ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Other Sources  (15)
  • ddc:551.6  (15)
  • English  (15)
  • Finnish
  • 2020-2023  (15)
  • 2010-2014
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • 1950-1954
  • 1935-1939
  • 2022  (15)
Collection
  • Books
  • Other Sources  (15)
Source
Language
  • English  (15)
  • Finnish
Years
  • 2020-2023  (15)
  • 2010-2014
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • +
Year
  • 1
    Publication Date: 2022-06-26
    Description: Warming of the North Atlantic region in climate history often was associated with massive melting of the Greenland Ice Sheet. To identify the meltwater's impacts and isolate these from internal variability and other global warming factors, we run single‐forcing simulations including small ensembles using three complex climate models differing only in their ocean components. In 200‐year‐long preindustrial climate simulations, we identify robust consequences of abruptly increasing Greenland runoff by 0.05 Sv: sea level rise of 44 ± 10 cm, subpolar North Atlantic surface cooling of 0.7°C, and a moderate AMOC decline of 1.1–2.0 Sv. The latter two emerge in under three decades—and reverse on the same timescale after the perturbation ends in year 100. The ocean translates the step‐change perturbation into a multidecadal‐to‐centennial signature in the deep overturning circulation. In all simulations, internal variability creates notable uncertainty in estimating trends, time of emergence, and duration of the response.
    Description: Plain Language Summary: Enhanced melting of Greenland's glaciers is considered to be a major player in past rapid climate transitions and anticipated to soon impact ocean circulation under current global warming. Global warming triggers complex processes and feedbacks, of which greater amounts of meltwater slowing the large‐scale ocean circulation is only one. To better understand the sensitivity of the real but also the model ocean to just this meltwater, we run idealized experiments with up‐to‐date climate models, which use the same atmosphere and land but different ocean components. We find that sea level rise, cooling of the North Atlantic region, and slowing of the ocean circulation are responses common to all models while regional magnitudes of these responses differ considerably. Once we stop adding freshwater, all three models show that surface temperature and ocean circulation recover as quickly (or slowly) as they changed at the beginning of the experiment. Sea level rise is a lasting impact though.
    Description: Key Points: Sudden increase in Greenland freshwater release is turned into century scale change by deep ocean dynamics. Upper ocean responses to moderately enhanced freshwater release from Greenland reverse on the same timescale once release ceases. Ocean model formulation affects regional expressions but basin‐scale responses are robust, so is the timing on decadal to centennial scales.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-13
    Description: Accurate and reliable precipitation data with high spatial and temporal resolution are essential in studying climate variability, water resources management, and hydrological forecasting. A range of global precipitation data are available to this end, but how well these capture actual precipitation remains unknown, particularly for mountain regions where ground stations are sparse. We examined the performance of three global high‐resolution precipitation products for capturing precipitation over Central Asia, a hotspot of climate change, where reliable precipitation data are particularly scarce. Specifically, we evaluated MSWEP, CHIRPS, and GSMAP against independent gauging stations for the period 1985–2015. Our results show that MSWEP and CHIRPS outperformed GSMAP for wetter periods (i.e., winter and spring) and wetter locations (150–600 mm·year−1), lowlands, and mid‐altitudes (0–3,000 m), and regions dominated by winter and spring precipitation. MSWEP performed best in representing temporal precipitation dynamics and CHIRPS excelled in capturing the volume and distribution of precipitation. All precipitation products poorly estimated precipitation at higher elevations (〉3,000 m), in drier areas (〈150 mm), and in regions characterized by summer precipitation. All products accurately detected dry spells, but their performance decreased for wet spells with increasing precipitation intensity. In sum, we find that CHIRPS and MSWEP provide the most reliable high‐resolution precipitation estimates for Central Asia. However, the high spatial and temporal heterogeneity of the performance call for a careful selection of a suitable product for local applications considering the prevailing precipitation dynamics, climatic, and topographic conditions.
    Description: We present the first quantitative evaluation of global high‐resolution (below 12 km) precipitation products against independent ground observations over Central Asia. Our results show that MSWEP was best at representing temporal precipitation dynamics, and CHIRPS was most prominent in representing the volume and distribution of precipitation. This is especially the case of wet seasons, altitudes below 3,000 m, and regions dominated by spring and winter precipitation. Our analysis provides key insights on the precipitation products' suitability for local hydrological applications.
    Description: Leibniz‐Institut für Agrarentwicklung in Transformationsökonomien
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-13
    Description: Observation‐based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half‐century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land‐use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.
    Description: Key Points: The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world. Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean. Virtually all socio‐economic sectors will be critically affected by the projected changes.
    Description: European Union Horizon 2020
    Description: https://esg-dn1.nsc.liu.se/search/esgf-liu/
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-17
    Description: In this paper we coupled a crop growth model to the Weather Research and Forecasting model with its land surface model Noah‐MP and demonstrated the influence of the weather driven crop growth on land‐atmosphere (L‐A) feedback. An impact study was performed at the convection permitting scale of 3 km over Germany. While the leaf area index (LAI) in the control simulation was the same for all cropland grid cells, the inclusion of the crop growth model resulted in heterogeneous crop development with higher LAI and stronger seasonality. For the analyses of L‐A coupling, a two‐legged metric was applied based on soil moisture, latent heat flux and convective available potential energy. Weak atmospheric coupling is enhanced by the crop model, the terrestrial coupling determines the regions with the L‐A feedback. The inclusion of the crop model turns regions with no L‐A feedback on this path into regions with strong positive coupling. The number of non‐atmospherically controlled days between April and August is increased by 10–15 days in more than 50% of Germany. Our work shows that this impact results in a reduction of both cold bias and warm biases and thus improves the metrics of distributed added value of the monthly mean temperatures. The study confirms that the simulation of the weather driven annual phenological development of croplands for the regional climate simulations in mid‐latitudes is crucial due to the L‐A feedback processes and the currently observed and expected future change in phenological phases.
    Description: Key Points: Coupling a crop growth model with the Weather and Research Forecasting model significantly improves the simulation of the leaf area index. Land‐atmosphere coupling strength is enhanced by weather dependent crop growth simulation. The distributed added value metric shows a reduction in temperature biases of up to 80% in croplands throughout the season in Germany.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/Project_TRY/air_temperature_mean/
    Description: https://doi.org/10.5281/zenodo.6501984
    Description: http://land.copernicus.eu/pan-european/corine-land-cover/clc-2006/view
    Description: https://doi.org/10.1594/WDCC/WRF_NOAH_HWSD_world_TOP_SOILTYP
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2022-08-05
    Description: In‐depth understanding of the potential implications of climate change is required to guide decision‐ and policy‐makers when developing adaptation strategies and designing infrastructure suitable for future conditions. Impact models that translate potential future climate conditions into variables of interest are needed to create the causal connection between a changing climate and its impact for different sectors. Recent surveys suggest that the primary strategy for validating such models (and hence for justifying their use) heavily relies on assessing the accuracy of model simulations by comparing them against historical observations. We argue that such a comparison is necessary and valuable, but not sufficient to achieve a comprehensive evaluation of climate change impact models. We believe that a complementary, largely observation‐independent, step of model evaluation is needed to ensure more transparency of model behavior and greater robustness of scenario‐based analyses. This step should address the following four questions: (1) Do modeled dominant process controls match our system perception? (2) Is my model's sensitivity to changing forcing as expected? (3) Do modeled decision levers show adequate influence? (4) Can we attribute uncertainty sources throughout the projection horizon? We believe that global sensitivity analysis, with its ability to investigate a model's response to joint variations of multiple inputs in a structured way, offers a coherent approach to address all four questions comprehensively. Such additional model evaluation would strengthen stakeholder confidence in model projections and, therefore, into the adaptation strategies derived with the help of impact models.
    Description: A comprehensive evaluation of climate change impact models combining both observation‐based and response‐based strategies.
    Description: This article is categorized under: Climate Models and Modeling 〉 Knowledge Generation with Models Assessing Impacts of Climate Change 〉 Evaluating Future Impacts of Climate Change
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: Engineering and Physical Sciences Research Council http://dx.doi.org/10.13039/501100000266
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-27
    Description: The moisture sources of precipitation in the Tianshan Mountains, one of the regions with the highest precipitation in Central Asia during 1979–2017 are comprehensively and quantitatively summarized by using a Lagrangian moisture source detection technique. Continental sources provide about 93.2% of the moisture for precipitation in the Tianshan Mountain, while moisture directly from the ocean is very limited, averaging only 6.8%. Central Asia plays a dominant role in providing moisture for all sub‐regions of the Tianshan Mountains. For the Western Tianshan, moisture from April to October comes mainly from Central Asia (41.4%), while moisture from November to March is derived primarily from Western Asia (45.7%). Nearly 13.0% of moisture to precipitation for Eastern Tianshan in summer originates from East and South Asia, and the Siberia region. There is a significant decreasing trend in the moisture contribution of local evaporation and Central Asia in the Eastern Tianshan during winter. The contribution of moisture from Europe to summer precipitation in the Central and Eastern Tianshan and the contribution of the North Atlantic Ocean to summer precipitation in the Northern, Central, and Eastern Tianshan also exhibit a decreasing trend. The largest increase in moisture in Western Tianshan stems from West Asia during extreme winter precipitation months. Europe is also an important contributor to extreme precipitation in the Northern Tianshan. The moisture from East and South Asia and Siberia during extreme precipitation months in both winter and summer is significantly enhanced in the Eastern Tianshan.
    Description: Key Points: Local evaporation and Central Asia play a leading role in providing moisture for all sub‐regions of the Tianshan Mountains. The largest moisture component during the months of extreme winter precipitation for Western Tianshan derives from western Asia. Moisture from East and South Asia and Siberia during extreme precipitation months is significantly enhanced in the Eastern Tianshan.
    Description: China Scholarship Council
    Description: Humboldt‐Universität zu Berlin
    Description: https://zenodo.org/record/6451656#.YrrfbqhBwuU
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-09-27
    Description: The significant climate feedback of stratospheric water vapor (SWV) necessitates quantitative estimates of SWV budget changes. Model simulations driven by the newest European Centre for Medium‐Range Weather Forecast reanalysis ERA5, satellite observations from the Stratospheric Water and OzOne Satellite Homogenized data set, Microwave Limb Sounder, and in situ frost point hygrometer observations from Boulder all show substantial and persistent stratospheric moistening after a sharp drop in water vapor at the turn of the millennium. This moistening occurred mainly during 2000–2006 and SWV abundances then remained high over the last decade. We find strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole, mainly during austral winter. Moistening of the tropical stratosphere after 2000 occurred during late boreal winter/spring, reached values of ∼0.2 ppm/decade, was well correlated with a warming of the cold point tropopause by ∼0.4 K/decade and can only be partially attributed to El Nino‐Southern Oscillation and volcanic eruptions.
    Description: Plain Language Summary: Water vapor is an effective greenhouse gas. Human‐induced climate change has led to warmer air in the troposphere, which consequently can hold more moisture, thus enhancing the greenhouse effect. The long‐term change in stratospheric water vapor (SWV) is less clear and currently under debate. Using satellite observations, balloon soundings and model simulations, we find an increase of SWV after 2000. This moistening occurred mainly during 2000–2006 and the stratospheric moisture content then remained high over the last decade. The increase of SWV is stronger in the Northern than in the Southern Hemisphere. Over the South Pole, a weak decrease was found. Moistening of the tropical stratosphere occurred mainly during late winter and spring, and was in line with warming of the tropical tropopause, the coldest region that separates the troposphere and stratosphere. Natural causes such as volcanic eruptions cannot completely explain this stratospheric moistening.
    Description: Key Points: Stratospheric moistening after 2000 is clearly detectable in ERA5‐driven simulations, satellite and in situ observations. Hemispheric asymmetry is found with strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole. Moistening of the lower tropical stratosphere is only partially caused by El Nino‐Southern Oscillation and volcanic eruptions.
    Description: https://doi.org/10.5067/Aura/MLS/DATA2508
    Description: https://doi.org/10.5067/GLOSSAC-L3-V2.0
    Description: https://doi.org/10.5067/GLOSSAC-L3-V2.0
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-04
    Description: Worldwide, rice production contributes about 10% of total greenhouse gas (GHG) emissions from the agricultural sector, mainly due to CH4 emissions from continuously flooded fields. Alternate Wetting and Drying (AWD) is a promising crop technology for mitigating CH4 emissions and reducing the irrigation water currently being applied in many of the world's top rice‐producing countries. However, decreased emissions of CH4 may be partially counterbalanced by increased N2O emissions. In this case study for the Philippines, the national mitigation potential of AWD is explored using the process‐based biogeochemical model LandscapeDNDC. Simulated mean annual CH4 emissions under conventional rice production for the time period 2000–2011 are estimated as 1,180 ± 163 Gg CH4 yr−1. During the cropping season, this is about +16% higher than a former estimate using emission factors. Scenario simulations of nationwide introduction of AWD in irrigated landscapes suggest a considerable decrease in CH4 emissions by −23%, while N2O emissions are only increased by +8%. Irrespective of field management, at national scale, the radiative forcing of irrigated rice production is always dominated by CH4 (〉95%). The reduction potential of GHG emissions depends on, for example, number of crops per year, residue management, amount of applied irrigation water, and sand content. Seasonal weather conditions also play an important role since the mitigation potential of AWD is almost double as high in dry as compared to wet seasons. Furthermore, this study demonstrates the importance of temporal continuity, considering off‐season emissions and the long‐term development of GHG emissions across multiple years.
    Description: Plain Language Summary: Worldwide, rice production contributes to about 10% of total greenhouse gas emissions of the agricultural sector mainly due to CH4 emissions from fields that are continuously flooded. Alternate Wetting and Drying (AWD) is an alternative cropping practice where fields are irrigated a few days after the disappearance of the ponded water. This study explores the mitigation potential of nationwide introduction of AWD in the Philippines. Results from the application of a process‐based model suggest a considerable decrease in CH4 emissions by −23%. Compared to N2O, CH4 is responsible for more than 95% of the total radiative forcing under conventional or AWD field management.
    Description: Key Points: Nationwide, Alternate Wetting and Drying (AWD) reduces CH4 emissions by −23%. N2O emissions contribute to less than 5% to the total radiative forcing under conventional or AWD field management. Mitigation of AWD depends on, for example, seasonal weather conditions, cropping intensity, irrigation, residue management, and soil texture.
    Description: DFG
    Description: https://doi.org/10.35097/588
    Keywords: ddc:551.6 ; ddc:581.7
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-04
    Description: Natural forcing from solar and volcanic activity contributes significantly to climate variability. The post‐eruption cooling of strong volcanic eruptions was hypothesized to have led to millennial‐scale variability during Glacials. Cooling induced by volcanic eruption is potentially weaker in the warmer climate. The underlying question is whether the climatic response to natural forcing is state‐dependent. Here, we quantify the response to natural forcing under Last Glacial and Pre‐Industrial conditions in an ensemble of climate model simulations. We evaluate internal and forced variability on annual to multicentennial scales. The global temperature response reveals no state dependency. Small local differences result mainly from state‐dependent sea ice changes. Variability in forced simulations matches paleoclimate reconstructions significantly better than in unforced scenarios. Considering natural forcing is therefore important for model‐data comparison and future projections.
    Description: Plain Language Summary: Climate variability describes the spatial and temporal variations of Earth's climate. Understanding these variations is important for estimating the occurrence of extreme climate events such as droughts. Yet, it is unclear whether climate variability depends on the mean surface temperature of the Earth or not. Here, we investigate the effects of natural forcing from volcanic eruptions and solar activity changes on climate variability. We compare simulations of a past (cold) and present (warm) climate with and without volcanism and solar changes. We find that overall, the climate system responds similarly to natural forcing in the cold and warm state. Small local differences mainly occur where ice can form. To evaluate the simulated variability, we use data from paleoclimate archives, including trees, ice‐cores, and marine sediments. Climate variability from forced simulations agrees better with the temperature variability obtained from data. Natural forcing is therefore critical for reliable simulation of variability in past and future climates.
    Description: Key Points: We present Glacial/Interglacial climate simulations and quantify effects of time‐varying volcanic and solar forcing on climate variability. The mean global and local response to these forcings is similar in Glacial and Interglacial climate, suggesting low state dependency. In both climate states, modeled temperature variance agrees better with palaeoclimate data when volcanic and solar forcing is included.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Heinrich Böll Stiftung (Heinrich Böll Foundation) http://dx.doi.org/10.13039/100009379
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.5281/zenodo.6074747
    Description: https://github.com/paleovar/StateDependency
    Description: https://doi.org/10.5281/zenodo.6474769
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-06
    Description: The Madden–Julian oscillation (MJO) is the dominant component of tropical intraseasonal variability, with wide‐reaching impacts even on extratropical weather and climate patterns. However, predicting the MJO is challenging. One reason is the suboptimal state estimates obtained with standard data assimilation (DA) approaches. These are typically based on filtering methods with Gaussian approximations and do not take into account physical properties that are important specifically for the MJO. In this article, a constrained ensemble DA method is applied to study the impact of different physical constraints on the state estimation and prediction of the MJO. The quadratic programming ensemble (QPEns) algorithm utilized extends the standard stochastic ensemble Kalman filter (EnKF) with specifiable constraints on the updates of all ensemble members. This allows us to recover physically more consistent states and to respect possible associated non‐Gaussian statistics. The study is based on identical twin experiments with an adopted nonlinear model for tropical intraseasonal variability. This so‐called skeleton model succeeds in reproducing the main large‐scale features of the MJO and closely related tropical waves, while keeping adequate simplicity for fast experiments on intraseasonal time‐scales. Conservation laws and other crucial physical properties from the model are examined as constraints in the QPEns. Our results demonstrate an overall improvement in the filtering and forecast skill when the model's total energy is conserved in the initial conditions. The degree of benefit is found to be dependent on the observational setup and the strength of the model's nonlinear dynamics. It is also shown that, even in cases where the statistical error in some waves remains comparable with the stochastic EnKF during the DA stage, their prediction is improved remarkably when using the initial state resulting from the QPEns.
    Description: Unsatisfactory predictions of the MJO are partly due to DA methods that do not respect non‐Gaussian PDFs and the physical properties of the tropical atmosphere. Therefore the QPEns, an algorithm extending a stochastic EnKF with state constraints, is tested here on a simplified model for the MJO and associated tropical waves. Our series of identical twin experiments shows, in particular, that a constraint on the truth's nonlinear total energy improves forecasts statistically and can, in certain situations, even prevent filter divergence. image
    Description: Deutsche Forschungsgemeinschaft : Heisenberg Award (DFG JA1077/4‐1); Transregional Collaborative Research Center SFB / TRR 165 “Waves to Weather” http://dx.doi.org/10.13039/501100001659
    Description: Office of Naval Research (ONR) http://dx.doi.org/10.13039/100000006
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...