ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Berlin ; Heidelberg : Springer  (216)
  • English  (216)
  • Swedish
  • 1995-1999  (50)
  • 1985-1989  (166)
Collection
Language
  • English  (216)
  • Swedish
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Berlin ; Heidelberg : Springer
    Call number: 12/M 00.0197 ; PIK N 456-99-0012
    Type of Medium: Monograph available for loan
    Pages: XI, 179 S.
    ISBN: 3540657843
    Classification:
    Meteorology and Climatology
    Language: English
    Location: Reading room
    Location: A 18 - must be ordered
    Branch Library: GFZ Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Berlin ; Heidelberg : Springer
    Keywords: Gewässerschutz ; Hydrogeologie ; Hydrologie ; Muren ; Schlammströme ; debris flow ; hydrogeological risk ; hydrology ; muren ; torrent control devices
    Description / Table of Contents: The book gives a general overview of recent approaches to debris flows. Problems of both occurrences and dynamics of debris flow are treated, taking into account new results from theoretical and experimental research and field observations. Finally, the functioning of the main control devices are reconsidered in the light of the state of the art. Contents: Observation and Measurement for Debris Flow - Introduction, Prediction of Debris Flow for Warning and Evacuation, Large and Small Debris Flows - Occurence and Behaviour, Field Survey for Debris Flow in Volcanic Area.- Dynamics of Debris Flow - Introduction, A Comparison Between Gravity Flows of Dry Sand and Sand-Water Mixtures, Review Dynamic Modeling of Debris Flows, Dynamics of the Inertial and Viscous Debris Flows, Selected Notes on Debris Flow Dynamicss.- Control Measures for Debris Flow - Introduction, Development of New Methods for Countermeasures against Debris Flows, Torrent Check Dams as a Control Measure for Debris Flows, On the Dynamic Impact of Debris Flows.
    Pages: Online-Ressource (X, 226 Seiten)
    ISBN: 9783540497295
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Description / Table of Contents: PREFACE The aim of this volume is two-fold. At the more pragmatic level, it is to help answer the many questions about the structure of the Pacific continental margin of North America, which have arisen over the years as a result of continuing field mapping and geophysical surveys. The second objective is methodological - to illustrate the irreplaceable role of geological information among the various data sets used in earth-science studies. The need to address these issues became apparent to the author during the several years he spent taking part in geological and geophysical studies on the west coast of Canada. All too often, results of geologic field mapping disagreed with tectonic predictions from too-straightforward local applications of global plate reconstructions, which due to their generality do not always take a full account of specific character of particular regions. To be sure, the global approach has during the last q~/artercentury greatly expanded the vision of geoscientists, previously restricted to continental regions. However, a negative by-product of this expansion has been a decline of attention paid to local information, as tectonic studies have increasingly relied on simply fitting the development of a particular region into this or that prefabricated tectonic template. Direct geological observations have limitations of their own. The observer in most cases deals with products of geologic processes, rather than with the processes themselves. Field mapping provides local information, and many years of effort are needed before a regional overview becomes possible. Geologic mapping is restricted to the ground surface, and even the deepest drillholes cannot sample more than the outermost shell of the Earth. The factual side of geologic mapping is usually limited to determination of rock types and their relationships in areas of exposure. Conclusions about the three-dimensional structure of a region and its evolution are still mostly inferential. Broad incorporation into geological studies of geophysical data, assisted by ever-more-sophisticated modern computers, provides a huge volume of information unobtainable in other ways. Geophysical methods quickly afford regional coverage or images of the Earth's deep interior. Geophysical methods have prompted the application in geological sciences of methodologies borrowed from exact sciences, such as mathematics and physics. Particularly important has been quantitative modeling, which allows a scientist to use the known parameters of a system to predict others. But in taking this approach too far, one encounters a dangerous pitfall. A model is a simplified representation of a natural phenomenon. The quality of this or that representation is relative, and a representation is never perfect. To incorporate all characteristics of a geologic phenomenon, in a parametrized form, into a numerical or physical imitation is impossible. This requires one to rely on simplifying assumptions, and a model is no better than the assumptions at its base. Unrealistic assumptions lead to unrealistic models. When a disagreement arises between model predictions and observations - such as those from geologic field mapping - a modeler may be tempted to downplay the differences or the significance of the offending observations. It becomes tempting to underestimate the role of an experienced geologist as a principal arbiter of the realism of a model. But it is geological data and geological control that provide the ultimate means of testing abstract models. From this methodological position, the present study of the western North American continental margin is organized as follows: 1. Geological information, available from field mapping and drilling, is gathered and summarized. 2. Current geophysical models for this region are considered, with particular attention to their underlying assumptions. 3. The available data, geological and geophysical, are synthesized into an internally consistent geologic-evolution concept. 4. This concept is tested by comparison with direct geological observations from field mapping and drilling. Because most current data sets and models cover northwestern Washington and western British Columbia, particular attention was paid to these areas. Fortunately, these areas contain many keys that help understand the structure of the entire western North American continental margin, which has baffled scientists for decades. The author does not claim to have resolved all these problems, but he does believe he has made a useful contribution to understanding continental-oceanic plate interrelations at this continental margin. Rigidity of lithospheric plates is a critical assumption in current models of plate evolution. The lithophere of a plate is created at spreading centers manifested in the global system of mid-ocean ridges. It moves away from the place of its birth towards boundaries with other plates, with which it can interact in a variety of ways. Some interactions are of strike-slip type, with two plates simply sliding past each other. However, to compensate for the creation of new lithosphere at spreading centers, older lithosphere at some plate boundaries descends into the mantle as it is overriden by other plates. At such plate boundaries lie subduction zones. If both regimes occur along a single plate boundary, the transition between them must be abrupt. Unless it can be tied to a change in orientation of the boundary, it must be associated with a junction of not two, but three different plates. Such a template was used to interpret the structure and tectonic evolution of the western North American continental margin in the late 1960s and thereafter (Atwater, 1970; McManus et al., 1972; Barr and Chase, 1974; Riddihough and Hyndman, 1976). To satisfy the principles of rigid-plate tectonics, both regimes have to exist along this continental margin. Also needed in rigid-plate reconstructions is a plate triple junction somewhere between the areas of proven ongoing subduction (in Oregon and southern Washington) and transform plate motion (along the southeastern Alaska margin; Atwater, 1970; McManus et al., 1972). Such a triple junction has been placed off Queen Charlotte Sound offshore British Columbia (Keen and Hyndman, 1979; Riddihough et al., 1983), where a spreading center has been postulated between the Pacific and Explorer oceanic plates (Hyndman et al. 1979; Riddihough, 1984). Off northern Vancouver Island, a transform boundary between the Explorer and Juan de Fuca oceanic plates has been postulated, but both these plates are assumed to be subducting beneath Vancouver Island (Hyndman et al., 1979; Riddihough and Hyndman, 1989)o With the assumed universality of the rigid-plate model, "broad similarity" has been suggested between the geology of western Oregon and that of western British Columbia, and the Cascadia zone of active subduction has been extended as far north as the mouth of Queen Charlotte Sound (Riddihough, 1979, 1984). An accretionary sedimentary prism (Yorath, 1980) - or even an accretionary complex containing several exotic "terranes" (Davis and Hyndman, 1989) - has been postulated off Vancouver Island. Geological observations onshore and offshore (Shouldice, 1971; Tiffin et al., 1972) have come to be considered too "surficial" to be of major consequence for large-scale tectonic modeling (Yorath et al., 1985a,b; Yorath, 1987). Variants of the principal geophysical model for this area during the last decade (Clowes et al., 1987; Hyndman et alo, 1990; Spence et al. 1991; Yuan et al., 1992; Dehler and Clowes, 1992) have become increasingly distant from geological observations. As new model variants emerged, they were checked for internal consistency, compatibility with neighboring local models and fidelity to the overall assumed tectonic picture. However, detailed geological work continued, and many of its results proved incompatible with the conventional wisdom (Gehrels, 1990; Babcock et al., 1992, 1994; Allan et al., 1993; Lyatsky, 1993a). Importantly, questions arose about the applicability in this region of the conventional, simple rigid-plate assumption, as it was shown to be unable to account for all the geological and geophysical peculiarities in some areas (Carbotte et al., 1989; Allan et al., 1993; Davis and Currie, 1993). New solutions were made necessary by new findings and by rediscovery of forgotten old data (see Lyatsky et al., 1991; Lyatsky, 1993b). Without aiming to resolve all the outstanding debates, tectonic implications of the geologic mapping and drilling results in this region are considered in the following chapters. These results are integrated with geochemical and geophysical data. Interpretations of these data, made by this author and by other workers, are verified by geological observations and by geologically plausible extrapolations from these observations. In searching for solutions consistent with all the information, the author has restricted himself to analyzing continental-crust structures along this continental margin. He believes, however, that future models for the offshore regions of the northeastern Pacific should consider the results obtained herein.
    Pages: Online-Ressource (352 Seiten)
    ISBN: 9783540608424
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Unknown
    Berlin ; Heidelberg : Springer
    Keywords: GPS ; Global Positioning System ; geodesy
    Description / Table of Contents: The subject of the book is an indepth description of the theory and mathematical models behind the application of the Global Positioning System in geodesy and geodynamics. The text has been prepared by leading experts in the field, contributing their particular points of view. Unlike a collection of disjoint papers, the text provides a continous flow of ideas and developments. The mathematical models for GPS measurements are developed in the first half of the book, followed by the description of GPS solutions for geodetic applications on local, regional and global scales.
    Pages: Online-Ressource (VII, 407 Seiten) , 120 schwarz-weiß Abbildungen
    ISBN: 9783540494478
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE The objective of this book is to introduce the practitioner as well as the more theoretically interested reader into the integration problem of spatial information for Geo-lnformation Syslems. Former Get-Information Systems are restricted to 2D space. They realize the integration of spatial information by a conversion of vector and raster representations. This, however. leads to conceptual difficulties because of the two totally different paradigms. Furthermore, the internal topology of the get-objects is not considered. In recent years the processing of 3D information has played a growing role in Get-Information Systems. For example, planning processes for environmental protection or city planning are dependent on 3D data. The integration of spatial reformation will become even more impoaant in the 3D context and with the development of a new generation of open GISs. This book is intended to respond to some of these requirements. It presents a model for the integration of spatial information for 3D Geo-lnformation Systems (3D-GISs). As a precondition for the integration of spatial information, the integration of different spatial representations is emphasized. The model is based on a three-level notion of space that likewise includes the geometry, metrics and the topology of get-objects. The so called extended complex (e-complex) is introduced as a kernel of the model. Its internal basic geometries are the point, the line, the triangle and the tetrahedron. It is shown how a convex e-complex (ce-complex) is generated by the construction of the convex hull and the "'filling" of lines, triangles and tetrahedra, respectively. As we know from computer geometry, this results in substantially simpler geometric algorithms. Additionally, the algorithms gain by the explicit utilization of the topology of the ce-complex. This book also builds a bridge from the GIS to the object-oriented database technology, which will likely become a key technology for the development of a new generation of open Geo-lnformation Systems. In the so-called GEtmodel kernel "building blocks" are introduced that s~mplify the development of software architectures for geo-applications. A geological application in the Lower Rhine Basin shows the practical use of the introduced geometric and topological representation for a 3D-GIS...
    Pages: Online-Ressource (171 Seiten)
    ISBN: 9783540608561
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Description / Table of Contents: PREFACE Through the last few decades inversion concepts have become an integral past of experimental data interpretation in several branches of science. In numerous cases similar inversion-like techniques were developed independently in separate disciplines, sometimes based on different lines of reasoning, and sometimes not to the same level of sophistication. This fact was realized early in inversion history. In the seventies and eighties "generalized inversion" and "total inversion" became buzz words in Earth Science, and some even saw inversion as the panacea that would eventually raise all experimental science into a common optimal frame. It is true that a broad awareness of the generality of inversion methods is established by now. On the other hand, the volume of experimental data varies greatly among disciplines, as does the degree of nonlinearity and numerical load of forward calculations, the amount and accuracy of a priori information, and the criticality of correct error propagation analysis. Thus, some clear differences in terminology, philosophy and numerical implementation remain, some of them for good reasons, but some of them simply due to tradition and lack of interdisciplinary communication. In a sense the development of inversion methods could be viewed as an evolution process where it is important that "species" can arise and adapt through isolation, but where it is equally important that they compete and mate afterwards through interdisciplinary exchange of ideas. This book was actually initiated as a proceedings volume of the "Interdisciplinary Inversion Conference 1995", held at the University of Aarhus, Denmark. The aim of this conference was to further the competition and mating part of above-mentioned evolution process, and we decided to extend the effect through this publication of 35 selected contributions. The point of departure is a story about geophysics and astronomy, in which the classical methods of Backus and Gilbert from around 1970 have been picked up by helioseismology. Professor Douglas Gough, who is a pioneer in this field, is the right person to tell this success story of interdisciplinary exchange of research experience and techniques [1-31] (numbers refer to pages in this book). Practitioners of helioseismology like to stress the fact that the seismological coverage on the Sun in a sense is much more complete and accurate than it is on Earth. Indeed we witness vigorous developments in the Backus & Gilbert methods (termed MOLA/SOLA in the helioseismology literature) [32-59] driven by this fortunate data situation. Time may have come for geophysicists to look into helioseismology for new ideas. Seismic methods play a key role in the study of the Earth's lithosphere. The contributions in [79 - 130,139 - 150] relate to reflection seismic oil exploration, while methods for exploration of the whole crust and the underlying mantle axe presented in [131 - 138, 151 - 166]. Two contributions [167 - 185] present the application of inversion for the understanding of the origin of petroleum and the prediction of its migration in sedimentary basins. Inversion is applied to hydrogeophysical and environmental problems [186 - 222], where again developments are driven by the advent of new, mainly electromagnetic, experimental techniques. The role of inversion in electromagnetic investigations of the lithosphere/astenosphere system as well as the ionosphere axe exemplified in [223 - 238]. Geodesy has a fine tradition of sophisticated linear inversion of large, accurate sets of potential field data. This leads naturally to the fundamental study of continuous versus discrete inverse formulations found in [262-275]. Applications of inversion to geodetic satellite data are found in [239 - 261]. General mathematical and computational aspects are mainly found in [262 - 336]. Nonlinearity in weakly nonlinear problems may be coped with by careful modification of lineaxized methods [295 - 302]. Strongly nonlinear problems call for Monte Carlo methods, where the cooling scedule in simulated annealing [303 - 311,139 - 150] is critical for convergence to a useful (local) minimum, and the set of consistent models is explored through importance sampling [89 - 90]. The use of prior information, directly or indirectly, is a key issue in most contributions, ranging from Bayesian formulations based a priori covariances e.g. [98 - 112,122 - 130, 254 - 261], over more general but also less tractable prior probability densities [79 - 97], to inclusion of specific prior knowledge of shape [284 - 294, 312 - 319]. Given the differences and similarities in approach, can we benefit from exchange of ideas and experience? In practice ideas and experience seldom jump across discipline boundaries by themselves. Normally one must go and get them the hard way, for instance by reading and understanding papers from disciplines far from the home ground. Look at the journey into the interdisciplinary cross-field of inversion techniques as a demanding safari into an enormous hunting ground. This book is meant to provide a convenient starting point.
    Pages: Online-Ressource (341 Seiten)
    ISBN: 9783540616931
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE The ocean has always been reluctant to reveal its secrets. Its size and the inaccessibility of its deeper regions have made their safeguard a reasonably simple matter with the result that significant misconceptions persisted for many years. Two of the most widespread of these concerned the featureless nature of the sea floor and the silence of the deep ocean. Underwater acoustics has played a key role in discrediting both and in so doing introduced new and exciting developments in oceanography and geophysics. In the years following World War II, echosounders and subbottom profilers based on new active sonar technology, revealed the true nature of the seafloor topography and led to the major advances represented by plate tectonics. Research driven by the requirements of passive sonar, on the other hand, was to demonstrate that the sea was not silent but was characterised by a complex noise spectrum. Many individual mechanisms and sources ranging from man-made, biological and geophysical activity to the intrinsic noise of the sea itself were found to contribute to this spectrum. A major component, which is the subject of this book, was to remain unrecognised to underwater acoustics until noise measurements could be made effectively at very low frequencies, although its presence had been indicated by seismology long before these measurements were possible. By virtue of its geographical isolation in the Southern Ocean, New Zealand has provided an ideal environment for long-range propagation and ambient noise investigations and numerous studies have been reported. Our interest in the subject of this book was aroused initially in the course of one such experiment in 1966. For the first time it had been possible to extend the recording bandwidth to 1 Hz and the improved performance of this new system was anticipated eagerly. However the main purpose of the experiment was nearly aborted by the appearance of a new and unsuspected noise component at frequencies below 10 Hz. Due primarily to technical limitations in the equipment then available, a subsequent programme, designed to identify the properties and origin of the source more clearly, was not productive and was soon abandoned. An opportunity to revisit the problem arose some 10 years later, when the University of Auckland became involved in a major environmental study in support of the development of an offshore gas field in Cook Strait. The technology then available provided an opportunity to examine afresh the relationship between sea state and the seismo-acoustic response generated. An initial trim demonstrated the potential of the site. Accordingly a long-term programme, involving the parallel measurement of the oceanwave field and acoustic response, was undertaken in a series of student research theses. The data so gathered were of sufficiently high quality to ultimately establish wave-wave interactions as the source of the acoustic effects observed and to identify many of its characteristics. This result was soon to be confirmed by other studies. As the noise data accumulated, however, it became apparent that certain refinements to the theories describing the mechanism were required. Our attempts to provide these refinements have been reported in a number of contributions in recent years. The accounts of these and similar contributions by others have unfortunately appeared in the literature in a somewhat disjointed manner, with the result that the evolution of the subject has not been easy to follow. This book attempts to present a more coherent account of the subject and its development. Most of the early experimental and theoretical results from our group have arisen from two key Ph.D. theses, due to Dr. K.C. Ewans and Dr. C.Y. Wu. The painstaking and careful instrumentation development and data analysis provided by Dr. Ewans were critical to the definitive correlation which we were able to establish between wind field, seastate and the acoustic response so generated. Dr. Wu's thesis presented the first phase of our attempt at the resolution of certain key theoretical issues, which were identified in the course of the experimental programme. Both studies owe much to the support of Shell BP Todd Oil Services Ltd., acting for Maui Development Ltd., and to the University of Auckland. The support of the Electricity Corporation of New Zealand Ltd. during a later experimental investigation of the Southern Ocean wave field is also acknowledged...
    Pages: Online-Ressource (313 Seiten)
    ISBN: 9783540607212
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
  • 19
  • 20
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
  • 23
    Keywords: Dokument-Bildanalyse - Engineering Drawings - Erkennungsalgorithmen - Graphics Recognition - Ingenieurzeichnungen ; Landkarteninterpretation ; Map Interpretation ; Recognition Algorithms ; algorithms ; cognition ; construction ; knowledge ; learning ; model ; verificat
    Description / Table of Contents: This book contains revised refereed papers selected from the presentations at the First International Workshop on Graphics Recognition, held in University Park, PA, USA, in August 1995. The 23 full papers included are divided into sections on low-level processing, vectorization and segmentation of scanned graphics documents; symbol and diagram recognition, map processing, interpretation of engineering drawings. Each section contains both survey articles to assess the state of the art, and research papers presenting novel results. One section is devoted to a contest held to determine the best algorithm for detection of dashed lines in drawings. The final chapter summarizes the conclusions and recommendations of the discussions held during the workshop.
    Pages: Online-Ressource (X, 314 pages)
    ISBN: 9783540683872
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Description / Table of Contents: PREFACE The four-year period of activity of the Groupement de Recherche 942 (GDR) of the Centre National de la Recherche Scientifique (CNRS) came to an end in December 1993. This GDR was a scientific association grouping research teams from the academic sphere -- i.e. the Unités de Recherches Associées 723 & 724 of the CNRS as well as the Universities of Orléans and Paris-Sud -- and from the industrial world: Elf-Aquitaine Production, TOTAL and the Institut Français du Pétrole (IFP). The aim of the GDR was to understand the processes and the causes of organic carbon fossilization in sediments, especially when they can be modified by environmental conditions such as climate, eustatism, productivity etc., factors which can alko interact. This goal implies the simultaneous study of ancient geological formations (hydrocarbon source rocks from the famous Kimmeridge Clay Formation) and recent Quaternary sediments (the Lac du Bouchet or lake Bouchet maar, Massif Central, France). In the latter case, we benefit from a fine-scale stratigraphical framework as well as a reliable reconstruction of the local and regional environment. This volume is a collection of papers representing oral presentations given on December 7, 1993, at the Société Géologique de France in Paris, during the final meeting of the GDR. These articles thus report the latest developments of the studies carried out under the GDR. However, this is not the first publication of our results, which can be found in the papers referred to in each article. The Kimmeridge Clay Formation was previously studied in 1987, by the Yorkim Group from IFP, Elf-Aquitaine and the British Geological Survey, on the basis of a series of wells drilled across the Cleveland Basin of Yorkshire. In each well, the distribution with depth of the total organic content is cyclic. We have compared some of the organic cycles from two wells (Matron and Ebberston) based on mineralogy, organic and inorganic geochemistry and petrography, at a high resolution scale (centimetric). The main conclusion of this work is that the driving force for organic matter accumulation in the studied cycles was organic phytoplankton productivity. Oxygenation conditions seem to have played a secondary role as a positive feedback action enhancing organic matter storage. Lac du Bouchet is located on the Devès volcanic plateau, 15 km SW of Le Puy en Velay, at an altitude of 1205 m. The depth of the water column is 28 m. The lake has a subcircular shape (1 km in diameter) and a very restricted watershed. This site is exceptionally suitable for research on climate variations and palaeomagnetic field modifications (Euromaars EC Program). The GDR focused on sedimentary organic matter and its relationship to inorganic phases. An important result is that organic matter appears to be a good indicator of palaeoenvironmental reconstructions for over 350 000 years. In addition, the study of early diagenetic reactions in surficial sediments (porewater and solid phase) allows the specification of the processes of organic matter degradation and storage in such an oligothrophic lake.
    Pages: Online-Ressource (187 Seiten)
    ISBN: 9783540591702
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Description / Table of Contents: PREFACE In the geologic record, vertical crustal uplift has often resulted in erosional removal of huge thicknesses of sedimentary strata. If the uplift is of a broad regional nature or the uplifted strata remain relatively undeformed and sediments deposited after the uplift are not preserved, the magnitude of uplift and subsequent erosion may be difficult to quantify. This may lead to misinterpretation or omission of chapters of geologic history of a region. Fortunately, a number of indirect methods can be used to infer the thicknesses of missing strata and reconstruct the geologic history. Our book titled "Thick Post-Devonian Sediment Cover Over New York State: Evidence from Fluid-Inclusion, Organic Maturation, Clay Diagenesis and Stable Isotope Studies" uses four techniques of paleotemperature measurements in sedimentary rocks in order to determine burial depths of the existing Paleozoic strata in New York State. Since every technique has its own analytical and interpretative uncertainties, the use of four techniques allowed us to place a better constraint on our results. We show how regionally extensive paleotemperature data can be used to estimate the thicknesses of strata lost from an uplifted sedimentary basin. We also provide a tentative tectonic-, paleogeographic- and depositional history of New York State after the Devonian when the missing strata were deposited...
    Pages: Online-Ressource (113 Seiten)
    ISBN: 9783540594581
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE In recent years, there has been increasing interest from geoscientists in potassic igneous rocks. Academic geoscientists have been interested in their petrogenesis and their potential value in defining the tectonic setting of the terranes into which they were intruded, and exploration geoscientists have become increasingly interested in the association of these rocks with major epithermal gold and porphyry gold-copper deposits. Despite this current interest, there is no comprehensive textbook that deals with these aspects of potassic igneous rocks. This book redresses this situation by elucidating the characteristic features of potassic (high-K) igneous rocks, erecting a hierarchical scheme that allows interpretation of their tectonic setting using whole-rock geochemistry, and investigating their associations with a variety of gold and copper-gold deposits, worldwide. About twothirds of the book is based on a PhD thesis by Dr Daniel MOiler which was produced at the Key Centre for Strategic Mineral Deposits within the Department of Geology and Geophysics at The University of Western Australia under the supervision of Professor David Groves, the late Dr Nick Rock, Professor Eugen Stumpfl, Dr Wayne Taylor, and Dr Brendon Griffin. The remainder of the book was compiled from the literature using the collective experience of the two authors. The book is dedicated to the memory of Dr Rock who initiated the research project but died before its completion...
    Pages: Online-Ressource (225 Seiten)
    Edition: 2nd, updated and enlarged ed.
    ISBN: 9783540620754
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE The sedimentology of Chalk describes processes that caused the rhythmic vertical variation in grain size, structures and authigenic mineral concentrations in Late Cretaceous and Early Tertiary, subtropical, shallow marine, fine-grained, detrital bioclastic carbonates of northwest Europe. In particular, attention is paid to the sedimentology of the Tuffaceous Chalk of Maaslricht (The Netherlands), a coarsegrained variety of Chalk that resembles the Chalk (coccolithic mudstones) as well as modern shallow marine carbonate sands. Numerical models are presented that enable the simulation of the genesis of flint nodule layers, hardgrounds and complex wavy bedded sequences, such as the K/T boundary sequence of Stevns Klint (Denmark). The aim of this book is to show how depositional and early diagenetic features, which are observed in small-scale Chalk outcrops, can be used to reconstruct the large-scale dynamics of the northwest European continent during the Late Cretaceous and Early Tertiary...
    Pages: Online-Ressource (194 Seiten)
    ISBN: 9783540589488
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: PREFACE Seismic imaging is the process through which seismograms recorded on the Earth's surface are mapped into representations of its interior properties. Imaging methods are nowadays applied to a broad range of seismic observations: from nearsurface environmental studies, to oil and gas exploration, even to long-period earthquake seismology. The characteristic length scales of the features imaged by these techniques range over many orders of magnitude. Yet there is a common body of physical theory and mathematical techniques which underlies all these methods. The focus of this book is the imaging of reflection seismic data from controlled sources. At the frequencies typical of such experiments, the Earth is, to a first approximation, a vertically stratified medium. These stratifications have resulted from the slow, constant deposition of sediments, sands, ash, and so on. Due to compaction, erosion, change of sea level, and many other factors, the geologic, and hence elastic, character of these layers varies with depth and age. One has only to look at an exposed sedimentary cross section to be impressed by the fact that these changes can occur over such short distances that the properties themselves are effectively discontinuous relative to the seismic wavelength. These layers can vary in thickness from less than a meter to many hundreds of meters. As a result, when the Earth's surface is excited with some source of seismic energy and the response recorded on seismometers, we will see a complicated zoo of elastic wave types: reflections from the discontinuities in material properties, multiple reflections within the layers, guided waves, interface waves which propagate along the boundary between two different layers, surface waves which are exponentially attenuated with depth, waves which are refracted by continuous changes in material properties, and others. The character of these seismic waves allows seismologists to make inferences about the nature of the subsurface geology. Because of tectonic and other dynamic forces at work in the Earth, this first-order view of the subsurface geology as a layer cake must often be modified to take into account bent and fractured strata. Extreme deformations can occur in processes such as mountain building. Under the influence of great heat and stress, some rocks exhibit a taffy-like consistency and can be bent into exotic shapes without breaking, while others become severely fractured. In marine environments, less dense salt can be overlain by more dense sediments; as the salt rises under its own buoyancy, it pushes the overburden out of the way, severely deforming originally flat layers. Further, even on the relatively localized scale of exploration seismology, there may be significant lateral variations in material properties. For example, if we look at the sediments carried downstream by a river, it isclear that lighter particles will be carried further, while bigger ones will be deposited first; flows near the center of the channel will be faster than the flow on the verge. This gives rise to significant variation is the density and porosity of a given sedimentary formation as a function of just how the sediments were deposited. Taking all these effects into account, seismic waves propagating in the Earth will be refracted, reflected and diffracted. In order to be able to image the Earth, to see through the complicated distorting lens that its heterogeneous subsurface presents to us, in other words, to be able to solve the inverse scattering problem, we need to be able to undo all of these wave propagation effects. In a nutshell, that is the goal of imaging: to transform a suite of seismograms recorded at the surface of the Earth into a depth section, i.e., a spatial image of some property of the Earth (usually wave speed or impedance). There are two main types of spatial variations of the Earth's properties. There are the smooth changes (smooth meaning possessing spatial wavelengths which are long compared to seismic wavelengths) associated with processes such as compaction. These gradual variations cause ray paths to be gently turned or refracted. On the other hand, there are the sharp changes (short spatial wavelength), mostly in the vertical direction, which we associate with changes in lithology and, to a lesser extent, fracturing. These short wavelength features give rise to the reflections and diffractions we see on seismic sections. If the Earth were only smoothly varying, with no discontinuities, then we would not see any events at all in exploration seismology because the distances between the sources and receivers are not often large enough for rays to turn upward and be recorded. This means that to first order, reflection seismology is sensitive primarily to the short spatial wavelength features in the velocity model. We usually assume that we know the smoothly varying part of the velocity model (somehow) and use an imaging algorithm to find the discontinuities. The earliest forms of imaging involved moving, literally migrating, events around seismic time sections by manual or mechanical means. Later, these manual migration methods were replaced by computer-oriented methods which took into account, to varying degrees, the physics of wave propagation and scattering. It is now apparent that all accurate imaging methods can be viewed essentially as linearized inversions of the wave equation, whether in terms of Fourier integral operators or direct gradient-based optimization of a waveform misfit function. The implicit caveat hanging on the word "essentially" in the last sentence is this: people in the exploration community who practice migration are usually not able to obtain or preserve the true amplitudes of the data. As a result, attempts to interpret subtle changes in reflector strength, as opposed to reflector position, usually run afoul of one or more approximations made in the sequence of processing steps that makes up a migration (trace equalization, gaining, deconvolution, etc.) On the other hand, if we had true amplitude data, that is, if the samples recorded on the seismogram really were proportional to the velocity of the piece of Earth to which the geophone were attached, then we could make quantitative statements about how spatial variations in reflector strength are related to changes in geological properties. The distinction here is the distinction between imaging reflectors, on the one hand, and doing a true inverse problem for the subsurface properties on the other. Until quite recently the exploration community was exclusively concerned with the former, and today the word "migration" almost always refers to the imaging problem. The more sophisticated view of imaging as an inverse problem is gradually making its way into the production software of oil and gas exploration companies, since careful treatment of amplitudes is often crucial in making decisions on subtle lithologic plays (amplitude versus offset or AVO) and in resolving the chaotic wave propagation effects of complex structures. When studying migration methods, the student is faced with a bewildering assortment of algorithms, based upon diverse physical approximations. What sort of velocity model can be used: constant wave speed v? v(x), v(x, z), v(x, y, z)? Gentle dips? Steep dips? Shall we attempt to use turning or refracted rays? Take into account mode converted arrivals? 2D (two dimensions)? 3D? Prestack? Poststack? If poststack, how does one effect one-way wave propagation, given that stacking attenuates multiple reflections? What domain shall we use? Time-space? Time-wave number? Frequency-space? Frequency-wave number? Do we want to image the entire dataset or just some part of it? Are we just trying to refine a crude velocity model or are we attempting to resolve an important feature with high resolution? It is possible to imagine imaging algorithms that would work under the most demanding of these assumptions, but they would be highly inefficient when one of the simpler physical models pertains. And since all of these situations arise at one time or another, it is necessary to look at a variety of migration algorithms in daily use. Given the hundreds of papers that have been published in the past 15 years, to do a reasonably comprehensive job of presenting all the different imaging algorithms would require a book many times the length of this one. This was not my goal in any case. I have tried to emphasize the fundamental physical and mathematical ideas of imaging rather than the details of particular applications. I hope that rather than appearing as a disparate bag of tricks, seismic imaging will be seen as a coherent body of knowledge, much as optics is...
    Pages: Online-Ressource (291 Seiten)
    ISBN: 9783540590514
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
  • 30
  • 31
  • 32
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
  • 34
  • 35
  • 36
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
  • 38
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
    Keywords: 3D Surface Reconstruction - Bildanalyse - Bildverarbeitung - Bildverarbeitungsanwenungen - Closing - Computer Vision ; Mustererkennung ; Triangulation ; digital elevation model ; genetic algorithms ; hidden Markov Model ; image analysis ; model ; rendering ; robot
    Description / Table of Contents: This book presents the proceedings of the Sixth International Conference on Computer Analysis of Images and Patterns, CAIP '95, held in Prague, Czech Republic in September 1995. The volume presents 61 full papers and 75 posters selected from a total of 262 submissions and thus gives a comprehensive view on the state-of-the-art in computer analysis of images and patterns, research, design, and advanced applications. The papers are organized in sections on invariants, segmentation and grouping, optical flow, model recovery and parameter estimation, low level vision, motion detection, structure and matching, active vision and shading, human face recognition, calibration, contour, and sessions on applications in diverse areas.
    Pages: Online-Ressource (XVIII, 962 pages)
    ISBN: 9783540447818
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
  • 47
  • 48
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: INTRODUCTION The evaporite deposits of the Werra district, especially in the Hattorf mining field, are considered a worldwide unique location for the occurence of numerous basalt dikes and magmatic fluid phases fixed in salt rocks. In spite of the great number of studies dealing with the magmatites in the Werra region, previous investigations have rarely attempted more than a predominantly 'qualitative' description of the basaltic rocks and the effects of volcanism on the evaporites (see Chapter 2). The method of interpreting the mineralogical and chemical composition of the evaporites at the basalt contact is based on previous works (KNIPPING 1984; KNIPPING & HERRMANN 1985). This study should contribute to understanding (i) the mechanism of intrusion of the basaltic rnelts and (ii) the metamorphic processes occurring in the evaporites caused by mobile phases during volcanism. Hence, the following methods were applied: The mineralogical and chemical description of the basaltic rocks with recent nomenclature including the possible differences between individual dikes and between surface- and subsurface-exposed basalts. Seven surface and 48 subsurface exposures at the Hattorf mine of Kali & Salz AG were studied. Application of the most recent knowledge on basalt genesis for interpreting observational and experimental results. Studies on the sulfur and carbon isotope distributions of the native sulfur from several subsurface exposures and the enrichments of gases (predominantly CO2) in the evaporites. Calculation of the spatial and temporal temperature distribution in the evaporite rocks following intrusion of the basaltic melts. For purposes of clarity a few of the terms which will be used frequently here will first be defined: basalt - all of the intrusive rocks studied can be assigned mineralogically and chemically to the basalt family in a broader sense. Thus, the terms basaltic rock or, in short, basalt will be used for these rocks. rock salt - instead of the term salt for halitic rocks the term rock salt is used. Besides, the evaporites are generally designated as host rocks (for the basalt dikes) as well. gases - especially in the German literature the term carbon dioxide or carbonic acid (= Kohlensäure) is frequently used for the gases enclosed in the evaporites of the Werra-Fulda district. ACKERMANN et al (1964) found, in addition to carbon dioxide, considerable amounts of nitrogen and minor amounts of methane. In the following therefore the terms gas mixture or gas will be used. The various basalt dikes found in the Hattorf mining field are described here in terms of their mineralogy and geochemistry for the first time. In doing so it is necessary to number them from east to west. To avoid confusion with older numerations (e.g. SIEMENS 1971) the various dike systems are designated by capital letters (A to P).
    Pages: Online-Ressource (131 Seiten)
    ISBN: 9783540513087
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Description / Table of Contents: INTRODUCTION Sediments are increasingly recognized as both a carrier and a possible source of contaminants in aquatic systems, and these materials may also affect groundwater quality and agricultural products when disposed on land. Contaminants are not necessarily fixed permanently by the sediment, but may be recycled via biological and chemical agents both within the sedimentary compartment and the water column. Bioaccumulation and food chain transfer may be strongly affected by sediment-associated proportions of pollutants. Benthic organisms, in particular, have direct contact with sediment, and the contaminant level in the sediment may have greater impact on their survival than do aqueous concentrations. Following the findings of positive correlations between liver lesions in English Sole and concentrations of certain aromatic hydrocarbons in Puget Sound (Washington) sediment, it can be suspected that such substrates may also be responsible for a host of other serious and presently unrecognized changes at both the organismal and ecosystem levels (Malins et al., 1984). Modern research on particle-bound contaminants probably originated with the idea that sediments reflect the biological, chemical and physical conditions in a water body (Züllig, 1956). Based on this concept the historical evolution of limnological parameters could be traced back from the study of vertical sediment profiles. In fact, already early in this century Nipkow (1920) suggested that the alternative sequence of layers in a sediment core from Lake Zürich might be related to variations in the trophic status of the lake system. During the following decades of limnological research on eutrophication problems sediment aspects were playing only a marginal role, until it was recognized that recycling from bottom deposits can be a significant factor in the nutrient budget of an aquatic system. Similarly, in the next global environmental issue, the acidification of inland waters sediment-related research only became gradually involved. Here too, it is now accepted that particle-interactions can affect aquatic ecosystems, e.g. by enhancing the mobility of toxic metals. In contrast to the eutrophication and acidification problems, research on toxic chemicals has included sediments aspects from its beginning: Artificial radionuclides in the Columbia and Clinch Rivers in the early sixties (Sayre et al., 1963); in the late sixties heavy metals in the Rhine River system (De Groot, 1966) and methyl mercury (Jensen & Jerne- 16v, 1967) at Minamata Bay in Japan, in Swedish lakes, in Alpine Lakes, Laurentian Great Lakes and in the Wabigoon River system in Canada; organochlorine insecticides and PCBs in Lakes St. Clair and Erie during the seventies (Frank et al., 1977); chlorobenzenes and TCDDs in the Niagara River system and Lake Ontario in the early eighties (Oliver & Nicol, 1982; Smith et al., 1983). In the present lecture notes, following the description of priority pollutants related to sedimentary phases (Chapter 2), four aspects will be covered, which in an overlapping succession also reflect the development of knowledge in particle-associated pollutants during the past twenty-five years: - the identification, surveillance, monitoring and control of sources and distribution of pollutants (Chapter 3); - the evaluation of solid/solution relations of contaminants in surface waters (Chapter 4); - the study of in-situ processes and mechanisms in pollutant transfer in various compartments of the aquatic ecosystems (Chapter 5);- The assessment of the envlroD-mental impact of particle-bound contaminants, i.e. the development of sediment quality criteria (Chapter 6). A final chapter will focus on practical aspects with contaminated sediments. Available technologies will be described as well as future perspectives for the management of dredged materials. Here too, validity of remedial measures can only be assessed by integrated, multidisciplinary research. In the view of the growing information on the present subject and owing to the limitations in the framework of this monography, the reader is referred to additional selected bibliography, which is attached at the end of this Chapter i. Additional information on the more recent publications on contaminated sediments is given in the annual review volume of the Journal of the Water Pollution Control Federation, June edition.
    Pages: Online-Ressource (157 Seiten)
    ISBN: 9783540510765
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Description / Table of Contents: PREFACE It is increasingly necessary to develop industrial and hydraulic engineering constructions under unfavourable geological or geotechnical conditions. Furthermore, it becomes more and more important to build effectively and economically and to find optimal solutions for a long-term steady function of the constructions. This emphatically demands exhaustive information on the structural situations and engineering parameters of local site assessments by areal investigations of the sites and the petrophysical parameters in situ. This requires, however, the use of geophysical techniques. During the last two or three decades international applied geophysics has systematically developed new possibilities for site investigations for the determination of petrophysical parameters in situ as well as for observation of the system building and site. As in "New techniques in engineering", geophysical methods make it possible to develop areal models of subsurface conditions of building sites, to quantify relevant engineering parameters in situ, as well as to analyze the longterm behaviour of the buildings, which are influenced by internal or external factors. With regard to the broad spectrum of applied geophysics, there are few methods, that especially favour application in engineering and groundwater studies. These methods are distinguished by a relatively simple measuring technique and good measuring progress, e.g. the geoelectrical self-potential method, the geoelectrical resistivity method as well as a newly developed devices for geothermic measurements. There exist numerous publications, broadly scattered in the technical literature, concerning the theoretical bases and applications of these methods, but until now, there have been only a few meetings to exchange experience and results on an international level. This was the aim of the symposium "Detection of Subsurface Flow Phenomena by Self-Potential/Geoelectrical and Thermometric Methods", held in Karlsruhe from 14-18 March 1988. An outstanding part of the symposioum was represented by the results of a research project, coordinated by the University of Karlsruhe (Department of Geology and Institute of Soil and Rock Mechanics) and the Federal Waterway Engineering and Research Institute (BAW), Karlsruhe. Regarding the subject "Experiments to ascertain the relations between hydraulic potentials in the underground and the geoelectrical and thermic potentials set off by these", the research work took four years. The project was sponsered by the Volkswagen Foundation/Hannover. The goal was to develop and test objective techniques for detecting leakages in dams, locating, demarcating and designating quantitatively inhomogeneous spheres in dams with the aim of detecting damage and subsurface flow phenomena as soon as possible. The symposium consisted of a three-day lecture meeting with about 40 papers and a summarizing respectively closing roundtable discussion, a visit to the laboratories and to the in situ constructions within the area of BAW developed in the frame of the research project. This included a technical excursion to the Rhine-Staustufe Iffezheim with its very impressive waterway constructions and an excursion to the Geophysical Observatory near Schiltach (Black Forest). The Observatory belongs to the Universities of Karlsruhe and Stuttgart. Approximately 80 scientists from 15 countries participated the symposium. They were welcomed by the Rector of the University, Professor Dr. A. Kunle and the representative of the Federal Ministry of Traffic, Dr. G. Schröder. Professor Dr. H. Hötzl elucidated the scientific problems and the economical importance of the project as a speaker of the research group. The following papers dealt with the fundamental aspects of geoelectrical and thermometric measurements, with the theory of these methods, the state and developing ter~dencies concerning devices, data acquisition, processing and interpretation as well as noise effects. It became clear that the solution of the complex scientific-technical problems of waterway constructions and environmental protection requires broad, interdisciplinary cooperation and international collaboration. Thus it would be possible to minimize the personnel, temporal and economic efforts. The intended cooperation of geoscientists, engineering geologists, building engineers and representatives of other disciplines make it possible, not only to exchange experiences and results relating to international problems unsolved until now, but also to determine new guidelines with regard to the scientific organization of further investigations. Thus in order to inform all interested parties of the main topics of the symposium and to advance international cooperation in the future, the present review includes a part of the papers and reports of the excursions recommended by the participants of the meeting, which have been divided into the following topics: - Introduction to engineering-geophysical problems and attempts at their solution; - Geoelectrical self-potential measurements; - Geoelectrical resistivity measurements; - Geothermic measurements; - Case histories; - Some topics of the roundtable discussion; - Reports concerning the excursions. The editors wish to thank very much all those, who contributed to the success of the symposium and to the publication of the present report. Finally they venture the note, that the authors theirselves are responsible for the content of their papers.
    Pages: Online-Ressource (514 Seiten)
    ISBN: 9783540518754
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Description / Table of Contents: PREFACE During the so-called Mid-Cretaceous interval, approximately 100 million years ago, the earth experienced a dynamic phase in its geologic history. Enhanced global tectonic activity resulted in a major rearrangment of the continental plates; accelerated spreading rates induced a first-order sea level highstand; intense off-ridge volcanism contributed to a modeled high atmospheric CO 2 rate; climatic conditions fluctuated; and major changes occurred in biologic evolutionary patterns. With the initiation of a gradual change from an equatorial, east-west directed current-circulation pattern to a regime, dominated by south-north and north-south directed current systems, the earth's internal clock was set for Cenozoic, "modern" times. The Mid-Cretaceous dynamic phase is recorded in a suite of sediments of remarkable similarity around the globe. Shallow-water carbonate platforms drowned on a global scale; widespread sediment-starved, glauconite and phosphate- rich sequences developed; and consequently, pelagic sedimentary regimes "invaded" shelf and epicontinental sea areas. This typical "deepening-upward" pattern is well-documented in Mid-Cretaceous sequences along the northern Tethys margin. Shallow-water carbonates are overlain by condensed glauconitic and phosphatic sediments, which, in turn, are blanketed by pelagic carbonates. In this volume, the example of the western Austrian helvetic Alps, built up of inner and outer shelf sediments deposited along the northern Tethys margin, is used to elucidate the paleoceanographic conditions, under which the Mid-Cretaceous triad of platform carbonates, condensed phosphatic and glauconitic sediments, and pelagic carbonates was formed. In the first part, the evolution of this sequence is traced from the demise of the platform (Aptian) to the return of detritus-dominated deposition (Upper Santonian). The second part includes a discussion of the reconstructed paleoceanographic and tectonic variables, their possible interaction, as well as their influence on sediment properties during this period. Special attention is paid to (1) subsidence behavior of the inner, platform-based shelf and the outer shelf beyond the platform, (2) ammonoid paleobiogeography, (3) the northern tethyan current system and its impact on sediment patterns, (4) the influence of an oxygen minimum zone, (5) sediment bypassing mechanisms on the inner shelf, (6) condensation processes, (7) phosphogenesis, (8) relative sea level changes, (9) genesis and the development of unconformities, (10) tectonic phases and their impact on sediment configuration, (11) drowning of the shallow-water carbonate platform, and (12) "asymmetric" sedimentary cycles. The detailed reconstruction of the development of sedimentary patterns both in time and space in this particular area, and its environmental interpretation, given in this volume, may serve as a contribution to a better understanding of the Mid-Cretaceous dynamic phase in earth's history...
    Pages: Online-Ressource (153 Seiten)
    ISBN: 9783540513599
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Description / Table of Contents: PREFACE Our planet is evolving and changing; its surface is capable of unleashing great violence as its crust is created and destroyed. Quite remarkably, it has been only recently that the fundamental elements of this evolution were fully appreciated, and only within the last decade have there been technologies capable of directly meastLring the global motions of the Earth's crust which are one of the most visible manifestations of these processes. Before the advent of space technologies, the nature of contemporary global plate motions went largely unobserved. These motions were understood from the geological records, and plate rates for million year averages were established_ Fortunately, the revolution in geophysics brought about by the general acceptance of plate tectonic theory has been paralleled by significant advances in space geodesy oceanography and geophysics. New space technologies have rapidly matured, yielding new insights and capabilities for more completely understanding the dynamical properties of the Earth, its oceans and atmosphere. Likewise, the evolving earth sciences capabilities from space are fostering new questions and goals made possible through the creative exploitation of satellite missions. A workshop entitled "The Interdisciplinary Role of Space Geodesy" was held in Erice, Italy, on the island of Sicily on July 23-29, 1988, to discuss the directions and challenges of space geodeys for the decades to come. This international gathering was made possible by the E. Majorana Centre for Scientific Culture int he framework of tis International School of Geodesy. The workshop was sponsored by the Italian Ministry of education, the Italian Ministry of Scientific and Technological Research, the Sicilian Regional Government, the Italian National Institute of Geophysics, and the National Aeronautics and Space Administration of the United States. This volume is the result of the dedicated effort undertaken by an international group of scientists and administrators who have contemplated the challenge of the future of space-based earth science for the next decade. Recognizing the need for defining new milestones both in science and technology, they have developed a detailed report of what could be achieved and what challenges remain after twenty fertile years of space exploration...
    Pages: Online-Ressource (300 Seiten)
    ISBN: 9783540511618
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Description / Table of Contents: PREFACE In a densily populated industrialized country, waste disposal must be compatible with the requirements of the environment. This is one of the indispensable requirements to guarantee an effective protection of the environment. In the past years the waste disposal industry has been given increasing attention by the general public as well as the authorities. This confirms the necessity of adapting the quality of waste disposal to the technological standard of the production. While in the past, waste disposal performance was more or less evaluated in terms of short-term costs, there is at present a reorientation in the direction of a science-based waste disposal industry. These new tendencies are taking into account ecological factors as well as the long-term consequences - i.e., for decades and centuries to come - of waste disposal methods. In this light, particular attention is given to the depositing of residues whose utilization does not appear meaningful from an ecological point of view, or would require disproportionate ressources. It is an important concern of the Federal Authorities to encourage the rapid materialization of disposal solutions which can function as ultimate deposits, and which will therefore cause neither water pollution nor gaseous emissions. In view of this goal it is necessary to establish criteria and regulations for the wastes to be deposited as well as for the characteristics of the deposits. This field confronts science with an urgent but rewarding challenge and calls for close collaboration between many different specialized disciplines...
    Pages: Online-Ressource (438 Seiten)
    ISBN: 9783540506942
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: This book is the collection of the Lecture Notes of an International Summer School of Theoretical Geodesy held in Assisi (Italy) from May 23 to June 3 -1988.
    Pages: Online-Ressource (491 Seiten)
    ISBN: 9783540515289
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: INTRODUCTION Over the past 18 years the author and several colleagues have developed a mathematical model designed to predict the propagation characteristics of acoustic waves in marine sediments. The model is based on the classical work of Maurice Biot who developed a comprehensive theory for the mechanics of porous, deformable media in a series of papers spanning the time period from 1941 to 1973. Since our objective was to develop a practical working model that could be used as a guide in planning and interpreting experimental work, we began with the simplest possible form of the model and added various complexities only as they were needed to explain new variations in the data that were obtained. Thus the number of material parameters that had to be measured or assumed at any stage in the development of the model was kept to a minimum. Since the first version of the model was introduced in 1970, we have published over twenty technical papers covering various stages of its development and many papers have been published by colleagues who have utilized our work in various ways. This monograph is an attempt to summarize the development and use of the model to date. Acoustic waves in ocean sediments may be considered as a limiting case in the more general category of mechanical waves that can propagate in fluid-saturated porous media. The general problem of wave motion in this kind of material has been studied extensively over the past thirty years by engineers, geophysicists and acousticians for a variety of reasons. In some cases, interest is focused on low-frequency waves of rather large amplitude, such as those that arise near the source of an earthquake or near a building housing heavy, vibrating machinery. At other times, the main interest is in waves of low frequency and amplitude that have traversed long distances through the sediment. In still another category, high-frequency waves that are able to resolve thin layering and other fine structural details are of interest in studying near-bottom sediments. Thus the full spread of frequency and amplitude has been studied for geological materials ranging from soft, unconsolidated sediments to rock. Because of the almost limitless combinations of different types of sediment, stratification and structure, accurate mathematical description of the wave field produced by a particular source can be constructed only if accurate descriptions of the acoustic properties of individual components can be specified. These properties depend on the geological history of the sediment deposit, on the frequency content of the wave field and on a number of other factors that depend on the environment in situ. A survey of the literature suggests that there are a number of parameters that play principal roles in controlling the dynamic response of saturated sediments...
    Pages: Online-Ressource (153 Seiten)
    ISBN: 9780387971919
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
  • 61
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
  • 63
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
  • 67
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
  • 69
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
  • 72
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
  • 74
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
  • 76
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
  • 78
  • 79
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
  • 83
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
    Unknown
    Berlin ; Heidelberg : Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: INTRODUCTION The awareness that mankind is able to influence and modify not only the local but also the global climate has led to a strongly growing interest in climate research. Strengthened research activities, which also made use of improved and novel experimental techniques, have yielded a wealth of information on climatic patterns in the past. At the same time, climate modelling has made much progress. While some questions have been answered, new problems have been recognized. One question related to anthropogenio climatic change is about the nature and causes of natural variations, against the background of which man-made changes must be viewed. The contributions to this volume all deal with the variabilitY of climate. Some papers are reviews of the knowledge to a current topic, others have more the character of an original contribution. The obseryational studies cover the range from year-to-year variations up to glacial-interglacial contrast, thereby going from instrumental data to results from proxy records...
    Pages: Online-Ressource (175 Seiten)
    ISBN: 9783540188438
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Keywords: GPS ; Global Positioning System ; geodesy
    Description / Table of Contents: OPENING ADDRESS On behalf of the Local Organizing Committee, I welcome you all to the first International Workshop on GPS-techniques in surveying and geodesy held at this university. This workshop is designed to bring together experts from various countries and also scientists who carry out, analyze and interpret such measurements with those who work on instrumental and theoretical problems. The workshop focuses hereby on high-precision applications with emphasis on monitoring time-dependent phenomena such as those relevant to geodynamics as well as men-made constructions as those in civil engineering and similar fields. It is astonishing to see how, in spite of all earlier satellite work over the last two decades, GPS-methods became so fast a relevant new technology, in its proper sense, in modern geodesy and surveying besides VLBI and Satellite Laser Ranging (SLR). With the recent development of new dual-frequency receivers the role of GPS-procedures in monitoring large-scale phenomena over big distances will still expand; and the application of kinematical GPS-approaches is of utmost interest in solving high-precision problems. It is indeed fascinating to realize how GPS-methods have become in such a short time a surprisingly efficient and effective, this means : fast, precise and easy to apply, tool which is able to replace already now, after a few years of existence and with an incomplete set of a few out of the 18 satellites (of the final stage), at least partially some expensive, slow and cumbersome classical surveying methods. On the other hand, it cannot be overemphasized that GPS-procedures are still at their beginning and the full spectrum of their capabilities still has to be explored. In Europe, for example, where excellent classical surveying systems do exist the situation is quite different from the situation in other countries such as Canada or the USA. Even within Europe the application types of GPS-methods will vary; for example, in Norway the situation is quite different from central European countries. It is often forgotten, that together with GPS we will have to introduce new concepts and a new thinking in combination with other modern satellite procedures. GPS itself can resolve only a small part of the problems to be solved by modern geodesy but it will open the way to a great variety of new applications and capabilities. Modern global tectonics is just one of the new disciplines of high interest and great practical impact. I could continue in citing other similarly important new fields. GPS is, however, of special importance because it replaces old technologies and fills gaps where modern and efficient tools are most needed. Consequently, also the optimal combination of GPS-methods with new auxiliary and also classical high-precision techniques is of great importance, mainly under the european conditions outlined above. Moreover, the real-time or almost-real-time use of GPS in combination with photogrammetry, inertial geodesy, gravity gradiometry or even classical surveying is of substantial interest. It is indeed important to realize the new concepts in modern satellite and space methods and I, therefore, spoke above of a new "technology" which should be optimally developed as there is a worldwide need of such capabilities and tools. In view of the few active NAVSTAR-satellites in sky in 1988 this is perhaps not the best year for GPS-applications but the right time for a review of the experience gained until now and using it as a base for the planning of the future...
    Pages: Online-Ressource (532 Seiten)
    ISBN: 9783540502678
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Description / Table of Contents: INTRODUCTION - WHY THIS BOOK? Why study Numerical Geology? Although geologists have dabbled in numbers since the time of Hutton and Playfair, 200 years ago (Merriam 1981e), geology until recently lagged behind other sciences in both the teaching and geological application of mathematics, statistics and computers. Geology Departments incorporating these disciplines in their undergraduate courses are still few (particularly outside the USA). Only two international geomathematical/computing journals are published (Computers & Geosciences; Mathematical Geology), compared with dozens covering, say, petrology or mineralogy. It also remains common practice for years (and $1000s) to be spent setting up computerized machines to produce large volumes of data in machine-readable form, and then for geologists to plot these by hand on a sheet of graph paper! Despite this, the use of numerical methods in geology has now begun to increase at a rate which implies a revolution of no less importance than the plate tectonic revolution of the 1960's -- one whose impact is beginning to be felt throughout the academic, commercial, governmental and private consultative geological communities (Merriam 1969, 1981c). Although a few pioneers have been publishing benchmark papers for some years, the routine usage of machine-based analytical techniques, and the advent of low-priced desk-top microcomputers, have successively enabled and now at last persuaded many more geologists to become both numerate and computerate. Merriam (1980) estimated that two decades of increasing awareness had seen the percentage of geomathematical papers (sensu lato) rise to some 15% of all geological literature; meanwhile, mineralogy-petrology and geochemistry had both fallen to a mere 5% each! In these Notes, geomathematics and numerical geology are used interchangeably, to cover applications of mathematics, statistics and computing to processing real geological data. However, as applications which primarily store or retrieve numbers (e.g. databases) are included, as well as those involving actual mathematical calculations, 'Numerical Geology' is preferred in the title. 'Geomathematics' in this sense should not be confused with 'geostatistics', now usually restricted to a specialised branch of geomathematics dealing with ore body estimation (§20). Reasons for studying Numerical Geology can be summarised as follows: (1) Volumes of new and existing numerical data: The British Geological Survey, the world's oldest, recently celebrated its 150th anniversary by establishing a National Geoscience data-centre, in which it is hoped to store all accumulated records on a computer (Lumsden & Flowarth 1986). Information already existing in the Survey's archives is believed to amount to tens or hundreds of Gb (i.e. = 1010-11 characters) and to be increasing by a few percent annually. The volumes of valuable data existing in the worM's geological archives, over perhaps 250 years of geological endeavour, must therefore be almost immeasurably greater. It is now routine even for students to produce hundreds or thousands of multi-element analyses for a single thesis, while national programs of geochemical sampling easily produce a million individual dement values. Such volumes of data simply cannot be processed realistically by manual means; they require mathematical and statistical manipulation on computers -- in some cases large computers. (2) Better use of coded/digitised data: In addition to intrinsically numerical (e.g. chemical) data, geology produces much information which can be more effectively used if numerically coded. For example, relatively little can be done with records of, say, 'limestone' and 'sandstone' in a borehole log, but very much more can be done if these records are numerically coded as 'limestone = 1' and 'sandstone = 2'. Via encoding, enormous volumes of data are opened to computer processing which would otherwise have lain dormant. More importantly, geological maps - perhaps the most important tool of the entire science - can themselves be digitised (turned into large sets of numbers), opening up vast new possibilities for manipulation, revision, scale-change and other improvements. (3) Intelligent data use: It is absurd to acquire large volumes of data and then not to interpret them fully. Field geologists observing an outcrop commonly split into two (or more) groups, arguing perhaps over the presence or absence of a preferred orientation in kyanite crystals on a schist foliation surface. The possibility of actually measuring these orientations and analyzing them statistically (§17) is rarely aired-- at last in this author's experience! Petrologists are equally culpable when they rely on X-Y or, at maximum 'sophistication', X-Y-Z (triangular) variation diagrams, in representing the evolution of igneous rocks which have commonly been analyzed for up to 50 elements! Whereas some geological controversies (especially those based on interpretation of essentially subjective field observations) cannot be resolved numerically, many others can and should be. This is not to say (as Lord Kelvin did) that quantitative science is the only good science, but qualitative treatment of quantitative data is rarely anything but bad science. (4) Literature search and data retrieval: Most research projects must begin with reviews of the literature and, frequently, with exhaustive compilations of existing data. These are essential if informed views on the topic are to be reached, existing work is not merely to be duplicated, and optimum use is to be made of available funding, The ever-expanding geological literature, however, makes such reviews and compilations increasingly time-consuming and expensive via traditional manual means. Use of the increasing number of both bibliographical and analytical databases (§3) is therefore becoming a prequisite for well-informed, high-quality research. (5) Unification of interests: In these days of inexorably increasing specialisation in ever narrower topics, brought about by the need to keep abreast of the exploding literature, numerical geology forms a rare bridge between different branches not only of geology but of diverse other sciences. The techniques covered in this book are equally applicable (and in many cases have been in routine use for far longer) in biology, botany, geography, medicine, psychology, sociology, zoology, etc. Within geology itself, most topics covered here are as valuable to the stratigrapher as to the petrologist. 'Numerical geologists' are thus in the unique (and paradoxical) position of being both specialists and non-specialists; they may have their own interests, but their numerical and computing knowledge can often help all of their colleagues. (6) Employment prospects: There is a clear and increasing demand for computerate/numerate geologists in nearly all employment fields. In Australia, whose economy is dominated by geology-related activities (principally mining), a comprehensive national survey (AMIRA 1985) estimated that A$40M per annum could be saved by more effective use of computers in geology. Professional computer scientists are also of course in demand, but the inability of some of their number to communicate with 'laymen' is legendary! Consequently, many finns have perpetual need for those rare animals who combine knowledge of computing and mathematics with practical geological experience. Their unique bridging role also means that numerical geologists are less likely to be affected by the vaguaries of the employment market than are more specialised experts. Rationale and aims of this book This is a highly experimental book, constituting the interim text for new (1988) courses in 'Numerical Geology' at the University of Western Australia. It is published in the Springer Lecture Notes in Earth Sciences series precisely because, as the rubric for this series has it, "the timeIiness of a manuscript is more important than its form, which may be unfinished or tentative." Readers are more than welcome to send constructive comments to the author, such that a more seasoned, comprehensive version can be created in due course. Readers' indulgence is meanwhile craved for the number of mistakes which must inevitably remain in a work involving so many citations and cross-references. Emphasis is particularly placed on the word Notes in the series rifle: this book is not a statistical or mathematical treatise. It is not intended to stand on its own, but rather to complement and target the existing literature. It is most emphatically not a substitute for sound statistical knowledge, and indeed, descriptions of each technique are deliberately minimized such that readers shouM never be tempted to rely on this book alone, but should rather read around the subject in the wealth of more authoritative statistical and geomathematical texts cited. In other words, this is a synoptic work, principally about 'how to do', 'when not to do', 'what are the alternatives' and 'where to find out more'. It aims specifically: (1) to introduce geologists to the widest possible range of numerical methods which have already appeared in the literature; and thus (2) to infuse geologists with just sufficient background knowledge that they can: (a) locate more detailed sources of information; (b) understand the broad principles behind interpreting most common geological problems quantitatively; (c) appreciate how to take best advantage of computers; and thereby (d) cope with the "information overload" (Griffiths 1974) which they increasingly face. Even these aims require the reader to become to some extent geologist, computer scientist, mathematician and statistician rolled into one, and a practical balance has therefore been attempted, in which just enough information is hopefully given to expedite correct interpretation and avoidance of pitfalls, but not too much to confuse or deter the reader. Despite the vast literature in mathematics, statistics and computing, and that growing in geomathematics, no previous book was found to fulfill these alms on its own. The range of methods covered here is deliberately much wider than in previous geomathematical textbooks, to provide at least an introduction to most methods geologists may encounter, but other books are consequently relied on for the detail which space here precludes. These Notes adopt a practical approach similar to that in language guidebooks -- at the risk of emulating the 'recipe book' abhorred in some quarters. Every Topic provides a minimum of highly condensed sketch-notes (fuller descriptions are included only where topics are not well covered in existing textbooks), complemented by worked examples using real data from as many fields of geology as space permits. Specialists should thereby be able to locate at least one example close to their problems of the moment. In the earlier (easier) topics, simple worked examples are calculated in full, and equations are given wherever practicable (despite their sometimes forbidding appearance), to enable readers not only to familiarise themselves with the calculations but also to experiment with their own data. In the later (multivariate) topics (where few but the sado-masochistic would wish to try the calculations by hand!), the worked examples comprise simplified output from actual software, to familiarise readers with the types of computer output they may have to interpret in practice. Topics were arranged in previous geomathematical textbooks by statistical subject: 'analysis of variance', 'correlation', 'regression', etc., while nonparametric (rank) methods were usually dealt with separately from classical methods (if at all). Here, topics are arranged by operation (what is to be done), and both classical and rank techniques are covered together, with similar emphasis. When readers know what they want to do, therefore, they need only look in one Topic for all appropriate techniques. The main difficulty of this work is the near impossibility of its goal-- though other books with similarly ambitious goals have been well enough received (e.g.J.Math.Geol. 18(5), 511-512). Some constraints have necessarily been imposed to keep the Notes of manageable size. Geophysics, for example, is sketchily covered, because (i) numerical methods are already far more integrated into most geophysics courses than geology courses; (ii) several recent textbooks (e.g. Cantina & Janecek 1984) cover the corresponding ground for geophysicists. Structural geology is less comprehensively covered or cited than, say, stratigraphy, because (a) it commands many applications of statistics and computing unto itself alone (e.g. 3-D modelling, 'unravelling' of folds), whereas these Notes aim at techniques equally applicable to most branches of geology; (b) excellent comprehensive reviews of structural applications are already available (e.g. Whitten 1969,1981). Remote sensing is also barely covered, since comprehensive source guides similar in purpose to the present one already exist (Carter 1986). For the sake of brevity, phrases throughout this book which refer to males are, with apologies to any whose sensitivities are thereby offended, taken to include females!
    Pages: Online-Ressource (427 Seiten)
    ISBN: 9783540500704
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Description / Table of Contents: INTRODUCTION While the complex mechanical properties of rocks and soils are studied for quite a while, it is only in the last decades that sound established mathematical models were developed based on accurate experimental data. Some rheological properties of geomaterials as for instance creep, were studied for a long time but the experimental data reported were incomplete and, as a consequence, the models developed have missed either the generality necessary for the solving of engineering problems or some of the major specific mechanical properties possessed by these materials as for instance dilatancy and/or compressibility , long term damage etc. Generally, these very particular empirical models were made for a specific test only and therefore are not appropriate for solving problems involving general loading histories. Let us remind that due to the presence of a great number of cracks and/or pores existing in roks and soils, the mechanical behaviour of geomaterials is quite distinct from that of other materials as for instance metals or plastics. That is why rock and soil rheology has some specific aspects. It must also be mentioned that the solving of various problems of rock and soil mechanics posed by modern technology was not possible by using time-independent models, thus the study and development of rehological models become absolutely necessary. In the last decade or so, very accurate experimantal data became available as a result of the development of experimental techniques and of the growing interest for this field of research in the scientific community. These data, in turn, have made possible the development of genuine models for geomaterials, mainly rheological models, able to describe such properties as creep, dilatancy and/or compressibility during creep, long term damage and failure occurring after various time intervals, slip surface formation etc. Today it is clear that no accurate constitutive equation for rocks can be formulated unless the dilatancy phenomena and the time effects are not included. Another idea is the need of a better description of the concepts of damage and failure of rocks, again using in someway the concepts of irreversible dilatancy or another related notion. In soil rheology it is clear that the scale effect may be taken into consideration in order to obtain a corect information from the routine tests. Also in writing the constitutive equations for soils it is neccessary to take into account the microscopic or local phenomena, because there is a great variety of types of saturated or nonsaturated soils, granular or cohesionless soil etc. The aim of the Euromech Colloquium 196 devoted to Rock and Soil Rheology and therefore that of the present volume too, is to review some of the main results obtained in the last years in this field of research and also to formulate some of the major not yet solved problems which are now under consideration. Exchange of opinions and scientific discussions are quite helpful mainly in those areas where some approaches are controversial and the progress made is quite fast. That is especially true for the rheology of geomaterials, domain of great interest for mining and petroleum engineers, engineering geology, seismology, geophlsics, civil engineering, nuclear and industrial waste storage, geothermal energy storage, caverns for sports, culture, telecommunications, storage of goods and foodstuffs (cold, hot and refrigerated storages), underground oil and natural gas reservoirs etc. Some of the last obtained results are mentioned in the present volume...
    Pages: Online-Ressource (289 Seiten)
    ISBN: 9783540188414
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: The aim of this volume is to reflect the current state of geoscientific activity focused on the geodynamic evolution of the Atlas system and to discuss new results and ideas. The volume provides a selection of papers on the geological history, structural development, and geophysical data of Morocco. It was not possible to cover all areas of geoscientific interest, however, we hope to shed some light on the major geodynamic problems.
    Pages: Online-Ressource (499 Seiten)
    ISBN: 9783540190868
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Description / Table of Contents: PREFACE The suggestion to compile and publish this volume dealing with some geoscientific problems of the Central Andes came up during a conference on "Mobility of Active Continental Margins" held in Berlin, February 1986. At this international conference, organized by the Berlin Research Group "Mobility of Active Continental Margins", colleagues from Europe, Southern and Northern America reported on their current investigations in the Central Andes. The Central Andes claim a special position in the 7000 km long Andean mountain range. In Northern Chile, Southern Bolivia and Northwest Argentina the Central Andes show their largest width with more than 650 km and along a Geotraverse between the Pacific coast and the Chaco all typical Andean morphotectonic units are well developed. Here, the pre-Andean evolution is documented by outcropping of Paleozoic and pre-Cambrian rocks. The characteristic phenomena of the Andean cycle can be studied along the entire geotraverse. The migration of the tectonic and magmatic activity starting in Jurassic and being active t i l l Quaternary is clearly evidenced. Besides the Himalaya, the Central Andes show with 70-80 km and -400 mgal the largest crustal thickness known in mountain ranges. These and many other interesting and exciting geoscientific features encouraged a group of geoscientists from both West-Berlin universities (Freie UniversitAt and Technische UniversitAt) to focus their studies along a geotraverse through the Central Andes. The realization of these studies would not have been possible without the active assistance and close cooperation of our colleagues from the geoscientific institutions in Salta (Argentina), La Paz and Santa Cruz (Bolivia) and Antofagasta and Santiago (Chile). Concerning the German participation, this joint and interdisciplinary project is financially supported since 1982 as Reserach Group" Mobility of Active Continental Margins" by the German Research Society and by the West-Berlin universities as well. A number of colleagues from universities in West Germany take part in this project, too. The papers presented here deal with the period from Late Precambrian up to the youngest phenomena in Quaternary. The contributions cover the whole spectrum of geoscientific research, geology, paleontology, petrology, geochemistry, geophysics and geomorphology. In conclusion, the data published here may help to improve the picture of Andean structure and evolution. The detailed investigations carried out in the past years show, that the first simple plate tectonic models proposed in the beginning of the seventies have to improved and modified. Furthermore, the results can be seen as contribution to the international Lithospheric Project and as a useful data base for the construction of a Central Andean Transect...
    Pages: Online-Ressource (261 Seiten)
    ISBN: 9783540500322
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
  • 99
  • 100
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...