ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:551.6
  • English  (47)
  • Russian
  • 2020-2024  (47)
Collection
Keywords
Language
  • English  (47)
  • Russian
Years
Year
  • 1
    Publication Date: 2023-09-12
    Description: Existing climate projections and impact assessments in Nepal only consider a limited number of generic climate indices such as means. Few studies have explored climate extremes and their sectoral implications. This study evaluates future scenarios of extreme climate indices from the list of the Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral implications in the Karnali Basin in western Nepal. First, future projections of 26 climate indices relevant to six climate-sensitive sectors in Karnali are made for the near (2021–2045), mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, a qualitative analysis based on expert interviews and a literature review on the impact of the projected climate extremes on the climate-sensitive sectors is undertaken. Both the temperature and precipitation patterns are projected to deviate significantly from the historical reference already from the near future with increased occurrences of extreme events. Winter in the highlands is expected to become warmer and dryer. The hot and wet tropical summer in the lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity precipitation events will decline, but the magnitude and frequency of extreme precipitation events will increase. The compounding effects of the increase in extreme temperature and precipitation events will have largely negative implications for the six climate-sensitive sectors considered here.
    Description: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
    Keywords: ddc:551.6 ; Climate extremes ; ET-SCI ; Climate change impacts ; ClimPACT2 ; Karnali ; Nepal
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-12
    Description: Integrating palaeoclimatological proxies and historical records, which is necessary to achieve a more complete understanding of climate impacts on past societies, is a challenging task, often leading to unsatisfactory and even contradictory conclusions. This has until recently been the case for Italy, the heart of the Roman Empire, during the transition between Antiquity and the Middle Ages. In this paper, we present new high-resolution speleothem data from the Apuan Alps (Central Italy). The data document a period of very wet conditions in the sixth c. AD, probably related to synoptic atmospheric conditions similar to a negative phase of the North Atlantic Oscillation. For this century, there also exist a significant number of historical records of extreme hydroclimatic events, previously discarded as anecdotal. We show that this varied evidence reflects the increased frequency of floods and extreme rainfall events in Central and Northern Italy at the time. Moreover, we also show that these unusual hydroclimatic conditions overlapped with the increased presence of “water miracles” in Italian hagiographical accounts and social imagination. The miracles, performed by local Church leaders, strengthened the already growing authority of holy bishops and monks in Italian society during the crucial centuries that followed the “Fall of the Roman Empire”. Thus, the combination of natural and historical data allows us to show the degree to which the impact of climate variability on historical societies is determined not by the nature of the climatic phenomena per se, but by the culture and the structure of the society that experienced it.
    Description: Fondazione Cassa di Risparmio di Lucca
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Keywords: ddc:551.6 ; Precipitation ; Roman Empire ; Miracles ; Social feedbacks ; Cultural change
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-13
    Description: Statistical analysis of reanalysis and observed data reveals that high dust surface mass concentration in northern Greenland is associated with a Pacific Decadal Oscillation like pattern in its negative phase in the North Pacific as well as with La Niña conditions in the tropical Pacific region. The sea surface temperature anomalies in the Pacific realm resemble the Interdecadal Pacific Oscillation (IPO). The associated atmospheric circulation pattern, in the form of a wave‐train from the North Pacific to the Eurasian continent, favors enhanced dust uptake and transport toward the northern Greenland. Similar patterns are associated with a low‐resolution stacked record of five Ca2+ ice cores, that is, ngt03C93.2 (B16), ngt14C93.2 (B18), ngt27C94.2 (B21), GISP2−B, and NEEM‐2011‐S1, from northern Greenland, a proxy for regional dust concentration, during the last 400 years. We argue that northern Greenland ice core dust records could be used as proxies for the IPO and related teleconnections.
    Description: Plain Language Summary: Observational and modeling studies show that, during the observational period, interannual to multidecadal dust concentration variability is related to the dominant modes of climate variability at these time scales. Here we show that Interdecadal Pacific Oscillation (IPO) signal is robustly recorded in low‐resolution dust ice core records from the northern Greenland during the last 400 years. We argue that northern Greenland ice core dust records could be used to put the IPO activity and related teleconnections during the observational period into a long‐term perspective.
    Description: Key Points: Northern Greenland dust concentration variability shows global teleconnections during the instrumental period. The most stable pattern associated with northern Greenland ice core dust variability is the Interdecadal Pacific Oscillation (IPO). Northern Greenland ice core dust records could be used as a complementary source of information about IPO during the past.
    Description: Changing Earth—Sustaining our Future
    Description: Helmholtz Climate Initiative—REKLIM
    Description: https://doi.org/10.1594/PANGAEA.57092
    Description: https://doi.org/10.1594/PANGAEA.57294
    Description: https://doi.org/10.1594/PANGAEA.107285
    Description: https://doi.org/10.1594/PANGAEA.55536
    Description: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
    Description: https://psl.noaa.gov/data/gridded/data.cobe.html
    Description: https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html
    Description: https://www.ncdc.noaa.gov/paleo-search/study/33092
    Description: https://www.wdc-climate.de/ui/entry?acronym=EKF400_v2.0
    Keywords: ddc:551.6 ; dust concentration ; northern Greenland ; Interdecadal Pacific Oscillation ; ice cores
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-14
    Description: Earth’s climatic evolution over the last 5 million years is primarily understood from the perspective of marine mechanisms, however, the role of terrestrial feedbacks remains largely unexplored. Here we reconstruct the last 5 million years of soil moisture variability in Central Asia using paleomagnetism data and isotope geochemistry of an 80 m-thick sedimentary succession at Charyn Canyon, Kazakhstan. We identify a long-term trend of increasing aridification throughout the period, along with shorter-term variability related to the interaction between mid-latitude westerlies and the Siberian high-pressure system. This record highlights the long-term contribution of mid-latitude Eurasian terrestrial systems to the modulation of moisture transfer into the Northern Hemisphere oceans and back onto land via westerly air flow. The response of Earth-surface dynamics to Plio-Pleistocene climatic change in Central Asia likely generated terrestrial feedbacks affecting ocean and atmospheric circulation. This missing terrestrial link elucidates the significance of land-water feedbacks for long-term global climate.
    Description: Late Cenozoic variation in Central Asian hydroclimate resulted from the interaction between mid-latitude westerlies and the Siberian high-pressure system and may have driven terrestrial feedbacks, according to analyses of sediments from Charyn Canyon, Kazakhstan.
    Description: Palaeomagnetic, rock magnetic and grain-size analyses were funded by the grant CNPq
    Description: Deutsche Forschungsgemeinschaft (German Research Foundation) https://doi.org/10.13039/501100001659
    Description: Wilhelm und Else Heraeus-Stiftung (Wilhelm and Else Heraeus Foundation) https://doi.org/10.13039/501100011618
    Description: https://doi.org/10.17632/v9s3bhn27k.1
    Keywords: ddc:551.6 ; palaeoclimate ; Charyn Canyon sequence ; Kazakhstan ; isotope geochemistry ; paleomagnetism
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-12-05
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Unlike actual rainfall, the spatial extent of rainfall maps is often determined by administrative and political boundaries. Similarly, data from commercial microwave links (CMLs) is usually acquired on a national basis and exchange among countries is limited. Up to now, this has prohibited the generation of transboundary CML‐based rainfall maps despite the great extension of networks across the world. We present CML based transboundary rainfall maps for the first time, using independent CML data sets from Germany and the Czech Republic. We show that straightforward algorithms used for quality control strongly reduce anomalies in the results. We find that, after quality control, CML‐based rainfall maps can be generated via joint and consistent processing, and that these maps allow to seamlessly visualize rainfall events traversing the German‐Czech border. This demonstrates that quality control represents a crucial step for large‐scale (e.g., continental) CML‐based rainfall estimation.〈/p〉
    Description: Plain Language Summary: Rainfall maps are usually based on gauge observations on the ground or radar. They are crucial for predicting or reconstructing flooding events. Commercial microwave links are special kinds of rainfall sensors. Their actual purpose is the signal propagation within a cellular network. However, since the signal is attenuated when it rains, they can also be exploited for rainfall estimation. To estimate rainfall from the observed attenuation requires careful data processing. Algorithms for that are usually adjusted to national data sets with their specific characteristics. In this study, we use, for the first time, two independent data sets of commercial microwave links (from Germany and the Czech Republic) with the aim of generating transboundary rainfall maps. As the data sets vary in many respects, several algorithms need to be adjusted and extended to allow processing them consistently. We show that it is possible to create meaningful rainfall maps of rain events that traverse the border between Germany and the Czech Republic. This can be considered a major step toward seamless rainfall maps on even larger, that is, continental scale.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Transboundary rainfall maps based on independent networks of commercial microwave links (CMLs) are generated for the first time〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉German and Czech data sets of CMLs differ significantly with respect to network characteristics〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Quality control is important for heterogeneous data of CMLs〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: German Research Foundation
    Description: Czech Science Foundation
    Description: https://doi.org/10.5281/zenodo.4810169
    Description: https://doi.org/10.5281/zenodo.7973736
    Description: https://opendata.dwd.de/climate_environment/CDC
    Keywords: ddc:551.6 ; transboundary rainfall maps ; commercial microwave links ; quantitative precipitation estimation ; data quality control
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-05
    Description: An important aspect of rainfall estimation is to accurately capture extreme events. Commercial microwave links (CMLs) can complement weather radar and rain gauge data by estimating path‐averaged rainfall intensities near ground. Our aim with this paper was to investigate attenuation induced complete loss of signal (blackout) in the CML data. This effect can occur during heavy rain events and leads to missing extreme values. We analyzed 3 years of attenuation data from 4,000 CMLs in Germany and compared it to a weather radar derived attenuation climatology covering 20 years. We observed that the average CML experiences 8.5 times more blackouts than we would have expected from the radar derived climatology. Blackouts did occur more often for longer CMLs (e.g., 〉10 km) despite their increased dynamic range. Therefore, both the hydrometeorological community and network providers can consider our analysis to develop mitigation measures.
    Description: Plain Language Summary: Commercial microwave links (CMLs) are used to transmit information between towers of cellphone networks. If there is rainfall along the transmission path, the signal level is attenuated. By comparing the transmitted and received signal levels, the average rainfall intensity along the path can be estimated. If the attenuation is too strong, no signal is received, no information can be transmitted and no rainfall estimate is available. This is unfavorable both for network stability and rainfall estimation. In this study, we investigated the frequency of such blackouts in Germany. How many blackouts per year are observed in a 3 year CML data set covering around 4,000 link paths and how many are expected from 20 years of weather radar data? We observed that the average CML experiences 8.5 times more blackouts than we would have expected from the radar derived climatology. Blackouts did occur more often for long CMLs, which was an unexpected finding. While only one percent of the annual rainfall amount is missed during blackouts, the probability that a blackout occurs was very high for high rain rates. Both, the hydrometeorological community and network providers can consider our analysis to develop mitigation measures.
    Description: Key Points: Complete loss of commercial microwave link (CML) signals during heavy rain leads to missing rainfall extremes. Magnitude of observed blackouts exceeds climatologically expected values. Unexpectedly, longer CMLs experience more blackouts.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Karlsruhe Institute of Technology http://dx.doi.org/10.13039/100009133
    Description: https://doi.org/10.5281/zenodo.7245440
    Description: https://github.com/pycomlink/pycomlink/blob/12fc302539851b19f7656cf7e2438c0ddbaa48bf/notebooks/Blackout%20gap%20detection%20examples.ipynb
    Description: https://doi.org/10.5281/zenodo.6337557
    Description: https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002
    Keywords: ddc:551.6 ; commercial microwave links ; rainfall ; opportunistic sensing ; weather radar ; rainfall extremes ; precipitation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-15
    Description: In mountain environments dimensions of climate change are unclear because of limited availability of meteorological stations. However, there is a necessity to assess the scope of local climate change, as the livelihood and food systems of subsistence-based communities are already getting impacted. To provide more clarity about local climate trends in the Pamir Mountains of Tajikistan, this study integrates measured climate data with community observations in the villages of Savnob and Roshorv. Taking a transdisciplinary approach, both knowledge systems were considered as equally pertinent and mutually informed the research process. Statistical trends of temperature and snow cover were retrieved using downscaled ERA5 temperature data and the snow cover product MOD10A1. Local knowledge was gathered through community workshops and structured interviews and analysed using a consensus index. Results showed, that local communities perceived increasing temperatures in autumn and winter and decreasing amounts of snow and rain. Instrumental data records indicated an increase in summer temperatures and a shortening of the snow season in Savnob. As both knowledge systems entail their own strengths and limitations, an integrative assessment can broaden the understanding of local climate trends by (i) reducing existing uncertainties, (ii) providing new information, and (iii) introducing unforeseen perspectives. The presented study represents a time-efficient and global applicable approach for assessing local dimensions of climate change in data-deficient regions.
    Description: Projekt DEAL
    Keywords: ddc:551.6 ; Climate change ; Pamir Mountains ; Local knowledge ; Perception ; Climate data ; Statistical downscaling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-16
    Description: Drought is the absence or below-required supply of precipitation, runoff and or moisture for an extended time period. Modelling drought is relevant in assessing drought incidence and pattern. This study aimed to model the spatial variation and incidence of the 2018 drought in Brandenburg using GIS and remote sensing. To achieve this, we employed a Multi-Criteria Approach (MCA) by using three parameters including Precipitation, Land Surface Temperature and Normalized Difference Vegetation Index (NDVI). We acquired the precipitation data from Deutsche Wetterdienst, Land Surface Temperature and NDVI from Landsat 8 imageries on the USGS Earth Explorer. The datasets were analyzed using ArcGIS 10.7. The information from these three datasets was used as parameters in assessing drought prevalence using the MCA. The MCA was used in developing the drought model, ‘PLAN’, which was used to classify the study area into three levels/zones of drought prevalence: moderate, high and extreme drought. We went further to quantify the agricultural areas affected by drought in the study area by integrating the land use map. Results revealed that 92% of the study area was severely and highly affected by drought especially in districts of Oberhavel, Uckermark, Potsdam-Staedte, and Teltow-Flaeming. Finding also revealed that 77.54% of the total agricultural land falls within the high drought zones. We advocated for the application of drought models (such as ‘PLAN’), that incorporates flexibility (tailoring to study needs) and multi-criteria (robustness) in drought assessment. We also suggested that adaptive drought management should be championed using drought prevalence mapping.
    Description: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
    Keywords: ddc:551.6 ; Drought ; Land surface temperature ; Brandenburg ; NDVI ; Agriculture
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-16
    Description: Ridging South Atlantic Anticyclones contribute an important amount of precipitation over South Africa. Here, we use a global coupled climate model and the ERA5 reanalysis to separate for the first time ridging highs (RHs) based on whether they occur together with Rossby wave breaking (RWB) or not. We show that the former type of RHs are associated with more precipitation than the latter type. The mean sea level pressure anomalies caused by the two types of RHs are characterized by distinct patterns, leading to differences in the flow of moisture‐laden air onto land. We additionally find that RWB mediates the effect of climate change on RHs during the twenty‐first century. Consequently, RHs occurring without RWB exhibit little change, while those occurring with RWB contribute more precipitation over the southern and less precipitation over the northeastern South Africa in the future.
    Description: Plain Language Summary: The high pressure system located above the South Atlantic Ocean occasionally extends eastward over South Africa, leading to winds that blow onshore and carry moisture from the warm waters of the Southwest Indian Ocean to the coast. These events, termed ridging highs (RHs), bring an important contribution to precipitation over the southern and eastern parts of South Africa. Their occurrence is related to the propagation and breaking of atmospheric waves at the boundary between the troposphere and the stratosphere. This study categorizes RHs based on the behavior of atmospheric waves above and shows that events that are accompanied by wave breaking result in more precipitation over South Africa. In addition, model simulations are used to investigate the impact of climate change during the twenty‐first century on RHs and the associated precipitation. Although the model predicts that in total South Africa will experience drier conditions in the future, RHs contribute to this drying trend only in the northeastern part of the country. In the southern part of South Africa, the model simulates that RHs will bring more precipitation in the future.
    Description: Key Points: Ridging South Atlantic Anticyclones are accompanied by Rossby wave breaking (RWB) aloft in 44% of the cases. Ridging highs that are accompanied by RWB lead to more precipitation over South Africa than those that are not. Ridging highs bring more precipitation over the southern and less precipitation over the northeastern part of South Africa in the future.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Water Research Commission http://dx.doi.org/10.13039/501100004424
    Description: https://doi.org/10.5281/zenodo.6523956
    Description: https://doi.org/10.24381/cds.bd0915c6
    Description: https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
    Keywords: ddc:551.6 ; ridging highs ; Rossby wave breaking ; climate change ; climate modeling ; South African precipitation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-16
    Description: Atmospheric circulation is a key driver of climate variability, and the representation of atmospheric circulation modes in regional climate models (RCMs) can enhance the credibility of regional climate projections. This study examines the representation of large‐scale atmospheric circulation modes in Coupled Model Inter‐comparison Project phase 5 RCMs once driven by ERA‐Interim, and by two general circulation models (GCMs). The study region is Western Europe and the circulation modes are classified using the Promax rotated T‐mode principal component analysis. The results indicate that the RCMs can replicate the classified atmospheric modes as obtained from ERA5 reanalysis, though with biases dependent on the data providing the lateral boundary condition and the choice of RCM. When the boundary condition is provided by ERA‐Interim that is more consistent with observations, the simulated map types and the associating time series match well with their counterparts from ERA5. Further, on average, the multi‐model ensemble mean of the analysed RCMs, driven by ERA‐Interim, indicated a slight improvement in the representation of the modes obtained from ERA5. Conversely, when the RCMs are driven by the GCMs that are models without assimilation of observational data, the representation of the atmospheric modes, as obtained from ERA5, is relatively less accurate compared to when the RCMs are driven by ERA‐Interim. This suggests that the biases stem from the GCMs. On average, the representation of the modes was not improved in the multi‐model ensemble mean of the five analysed RCMs driven by either of the GCMs. However, when the best‐performed RCMs were selected on average the ensemble mean indicated a slight improvement. Moreover, the presence of the North Atlantic Oscillation (NAO) in the simulated modes depends also on the lateral boundary conditions. The relationship between the modes and the NAO was replicated only when the RCMs were driven by reanalysis. The results indicate that the forcing model is the main factor in reproducing the atmospheric circulation.
    Keywords: ddc:551.6 ; general circulation model ; large‐scale atmospheric circulation modes ; multi‐model ensemble ; regional climate model ; Western Europe
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-12-16
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In 2022, western Europe experienced its hottest summer on record and widespread dry conditions, with substantial impacts on health, water and vegetation. We use a reanalysis to classify daily mean sea level pressure fields and to investigate the influence of synoptic circulations on the occurrence of temperature extremes and dry days. Summer 2022 featured an above‐normal occurrence of anticyclones extending from the British Isles to the Baltic countries, as well as enhanced easterly, southerly and low‐flow conditions which contributed to the observed extremes over southern and western Europe. While the hot summer of 2022 is only partially explained by circulation anomalies, such anomalies played a key role in the exceptional occurrence of dry days. The comparison with summer circulation anomalies projected by twenty global climate models moreover suggests that future circulation changes will further exacerbate hot and dry extremes over Europe.〈/p〉
    Description: Plain Language Summary: In 2022, western Europe recorded its hottest summer up to date since preindustrial times. At the same time, widespread dry conditions caused dramatic impacts on human health, water resources, crop yields and wildfires. This was partly enhanced by the human–caused cumulative emissions of greenhouse gases, but also potentially by large‐scale circulation anomalies that may also be triggered by global warming. By grouping distinct weather patterns, we find that many extreme hot days during the summer of 2022 over well‐defined parts of Europe were favored by anomalous transport of hot and dry air masses or persistent low‐wind conditions. These weather patterns were essential but not the dominant factor that led to the occurrence of extreme temperatures. Yet, they played a key role in enhancing the number of dry days. We also find that the weather patterns observed in summer 2022 will become more common in coming decades if greenhouse gas emissions remain without reduction. This would further worsen hot and dry extremes in summer over Europe.〈/p〉
    Description: Key Points : 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉European summer 2022 hot extremes have been enhanced by an anomalous occurrence of distinct circulation types over different subdomains〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Predominant circulation anomalies also contributed to the exceptional number of dry days, as much as local, mostly thermodynamical effects〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Such anomalous circulations will become more common, thus further worsening European hot and dry extremes〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HORIZON EUROPE Marie Sklodowska‐Curie Actions http://dx.doi.org/10.13039/100018694
    Description: https://doi.org/10.24381/cds.adbb2d47
    Description: https://doi.org/10.5194/gmd-9-1937-2016
    Keywords: ddc:551.6 ; hot summer 2022 ; hot extremes ; circulation types ; circulation classification ; climate change ; atmospheric circulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-12-19
    Description: In this study, we investigate whether a better representation of precipitation in the Amazon basin arises through an explicit representation of convection and whether it is related to the representation of organized systems. In addition to satellite data, we use ensemble simulations of the ICON‐NWP model at storm‐resolving (2.5–5.0 km) scales with explicit convection (E‐CON) and coarse resolutions, with parameterized convection (P‐CON). The main improvements in the representation of Amazon precipitation by E‐CON are in the distribution of precipitation intensity and the spatial distribution in the diurnal cycle. By isolating precipitation from organized convective systems (OCS), it is shown that many of the well simulated precipitation features in the Amazon arise from the distribution of these systems. The simulated and observed OCS are classified into 6 clusters which distinguish nocturnal and diurnal OCS. While the E‐CON ensembles capture the OCS, especially their diurnal cycle, their frequency is reduced compared to observations. Diurnal clusters are influenced by surface processes such as cold pools, which aid to the propagation of OCS. Nocturnal clusters are rather associated with strong low‐level easterlies, possibly related to the Amazonian low‐level jet. Our results also show no systematic improvement with a twofold grid refinement and remaining biases related to stratiform features of OCS suggest that yet unresolved processes play an important role for correctly representing precipitating systems in the Amazon.
    Description: Plain Language Summary: The Amazon basin is a relevant element of the Earth system because it influences the global water and carbon cycle, as well as it constitutes a unique ecosystem. Over this important region, conventional climate models do not simulate basic features of rainfall given their inability to resolve this physical process due to their coarse spatial resolution. In this study, we use high‐resolution simulations that allow an explicit representation of such physical process (moist convection) and compare them with a set of coarse‐resolution simulations and observed precipitation. We find that improvements in the representation of Amazon rainfall, such as the distribution of light and high intensity rain rates, as well as the spatial variability of the diurnal cycle, are explained by the explicit representation of moist convection. Moreover, these improvements arise from the representation of big and organized systems that produce intense rainfall (OCS). We find that particular environmental conditions are associated with the OCS according to their time of occurrence. Diurnal OCS are mainly influenced by interactions with the surface, while nocturnal OCS are related to strong low‐level winds. Some of the remaining discrepancies with observed OCS do not show improvements when refining the grid by a factor of two.
    Description: Key Points: An explicit representation of convection enables the emergence of organized systems (OCS) leading to improved simulations of Amazon rainfall. Propagating cold‐pools and strong low‐level easterlies are related to the occurrence of diurnal and nocturnal OCS, respectively. Systematic biases in the size, intensity and nocturnal precipitation phase of OCS are insensitive to a twofold refinement in resolution.
    Description: Max Planck Society for the Advancement of Science
    Description: European Horizon 2020 project CONSTRAIN
    Description: https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
    Description: https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/30min/8km
    Description: https://www.hydrosheds.org/products/hydrobasins
    Description: https://esgf-data.dkrz.de/projects/cmip6-dkrz/
    Description: https://pure.mpg.de/
    Keywords: ddc:551.6 ; Amazon rainfall ; organized precipitating systems ; storm‐resolving simulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-12-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉We monitored stable water isotopes in liquid precipitation and atmospheric water vapour (δ〈sub〉v〈/sub〉) using in situ cavity ring‐down spectroscopy (CRDS) over a 2 month period in an urban green space area in Berlin, Germany. Our aim was to better understand the origins of atmospheric moisture and its link to water partitioning under contrasting urban vegetation. δ〈sub〉v〈/sub〉 was monitored at multiple heights (0.15, 2 and 10 m) in grassland and forest plots. The isotopic composition of δ〈sub〉v〈/sub〉 above both land uses was highly dynamic and positively correlated with that of rainfall indicating the changing sources of atmospheric moisture. Further, the isotopic composition of δ〈sub〉v〈/sub〉 was similar across most heights of the 10 m profiles and between the two plots indicating high aerodynamic mixing. Only at the surface at ~0.15 m height above the grassland δ〈sub〉v〈/sub〉 showed significant differences, with more enrichment in heavy isotopes indicative of evaporative fractionation especially after rainfall events. Further, disequilibrium between δ〈sub〉v〈/sub〉 and precipitation composition was evident during and right after rainfall events with more positive values (i.e., values of vapour higher than precipitation) in summer and negative values in winter, which probably results from higher evapotranspiration and more convective precipitation events in summer. Our work showed that it is technically feasible to produce continuous, longer‐term data on δ〈sub〉v〈/sub〉 isotope composition in urban areas from in situ monitoring using CRDS, providing new insights into water cycling and partitioning across the critical zone of an urban green space in Central Europe. Such data have the potential to better constrain the isotopic interface between the atmosphere and the land surface and to thus, improve ecohydrological models that can resolve evapotranspiration fluxes.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In situ measurements of urban atmospheric water isotopes (δ〈sub〉v〈/sub〉) at different heights produce reliable and stable high‐resolution data. Urban atmospheric vapour is influenced by varying drivers depending on the type of green space. δ〈sub〉v〈/sub〉 above grassland and tree stands was similar at 10 m height, but near‐surface δ〈sub〉v〈/sub〉 indicated higher evaporation and vapour enrichment over grass. We detected occasional dis‐equilibrium between vapour and precipitation isotopes.〈boxed-text position="anchor" content-type="graphic" id="hyp14989-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08856087:media:hyp14989:hyp14989-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: Einstein Research Unit
    Description: Einstein Foundation Berlin and Berlin University Alliance
    Description: BiNatur
    Description: BMBF http://dx.doi.org/10.13039/501100002347
    Description: Leverhulme Trust through the ISO‐LAND project
    Keywords: ddc:551.6 ; atmospheric vapour isotopes ; cities ; ecohydrology ; equilibrium assumption ; in situ monitoring ; urban green spaces
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-01-12
    Description: Regional and local wind systems are often complex, particularly near coastal areas with a highly variable orography. Thus, the realistic representation of regional wind systems in weather and climate models is of strong relevance. Here, we evaluate the ability of a 13‐year convection‐permitting climate simulation in reproducing the interaction of several regional summer wind systems over the complex orography in the eastern Mediterranean region. The COSMO‐CLM simulations are driven by hourly ERA‐5 reanalysis and have a spatial resolution of 2.8 and 7.0 km. The simulated near‐surface wind fields are compared with unique very high‐resolution wind observations collected within the “Dead Sea Research Venue” project (DESERVE) and data from the Israel Meteorological Service synop network. The high‐resolution COSMO‐CLM simulations largely reproduce the main characteristics of the regional wind systems (Mediterranean and Dead Sea breeze, slope winds in the Judean Mountains and winds along the Jordan Rift valley), whereas ERA‐5 is only able to represent the Mediterranean Sea breeze. The high‐resolution simulations substantially improve the representation of regional winds, particularly over complex orography. Indeed, the 2.8 km simulation outperforms the 7.0 km run, on 88% of the days. Two mid‐July 2015 case studies show that only the 2.8 simulation can realistically simulate the penetration of the Mediterranean Sea Breeze into the Jordan Rift valley and complex interactions with other wind systems like the Dead Sea breeze. Our results may have profound implications for regional weather and climate prediction since very high‐resolution information seems to be necessary to reproduce the main summertime climatic features in this region. We envisage that such simulations may also be required at other regions with complex orography.
    Description: In this paper we show that COSMO‐CLM regional climate model simulations at 7.0 (CLM‐7.0) and 2.8km (CLM‐2.8) resolution can realistically reproduce near‐surface regional and local wind systems over the complex orography of the eastern Mediterranean as opposite to coarser resolutions (ERA‐5, 31 km). The Mediterranean and local Dead Sea breezes, slope winds over the Judean Mountains, and winds along the Jordan Rift valley are well represented both climatologically and on individual days. CLM‐2.8 captures the small‐scale variability of the wind field better than CLM‐7.0 particularly near the Dead Sea and on 88% of the days CLM‐2.8 represents wind speed even more realistically than CLM‐7.0. image
    Description: German Helmholtz Association (“Changing Earth” program)
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: Ministry of Science, Research and Arts
    Description: Helmholtz Association of German Research Centers
    Keywords: ddc:551.6 ; complex orography ; convection permitting ; COSMO‐CLM ; Dead Sea ; eastern Mediterranean ; grid spacing ; regional climate modelling ; sea breeze
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-01-14
    Description: Climate model simulations typically exhibit a bias, which can be corrected using statistical approaches. In this study, a geostatistical approach for bias correction of daily precipitation at ungauged locations is presented. The method utilizes a double quantile mapping with dry day correction for future periods. The transfer function of the bias correction for the ungauged locations is established using distribution functions estimated by ordinary kriging with anisotropic variograms. The methodology was applied to the daily precipitation simulations of the entire CORDEX‐Africa ensemble for a study region located in the West African Sudanian Savanna. This ensemble consists of 23 regional climate models (RCM) that were run for three different future scenarios (RCP 2.6, RCP 4.5, and RCP 8.5). The evaluation of the approach for a historical 50‐year period (1950–2005) showed that the method can reduce the inherent strong precipitation bias of RCM simulations, thereby reproducing the main climatological features of the observed data. Moreover, the bias correction technique preserves the climate change signal of the uncorrected RCM simulations. However, the ensemble spread is increased due to an overestimation of the rainfall probability of uncorrected RCM simulations. The application of the bias correction method to the future period (2006–2100) revealed that annual precipitation increases for most models in the near (2020–2049) and far future (2070–2099) with a mean increase of up to 165mm⋅a−1 (18%). An analysis of the monthly and daily time series showed a slightly delayed onset and intensification of the rainy season.
    Description: Adapting water management strategies to future precipitation projected by climate models is associated with high uncertainty in sparsely gauged catchments. Kriging was utilized to estimate distribution parameters for ungauged locations in a West African region to perform a bias correction of the CORDEX‐Africa ensemble. The application of the bias correction method revealed higher annual precipitation amounts and an intensifaction of the rainy season but only little change to the onset of the rainy season.
    Description: German Federal Ministry of Education and Research, Bonn (BMBF), West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL)
    Keywords: ddc:551.6 ; bias correction ; climate change ; CORDEX‐Africa ; geostatistical approaches ; precipitation ; quantile mapping ; West Africa
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-08-08
    Description: Atmospheric circulation is a vital process in the transport of heat, moisture, and pollutants around the globe. The variability of rainfall depends to some extent on the atmospheric circulation. This paper investigates synoptic situations in southern Africa that can be associated with wet days and dry days in Free State, South Africa, in addition to the underlying dynamics. Principal component analysis was applied to the T-mode matrix (variable is time series and observation is grid points at which the field was observed) of daily mean sea level pressure field from 1979 to 2018 in classifying the circulation patterns in southern Africa. 18 circulation types (CTs) were classified in the study region. From the linkage of the CTs to the observed rainfall data, from 11 stations in Free State, it was found that dominant austral winter and late austral autumn CTs have a higher probability of being associated with dry days in Free State. Dominant austral summer and late austral spring CTs were found to have a higher probability of being associated with wet days in Free State. Cyclonic/anti-cyclonic activity over the southwest Indian Ocean, explained to a good extent, the inter-seasonal variability of rainfall in Free State. The synoptic state associated with a stronger anti-cyclonic circulation at the western branch of the South Indian Ocean high-pressure, during austral summer, leading to enhanced low-level moisture transport by southeast winds was found to have the highest probability of being associated with above-average rainfall in most regions in Free State. On the other hand, the synoptic state associated with enhanced transport of cold dry air, by the extratropical westerlies, was found to have the highest probability of being associated with (winter) dryness in Free State.
    Description: Julius-Maximilians-Universität Würzburg (3088)
    Description: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
    Description: http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx
    Keywords: ddc:551.6 ; South Africa ; Free State ; atmospheric circulation types ; synoptic climatology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-06-21
    Description: The European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
    Keywords: ddc:551.6 ; EURO-CORDEX ; CORDEX ; Climate change ; Regional climate models ; Regional climate modelling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-07-20
    Description: Megadroughts are notable manifestations of the American Southwest, but not so much of the European climate. By using long-term hydrological and meteorological observations, as well as paleoclimate reconstructions, here we show that central Europe has experienced much longer and severe droughts during the Spörer Minimum (~AD 1400–1480) and Dalton Minimum (~AD 1770–1840), than the ones observed during the 21st century. These two megadroughts appear to be linked with a cold state of the North Atlantic Ocean and enhanced winter atmospheric blocking activity over the British Isles and western part of Europe, concurrent with reduced solar forcing and explosive volcanism. Moreover, we show that the recent drought events (e.g., 2003, 2015, and 2018), are within the range of natural variability and they are not unprecedented over the last millennium.
    Description: Central Europe experienced long-lasting droughts during the Spörer and Dalton solar minima around AD 1450 and 1800 that were more severe and extensive than those observed in the 21st century, according to palaeoclimate reconstructions.
    Keywords: ddc:551.6 ; Climate sciences ; Hydrology ; Central Europe ; megadroughts
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-07-21
    Description: Predicting rainfall-induced landslides hinges on the quality of the rainfall product. Satellite rainfall estimates or rainfall reanalyses aid in studying landslide occurrences especially in ungauged areas, or in the absence of ground-based rainfall radars. Quality of these rainfall estimates is critical; hence, they are commonly crosschecked with their ground-based counterparts. Beyond their temporal precision compared to ground-based observations, we investigate whether these rainfall estimates are adequate for hindcasting landslides, which particularly requires accurate representation of spatial variability of rainfall. We developed a logistic regression model to hindcast rainfall-induced landslides in two sites in Japan. The model contains only a few topographic and geologic predictors to leave room for different rainfall products to improve the model as additional predictors. By changing the input rainfall product, we compared GPM IMERG and ERA5 rainfall estimates with ground radar–based rainfall data. Our findings emphasize that there is a lot of room for improvement of spatiotemporal prediction of landslides, as shown by a strong performance increase of the models with the benchmark radar data attaining 95% diagnostic performance accuracy. Yet, this improvement is not met by global rainfall products which still face challenges in reliably capturing spatiotemporal patterns of precipitation events.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Disaster Prevention Research Institute, Kyoto University http://dx.doi.org/10.13039/501100006086
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Keywords: ddc:551.6 ; GPM IMERG ; ERA5 ; Landslide susceptibility ; Weather radar ; Japan
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-07-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Many operational weather services use ensembles of forecasts to generate probabilistic predictions. Computational costs generally limit the size of the ensemble to fewer than 100 members, although the large number of degrees of freedom in the forecast model would suggest that a vastly larger ensemble would be required to represent the forecast probability distribution accurately. In this study, we use a computationally efficient idealised model that replicates key properties of the dynamics and statistics of cumulus convection to identify how the sampling uncertainty of statistical quantities converges with ensemble size. Convergence is quantified by computing the width of the 95% confidence interval of the sampling distribution of random variables, using bootstrapping on the ensemble distributions at individual time and grid points. Using ensemble sizes of up to 100,000 members, it was found that for all computed distribution properties, including mean, variance, skew, kurtosis, and several quantiles, the sampling uncertainty scaled as 〈mml:math id="jats-math-1" display="inline" overflow="scroll"〉〈mml:msup〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈mml:mrow〉〈mml:mo form="prefix"〉−〈/mml:mo〉〈mml:mn〉1〈/mml:mn〉〈mml:mo stretchy="false"〉/〈/mml:mo〉〈mml:mn〉2〈/mml:mn〉〈/mml:mrow〉〈/mml:msup〉〈/mml:math〉 for sufficiently large ensemble size 〈mml:math id="jats-math-2" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉. This behaviour is expected from the Central Limit Theorem, which further predicts that the magnitude of the uncertainty depends on the distribution shape, with a large uncertainty for statistics that depend on rare events. This prediction was also confirmed, with the additional observation that such statistics also required larger ensemble sizes before entering the asymptotic regime. By considering two methods for evaluating asymptotic behaviour in small ensembles, we show that the large‐〈mml:math id="jats-math-3" display="inline" overflow="scroll"〉〈mml:mrow〉〈mml:mi〉n〈/mml:mi〉〈/mml:mrow〉〈/mml:math〉 theory can be applied usefully for some forecast quantities even for the ensemble sizes in operational use today.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉An idealised ensemble that replicates key properties of the dynamics and statistics of cumulus convection is used to identify how sampling uncertainty of statistical quantities converges with ensemble size. A universal asymptotic scaling for this convergence was found, which was dependent on the statistic and the distribution shape, with largest uncertainty for statistics that depend on rare events. This is demonstrated in the figure below for a Gaussian distributed model variable, where the sampling uncertainty (y‐axis) for 5 quantiles (red lines) indicates that after a certain ensemble size, it begins converging asymptotically (grey lines), and the more extreme the quantile, the more members it requires for this to be the case. 〈boxed-text position="anchor" id="qj4410-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4410:qj4410-toc-0001"〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Klaus Tschira Stiftung http://dx.doi.org/10.13039/501100007316
    Keywords: ddc:551.6 ; asymptotic convergence ; distributions ; ensembles ; idealised model ; sampling uncertainty ; weather prediction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-01-12
    Description: Hydrological extreme events are generated by different sequences of hydrometeorological drivers, the importance of which may vary within the sample of drought events. Here, we investigate how the importance of different hydrometeorological driver sequences varies by event magnitude using a large sample of catchments in Europe. To do so, we develop an automated classification scheme for streamflow drought events. The classification scheme standardizes a previous qualitative drought typology and assigns events to one of eight drought event types—each characterized by a set of single or compounding drivers—using information about seasonality, precipitation deficits, and snow availability. The objective event classification reveals how drought drivers vary not just in space and by season, but also with event magnitude. Specifically, we show that (a) rainfall deficit droughts and cold snow season droughts are the dominant drought event type in Western Europe and Eastern and Northern Europe, respectively; (b) rainfall deficit and cold snow season droughts are important from autumn to spring while snowmelt and wet‐to‐dry season droughts are important in summer; and (c) moderate droughts are mainly driven by rainfall deficits while severe events are mainly driven by snowmelt deficits in colder climates and by streamflow deficits transitioning from the wet to the dry season in warmer climates. These differences in sequences of drought generation mechanisms for severe and moderate events suggest that future changes in hydrometeorological drivers may affect moderate and severe events differently.
    Description: Key Points: We develop a standardized and objective classification scheme for streamflow droughts using hydroclimatic information. The most severe drought events are governed by other processes than moderate events. Moderate droughts are dominated by rainfall deficits and severe droughts by snowmelt deficits or prolonged rainfall deficit droughts.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: EC/H2020/PRIORITY 'Excellent science'/H2020 European Research Council http://dx.doi.org/10.13039/100010663
    Description: https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
    Description: https://doi.pangaea.de/10.1594/PANGAEA.887470
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
    Description: http://www.hydroshare.org/resource/77114d4dfdfd4dd39e0e1d99165f27b3
    Keywords: ddc:551.6 ; drought types ; drought generation ; extremes ; typology ; classification ; streamflow
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-01-13
    Description: During the last 20 years some very hot and dry summers affected Europe, resulting in regionally record‐breaking high temperature or low precipitation values. Long‐term changes of such extremely hot and dry summers are of great relevance for our society, as they are connected with manifold negative impacts on human society, natural ecosystems, and diverse economic sectors. Long‐term variations in drought and five record drought summer half years are studied based on 63 stations across Europe with high‐quality precipitation and temperature time series spanning the period 1901–2018. Eight drought indices are deployed to analyse drought intensity, frequency, and duration; four of them purely precipitation‐based and four integrating potential evapotranspiration in the computation. Additionally, three heavy precipitation indices and simultaneous increases in drought and heavy precipitation are studied. The five driest summer half years over Europe are identified (1947, 2018, 2003, 1921, and 1911). They are analysed by aggregating eight drought indices into the aggregated drought evaluation index (ADE) for five subregions. The ADE shows increasing summer drought conditions over most of Europe, except for some stations in northern Europe. The increase in drought conditions during the warm part of the year is particularly pronounced for indices integrating evapotranspiration in their definition. At the same time, the intensity of heavy precipitation events shows a positive trend, as well as an increased contribution to total precipitation. Several stations in central Europe show simultaneously increasing drought conditions and increasing heavy precipitation events. This increases the risks connected with precipitation extremes.
    Description: Drought and heavy precipitation trends are studied for selected stations with long time series. Both extreme events are related to specific impacts on different economic sectors and thus society. Stations that simultaneously show increasing trends in drought and heavy precipitation mainly occur in central Europe. This indicates a probably higher exposure to these risks in central Europe as well as a demand for broader adaptation options in this region.
    Keywords: ddc:551.6 ; climate indices ; climate variability and change ; dry periods ; mRAI ; WBAI
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-01-19
    Description: Enhancing the resilience of complex social‐ecological systems (SES) to climate change requires transformative changes. Yet, there are knowledge gaps on how best to achieve transformation. In this study, we present an approach for assessing governance performance in SES and identifying leverage points to ultimately enhance climate resilience. The approach combines three different methods including a capital approach framework, fuzzy cognitive mapping, and a leverage points analysis. Using a coastal case‐study in Algoa Bay, South Africa, the performance of governance processes contributing to different forms of capital is assessed. Subsequently, leverage points ‐ where a small shift may lead to transformative changes in the system as a whole ‐ are identified based on measures of centrality and performance. Results suggest that a range of leverage points can improve governance performance and therefore climate resilience in the case‐study. Leverage points include improving (a) support from the provincial government; (b) priority given to climate change in the integrated development plan; (c) frequency of collaborations; (d) participation in the implementation of climate action plans; (e) allocation of funding to climate change actions; (f) the overall level of preparedness in terms of staff with relevant expertise; (g) public awareness and understanding of climate change. The approach can also be used to analyze and model the relations and interactions between capitals. The study advances methodological and theoretical knowledge on the identification of leverage points for enabling transformations toward climate resilience and broader sustainability goals in SES.
    Description: Plain Language Summary: Climate change has severe impacts on both people and nature. Enhancing the ability to persist and adapt to climate change requires transformative governance of social‐ecological systems. However, more knowledge is required on how to enable such transformations. In this paper, we present an approach to measure the performance of different governance processes, such as decisions and actions for climate change adaptation made by public and governmental organizations. The approach aims to identify key processes, where a small intervention may improve overall performance for climate change adaptation, and therefore transformation. We apply the approach in a real‐world example in Algoa Bay, South Africa. Results suggest that different processes in the case‐study can be changed in order to enhance the ability to persist and adapt to climate change. This includes seven actions: (a) more support from governmental organizations; (b) greater priority given to climate change in relevant policies; (c) increasing the frequency of interactions between organizations; (d) enhancing the participation in the implementation of climate action plans; (e) better allocation of funding to climate change actions; (f) training staff within organizations to enhance their climate expertise; (g) improving public awareness and understanding of climate change.
    Description: Key Points: The study presents an approach for assessing governance performance and identifying leverage points in social‐ecological systems. The approach combines three different methods: a capital approach framework, fuzzy cognitive mapping, and a leverage points analysis. The study advances methodological and theoretical knowledge on how to operationalize transformation toward climate resilience.
    Description: Helmholtz‐Zentrum Hereon
    Description: Western Indian Ocean Marine Science Association http://dx.doi.org/10.13039/501100009106
    Description: https://doi.org/10.6084/m9.figshare.20732788
    Keywords: ddc:551.6 ; social‐ecological systems ; climate change adaptation ; transformation ; leverage points ; coastal governance ; adaptive capacity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-01-27
    Description: The diversity of El Niño events is commonly described by two distinct flavors, the Eastern Pacific (EP) and Central Pacific (CP) type. While the remote impacts, that is, teleconnections, of EP and CP events have been studied for different regions individually, a global picture of their structure is still lacking. Here, we use Forman‐Ricci curvature applied on climate networks constructed from surface air temperature data to distinguish regional links from teleconnections. Our results confirm that both El Niño types influence the teleconnection patterns, however, with different spatial manifestations. Our analysis suggests that EP El Niños alter the general circulation which changes the teleconnection structure to primarily tropical teleconnections. In contrast, the teleconnection pattern of CP El Niños show only subtle changes to normal conditions. Moreover, this work identifies the dynamics of the Eastern Pacific as a proxy for the remote impact of both El Niño types.
    Description: Plain Language Summary: El Niño events, characterized by anomalous sea surface temperatures (SSTs) in the Tropical Pacific, come in two flavors; Eastern Pacific (EP) and Central Pacific (CP) types, depending on the longitudinal location of the strongest SST anomalies. Their remote impacts, known as teleconnections, differ. Although there are many studies investigating teleconnections of EP and CP events for individual target regions, a global analysis of the spatial distribution of their teleconnections is still lacking. In this study, we use the theory of complex networks to study EP and CP El Niño teleconnections. We construct “climate networks” from global surface air temperature data and use the notion of “curvature” of a network link to uncover their spatial organization. We show that the most negatively curved links highlight important teleconnection patterns that differ depending on the El Niño type. EP events change the teleconnection structure to the tropics while CP and Normal year conditions reveal teleconnections to all latitudes. Interestingly, the Central Pacific does not show many teleconnections, even during CP El Niño events which we attribute to the varying location of warm water anomalies in the Central Pacific. The Eastern Pacific changes more consistently allowing identifying remote impacts of both El Niños types.
    Description: Key Points: Ricci curvature of boreal winter climate networks reveals long‐range teleconnection structure. Eastern Pacific (EP) El Niños show primarily teleconnections in tropical while Central Pacific El Niños teleconnections on all latitudes. The EP contains robust teleconnections for both El Niño types.
    Description: Deutsche Forschungsgemeinschaft, DFG http://dx.doi.org/10.13039/501100001659
    Description: research
    Keywords: ddc:551.6 ; ddc:551.6 ; El Niño impacts ; Ricci‐curvature ; El Niño flavors ; climate networks
    Language: English
    Type: doc-type:article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-06-14
    Description: For centuries, traditional high-altitude oases in Oman have depended on the cultivation of deciduous fruit trees. This study explores the effects of climate change on winter chill (estimated as Chilling Hours—CH and Chill Portions—CP), a prerequisite to overcoming dormancy and initiating flowering, in three Omani oases. The results are compared with findings from an earlier study which reported a decrease in the numbers of CH in high-elevation oases by an average of 1.2–9.5 CH year−1 between 1983 and 2008. Location-specific weather data were obtained by merging 15 years of in situ recordings with 28 years of observations from an official weather station near the top of the investigated watershed. Between 1991 and 2018, scenarios of the past few decades show chill reductions by 75, 35 and 18% when estimated in CP at the oases of Masayrat ar Ruwajah (1030 m a.s.l.), Qasha’ (1640 m a.s.l.), and Al ‘Ayn (1900 m a.s.l.), respectively. Over the course of the twenty-first century, the lowest-elevation oasis at Masayrat ar Ruwajah is projected to lose virtually all winter chill, whereas, despite significant chill losses, conditions are expected to remain viable for some of the currently grown species in the higher-elevation oases. These projected changes will compromise the cultivation of temperate fruit trees in the near future, affecting the sustainability of Omani oases. Our methods support results from earlier work performed at these locations and provide an updated procedure for assessing climate change effects on temperature-dependent systems.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.6 ; Arabia ; Arid environments, ; Chill requirements ; Fruit production ; Global warming ; Warm winters
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-06-14
    Description: Weather and climate hazards cause too many fatalities each year. These weather and climate hazards are projected to increase in frequency and intensity due to global warming. Here, we use a disaster database to investigate continentally aggregated fatality data for trends. We also examine whether modes of climate variability affect the propensity of fatalities. Furthermore, we quantify fatality risk by computing effective return periods which depend on modes of climate variability. We find statistically significant increasing trends for heat waves and floods for worldwide aggregated data. Significant trends occur in the number of fatalities in Asia where fatalities due to heat waves and floods are increasing, while storm-related fatalities are decreasing. However, when normalized by population size, the trends are no longer significant. Furthermore, the number of fatalities can be well described probabilistically by an extreme value distribution, a generalized Pareto distribution (GPD). Based on the GPD, we evaluate covariates which affect the number of fatalities aggregated over all hazard types. For this purpose, we evaluate combinations of modes of climate variability and socio-economic indicators as covariates. We find no evidence for a significant direct impact from socio-economic indicators; however, we find significant evidence for the impact from modes of climate variability on the number of fatalities. The important modes of climate variability affecting the number of fatalities are tropical cyclone activity, modes of sea surface temperature and atmospheric teleconnection patterns. This offers the potential of predictability of the number of fatalities given that most of these climate modes are predictable on seasonal to inter-annual time scales.
    Description: Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659
    Description: Deutsche Forschungsgemeinschaft (DE)
    Description: Bundesministerium für Bildung und Forschung https://doi.org/10.13039/501100002347
    Keywords: ddc:551.6 ; Weather ; Disaster ; Global warming ; Extreme events
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-06-14
    Description: This study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for 〉 1/5 of the region of West Africa, the frequency of severe/danger heat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods with severe/danger heat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods with severe/danger heat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more of severe/danger heat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCM used, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions.
    Description: African Union Commission
    Keywords: ddc:551.6 ; THI ; Climate change ; Dairy cattle ; West Africa
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-01-15
    Description: Fully accounting for the climate impact of aviation requires a process-level understanding of the impact of aircraft soot particle emissions on the formation of ice clouds. Assessing this impact with the help of global climate models remains elusive and direct observations are lacking. Here we use a high-resolution cirrus column model to investigate how aircraft-emitted soot particles, released after ice crystals sublimate at the end of the lifetime of contrails and contrail cirrus, perturb the formation of cirrus. By allying cloud simulations with a measurement-based description of soot-induced ice formation, we find that only a small fraction (〈1%) of the soot particles succeeds in forming cloud ice alongside homogeneous freezing of liquid aerosol droplets. Thus, soot-perturbed and homogeneously-formed cirrus fundamentally do not differ in optical depth. Our results imply that climate model estimates of global radiative forcing from interactions between aircraft soot and large-scale cirrus may be overestimates. The improved scientific understanding reported here provides a process-based underpinning for improved climate model parametrizations and targeted field observations.
    Description: Only a small part of aircraft-soot–cirrus interactions succeeds in forming cloud ice, according to simulations with a numerical cirrus cloud model. This suggests that radiative forcing from aircraft soot may have been overestimated.
    Description: https://doi.org/10.5281/zenodo.4709994
    Description: https://doi.org/10.1029/2019JD031847
    Keywords: ddc:551.6 ; Atmospheric chemistry ; Climate-change mitigation ; ice clouds formation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-11-17
    Description: One important component of precipitating convection is the formation of convective downdrafts. They can terminate the initial updraft, affect the mean properties of the boundary layer, and cause strong winds at the surface. While the basic forcing mechanisms for downdrafts are well understood, it is difficult to formulate general relationships between updrafts, environmental conditions, and downdrafts. To better understand what controls different downdraft properties, we analyze downdrafts over tropical oceans in a global storm resolving simulation. Using a global model allows us to examine a large number of downdrafts under naturally varying environmental conditions. We analyze the various factors affecting downdrafts using three alternative methods. First, hierarchical clustering is used to examine the correlation between different downdraft, updraft, and environmental variables. Then, either random forests or multiple linear regression are used to estimate the relationships between downdraft properties and the updraft and environmental predictors. We find that these approaches yield similar results. Around 75% of the variability in downdraft mass flux and 37% of the variability in downdraft velocity are predictable. Analyzing the relative importance of our various predictors, we find that downdrafts are coupled to updrafts via the precipitation generation argument. In particular, updraft properties determine rain amount and rate, which then largely control the downdraft mass flux and, albeit to a lesser extent, the downdraft velocity. Among the environmental variables considered, only lapse rate is a valuable predictor: a more unstable environment favors a higher downdraft mass flux and a higher downdraft velocity.
    Description: Plain Language Summary: Once a cloud begins to rain, the air inside or below the cloud can gain negative buoyancy and sink to the ground. This downward movement of air is called a downdraft. Downdrafts can end the life cycle of a cloud and also result in strong, sometimes destructive, wind gusts at the surface. The basic driving forces for downdrafts are well understood. For example, we know that evaporation of rain and the associated latent cooling of air is usually critical in causing the air to become negatively buoyant. Even though the basic driving forces are known, many interrelated processes contribute simultaneously to the strength of the downdraft, making it difficult to predict the strength of a downdraft under specific conditions. In this study, we use an atmospheric simulation whose model domain spans the globe and can explicitly resolve rain clouds. Compared to previous studies, the use of a global domain allows us to study a very large number of rain clouds, and their associated downdrafts, which form under very different, naturally varying environmental conditions. Machine learning techniques and traditional statistical methods agree on the result that the strength of the downdraft can be well predicted if we know the strength of the updraft that caused the downdraft or, even better, if we know the amount of rain that an updraft produced. Surprisingly, we have found that downdrafts can be predicted only slightly better if we also know other environmental conditions of the air surrounding the downdraft, such as the temperature and/or humidity profiles.
    Description: Key Points: The best predictors of downdraft mass flux and velocity are rain amount and rate, respectively. Updraft properties impact downdraft properties through their control on rain formation. For a given rain amount and rate, environmental conditions add little skill to downdraft prediction.
    Description: Max Planck Institute for Meteorology
    Description: ARC Centre of Excellence for Climate Extremes
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: http://hdl.handle.net/21.11116/0000-0009-A854-B
    Keywords: ddc:551.6 ; convective downdrafts ; global storm resolving simulation ; machine learning ; random forest ; multiple linear regression
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-11-17
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic toggle="no"〉Aeolus〈/italic〉 is the first satellite mission to acquire vertical profiles of horizontal line‐of‐sight winds globally and thus fills an important gap in the Global Observing System, most notably in the Tropics. This study explores the impact of this dataset on analyses and forecasts from the European Centre for Medium‐Range Weather Forecasts (ECMWF) and Deutscher Wetterdienst (DWD), focusing specifically on the West African Monsoon (WAM) circulation during the boreal summers of 2019 and 2020. The WAM is notoriously challenging to forecast and is characterized by prominent and robust large‐scale circulation features such as the African Easterly Jet North (AEJ‐North) and Tropical Easterly Jet (TEJ). Assimilating 〈italic toggle="no"〉Aeolus〈/italic〉 generally improves the prediction of zonal winds in both forecasting systems, especially for lead times above 24 h. These improvements are related to systematic differences in the representation of the two jets, with the AEJ‐North weakened at its southern flank in the western Sahel in the ECMWF analysis, while no obvious systematic differences are seen in the DWD analysis. In addition, the TEJ core is weakened in the ECMWF analysis and strengthened on its southern edge in the DWD analysis. The regions where the influence of 〈italic toggle="no"〉Aeolus〈/italic〉 on the analysis is greatest correspond to the Intertropical Convergence Zone (ITCZ) region for ECMWF and generally the upper troposphere for DWD. In addition, we show the presence of an altitude‐ and orbit‐dependent bias in the Rayleigh‐clear channel, which causes the zonal winds to speed up and slow down diurnally. Applying a temperature‐dependent bias correction to this channel contributes to a more accurate representation of the diurnal cycle and improved prediction of the WAM winds. These improvements are encouraging for future investigations of the influence of 〈italic toggle="no"〉Aeolus〈/italic〉 data on African Easterly Waves and associated Mesoscale Convective Systems.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Forecasting in tropical Africa is hampered by large model errors and low availability of conventional observations. The assimilation of 〈italic〉Aeolus〈/italic〉 wind data into the operational ECMWF system leads to a consistent root‐mean‐square error (RMSE) reduction of the order of 2% in +48 h zonal wind forecasts over the region during boreal summer 2019, including the African and Tropical Easterly Jets (AEJ, TEJ) and subtropical jets (STJ). 〈boxed-text position="anchor" id="qj4442-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4442:qj4442-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: https://aeolus-ds.eo.esa.int/oads/access/collection
    Keywords: ddc:551.6 ; aeolus satellite ; doppler wind lidar ; data assimilation ; numerical weather prediction impact ; African easterly jet ; tropical easterly jet ; observing system experiments
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-11-13
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Owing to the complicated spatial–temporal characteristics of East Asian precipitation (EAP), climate models have limited skills in simulating the modern Asian climate. This consequently leads to large uncertainties in simulations of the past EAP variation and future projections. Here, we explore the performance of the newly developed Alfred Wegener Institute Climate Model, version 3 (AWI‐CM3) in simulating the climatological summer EAP. To test whether the model's skill depends on its atmosphere resolution, we design two AWI‐CM3 simulations with different horizontal resolutions. The result shows that both simulations have acceptable performance in simulating the summer mean EAP, generally better than the majority of individual models participating in the Coupled Model Intercomparison Project (CMIP6). However, for the monthly EAP from June to August, AWI‐CM3 exhibits a decayed skill, which is due to the subseasonal movement of the western Pacific subtropical high bias. The higher‐resolution AWI‐CM3 simulation shows an overall improvement relative to the one performed at a relatively lower resolution in all aspects taken into account regarding the EAP. We conclude that AWI‐CM3 is a suitable tool for exploring the EAP for the observational period. Having verified the model's skill for modern climate, we suggest employing the AWI‐CM3, especially with high atmosphere resolution, both for applications in paleoclimate studies and future projections.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This figure shows the skill scores of AWI‐CM3 and CMIP6 models in simulating the climatological summer East Asian precipitation (EAP), which indicates that AWI‐CM3 simulations perform better than most CMIP6 individual models for the summer mean EAP, while AWI‐CM3's skills decay from June to August.〈boxed-text position="anchor" content-type="graphic" id="joc8075-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08998418:media:joc8075:joc8075-toc-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Climate Initiative REKLIM
    Description: Helmholtz Program
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
    Description: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05
    Description: http://aphrodite.st.hirosaki-u.ac.jp/products.html
    Description: https://jra.kishou.go.jp/JRA-55/index_en.html
    Description: https://esgf-node.llnl.gov/search/cmip6
    Keywords: ddc:551.6 ; AWI‐CM3 ; CMIP6 ; East Asia ; summer precipitation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-11-24
    Description: This study investigates the impact of increased global warming on heat stress changes and the potential number of people exposed to heat risks over Africa. For this purpose a heat index has been computed based on an ensemble‐mean of high‐resolution regional climate model simulations from the Coordinated Output for Regional Evaluations embedded in the COordinated Regional Climate Downscaling EXperiment, under two Representative Concentration Pathways (RCPs) scenarios (RCP2.6 and RCP8.5), combined with projections of population growth developed based on the Shared Socioeconomic Pathways (SSPs) scenarios (SSP1 and SSP5). Results show that by the late 21st century, the increased global warming is expected to induce a 12‐fold increase in the area extent affected by heat stress of high‐risk level. This would result in an increase of about 10%–30% in the number of days with high‐risk heat conditions, as well as about 6%–20% in their magnitude throughout the seasonal cycle over West, Central, and North‐East Africa. Therefore, and because of the lack of adaptation and mitigation policies, the exacerbation of ambient heat conditions could contribute to the exposure of about 2–8.5 million person‐events to heat stress of high‐risk level over Burkina Faso, Ghana, Niger, and Nigeria. Furthermore, it was found that the interaction effect between the climate change and population growth seems to be the most dominant in explaining the total changes in exposure due to moderate and high heat‐related risks over all subregions of the African continent.
    Description: Plain Language Summary: This study investigates the impact of increased global warming on heat stress changes and the potential number of persons likely to be exposed to heat risks over Africa. Results show that by the end of the 21st century, the increased global warming is expected to induce a 12‐fold increase in the total area affected by dangerous heat conditions over the continent. This would result in an increase of about 10%–30% in the number of days with these heat conditions, as well as about 6%–20% in their magnitude throughout the seasonal cycle over West, Central and North‐East Africa. Therefore, because of the lack of adaptation and mitigation policies, the exacerbation of ambient heat conditions could contribute to the exposure of about 2–8.5 million person‐events to heat stress of high‐risk level over Burkina Faso, Ghana, Niger, and Nigeria. Since these heat events would be partly driven by interactions effects between climate change and population growth, efficient measures allowing not only to mitigate the increased greenhouse gas emissions, but also the effects of high heat on the human body must be urgently implemented on the affected countries' scale, in order to significantly decrease the vulnerability of their populations to potential heat‐related health problems.
    Description: Key Points: Increased global warming induces more spatially and temporally widespread extreme heat events over West, Central and North‐East Africa. Populations of some West African countries are projected to be particularly exposed to moderate and high heat conditions. Change in population exposure to dangerous heat categories is mainly driven by the interaction effect between climate and population growth.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Projekt DEAL
    Description: https://esg-dn1.nsc.liu.se/search/cordex/
    Description: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Description: https://www.isimip.org/gettingstarted/details/31
    Description: https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-8th-pop-base-year-projection-ssp-2000-2100-rev01/data-download
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
    Keywords: ddc:551.6 ; Africa ; climate change ; heat stress index ; global warming
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-11-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In this study, a new multilayer urban canopy parameterization for high‐resolution (∼1 km) atmospheric models using the nudging approach to represent the impacts of urban canopies on airflow is presented. In our parameterization, a nudging term is added to the momentum equations and a source term to the turbulent kinetic energy equation to account for building effects. The challenge of this parameterization lies in defining appropriate values for the nudging coefficient and the weighting function used to reflect canopy effects. Values of both are derived and the parameterization developed is implemented and tested for idealized cases in the Mesoscale Transport and Stream model (METRAS). Comparison data are taken from obstacle‐resolving microscale model results. Results show that the parameterization using the nudging approach can simulate aerodynamic effects induced within the canopy by obstacles well, in terms of reduction of wind speeds and production of additional turbulent kinetic energy. Thus, models with existing nudging can use this approach as an efficient and effective method to parameterize dynamic urban canopy effects.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In this study, a new multilayer urban canopy parameterization for high‐resolution (∼1 km) atmospheric models using the nudging approach to represent the impacts of urban canopies on airflow is presented. Results show that the parameterization developed can simulate aerodynamic effects induced within the canopy by obstacles well, in terms of reduction of wind speeds and production of additional turbulent kinetic energy. Models with existing nudging can use this approach as an efficient and effective method to parameterize dynamic urban canopy effects. 〈boxed-text position="anchor" id="qj4524-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4524:qj4524-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy‐EXC 2037 'CLICCS‐Climate, Climatic Change, and Society'
    Keywords: ddc:551.6 ; canopy parameterization ; evaluation ; nudging ; numerical modelling ; urban boundary layer ; urban canopy parameterization
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-01-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Projected changes in summer precipitation deficits partly depend on alterations in synoptic circulations. Here, the automated Jenkinson–Collison classification is used to assess the ability of 21 global climate models (GCMs) to capture the frequency of recurring circulation types (CTs) and their implications for European daily precipitation amounts in summer (JJA). The ability of the GCMs to reproduce the observed present‐day climate features is evaluated first. Most GCMs capture the observed links between the mean CTs directional flow characteristics and the occurrence of dry days and related dry months. The most robust relationships are found for anticyclonic and easterly CTs which are generally associated with higher‐than‐average occurrences of dry conditions. Future changes in summer CTs' frequencies are estimated in the high‐emission SSP5‐8.5 scenario for the sake of a high signal‐to‐noise ratio. Our results reveal consistent changes, mainly in the zonal CTs. A robust decrease in frequency of the westerlies and an increase in the frequency of easterly CTs favour more continental, dry and warm air masses over central Europe. These dynamical changes are shown to enhance the projected summer drying over central and southern Europe.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Summer large‐scale circulations are derived over Europe using an automated classification. Spatial characteristics of the patterns and their influence on dry days are investigated. Future changes are explored based on global climate models. The predicted drier summers in Europe are found to be influenced by consistent changes in west‐easterly circulations.〈boxed-text position="anchor" content-type="graphic" id="joc8033-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08998418:media:joc8033:joc8033-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: EU International Training Network (ITN) Climate Advanced Forecasting of sub‐seasonal Extremes (CAFE)
    Description: H2020 Marie Skłodowska‐Curie Actions
    Description: https://github.com/PedroLormendez/jcclass
    Keywords: ddc:551.6 ; circulation patterns ; climate change ; precipitation ; weather extremes
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-04-03
    Description: The novel Aeolus satellite, which carries the first Doppler wind lidar providing profiles of horizontal line‐of‐sight (HLOS) winds, addresses a significant gap in direct wind observations in the global observing system. The gap is particularly critical in the tropical upper troposphere and lower stratosphere (UTLS). This article validates the Aeolus Rayleigh–clear wind product and short‐range forecasts of the European Centre for Medium‐Range Weather Forecasts (ECMWF) with highly accurate winds from the Loon super pressure balloon network at altitudes between 16 and 20 km. Data from 229 individual balloon flights are analysed, applying a collocation criterion of 2 hr and 200 km. The comparison of Aeolus and Loon data shows systematic and random errors of -0.31 and 6.37 m·s〈sup〉-1〈/sup〉, respectively, for the Aeolus Rayleigh–clear winds. The horizontal representativeness error of Aeolus HLOS winds (nearly the zonal wind component) in the UTLS ranges from 0.6–1.1 m·s〈sup〉-1〈/sup〉 depending on the altitude. The comparison of Aeolus and Loon datasets against ECMWF model forecasts suggests that the model systematically underestimates the HLOS winds in the tropical UTLS by about 1 m·s〈sup〉-1〈/sup〉. While Aeolus winds are currently considered as point winds by the ECMWF data assimilation system, the results of the present study demonstrate the need for a more realistic HLOS wind observation operator for assimilating Aeolus winds.
    Keywords: ddc:551.6 ; Aeolus ; data assimilation ; ECMWF forecasts ; HLOS winds ; Loon ; super pressure balloon observations ; systematic and random errors
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-02-06
    Description: El Niño–Southern Oscillation (ENSO) is one of the most important modes of climate variability on interannual timescales. We aim to find out whether a change in ENSO frequency can be predicted for the nearer future. We analyse the unforced pre‐industrial control run and the forced 1%/year CO〈sub〉2〈/sub〉 increase run for an ensemble of 43 general circulation models that participated in the Coupled Model Intercomparison Project Phase 6 (CMIP6). We assume that the uncertainty of ENSO frequency trend estimates from an ensemble is caused by apparent trends as well as model differences. The part of the uncertainty caused by apparent trends is estimated from the pre‐industrial control simulations. As a measure for ENSO frequency, we use the number of El Niño‐ and La Niña‐like months in a moving 30‐year time window. Its linear decadal trend is calculated for every member. The multimember mean of the trend for both experiments is less than 0.7 events per decade. Given that the standard error is of the same order of magnitude, we consider this a negligible trend. The uncertainties are large in both experiments and we can attribute most of the intermember variability to apparent trends due to natural variability rather than different model reactions to CO〈sub〉2〈/sub〉 forcing. This means that the impact of intermodel differences might have been overstated in previous studies. Apparent trends make it very difficult to make reliable predictions of changes in ENSO frequency based on 120‐year time series.
    Description: The 1pctCO2 and piControl ensembles from CMIP6 are analysed for 43 models with a focus on changes in ENSO frequency. We find that most of the intermember variability can be attributed to natural variability instead of model differences. Therefore, the uncertainty can only marginally be reduced and it is very difficult to reliably predict changes in ENSO frequency on a timescale of 150 years.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.6841964
    Keywords: ddc:551.6 ; climate change ; CMIP6 ; ENSO ; ENSO frequency
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-02-05
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea‐surface salinity and sea‐level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea‐ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere‐ocean‐ice interaction occurs. One‐year‐long sea‐ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea‐ice concentration from 2011 to 2019 is calibrated by trend‐adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea‐ice edge raw forecast skill is within the range of operational global subseasonal‐to‐seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea‐ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Description: Plain Language Summary: Ocean data sparseness and systematic model errors pose problems for the initialization of coupled seasonal forecasts, especially in polar regions. Our global forecast system follows a seamless approach with refined ocean resolution in the Arctic. The new version presented here features higher computational efficiency and utilizes more ocean and sea‐ice observations. Ice‐edge forecasts outperform a climatological benchmark for about 1 month, comparable to established systems.
    Description: Key Points: We describe an upgrade of the AWI Coupled Prediction System with new ocean and atmosphere models and more observations assimilated. Independent evaluations show advances in the new version on the analysis of the sea‐ice and ocean states against the old one. Calibrated sea‐ice edge forecasts outperform a climatological benchmark for around 1 month in both hemispheres.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.org/10.5281/zenodo.6335383
    Description: https://github.com/FESOM/fesom2/releases/tag/AWI-CM3_v3.0
    Description: https://doi.org/10.5281/zenodo.6335498
    Description: https://oasis.cerfacs.fr/en/
    Description: https://doi.org/10.5281/zenodo.4905653
    Description: http://forge.ipsl.jussieu.fr/ioserver
    Description: https://doi.org/10.5281/zenodo.6335474
    Description: http://pdaf.awi.de/
    Description: https://doi.org/10.5281/zenodo.6481116
    Keywords: ddc:551.6 ; seamless sea ice forecast ; multivariate data assimilation ; forecast calibration ; spatial probability score
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The prediction skill of sub‐seasonal forecast models is evaluated for seven year‐round weather regimes in the Atlantic–European region. Reforecasts based on models from three prediction centers are considered and verified against weather regimes obtained from ERA‐Interim reanalysis. Results show that predicting weather regimes as a proxy for the large‐scale circulation outperforms the prediction of raw geopotential height. Greenland blocking tends to have the longest year‐round skill horizon for all three models, especially in winter. On the other hand, the skill is lowest for the European blocking regime for all three models, followed by the Scandinavian blocking regime. Furthermore, all models struggle to forecast flow situations that cannot be assigned to a weather regime (so‐called no regime), in comparison with weather regimes. Related to this, variability in the occurrence of no regime, which is most frequent in the transition seasons, partly explains the predictability gap between transition seasons and winter and summer. We also show that models have difficulties in discriminating between related regimes. This can lead to misassignments in the predicted regime during flow situations in which related regimes manifest. Finally, we document the changes in skill between model versions, showing important improvements for the ECMWF and NCEP models. This study is the first multi‐model assessment of year‐round weather regimes in the Atlantic–European domain. It advances our understanding of the predictive skill for weather regimes, reveals strengths and weaknesses of each model, and thus increases our confidence in the forecasts and their usefulness for decision‐making.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This study is the first sub‐seasonal multi‐model assessment of seven year‐round weather regimes in the Atlantic–European domain. Greenland blocking tends to have the longest year‐round skill horizon for all models, especially in winter. The skill is lowest for the European blocking regime for all models, followed by Scandinavian blocking. Variability in the occurrence of no regime partly explains the predictability gap between the transition seasons and winter and summer. 〈boxed-text position="anchor" id="qj4512-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4512:qj4512-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100001656
    Description: AXPO Solutions AGN/A
    Keywords: ddc:551.6 ; blocking ; Europe ; North Atlantic oscillation ; windows of opportunity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-03-13
    Description: Using the global and coupled ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) and a grid spacing of 5 km, we describe seasonal and diurnal features of the tropical rainbelt and assess the limits of ICON‐S in representing tropical precipitation. ICON‐S shows that, by resolving meso‐beta scale process, the rainbelt structure and its seasonality (zonal and meridional migration and enlargement) is reproduced, with better performance over land than over ocean and with a very high degree of agreement to observations. ICON‐S especially struggles in capturing the seasonal features of the tropical rainbelt over the oceans of the Eastern Hemisphere, an issue associated with a cold sea surface temperature (SST) bias at the equator. ICON‐S also shows that a perfect representation of the diurnal cycle of precipitation over land is not a requirement to capture the seasonal features of the rainbelt over land, while over the ocean, 5 km is sufficient to adequately represent the diurnal cycle of precipitation.
    Description: Plain Language Summary: Over the tropics, precipitation falls in distinct bands, that span the circumference of the Earth. These bands migrate from the Northern to the Southern Hemisphere and vice versa following the seasonal migration of the sun. Their center of mass also varies east‐west, as well as their area. Where rain ends up falling is of key importance but conventional climate models relying on statistical approaches to simulate convection cannot represent these characteristics. Here we report on the results of simulations on a global domain and, to our knowledge, for the first time integrated with an atmosphere‐ocean coupled over a full seasonal cycle and with a grid spacing fine enough to explicitly represent convection and Mesoscale Ocean eddies. We show that such simulations can reproduce many aspects of the seasonal migration of the rainbelt over land. For instance, the north‐south and east‐west migration of the rainbelt as well as its expansion during the summer season are well captured. This is also the case for the rainbelt in the eastern Pacific and the Atlantic, but not in the Eastern Hemisphere, where the poor representation of the sea surface temperature pattern distorts the representation of the rainbelt and its seasonal characteristics.
    Description: Key Points: In one year of simulation, the ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) reproduces the seasonal features of the tropical rainbelt over land with high agreement with observations. In the eastern Pacific and Atlantic, the seasonal structure and movement of the rainbelt are also reproduced by ICON‐S. Biases in sea surface temperature explain the struggles of ICON‐S in simulating the oceanic rainbelt of the Eastern Hemisphere.
    Description: Hans‐Ertel Centre for Weather Research
    Description: European Union's Horizon 2020
    Description: DKRZ compute time
    Description: https://doi.org/10.17617/3.1XTSR6
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: https://doi.org/10.5067/GPM/IMERG/3B-HH/06
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/atmosphere/imerg-precipitation-amount.html
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/ocean/hadisst1.html
    Description: https://hdl.handle.net/21.11116/0000-000B-4BAE-E
    Keywords: ddc:551.6 ; tropical precipitation ; rainbelt ; seasonal migration ; ICON-S ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-03-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Flow‐dependent errors in tropical analyses and short‐range forecasts are analysed using global observing‐system simulation experiments assimilating only temperature, only winds, and both data types using the ensemble Kalman filter (EnKF) Data Assimilation Research Testbed (DART) and a perfect model framework. The idealised, homogeneous observation network provides profiles of wind and temperature data from the nature run for January 2018 using the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) forced by the observed sea‐surface temperature. The results show that the assimilation of abundant wind observations in a perfect model makes the temperature data in the Tropics largely uninformative. Furthermore, the assimilation of wind data reduces the background errors in specific humidity twice as much as the assimilation of temperature observations. In all experiments, the largest analysis uncertainties and the largest short‐term forecast errors are found in regions of strong vertical and longitudinal gradients in the background wind, especially in the upper troposphere and lower stratosphere over the Indian Ocean and Maritime Continent. The horizontal error correlation scales are on average short throughout the troposphere, just several hundred km. The correlation scales of the wind variables in precipitating regions are half of those in nonprecipitating regions. In precipitating regions, the correlations are elongated vertically, especially for the wind variables. Strong positive cross‐correlations between temperature and specific humidity in the precipitating regions are explained using the Clausius–Clapeyron equation.〈/p〉
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.6 ; ensemble Kalman filter data assimilation ; forecast‐error correlations ; mass and wind observations ; temperature–moisture cross‐correlations ; Tropics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-02-12
    Description: This work focuses on the potential of a network of Doppler lidars for the improvement of short‐term forecasts of low‐level wind. For the impact assessment, we developed a new methodology that is based on ensemble sensitivity analysis (ESA). In contrast to preceding network design studies using ESA, we calculate the explicit sensitivity including the inverse of the background covariance B matrix to account directly for the localization scale of the assimilation system. The new method is applied to a pre‐existing convective‐scale 1,000‐member ensemble simulation to mitigate effects of spurious correlations. We evaluate relative changes in the variance of a forecast metric, that is, the low‐level wind components averaged over the Rhein–Ruhr metropolitan area in Germany. This setup allows us to compare the relative variance change associated with the assimilation of hypothetical observations from a Doppler wind lidar with respect to the assimilation of surface‐wind observations only. Furthermore, we assess sensitivities of derived variance changes to a number of settings, namely observation errors, localization length scale, regularization factor, number of instruments in the network, and their location, as well as data availability of the lidar measurements. Our results demonstrate that a network of 20–30 Doppler lidars leads to a considerable variance reduction of the forecast metric chosen. On average, an additional network of 25 Doppler lidars can reduce the 1–3 hr forecast error by a factor of 1.6–3.3 with respect to 10‐m wind observations only. The results provide the basis for designing an operational network of Doppler lidars for the improvement of short‐term low‐level wind forecasts that could be especially valuable for the renewable energy sector.
    Description: This study presents the potential of a Doppler lidar network to improve short‐term low‐level wind forecasts. The approach used in this study does not require real observations and can provide valuable information for designing an operational network. The study is based on a convective‐scale 1,000‐member ensemble simulation over Germany. The results show that Doppler lidars lead to considerable variance reduction and should be considered for future observational networks.
    Description: Hans‐Ertel‐Centre for Weather Research funded by the German Federal Ministry for Transportation and Digital Infrastructure
    Description: https://doi.org/10.5281/zenodo.6331758
    Keywords: ddc:551.6 ; covariance ; data assimilation ; ensemble sensitivity analysis ; localization ; low‐level wind forecasts ; network of Doppler lidars ; observing system
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-02-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉High spatio‐temporal resolution near‐surface projected data is vital for climate change impact studies and adaptation. We derived the highest statistically downscaled resolution multivariate ensemble currently available: daily 1 km until the end of the century. Deep learning models were employed to develop transfer functions for precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature. Perfect prognosis is the particular statistical downscaling methodology applied, using a subset of the ReKIS data set for Saxony as predictands, the ERA5 reanalysis as during‐training predictors and the CORDEX‐EUR11 ensemble as projected predictors. The performance of the transfer functions was validated with the VALUE framework, yielding highly satisfactory results. Particular attention was given to the three major perfect prognosis assumptions, for which several tests were carried out and thoroughly discussed. From the latter, we corroborated their fulfillment to a high degree, thus, the derived projections are considered adequate and relevant for impact modelers. In total, 18 runs for RCP85, 1 for RCP45, and 4 for RCP26 were downscaled under both stochastic and deterministic approaches. This multivariate ensemble could drive more accurate and diverse impact studies in the region. Generally, the projected climatologies are in agreement with coarser resolution projections. Nevertheless, statistical particularities were observed for some projections, thus, a list of caveats for potential users is given. Due to the scalability of the presented methodology, further possible applications with additional datasets are proposed. Lastly, several potential improvement prospects are discussed toward the ideal subsequent iteration of the perfect prognosis statistical downscaling methodology.〈/p〉
    Description: Plain Language Summary: There is a great worldwide demand for high spatio‐temporal resolution projections to develop climate change adaptation and mitigation schemes. Despite recent improvements, the resolution of both global and regional climate models is still too coarse to properly represent local variability, particularly in complex terrains. Depending on the application, impact modelers and decision makers require kilometer‐scale projections, with a minimum daily temporal resolution, of near‐surface variables. To fill this information gap, we employed artificial intelligence algorithms to downscale, to a novel daily 1 km resolution, a projection ensemble until the end of the century consisting of precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature. The ensemble comprises 18 runs of the business‐as‐usual worst‐case scenario (RCP85), 1 run of the stabilization scenario (RCP45), and 4 of the optimistic low‐emissions scenario (RCP26). The main assumptions of the methodology were thoroughly tested and discussed. The validation carried out yielded highly satisfactory results. Thus, we consider the projections to be adequate and relevant for impact studies. The region studied is located in Saxony (Germany), still, the methodology shown is potentially applicable anywhere in the world.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Highest statistically downscaled spatio‐temporal resolution multivariate ensemble currently available, consisting of 23 projection runs〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We downscaled precipitation, water vapor pressure, radiation, wind speed, and, maximum, mean and minimum temperature〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The methodology complied to a high degree with the three perfect prognosis assumptions and is scalable to other spatio‐temporal resolutions〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: European Social Fund, Freistaat Sachsen http://dx.doi.org/10.13039/501100004895
    Description: https://rekis.hydro.tu-dresden.de/
    Description: https://doi.org/10.5281/zenodo.7570247
    Description: https://doi.org/10.5281/zenodo.7559173
    Description: https://doi.org/10.5281/zenodo.7558945
    Description: https://doi.org/10.5281/zenodo.8059248
    Description: https://doi.org/10.5281/zenodo.8198925
    Keywords: ddc:551.6 ; climate change ; statistical downscaling ; perfect prognosis ; ERA5 ; CORDEX ; deep learning ; multivariate ensemble
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-03-05
    Description: Climate hazards associated with compound events (CEs) have lately received increasing attention over South America (SA) due to their potential risks and amplification of impacts. This work addressed the evaluation of different temperature‐ and precipitation‐based CE in SA considering the CORDEX‐CORE ensemble of regional climate models (RCMs) and their driving earth system models (ESMs) in the reference period 1981–2010 and the late 21st century (2070–2099), for the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. The assessment focused on model performance for the individual events—heatwaves (HWs), Extreme rainfall (ER) days, and dry‐spells (DSs)—and their compound occurrence in terms of climatological frequency and duration. The spatial patterns of individual events were adequately reproduced by the RCMs, evidencing general overestimations in extreme precipitation intensities. In terms of CE, the frequencies of coincident HWs and DSs (sequential DSs and ER) were remarkable over central‐eastern Brazil and southern SA (southeastern SA). The main features of CE were generally well‐simulated by the RCMs, although they presented regional differences such as an underestimation of the maximum frequencies of these two CE in northeastern Brazil and southeastern SA, respectively. The high‐resolution information was generally in line with the larger‐scale driving ESMs. The climate change signal analysis generally showed robust future increases in CE frequency and duration in different areas of SA, as for coincident HWs and DSs (sequential DSs and ER) over northern SA and southern Brazil (southeastern SA). This was mostly consistent among the RCMs ensemble and notably strengthened in the worst‐case scenario (RCP 8.5).
    Description: Key Points: Coincident heatwaves and dry‐spells (DSs) and sequential DSs and extreme rainfall are remarkable compound events (CEs) over South America. Regional climate models can reproduce the frequency and duration of CEs, but with some regional differences. CEs are generally expected to be more frequent in the late 21st century, particularly in the Representative Concentration Pathway 8.5 scenario.
    Description: UBA Secretaría de Ciencia y Técnica, Universidad de Buenos Aires http://dx.doi.org/10.13039/501100010253
    Description: Argentinian ANPCyT
    Description: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
    Description: https://esgf-data.dkrz.de/projects/esgf-dkrz/
    Description: https://psl.noaa.gov/data/gridded/
    Keywords: ddc:551.6 ; extreme events ; temperature ; precipitation ; regional climate models ; CORDEX ; climate change
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-03-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The usually short lifetime of convective storms and their rapid development during unstable weather conditions makes forecasting these storms challenging. It is necessary, therefore, to improve the procedures for estimating the storms' expected life cycles, including the storms' lifetime, size, and intensity development. We present an analysis of the life cycles of convective cells in Germany, focusing on the relevance of the prevailing atmospheric conditions. Using data from the radar‐based cell detection and tracking algorithm KONRAD of the German Weather Service, the life cycles of isolated convective storms are analysed for the summer half‐years from 2011 to 2016. In addition, numerous convection‐relevant atmospheric ambient variables (e.g., deep‐layer shear, convective available potential energy, lifted index), which were calculated using high‐resolution COSMO‐EU assimilation analyses (0.0625°), are combined with the life cycles. The statistical analyses of the life cycles reveal that rapid initial area growth supports wider horizontal expansion of a cell in the subsequent development and, indirectly, a longer lifetime. Specifically, the information about the initial horizontal cell area is the most important predictor for the lifetime and expected maximum cell area during the life cycle. However, its predictive skill turns out to be moderate at most, but still considerably higher than the skill of any ambient variable is. Of the latter, measures of midtropospheric mean wind and vertical wind shear are most suitable for distinguishing between convective cells with short lifetime and those with long lifetime. Higher thermal instability is associated with faster initial growth, thus favouring larger and longer living cells. A detailed objective correlation analysis between ambient variables, coupled with analyses discriminating groups of different lifetime and maximum cell area, makes it possible to gain new insights into their statistical connections. The results of this study provide guidance for predictor selection and advancements of nowcasting applications.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Based on a combination of data of the cell tracking algorithm KONRAD of the German Weather Service and COSMO‐EU model analyses for the summer half‐years from 2011 to 2016, statistical relationships between storm attributes (lifetime and maximum horizontal area), and ambient variables as well as the storms' history are quantified. The initial growth of the cell area is a better indicator of the lifetime and maximum area than ambient variables are. Of the latter, measures of the midtropospheric wind and vertical wind shear, in particular, are most suitable for distinguishing between convective cells with short and long lifetimes, whereas higher convective instability favours larger cells. 〈boxed-text position="anchor" id="qj4505-blkfxd-0001" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00359009:media:qj4505:qj4505-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Bundesministerium für Digitales und Verkehr http://dx.doi.org/10.13039/100008383
    Keywords: ddc:551.6 ; convective storms ; life cycle ; multisource data ; nowcasting ; statistics ; weather prediction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Recent observations and modeling increasingly reveal the key role of cold pools in organizing the convective cloud field. Several methods for detecting cold pools in simulations exist, but are usually based on buoyancy fields and fall short of reliably identifying the active gust front. The current cold pool (CP) detection and tracking algorithm (CoolDeTA), aims to identify cold pools and follow them in time, thereby distinguishing their active gust fronts and the “offspring” rain cells generated nearby. To accomplish these tasks, CoolDeTA utilizes a combination of thermodynamic and dynamical variables and examines the spatial and temporal relationships between cold pools and rain events. We demonstrate that CoolDeTA can reconstruct CP family trees. Using CoolDeTA we can contrast radiative convective equilibrium (RCE) and diurnal cycle CP dynamics, as well as cases with vertical wind shear and without. We show that the results obtained are consistent with a conceptual model where CP triggering of children rain cells follows a simple birth rate, proportional to a CP's gust front length. The proportionality factor depends on the ambient atmospheric stability and is lower for RCE, in line with marginal stability as traditionally ascribed to the moist adiabat. In the diurnal case, where ambient stability is lower, the birth rate thus becomes substantially higher, in line with periodic insolation forcing—resulting in essentially run‐away mesoscale excitations generated by a single parent rain cell and its CP.〈/p〉
    Description: Plain Language Summary: Cold pools are cooled air masses below thunderstorm clouds, produced when rain evaporates underneath such clouds. Cold pools are important, as they produce strong gusts and have been associated with clumping of rain cells, whereby heavy rainfall over relatively small areas could be generated—with implications for flooding. The current work describes a method that helps identify such cold pools in computer simulation data. In contrast to earlier methods, we here show that the interaction between a CP and its surroundings can be reconstructed by the method. We show that this identification works under a range of contexts, such as when horizontal wind is applied in the simulations or when the surface temperature is not constant—as might often be the case over a land surface. The identification reveals interesting dynamical effects, such as that in some cases, cold pools can kick‐start a form of chain reaction, by which “rain cell children” of it give rise to additional cold pools that again produce children, and so forth. The dynamics revealed is in line with expectations of widespread, so‐called mesoscale convective systems over land, whereas over an ocean surface the dynamics is much less explosive.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Our CoolDeTA algorithm reliably detects and tracks cold pools and their causal chains〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉We propose a simple conceptual model which reproduces the cascade‐like mesoscale cold pool dynamics identified by CoolDeTA〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉CoolDeTA opens for new studies into the dynamics of convective self‐organization through cold pools〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Villum Fonden http://dx.doi.org/10.13039/100008398
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: Novo Nordisk Foundation Interdisciplinary Synergy Program
    Description: Scientific Steering Committee
    Description: https://doi.org/10.5281/zenodo.6513224
    Description: https://github.com/Shakiro7/coldPool-detection-and-tracking
    Description: https://doi.org/10.5281/zenodo.10115957
    Description: https://doi.org/10.7717/peerj.453
    Keywords: ddc:551.6 ; cold pools ; detection ; tracking ; cloud resolving simulation ; convective organization
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Dansgaard‐Oeschger (D‐O) climate variability during the last glaciation was first evidenced in ice cores and marine sediments, and is also recorded in various terrestrial paleoclimate archives in Europe. The relative synchronicity across Greenland, the North Atlantic and Europe implies a tight and fast coupling between those regions, most probably effectuated by an atmospheric transmission mechanism. In this study, we investigated the atmospheric changes during Greenland interstadial (GI) and stadial (GS) phases based on regional climate model simulations using two specific periods, GI‐10 and GS‐9 both around 40 ka, as boundary conditions. Our simulations accurately capture the changes in temperature and precipitation as reconstructed by the available proxy data. Moreover, the simulations depict an intensified and southward shifted eddy‐driven jet during the stadial period. Ultimately, this affects the near‐surface circulation toward more southwesterly and cyclonic flow in western Europe during the stadial period, explaining much of the seasonal climate variability recorded by the proxy data, including oxygen isotopes, at the considered proxy sites.〈/p〉
    Description: Plain Language Summary: The climate during the last ice age varied between colder and warmer periods on timescales ranging from hundreds to thousands of years. This variability was first detected in Greenland ice cores and marine sediment cores of the North Atlantic, as well as in continental geological records in Europe. The variation between the colder and warmer periods occur mostly simultaneously in Greenland and in Europe, which is why the atmosphere is assumed to have an important role in transferring the climate signals. We simulated two different periods of the last ice age, one colder and one warmer around 40,000 years ago, using a regional climate model. The aim was to study how the climate and atmospheric circulation changed during these two periods. We find the eddy‐driven jet over the North Atlantic intensified and shifted southward during the colder period. The jet influences the near‐surface atmospheric circulation and leads to more southwesterly and cyclonic flow in western Europe. Oxygen isotope variations observed in western European paleoclimate records may be partly explained by different, more southern moisture sources on top of changes in seasonal temperatures.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Simulated temperatures agree with proxy data; precipitation is biased but GI‐10 versus GS‐9 differences are well captured〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The stadial winter jet stream is intensified and shifted southward, consistent with dominant southwesterly/cyclonic flow in western Europe〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Oxygen isotope signal changes at western European proxy sites may be explained not only by temperature but also by varying moisture sources〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: NRDIO
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: https://doi.org/10.5065/1dfh-6p97
    Keywords: ddc:551.6 ; Dansgaard‐Oeschger cycle ; regional atmospheric dynamics ; regional climate modeling ; continental paleoclimate proxy ; Europe
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-05-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉As projected by multiple climate models, short‐duration heavy precipitation events (SDHPEs) are expected to intensify particularly quickly under the changing climate posing substantial risk to natural and human systems. Yet over the years, SDHPEs have received less scientific attention than long‐duration heavy precipitation events (LDHPEs), mainly due to the limitations of measurement systems. Our aim is to provide insight into spatial and temporal variability of SDHPEs detected by the radar network of the 〈italic toggle="no"〉Deutscher Wetterdienst〈/italic〉 (DWD) in Germany from 2001 to 2020 as well as to explore their links to circulation patterns (CPs). The study is based on the Catalogue of Radar‐based heavy Rainfall Events (CatRaRE) generated using reprocessed gauge‐adjusted data of the DWD radar network as well as a new numerical method for classifying CPs over Central Europe called “〈italic toggle="no"〉Großwetterlagen〈/italic〉 for Reanalyses” (GWL‐REA). The results have demonstrated that SDHPEs, which are defined based on either locally valid precipitation values with a return period of 5 years (CatRaRE T5) or absolute precipitation values equal to DWD Warning Level 3 (CatRaRE W3), are common phenomena occurring most frequently in the afternoon hours of the summer season. They constitute up to 90% of all heavy precipitation events included in the catalogues covering relatively small areas—the median area of SDHPEs ranges from 22 km〈sup〉2〈/sup〉 (CatRaRE T5) to 24 km〈sup〉2〈/sup〉 (CatRaRE W3), while the median area of LDHPEs ranges from 175 km〈sup〉2〈/sup〉 (CatRaRE W3) to 184 km〈sup〉2〈/sup〉 (CatRaRE T5). As compared to LDHPEs, SDHPEs are generated by a wider spectrum of circulation conditions, including not only cyclonic but also anticyclonic CPs. In the warm season, the anticyclonic CPs, often accompanied by air mass advection from the south, can induce high thermal instability leading to the development of relatively small, isolated convective cells, which often cannot be captured by rain gauge stations.〈/p〉
    Description: Federal Ministry for Digital and Transport (BMDV)
    Description: https://www.dwd.de/DE/leistungen/catrare/catrare.html
    Keywords: ddc:551.6 ; CatRaRE ; circulation patterns ; GWL‐REA ; heavy precipitation events ; long‐duration precipitation ; radar data ; short‐duration precipitation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...