ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-19
    Description: In this study, we investigate whether a better representation of precipitation in the Amazon basin arises through an explicit representation of convection and whether it is related to the representation of organized systems. In addition to satellite data, we use ensemble simulations of the ICON‐NWP model at storm‐resolving (2.5–5.0 km) scales with explicit convection (E‐CON) and coarse resolutions, with parameterized convection (P‐CON). The main improvements in the representation of Amazon precipitation by E‐CON are in the distribution of precipitation intensity and the spatial distribution in the diurnal cycle. By isolating precipitation from organized convective systems (OCS), it is shown that many of the well simulated precipitation features in the Amazon arise from the distribution of these systems. The simulated and observed OCS are classified into 6 clusters which distinguish nocturnal and diurnal OCS. While the E‐CON ensembles capture the OCS, especially their diurnal cycle, their frequency is reduced compared to observations. Diurnal clusters are influenced by surface processes such as cold pools, which aid to the propagation of OCS. Nocturnal clusters are rather associated with strong low‐level easterlies, possibly related to the Amazonian low‐level jet. Our results also show no systematic improvement with a twofold grid refinement and remaining biases related to stratiform features of OCS suggest that yet unresolved processes play an important role for correctly representing precipitating systems in the Amazon.
    Description: Plain Language Summary: The Amazon basin is a relevant element of the Earth system because it influences the global water and carbon cycle, as well as it constitutes a unique ecosystem. Over this important region, conventional climate models do not simulate basic features of rainfall given their inability to resolve this physical process due to their coarse spatial resolution. In this study, we use high‐resolution simulations that allow an explicit representation of such physical process (moist convection) and compare them with a set of coarse‐resolution simulations and observed precipitation. We find that improvements in the representation of Amazon rainfall, such as the distribution of light and high intensity rain rates, as well as the spatial variability of the diurnal cycle, are explained by the explicit representation of moist convection. Moreover, these improvements arise from the representation of big and organized systems that produce intense rainfall (OCS). We find that particular environmental conditions are associated with the OCS according to their time of occurrence. Diurnal OCS are mainly influenced by interactions with the surface, while nocturnal OCS are related to strong low‐level winds. Some of the remaining discrepancies with observed OCS do not show improvements when refining the grid by a factor of two.
    Description: Key Points: An explicit representation of convection enables the emergence of organized systems (OCS) leading to improved simulations of Amazon rainfall. Propagating cold‐pools and strong low‐level easterlies are related to the occurrence of diurnal and nocturnal OCS, respectively. Systematic biases in the size, intensity and nocturnal precipitation phase of OCS are insensitive to a twofold refinement in resolution.
    Description: Max Planck Society for the Advancement of Science
    Description: European Horizon 2020 project CONSTRAIN
    Description: https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
    Description: https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/30min/8km
    Description: https://www.hydrosheds.org/products/hydrobasins
    Description: https://esgf-data.dkrz.de/projects/cmip6-dkrz/
    Description: https://pure.mpg.de/
    Keywords: ddc:551.6 ; Amazon rainfall ; organized precipitating systems ; storm‐resolving simulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-13
    Description: Using the global and coupled ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) and a grid spacing of 5 km, we describe seasonal and diurnal features of the tropical rainbelt and assess the limits of ICON‐S in representing tropical precipitation. ICON‐S shows that, by resolving meso‐beta scale process, the rainbelt structure and its seasonality (zonal and meridional migration and enlargement) is reproduced, with better performance over land than over ocean and with a very high degree of agreement to observations. ICON‐S especially struggles in capturing the seasonal features of the tropical rainbelt over the oceans of the Eastern Hemisphere, an issue associated with a cold sea surface temperature (SST) bias at the equator. ICON‐S also shows that a perfect representation of the diurnal cycle of precipitation over land is not a requirement to capture the seasonal features of the rainbelt over land, while over the ocean, 5 km is sufficient to adequately represent the diurnal cycle of precipitation.
    Description: Plain Language Summary: Over the tropics, precipitation falls in distinct bands, that span the circumference of the Earth. These bands migrate from the Northern to the Southern Hemisphere and vice versa following the seasonal migration of the sun. Their center of mass also varies east‐west, as well as their area. Where rain ends up falling is of key importance but conventional climate models relying on statistical approaches to simulate convection cannot represent these characteristics. Here we report on the results of simulations on a global domain and, to our knowledge, for the first time integrated with an atmosphere‐ocean coupled over a full seasonal cycle and with a grid spacing fine enough to explicitly represent convection and Mesoscale Ocean eddies. We show that such simulations can reproduce many aspects of the seasonal migration of the rainbelt over land. For instance, the north‐south and east‐west migration of the rainbelt as well as its expansion during the summer season are well captured. This is also the case for the rainbelt in the eastern Pacific and the Atlantic, but not in the Eastern Hemisphere, where the poor representation of the sea surface temperature pattern distorts the representation of the rainbelt and its seasonal characteristics.
    Description: Key Points: In one year of simulation, the ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) reproduces the seasonal features of the tropical rainbelt over land with high agreement with observations. In the eastern Pacific and Atlantic, the seasonal structure and movement of the rainbelt are also reproduced by ICON‐S. Biases in sea surface temperature explain the struggles of ICON‐S in simulating the oceanic rainbelt of the Eastern Hemisphere.
    Description: Hans‐Ertel Centre for Weather Research
    Description: European Union's Horizon 2020
    Description: DKRZ compute time
    Description: https://doi.org/10.17617/3.1XTSR6
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: https://doi.org/10.5067/GPM/IMERG/3B-HH/06
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/atmosphere/imerg-precipitation-amount.html
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/ocean/hadisst1.html
    Description: https://hdl.handle.net/21.11116/0000-000B-4BAE-E
    Keywords: ddc:551.6 ; tropical precipitation ; rainbelt ; seasonal migration ; ICON-S ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-05
    Description: This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution.
    Description: Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. This article describes how the component models for atmosphere, land, and ocean are coupled together and how we achieve a stable climate by setting certain tuning parameters and performing sensitivity experiments. We evaluate the performance of our new model by running a set of experiments under pre‐industrial and historical climate conditions as well as a set of idealized greenhouse‐gas‐increase experiments. These experiments were designed by the Coupled Model Intercomparison Project (CMIP) and allow us to compare the results to those from other CMIP models and the predecessor of our model, the Max Planck Institute for Meteorology Earth System Model. While we diagnose overall satisfactory performance, we find that ICON‐ESM features somewhat larger biases in several quantities compared to its predecessor at comparable grid resolution. We emphasize that the present configuration serves as a basis from where future development steps will open up new perspectives in earth system modeling.
    Description: Key Points: This work documents ICON‐ESM 1.0, the first version of a coupled model based on the ICON framework. Performance of ICON‐ESM is assessed by means of CMIP6 Diagnosis, Evaluation, and Characterization of Klima experiments at standard CMIP‐type resolution. ICON‐ESM reproduces the observed temperature evolution. Biases in clouds, winds, sea‐ice, and ocean properties are larger than in MPI‐ESM.
    Description: European Union H2020 ESM2025
    Description: European Union H2020 COMFORT
    Description: European Union H2020ESiWACE2
    Description: Deutsche Forschungsgemeinschaft TRR181
    Description: Deutsche Forschungsgemeinschaft EXC 2037
    Description: European Union H2020
    Description: Deutscher Wetterdienst
    Description: Bundesministerium fuer Bildung und Forschung
    Description: http://esgf-data.dkrz.de/search/cmip6-dkrz/
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=RUBY-0_ICON-_ESM_V1.0_Model
    Keywords: ddc:550.285 ; ddc:551.63
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 96 (1974), S. 6846-6850 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 38 (1966), S. 724-726 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 34 (1962), S. 1124-1124 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Specimens of the Dungeness crab Cancer magister, were collected subtidally and intertidally from an estuary in Washington State, USA in June and September 1980, and January, April, May and July, 1981. Gut contens of freshly collected crabs were analyzed by the Index of Relative Importance; for each prey taxon, this method measured frequency of occurrence, percentage of total biomass, and percentage of total numbers consumed. The most important higher taxon eaten was fish; however, the most important prey genus was the shrimp Crangon spp. There was greater predation on Crangon spp. at night at the intertidal site, and during winter and spring when the shrimp were most abundant there. Feeding activity, as indicated by a weight-specific gut-fullness index, showed no consistent diel pattern. There were significant ontogenetic changes in feeding patterns: first-year crabs preyed primarily on very small bivalves or small crustaceans including their conspecifics; second-year crabs preferred Crangon spp. and fish, and third-year crabs preyed less on Crangon spp. and more on fish. Such changes in feeding habits with ege could be purely due to mechanics of food handling, but might also reduce competition among age groups of crabs, possibly partitioning resources within the estuary. Findings are discussed in terms of optimal foraging and compared to other similar studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 67 (1957), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 199 (1963), S. 1297-1298 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A case of atypical chronic myeloid leukaemia in a 56-year old male of known British descent has now been found which exhibits similar red-cell inclusion bodies (Fig. 1), associated with the presence of about 10 per cent of a minor hmoglobin, with no detectable proportions of HbF and HbBart's (HbF4) ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 198 (1963), S. 1192-1192 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] At lower temperatures, however, the ratio ID/IM has a positive temperature coefficient and as shown in Fig. 1 this ratio is higher at -72 C than at 71 C for a 1Q-3 M solution in ethanol. Since the singlet- triplet splitting in pyrene is some 10,000 cm-1, this is unlikely to be due to a thermal ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...