ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-16
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In 2022, western Europe experienced its hottest summer on record and widespread dry conditions, with substantial impacts on health, water and vegetation. We use a reanalysis to classify daily mean sea level pressure fields and to investigate the influence of synoptic circulations on the occurrence of temperature extremes and dry days. Summer 2022 featured an above‐normal occurrence of anticyclones extending from the British Isles to the Baltic countries, as well as enhanced easterly, southerly and low‐flow conditions which contributed to the observed extremes over southern and western Europe. While the hot summer of 2022 is only partially explained by circulation anomalies, such anomalies played a key role in the exceptional occurrence of dry days. The comparison with summer circulation anomalies projected by twenty global climate models moreover suggests that future circulation changes will further exacerbate hot and dry extremes over Europe.〈/p〉
    Description: Plain Language Summary: In 2022, western Europe recorded its hottest summer up to date since preindustrial times. At the same time, widespread dry conditions caused dramatic impacts on human health, water resources, crop yields and wildfires. This was partly enhanced by the human–caused cumulative emissions of greenhouse gases, but also potentially by large‐scale circulation anomalies that may also be triggered by global warming. By grouping distinct weather patterns, we find that many extreme hot days during the summer of 2022 over well‐defined parts of Europe were favored by anomalous transport of hot and dry air masses or persistent low‐wind conditions. These weather patterns were essential but not the dominant factor that led to the occurrence of extreme temperatures. Yet, they played a key role in enhancing the number of dry days. We also find that the weather patterns observed in summer 2022 will become more common in coming decades if greenhouse gas emissions remain without reduction. This would further worsen hot and dry extremes in summer over Europe.〈/p〉
    Description: Key Points : 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉European summer 2022 hot extremes have been enhanced by an anomalous occurrence of distinct circulation types over different subdomains〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Predominant circulation anomalies also contributed to the exceptional number of dry days, as much as local, mostly thermodynamical effects〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Such anomalous circulations will become more common, thus further worsening European hot and dry extremes〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: HORIZON EUROPE Marie Sklodowska‐Curie Actions http://dx.doi.org/10.13039/100018694
    Description: https://doi.org/10.24381/cds.adbb2d47
    Description: https://doi.org/10.5194/gmd-9-1937-2016
    Keywords: ddc:551.6 ; hot summer 2022 ; hot extremes ; circulation types ; circulation classification ; climate change ; atmospheric circulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Projected changes in summer precipitation deficits partly depend on alterations in synoptic circulations. Here, the automated Jenkinson–Collison classification is used to assess the ability of 21 global climate models (GCMs) to capture the frequency of recurring circulation types (CTs) and their implications for European daily precipitation amounts in summer (JJA). The ability of the GCMs to reproduce the observed present‐day climate features is evaluated first. Most GCMs capture the observed links between the mean CTs directional flow characteristics and the occurrence of dry days and related dry months. The most robust relationships are found for anticyclonic and easterly CTs which are generally associated with higher‐than‐average occurrences of dry conditions. Future changes in summer CTs' frequencies are estimated in the high‐emission SSP5‐8.5 scenario for the sake of a high signal‐to‐noise ratio. Our results reveal consistent changes, mainly in the zonal CTs. A robust decrease in frequency of the westerlies and an increase in the frequency of easterly CTs favour more continental, dry and warm air masses over central Europe. These dynamical changes are shown to enhance the projected summer drying over central and southern Europe.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Summer large‐scale circulations are derived over Europe using an automated classification. Spatial characteristics of the patterns and their influence on dry days are investigated. Future changes are explored based on global climate models. The predicted drier summers in Europe are found to be influenced by consistent changes in west‐easterly circulations.〈boxed-text position="anchor" content-type="graphic" id="joc8033-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08998418:media:joc8033:joc8033-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: EU International Training Network (ITN) Climate Advanced Forecasting of sub‐seasonal Extremes (CAFE)
    Description: H2020 Marie Skłodowska‐Curie Actions
    Description: https://github.com/PedroLormendez/jcclass
    Keywords: ddc:551.6 ; circulation patterns ; climate change ; precipitation ; weather extremes
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2021-07-01
    Description: The Mediterranean region is strongly affected by extreme precipitation events (EPEs), sometimes leading to severe negative impacts on society, economy, and the environment. Understanding such natural hazards and their drivers is essential to mitigate related risks. Here, EPEs over the Mediterranean between 1979 and 2019 are analysed, using ERA5, the latest reanalysis dataset from ECMWF. EPEs are determined based on the 99th percentile of their daily distribution (P99). The different EPE characteristics are assessed, based on seasonality and spatiotemporal dependencies. To better understand their connection to large‐scale atmospheric flow patterns, Empirical Orthogonal Function analysis and subsequent non‐hierarchical K‐means clustering are used to quantify the importance of weather regimes to EPE frequency. The analysis is performed for different variables, depicting atmospheric variability in the lower and middle troposphere. Results show a clear spatial division in EPE occurrence, with winter and autumn being the seasons of highest EPE frequency for the eastern and western Mediterranean, respectively. There is a high degree of temporal dependencies with 20% of the EPEs (median value based on all studied grid cells), occurring up to 1 week after a preceding P99 event at the same location. Local orography is a key modulator of the spatiotemporal connections and substantially enhances the probability of co‐occurrence of EPEs even for distant locations. The clustering clearly demonstrates the prevalence of distinct synoptic‐scale atmospheric conditions during the occurrence of EPEs for different locations within the region. Results indicate that clustering, based on a combination of sea level pressure (SLP) and geopotential height at 500 hPa (Z500), can increase the conditional probability of EPEs by more than three (3) times (median value for all grid cells) from the nominal probability of 1% for the P99 EPEs. Such strong spatiotemporal dependencies and connections to large‐scale patterns can support extended‐range forecasts.
    Description: This study analyses the spatiotemporal characteristics of extreme precipitation events over the Mediterranean, and their connection to large‐scale atmospheric flow patterns. It is shown that by conditioning the extremes based on the atmospheric variability in the low‐ and mid‐troposphere, their probability increases more than threefold, when using nine clusters to group all the synoptic daily patterns. This finding can support extended‐range forecasts, as for such lead times the NWP models are more skillful in predicting large‐scale patterns than localized extremes.
    Description: Marie Skłodowska‐Curie
    Description: European Union's Horizon 2020
    Keywords: 551.6 ; extreme precipitation ; large‐scale/circulation patterns ; Mediterranean ; weather regimes
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-27
    Description: While the evidence for anthropogenic climate change continues to strengthen, and concerns about severe weather events are increasing, global projections of regional climate change are still uncertain due to model‐dependent changes in large‐scale atmospheric circulation, including over North Atlantic and Europe. Here, the Jenkinson–Collison classification of daily circulation patterns is used to evaluate past and future changes in their seasonal frequencies over Central Europe for the 1900–2100 period. Three reanalyses and eight global climate models from the Coupled Model Intercomparison Project phase 6, were used based on daily mean sea‐level pressure data. Best agreement in deriving relative frequencies of the synoptic types was found between the reanalyses. Global models can generally capture the interannual variability of circulation patterns and their climatological state, especially for the less frequent synoptic types. Based on historical data and the shared socioeconomic pathway 5 scenario, the evaluated trends show more robust signals during summer, given their lesser internal variability. Increasing frequencies were found for circulation types characterized by weak pressure gradients, mainly at the expense of decreasing frequencies of westerlies. Our findings indicate that given a high‐emission scenario, these signals will likely emerge from past climate variability towards the mid‐21st century for most altered circulation patterns.
    Description: Daily synoptic circulation patterns are derived using the Jenkinson–Collinson automated classification over Central Europe to evaluate past and future changes in their temporal frequencies. Reanalyses and eight global climate models from the CMIP6 were used based on the historical experiment and a high‐emission scenario. More robust signals were found during the summer season leading to emerging changes towards the mid‐21st century.
    Description: H2020 Marie Skłodowska‐Curie Actions http://dx.doi.org/10.13039/100010665
    Description: EU International Training Network (ITN) Climate Advanced Forecasting of sub‐seasonal Extremes (CAFE)
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...