariate source of information X¯ into a discrete, multivariate sink of information Y¯ related by a distribution PX¯Y¯. The first contribution is a decomposition of the maximal potential entropy of (X¯,Y¯), which we call a balance equation, into its (a) non-transferable, (b) transferable, but not transferred, and (c) transferred parts. Such balance equations can be represented in (de Finetti) entropy diagrams, our second set of contributions. The most important of these, the aggregate channel multivariate entropy triangle, is a visual exploratory tool to assess the effectiveness of multivariate data transformations in transferring information from input to output variables. We also show how these decomposition and balance equations also apply to the entropies of X¯ and Y¯, respectively, and generate entropy triangles for them. As an example, we present the application of these tools to the assessment of information transfer efficiency for Principal Component Analysis and Independent Component Analysis as unsupervised feature transformation and selection procedures in supervised classification tasks.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-28
    Description: Water, Vol. 10, Pages 856: Rainfall Generation Using Markov Chain Models; Case Study: Central Aegean Sea Water doi: 10.3390/w10070856 Authors: Konstantinos Mammas Demetris Francis Lekkas Generalized linear models (GLMs) are popular tools for simulating daily rainfall series. However, the application of GLMs in drought-prone areas is challenging, as there is inconsistency in rainfall data during long and irregular periods. The majority of studies include regions where rainfall is well distributed during the year indicating the capabilities of the GLM approach. In many cases, the summer period has been discarded from the analyses, as it affects predictive performance of the model. In this paper, a two-stage (occurrence and amounts) GLM is used to simulate daily rainfall in two Greek islands. Summer (June–August) smooth adjustments have been proposed to model the low probability of rainfall during summer, and consequently, to improve the simulations during autumn. Preliminary results suggest that the fitted models simulate adequate rainfall occurrence and amounts in Milos and Naxos islands, and can be used as input in future hydrological applications.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 863: Research on Optimal Water Allocation Based on Water Rights Trade under the Principle of Water Demand Management: A Case Study in Bayannur City, China Water doi: 10.3390/w10070863 Authors: Lizhen Wang Yuefei Huang Yong Zhao Haihong Li Fan He Jiaqi Zhai Yongnan Zhu Qingming Wang Shan Jiang In water shortage regions, water rights trading would be much useful for increasing water use inefficiency through changing users’ water demand. In this study, a water optimal allocation modelling system is proposed by considering water rights trading and other governmental policies such as water prices, water savings and industrial policies. An agent-based model was developed to describe the behaviors and goals of individual agents using complex adaptive system theory, information transfers, and functional mechanisms between agents. The developed model was applied to Bayannur City, which suffers from severe water shortages. The water prices for different industries, the water rights transaction price, and the behaviors of various agents in 2020 were forecasted. The results reveal that the water resources optimal allocation model applied in this study can help realize the reasonable allocation of regional water resources under limited water supply. It is also valuable to guide the government in making water resources allocation policies and provide a practical reference for the formulation and adjustment of a water market transaction price.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 860: Simulation of Rain Garden Effects in Urbanized Area Based on Mike Flood Water doi: 10.3390/w10070860 Authors: Jiake Li Bei Zhang Yajiao Li Huaien Li An urban storm and surface water pollution model (MIKE FLOOD) was used to assess the impact of rain gardens on water quantity and quality for an urban area in Xi’an. After the rain garden measures were added, the results show that: (1) In the case where the total proportion of rain gardens was 2%, the overflow reduction rate was 6.74% to 65.23%, the number of overflow points reduction rate was 1.79% to 65.63%, the overload pipes reduction rate was 0% to 11.15%, the runoff reduction rate was 1.93% to 9.69%; (2) Under different rainfall conditions, the load reduction rate of suspended solids (SS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were 2.36% to 30.35%, 2.37% to 30.11%, 2.34% to 30.08%, and 2.32% to 31.35%, respectively; (3) The submersion ranges of different submerged depths and submerged durations were reduced by 0.30% to 64.18% and 7.12% to 100%, respectively. The statistics of the automatic modeling and intelligent analysis system (AMIAS) showed that the rain garden regulation range of the waterlogging risk area was 0.78% to 100%. The rain garden has a good control effect on urban storm runoff in terms of water volume and water quality, but as the rainfall recurrence interval increases, the control effect will decrease.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 862: Spatio-Temporal Synthesis of Continuous Precipitation Series Using Vine Copulas Water doi: 10.3390/w10070862 Authors: Ana Claudia Callau Poduje Uwe Haberlandt Long and continuous series of precipitation in a high temporal resolution are required for several purposes, namely, urban hydrological applications, design of flash flood control structures, etc. As data of the temporally required resolution is often available for short period, it is advantageous to develop a precipitation model to allow for the generation of long synthetic series. A stochastic model is applied for this purpose, involving an alternating renewal process (ARP) describing a system consisting of spells that can take two possible states: wet or dry. Stochastic generation of rainfall time series using ARP models is straight forward for single site simulation. The aim of this work is to present an extension of the model to spatio-temporal simulations. The proposed methodology combines an occurrence model to define in which locations rainfall events occur simultaneously with a multivariate copula to generate synthetic events. Rainfall series registered in different regions of Germany are used to develop and test the methodology. Results are compared with an existing method in which long independent time series of rainfall events are transformed to spatially dependent ones by permutation of their order. The proposed model shows to perform as a satisfactory extension of the ARP model for multiple sites simulations.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 861: Characterization of Chromophoric Dissolved Organic Matter in the Littoral Zones of Eutrophic Lakes Taihu and Hongze during the Algal Bloom Season Water doi: 10.3390/w10070861 Authors: Bingfa Chen Wei Huang Shuzhan Ma Muhua Feng Cheng Liu Xiaozhi Gu Kaining Chen Chromophoric dissolved organic matter (CDOM) is a key component with a critical role in the littoral zones of eutrophic shallow lakes; yet the characteristics of CDOM in these zones remain seldom systematically reported. In this study, the differences in sources, biogeochemical characteristics, and fates of CDOM between the littoral zones of eutrophic lakes Taihu (LLT; frequently occurring algal blooms and longer lake residence time) and Hongze (LLH; no obvious algal blooms and shorter residence time) were compared during the algal bloom season using ultraviolet-visible spectra and excitation and emission matrix spectroscopy combined with parallel factor analysis. Three humic-like fluorescent dissolved organic matter (FDOM) components (C1, C3, and C4) and one protein-like component (C2) were identified. Results showed that FDOM components were dominated by protein-like fluorescent substances in LLT, and humic-like materials in LLH, respectively. The CDOM in LLT had a lower relative aromaticity and molecular weight, humification degree and a higher autotrophic productivity because of algal blooms. Furthermore, CDOM depletion rates in LLT were higher than those in LLH due to a longer lake residence time in LLT. In addition, CDOM shifted from high molecular weight to low molecular weight as the humification degree decreased during the CDOM depletion process. This comparative study showed that algal blooms and lake residence time were the significant factors for distinguishing characteristics of CDOM between littoral zones of shallow lakes on a similar trophic level. This study provides field-based knowledge for remote sensing CDOM measurement and serves as a reference for lakeshore aquatic environmental management.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 857: Cost-Optimal Flexibilization of Drinking Water Pumping and Treatment Plants Water doi: 10.3390/w10070857 Authors: Britta Zimmermann Hedda Gardian Kurt Rohrig This paper examines potential cost savings attained through the flexible operation of water treatment plants and drinking water pumping and the benefits gained by investing in extended water storage capacities that enhance flexibility. An existing plant in South Germany serves as an example. Mixed-integer linear programming is used to model the plant and the electricity procurement on the German spot market while ensuring the security of supply. Cost optimization considering the different cost components reveals potential cost savings through flexible operation. The paper evaluates the benefits of building additional water reservoirs and rates the financial effects of the measures used to enhance the flexibility of water pumping and treatment plants.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-29
    Description: Water, Vol. 10, Pages 859: Functional Channel Membranes for Drinking Water Production Water doi: 10.3390/w10070859 Authors: Alfredo Gonzalez-Perez Kenneth M. Persson Frank Lipnizki Drinking water production utilities rely on, among other processes, different filtration technologies like bank filtration and slow sand filters, as well as pressure, roughing, or rapid gravity filters that, together with low- and high-pressure operating membranes, help to ensure high quality drinking water for millions of customers all over the world. The global market of membrane separation technologies is projected to reach USD 11.95 Billion by 2021, encompassing water treatment, wastewater treatment, food and beverage processing, industrial gas processing, and pharmaceutical and biomedical applications. In addition to the current, polymer-based membrane separation technologies, new promising strategies using embedded functional motifs, water and ion channels, are expected to play a key role in the next generation of membranes for separation purposes, which are of paramount relevance for drinking water production utilities. In this review, we summarize the different strategies for developing new advanced membranes with a wide variety of functional motifs, like biological and artificial water and ion channels, and their possible impact on drinking water applications.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-08-01
    Description: Entropy, Vol. 20, Pages 568: Symbolic Entropy Analysis and Its Applications Entropy doi: 10.3390/e20080568 Authors: Raúl Alcaraz This editorial explains the scope of the special issue and provides a thematic introduction to the contributed papers.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-08-01
    Description: Entropy, Vol. 20, Pages 569: Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems Entropy doi: 10.3390/e20080569 Authors: Peng Wang Ge Li Yong Peng Rusheng Ju Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 970: Water and Nitrogen Productivity of Potato Growth in Desert Areas under Low-Discharge Drip Irrigation Water doi: 10.3390/w10080970 Authors: Pavel Trifonov Naftali Lazarovitch Gilboa Arye Narrow profit margins, resource conservation issues and environmental concerns are the main driving forces to improve fertilizer uptake, especially for potatoes. Potatoes are a high value crop with a shallow, inefficient root system and high fertilizer rate requirements. Of all essential nutrients, nitrogen (N) is often limiting to potato production. A major concern in potato production is to minimize N leaching from the root zone. Therefore, the main objective of this study was to examine the potato crop characteristics under drip irrigation with low-discharge (0.6 L h−1) and to determine the optimal combination of irrigation (40, 60, 80, and 100%) and fertigation (0, 50, and 100%) doses. In this study, the 80% (438.6 mm) irrigation dose and a 50% (50 mg N L−1) fertigation dose (W80%F50%) showed that these doses are sufficient for optimal potato yield (about 40 ton ha−1) in conjunction with water and fertilizer savings. Moreover, this treatment did not exhibit any qualitative changes in the potato tuber compared to the 100% treatments. When considering water productivity and yield, one may select a harsher irrigation regime if the available agricultural soils are not a limiting factor. Thus, higher yields can be obtained with lower irrigation and fertigation doses and a larger area.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-07-25
    Description: Water, Vol. 10, Pages 967: Modeling the Runoff Reduction Effect of Low Impact Development Installations in an Industrial Area, South Korea Water doi: 10.3390/w10080967 Authors: Jungho Kim Jungho Lee Yangho Song Heechan Han Jingul Joo Low-impact development (LID) methods are an important approach to storm-water mitigation. Modeling the effects of these installations using rainfall-runoff simulations can provide useful data for future design and implementation. In this study, we used the Storm Water Management Model to assess seven types of LID installations (vegetated areas, garden pots, tree filter boxes, permeable pavement, infiltration ditches, rain barrels, and infiltration blocks) at a South Korean industrial site. Using both short- and long-term simulation periods and distinct sub-basins within the study site, we were able to assess LID performance at the combined watershed, as well as at one LID facility. All LID types showed reasonable performance for storm-water runoff reduction, though rain barrels were the least effective. The effect of rainfall runoff reduction on LID facilities is changed according to rainfall depth (annual precipitation, monthly rainfall), the ratio of drainage area and facility capacity. We concluded that SWMM-LID modeling can effectively support the management of LID installations by providing additional design and planning data to better mitigate the effects of storm-water runoff.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-08-01
    Description: Water, Vol. 10, Pages 1016: Improved Mixed Distribution Model Considering Historical Extraordinary Floods under Changing Environment Water doi: 10.3390/w10081016 Authors: Jianzhu Li Yanchen Zheng Yimin Wang Ting Zhang Ping Feng Bernard A. Engel Historical extraordinary floods are an important factor in non-stationary flood frequency analysis and they may occur at any time, regardless of whether the environment is changing or not. Based on mixed distribution (MD) modeling, this paper proposed an improved mixed distribution (IMD) model to consider the discontinuity and non-stationarity of flood samples simultaneously, which adds historical extraordinary floods in both sub-series divided by a change point. As a case study, the annual maximum peak discharge and volume series of Ankang hydrological station, located in the upper Hanjiang River Basin of China, were selected to identify non-stationarity by using the variation diagnosis system. MD and IMD were used to fit the flood characteristic series and a genetic algorithm was employed to estimate the optimal parameters. Compared with the design flood values fitted by the stationary Pearson type-III distribution, the results computed by IMD decreased at low return periods and increased at high return periods, with the difference varying from −6.67% to 7.19%. The results highlighted that although the design flood values of IMD are slightly larger than those of MD with different return periods, IMD provided a better result than MD. IMD provides a new perspective for non-stationary flood frequency analysis.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-08-01
    Description: Water, Vol. 10, Pages 1011: Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China Water doi: 10.3390/w10081011 Authors: Junhong Zhang Luojie Feng Lu Chen Dangwei Wang Minglong Dai Wensheng Xu Tao Yan Dam construction is an important means to improve water use efficiency and the aquatic environment. However, the flow regulation of the Three Gorges Reservoir (TGR) in the middle Yangtze River has attracted much attention because the severe drought occurred in the river-lake system downstream of the TGR. In this paper, the Dongting Lake was selected as a case study in order to detect the possible relationship between the flow regulation of the TGR and the extreme drought in the river-lake system based on a coupled hydrodynamic model. The results not only confirmed the significant role of the TGR to relieve drought in the river-lake system, but also indicated that the outflow of the TGR and the hydraulic gradient between the Zhicheng to Chenglingji stations were the crucial factors to affect the water exchange between the rivers and the Dongting Lake. The adjustment of hydraulic gradient within a proper range during the water compensation of the TGR will be an effective measure to improve the water exchange and water environment in the river-lake system. These findings present the quantitative influence of these important factors on the water exchange between rivers and lakes and provide a scientific reference for environmental and ecological management of other river-lake systems.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-08-01
    Description: Water, Vol. 10, Pages 1009: A Philosophical Justification for a Novel Analysis-Supported, Stakeholder-Driven Participatory Process for Water Resources Planning and Decision Making Water doi: 10.3390/w10081009 Authors: David R. Purkey Marisa Isabel Escobar Arias Vishal K. Mehta Laura Forni Nicholas J. Depsky David N. Yates Walter N. Stevenson Two trends currently shape water resources planning and decision making: reliance on participatory stakeholder processes to evaluate water management options; and growing recognition that deterministic approaches to the evaluation of options may not be appropriate. These trends pose questions regarding the proper role of information, analysis, and expertise in the inherently social and political process of negotiating agreements and implementing interventions in the water sector. The question of how one might discover the best option in the face of deep uncertainty is compelling. The question of whether the best option even exists to be discovered is more vexing. While such existential questions are not common in the water management community, they are not new to political theory. This paper explores early classical writing related to issues of knowledge and governance as captured in the work of Plato and Aristotle; and then attempts to place a novel, analysis-supported, stakeholder-driven water resources planning and decision making practice within this philosophical discourse, making reference to current decision theory. Examples from the Andes and California, where this practice has been used to structure participation by key stakeholders in water management planning and decision-making, argue that when a sufficiently diverse group of stakeholders is engaged in the decision making process expecting the discovery of the perfect option may not be warranted. Simply discovering a consensus option may be more realistic. The argument touches upon the diversity of preferences, model credibility and the visualization of model output required to explore the implications of various management options across a broad range of inherently unknowable future conditions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-08-02
    Description: Entropy, Vol. 20, Pages 570: Analysis of Solar Irradiation Time Series Complexity and Predictability by Combining Kolmogorov Measures and Hamming Distance for La Reunion (France) Entropy doi: 10.3390/e20080570 Authors: Dragutin T. Mihailović Miloud Bessafi Sara Marković Ilija Arsenić Slavica Malinović-Milićević Patrick Jeanty Mathieu Delsaut Jean-Pierre Chabriat Nusret Drešković Anja Mihailović Analysis of daily solar irradiation variability and predictability in space and time is important for energy resources planning, development, and management. The natural variability of solar irradiation is being complicated by atmospheric conditions (in particular cloudiness) and orography, which introduce additional complexity into the phenomenological records. To address this question for daily solar irradiation data recorded during the years 2013, 2014 and 2015 at 11 stations measuring solar irradiance on La Reunion French tropical Indian Ocean Island, we use a set of novel quantitative tools: Kolmogorov complexity (KC) with its derivative associated measures and Hamming distance (HAM) and their combination to assess complexity and corresponding predictability. We find that all half-day (from sunrise to sunset) solar irradiation series exhibit high complexity. However, all of them can be classified into three groups strongly influenced by trade winds that circulate in a “flow around” regime: the windward side (trade winds slow down), the leeward side (diurnal thermally-induced circulations dominate) and the coast parallel to trade winds (winds are accelerated due to Venturi effect). We introduce Kolmogorov time (KT) that quantifies the time span beyond which randomness significantly influences predictability.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-08-08
    Description: Entropy, Vol. 20, Pages 583: Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines Entropy doi: 10.3390/e20080583 Authors: Song Cheng Jing Chen Lei Wang We compare and contrast the statistical physics and quantum physics inspired approaches for unsupervised generative modeling of classical data. The two approaches represent probabilities of observed data using energy-based models and quantum states, respectively. Classical and quantum information patterns of the target datasets therefore provide principled guidelines for structural design and learning in these two approaches. Taking the Restricted Boltzmann Machines (RBM) as an example, we analyze the information theoretical bounds of the two approaches. We also estimate the classical mutual information of the standard MNIST datasets and the quantum Rényi entropy of corresponding Matrix Product States (MPS) representations. Both information measures are much smaller compared to their theoretical upper bound and exhibit similar patterns, which imply a common inductive bias of low information complexity. By comparing the performance of RBM with various architectures on the standard MNIST datasets, we found that the RBM with local sparse connection exhibit high learning efficiency, which supports the application of tensor network states in machine learning problems.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-08-08
    Description: Water, Vol. 10, Pages 1048: The Stability of Tailings Dams under Dry-Wet Cycles: A Case Study in Luonan, China Water doi: 10.3390/w10081048 Authors: Xingang Wang Hongbin Zhan Jiading Wang Ping Li Instability of tailings dams may result in loss of life and property and serious environmental pollution. The position of the tailings dam’s phreatic line varies due to continuously changing factors such as rainfall infiltration and discharge of tailings recycling water. Consequently, tailings dams undergo dry-wet (DW) cycles, accompanied by the appearance of a hydro-fluctuation belt. With dynamic development of the physical and chemical properties of tailings sand in the hydro-fluctuation belt, the stability of tailings dams is uncertain. In this study, direct shear tests were performed on the tailings sand collected from a tailings dam in Luonan, through which the shear strength parameters of tailings sand with DW cycles were obtained. Then, a method that efficiently calculates the phreatic line of the tailings dam under DW cycles was proposed. In addition, based on laboratory tests and the proposed phreatic line calculation method, we used a finite element program to evaluate the stability of the tailings dam that experienced different DW cycles. The calculated results showed that: (i) the damage effects of DW cycles gradually weakens as the number of DW cycles increases. (ii) With the increasing of DW cycles, the maximum displacement of the tailings dam increases from 0.5 mm to 22 mm, and the area of maximum displacement expanded mainly at the toe of the tailings dam and at the front edge of the hydro-fluctuation belt. (iii) The tailings dam safety factor decreases continuously with increasing DW cycles. This study may provide a novel method for analyzing the stability of tailings dams under different DW cycles as well as an important reference for improving tailings dam stability.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-08-09
    Description: Entropy, Vol. 20, Pages 588: On a Matrix Inequality Related to the Distillability Problem Entropy doi: 10.3390/e20080588 Authors: Yi Shen Lin Chen We investigate the distillability problem in quantum information in Cd⊗Cd. One case of the problem has been reduced to proving a matrix inequality when d=4. We investigate the inequality for three families of non-normal matrices. We prove the inequality for the first two families with d=4 and for the third family with d≥5. We also present a sufficient condition for the fulfillment of the inequality with d=4.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-08-09
    Description: Water, Vol. 10, Pages 1054: Understanding the Mississippi River Delta as a Coupled Natural-Human System: Research Methods, Challenges, and Prospects Water doi: 10.3390/w10081054 Authors: Nina S.-N. Lam Y. Jun Xu Kam-biu Liu David E. Dismukes Margaret Reams R. Kelley Pace Yi Qiang Siddhartha Narra Kenan Li Thomas A. Bianchette Heng Cai Lei Zou Volodymyr Mihunov A pressing question facing the Mississippi River Delta (MRD), like many deltaic communities around the world, is: Will the system be sustainable in the future given the threats of sea level rise, land loss, natural disasters, and depleting natural resources? An integrated coastal modeling framework that incorporates both the natural and human components of these communities, and their interactions with both pulse and press stressors, is needed to help improve our understanding of coastal resilience. However, studying the coastal communities using a coupled natural-human system (CNH) approach is difficult. This paper presents a CNH modeling framework to analyze coastal resilience. We first describe such a CNH modeling framework through a case study of the Lower Mississippi River Delta in coastal Louisiana, USA. Persistent land loss and associated population decrease in the study region, a result of interplays between human and natural factors, are a serious threat to the sustainability of the region. Then, the paper describes the methods and findings of three studies on how community resilience of the MRD system is measured, how land loss is modeled using an artificial neural network-cellular automata approach, and how a system dynamic modeling approach is used to simulate population change in the region. The paper concludes by highlighting lessons learned from these studies and suggesting the path forward for analysis of coupled natural-human systems.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-08-09
    Description: Water, Vol. 10, Pages 1055: Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device Water doi: 10.3390/w10081055 Authors: Robin Lenz Matthias Labrenz A variety of microplastic sampling instrumentation is currently used for water pollution studies. Plankton net-based approaches have been the most adopted techniques for water column and surface sampling. When applied to microplastics (MP) in the lower µm size range these methods, however, introduce non-negligible risks of sample contamination and loss due to instrument and procedure design. Based on the first principles of systems engineering design we have developed a mobile sampling platform for field application that fulfils the needs of producing usable MP samples with a lower size limit of 10 µm using an encapsulated flow-through filtration concept. Here, we explain the requirements, development, and construction of the device for others to replicate and improve.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-08-10
    Description: Water, Vol. 10, Pages 1059: Experimental Studies on the Stability Assessment of a Levee Using Reinforced Soil Based on a Biopolymer Water doi: 10.3390/w10081059 Authors: Dongwoo Ko Joongu Kang Cement and other similar compounds have been used to prevent a levee breach during a flood. However, the demand is increasing for eco-friendly and sustainable alternatives to replace the conventional method for levee stabilization and strengthening. To improve the durability and environmental friendliness of a levee, the Andong River Experiment Center applied a biopolymer, which is a new eco-friendly substance, to fabricate a levee model, and conducted a hydraulic model experiment to evaluate the reliability and stability of the new type of levee. An image analysis was applied to calculate the scale of the breaches of the levee slopes. Based on the experimental results obtained, the characteristics of the breach between an earthen levee and the proposed levee were compared. The stability of the levee body was also evaluated according to the thickness of the new substance. The ultimate aim of this study was to derive the optimal conditions by verifying the performance and effectiveness of the new substance in terms of levee breach factors such as overflow, seepage, or piping in a series of hydraulic experiments. In the future, the field application of these optimal conditions will be verified through a real-scale experiment.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-08-10
    Description: Water, Vol. 10, Pages 1056: Simplified Lake Surface Area Method for the Minimum Ecological Water Level of Lakes and Wetlands Water doi: 10.3390/w10081056 Authors: Songpu Shang Songhao Shang The determination of the rational minimum ecological water level is the base for the protection of ecosystems in shrinking lakes and wetlands. Based on the lake surface area method, a simplified lake surface area method was proposed to define the minimum ecological lake level from the lake level-logarithm of the surface area curve. The curve slope at the minimum ecological lake level is the ratio of the maximum lake storage to the maximum surface area. For most practical cases when the curve cannot be expressed as a simple analytical function, the minimum ecological lake level can be determined numerically using the weighted sum method for an equivalent multi-objective optimization model that balances ecosystem protection and water use. This method requires fewer data of lake morphology and is simple to compute. Therefore, it is more convenient to use this method in the assessment of the ecological lake level. The proposed method was used to determine the minimum ecological water level for one freshwater lake, one saltwater lake, and one wetland in China. The results can be used in the lake ecosystem protection planning and the rational use of water resources in the lake or wetland basins.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-08-11
    Description: Entropy, Vol. 20, Pages 597: Work Availability and Exergy Analysis Entropy doi: 10.3390/e20080597 Authors: Pouria Ahmadi Behnaz Rezaie n/a
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-08-11
    Description: Entropy, Vol. 20, Pages 598: Entropy Applications in Environmental and Water Engineering Entropy doi: 10.3390/e20080598 Authors: Huijuan Cui Bellie Sivakumar Vijay P. Singh n/a
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-08-11
    Description: Water, Vol. 10, Pages 1071: Correction: Oubennaceur, K., et al. Uncertainty Analysis of a Two-Dimensional Hydraulic Model. Water 2018, 10, 272 Water doi: 10.3390/w10081071 Authors: Khalid Oubennaceur Karem Chokmani Miroslav Nastev Marion Tanguy Sebastien Raymond The authors wish to make the following corrections to this paper [...]
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1076: Operating Cost Reduction of In-line Coagulation/Ultrafiltration Membrane Process Attributed to Coagulation Condition Optimization for Irreversible Fouling Control Water doi: 10.3390/w10081076 Authors: Sung Soo Yoo This study examined the optimum coagulation conditions for reducing irreversible fouling during the in-line coagulation/ultrafiltration (UF) membrane process and assessed the decrease in operating cost. The coagulation conditions that generated charge-neutralization, sweep-flocculation, and under-dosing mechanisms were obtained by a jar-test, and a pilot-scale in-line coagulation/UF membrane process was operated under the coagulation conditions. Charge-neutralization and sweep-flocculation mechanisms reduced irreversible fouling effectively, and the under-dosing mechanism was able to reduce irreversible fouling only when flocs of a certain size or larger were formed. This revealed that floc size was a more important factor in reducing irreversible fouling than floc structure, and once initial cake layers were created by flocs of a fixed size, the structure of formed cake layers had only a minor effect on irreversible fouling. Regarding reduction in operating cost, 0.5 mg/L and 3 h, which were necessary to produce an under-dosing mechanism, were deemed the optimum coagulant dosage and coagulant injection time, respectively, to reduce irreversible fouling. In order to analyze the operating cost reduction effect, a pilot plant was operated under optimum operating conditions, and the total operating cost was approximately 11.2% lower than without in-line coagulation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1075: Abundant and Rare Bacterioplankton in Freshwater Lakes Subjected to Different Levels of Tourism Disturbances Water doi: 10.3390/w10081075 Authors: Congcong Jiao Dayong Zhao Rui Huang Xinyi Cao Jin Zeng Yuqing Lin Wenjie Zhao Anthropogenic disturbances have a negative impact on lake ecosystems, such as water environmental degradation. Bacterioplankton communities are essential components in lakes and consist of a few abundant species and several rare taxa. However, little is known about the community diversity and composition of abundant and rare bacterioplankton subjected to different levels of anthropogenic disturbances. In this study, water samples were collected from twelve freshwater lakes located around the city of Nanjing, China. Both Illumina MiSeq sequencing and multivariate statistical analysis were employed to determine the bacterioplankton community composition and its relation to environmental variables. The results indicated that tourism disturbances (mostly sewage discharge and tourist activities) altered the community structure of both abundant and rare bacterioplankton by changing water physicochemical characteristics. Alpha diversity of both abundant and rare taxa did not differ among different anthropogenic disturbance lakes (p > 0.05). Rare bacterial taxa possessed higher alpha diversity than abundant taxa, though rare taxa occupied a tiny portion of abundance (4.5%). Redundancy analysis demonstrated that dissolved organic carbon (DOC) was the most significant correlation variable for constraining the variation of abundant taxa, whereas total phosphorus (TP), ammonium nitrogen (NH4+-N), and chlorophyll-a (Chl-a) were the most dominant environmental factors constraining the rare taxa, indicating abundant and rare taxa may have different ecological niches.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1074: Applicability Assessment of Estimation Methods for Baseflow Recession Constants in Small Forest Catchments Water doi: 10.3390/w10081074 Authors: Hyunje Yang Hyung Tae Choi Honggeun Lim In South Korea, since small forest catchments are located upstream of most river basins, the baseflow from these catchments is important for a clean water supply to downstream areas. Baseflow recession analysis is widely recognized as a valuable tool for estimating the baseflow component of the stream hydrograph. However, few studies have applied this tool to small forest catchments. So, this study was conducted to assess the applicability of the recession analysis methods proposed in previous studies. The data used were long-term rainfall-runoff data from 1982 to 2011 in the Gwangneung coniferous (GC) and deciduous (GD) forest catchment in Gyeonggi-do, South Korea. For the applicability assessment, six recession constant estimation methods, which were used by previous studies, were selected. The recession constants of the GC and GD catchments were calculated, and applicability assessments were conducted by comparing the recession predictions and baseflow separations. As a result, the recession constants for GC and GD were 0.8480 and 0.9235, respectively. This clear difference may be due to the different forest cover in each area. The correlation regression line, AR(1) model, and the Vogel and Kroll method showed lower error rates and appropriate baseflow indexes compared with other methods.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1073: Laboratory Studies on Nearshore Density-Driven Exchange Flow over a Partly Vegetated Slope Water doi: 10.3390/w10081073 Authors: Zhenghua Gu Hao-Che Ho Zijing Wang Ying-Tien Lin Density-driven exchange flows, which are important to the transport of nutrients, pollutants and chemical substances without external forcing, were studied through laboratory lock-exchange experiments. Rigid and emergent cylinders were placed in one of two reservoirs in a partitioned wedge-shaped tank to simulate a partly vegetated slope. The experimental results found that cylinders placed on only one side of the tank lead to different current speeds in the current head and tail that subsequently create various flow patterns and significantly affect the downslope current motions. By fitting with the experimental data, some unknown coefficients can be obtained in the theoretical formulae that are able to predict the intrusion length and exchange flowrate in real field systems. Compared to the flat bed cases, the total exchange discharge over a steep slope decreases by up to 4% for vegetation distributed in shallow water and increases by 14% for vegetation distributed in deeper regions. These results suggest that bed slope and vegetation distribution are crucial to the density-driven exchange flows in the flushing of nearshore regions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-08-12
    Description: Water, Vol. 10, Pages 1072: Bacterial Productivity in a Ferrocyanide-Contaminated Aquifer at a Nuclear Waste Site Water doi: 10.3390/w10081072 Authors: Andrew Plymale Jacqueline Wells Emily Graham Odeta Qafoku Shelby Brooks Brady Lee This study examined potential microbial impacts of cyanide contamination in an aquifer affected by ferrocyanide disposal from nuclear waste processing at the US Department of Energy’s Hanford Site in south-eastern Washington State (USA). We examined bacterial productivity and microbial cell density in groundwater (GW) from wells with varying levels of recent and historical total cyanide concentrations. We used tritiated leucine (3H-Leu) uptake as a proxy for heterotrophic, aerobic bacterial productivity in the GW, and we measured cell density via nucleic acid staining followed by epifluorescence microscopy. Bacterial productivity varied widely, both among wells that had high historical and recent total cyanide (CN−) concentrations and among wells that had low total CN− values. Standing microbial biomass varied less, and was generally greater than that observed in a similar study of uranium-contaminated hyporheic-zone groundwater at the Hanford Site. Our results showed no correlation between 3H-Leu uptake and recent or historical cyanide concentrations in the wells, consistent with what is known about cyanide toxicity with respect to iron speciation. However, additional sampling of the CN− affected groundwater, both in space and time, would be needed to confirm that the CN− contamination is not affecting the GW biota.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-08-14
    Description: Water, Vol. 10, Pages 1079: Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran Water doi: 10.3390/w10081079 Authors: Masoud Jafari Shalamzari Wanchang Zhang Population growth and rising water demand, climate change, severe droughts, and land-use changes are among the top severe issues in Iran. Water management in this country is sectoral and disintegrated. Each authority evaluates water based on its final intention and there is no commonplace indicator for evaluation programs. In this research, we used the Water Poverty Index (WPI) to map the status of water scarcity in a north-eastern province of Iran. Water poverty was measured based on five components of “Resources”, “Access”, “Capacity”, “Use”, and “Environment”. The scores on each component were then aggregated using the weighted multiplicative function, assuming equal weights for all components. The overall WPI was evaluated to be 41.1, signaling an alarming and serious water poverty in the study area. Based on the results, Azadshahr (29.1) and Gorgan (61.6) districts had the worst and the best conditions among all cases, respectively. To better understand the importance of WPI components, four weighting alternatives were used; however, none of them resulted in a tangible improvement of WPI index. The cross-correlation between the components was also evaluated, with Access and Capacity showing significant results. Leaving out “Capacity”, however, reduced WPI by 8.1. In total, “Access”, “Capacity”, and “Use” had the highest correlation with WPI, implying that any attempt to improve water poverty in the province must firstly tackle these issues. This study showed that WPI is an effective indicator of water scarcity assessment and could be used to make priorities for policy-making and water management.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...