ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-13
    Description: Observation‐based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half‐century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land‐use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.
    Description: Key Points: The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world. Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean. Virtually all socio‐economic sectors will be critically affected by the projected changes.
    Description: European Union Horizon 2020
    Description: https://esg-dn1.nsc.liu.se/search/esgf-liu/
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Computational Physics 44 (1981), S. 212-219 
    ISSN: 0021-9991
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Computer Science , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 63 (1997), S. 149-158 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary Numerical investigation of the nature of one of the most typical Eastern Mediterranean atmospheric circulation phenomena — the Red Sea Trough is undertaken. The role of interaction of typical atmospheric flow systems with the local topography of the North African region is analyzed with the help of idealized numerical simulations employing the Penn State and the National Center for Atmospheric Research (NCAR) MM4 modeling system. The simulations are designed, based on results of a climatological evaluation of the 250 hPa wind field. Idealized initial data sets corresponding to typical transient and winter period positions of the upper tropospheric westerly jet stream are constructed. The data for the analysis are from the National Center for Environmental Prediction (NCEP) 25 y (1965–1989) objective analysis archive. It was found that the primary factor in the Red Sea trough generation is the interaction of the mid-tropospheric westerlies with the terrain in the area of the Red Sea.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 63 (1997), S. 159-169 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary A case of development of a meridionally oriented Red Sea Trough (RST) system and its intensification over the Eastern Mediterranean (EM) region during the ALPEX1982 3–5 March period, is investigated. The MM4 mesoscale model of Penn State University/National Center for Atmospheric Research was first applied for a large scale investigation of the processes. The relative roles of the different acting factors, i.e., terrain, latent heat release and the surface fluxes were calculated employing the factor separation method. Topography and sensible heat flux were found to be the dominant ones. The high resolution non-hydrostatic RAMS 3a model of Colorado State University with nested grids of 100 and 20 km illustrated the finer details of the cyclogenetic processes in the mountainous area of the Abyssinean Highlands, Ethiopia, and the Arabian peninsula, where initiation of the trough took place. Results of the factor separation showed that the topography blocking acted as a cyclolytic factor, preventing the process of the northward trough propagation. The situation changed only after about 30 h of the simulation, when the trough already propagated into the EM area after intensification of the mid-tropospheric westerlies over the central part of the Red Sea area. Starting from this time, terrain was acting as one of two major cyclogenetic factors. The second local effect also working as a cyclogenetic one was the sensible heat flux. Its role was especially important after 36 h of the simulations when strong winds over the sea area caused more active heat transfer from the sea surface to the atmosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 395 (1998), S. 367-370 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Aerosols may affect climate through the absorption and scattering of solar radiation and, in the case of large dust particles, by interacting with thermal radiation. But whether atmospheric temperature responds significantly to such forcing has not been determined; feedback mechanisms could ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 70 (1986), S. 227-233 
    ISSN: 1432-1939
    Keywords: Resource sharing ; Carbohydrates ; Water ; Nitrogen ; Fragaria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The herbaceous perennial, Fragaria chiloensis, reproduces vegetatively on coastal sand dunes in California by growth of stolons that bear rosettes. Movement of water and photosynthates through stolons integrates water and carbon metabolism of rosettes both before and after they root. New, unrooted rosettes import sufficient water and nitrogen to maintain levels near those of established rosettes; yet support of an unrooted rosette did not decrease growth of a connected, rooted sibling given abundant light, water, and soil nutrients. Under such conditions strings of unrooted rosettes with the associated stolon appeared self-sufficient for carbon; shade and drought induced import of photosynthates. New rosettes produced and maintained a limited root mass upon contact with dry sand, which could increase probability of establishment. Rooting did not induce senescence of stolons. Connection between two established rosettes prevented death by drought and shade, even when neither rosette could have survived singly. Results suggest that physiological integration of connected rosettes may increase total growth of clones of F. chiloensis through sharing of resources among ramets, especially when resource availability is changeable or patchy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 84 (1990), S. 265-271 
    ISSN: 1432-1939
    Keywords: Clonal growth ; Eichhornia crassipes ; Partitioning ; Photon flux density ; Red: far-red
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plant canopy shade reduces photosynthetic photon flux density (PPFD) and ratio of red to far-red light (z). Both effects can cause plants to increase potential for light acquisition through vertical growth and leaf area expansion. Clonal plants such as Eichhornia crassipes might alternatively increase light interception via horizontal growth of stolons or rhizomes and placement of new ramets in less shaded microsites. Effect of simulated canopy shade and component effects of PPFD and z were tested by filtering or adding light uniformly, to a whole group of connected ramets, or locally, to individual ramets within a group. In uniform treatments, low PPFD reduced total growth but low z did not. Low PPFD and low z independently reduced stolon and ramet production and caused etiolation of petioles; effect of low PPFD plus low z on ramet production was greater than that of either factor alone. Lateral clonal growth thus did not seem to be a response to uniform shading; instead, uniformly low PPFD or low z increased partitioning to established ramets. Low z changed partitioning without changing total growth. In local treatments, reduction of growth of individual ramets due to low PPFD and inhibition of new ramet production attributable to spectral composition of light were mitigated when connected ramets were unshaded; plants may respond differently to patchy than to uniform shade.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 62 (1993), S. 129-142 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The effects of sea-breeze interactions with synoptic forcing on the PBL height over complex terrain are investigated through the use of a 3-D mesoscale numerical model. Two of the results are as follows. First, steep PBL height gradients—order of 1500 m over a grid interval of 10 km — are associated with the sea-breeze front and are enhanced by the topography. Second, a significant horizontal shift in the maximum PBL height relative to the mountains, is induced by a corresponding displacement of the thermal ridge due to the mountains, in the presence of large scale flow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A model was developed for pollutant dispersion from a point source simulating the Hadera (Israel) power plant stack. The model is based on the NCAR mesoscale meteorological MM4 model that provides the wind fields and coefficients of turbulent diffusion. The model was implemented using an implicit numerical scheme with changing directions. A comparison between the model calculations and an analytical solution for the advection-diffusion equation shows good agreement. Relatively low numerical diffusion of the adopted advection scheme was noted. Results for the hilly region of central Israel are presented for a summer case.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 53 (1990), S. 333-351 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The October rains (at the onset of the rainy season that extends to April) in southern Israel have steeply increased in the last quarter century relative to the prior two decades. A less pronounced, but appreciable, increase is noted for the rest of the rainy season. This apparent reversal of desertification is attributed here to land use changes. Afforestation, increased cultivation and limitations on grazing after the establishment of the State of Israel resulted in an increased vegetation cover over the inherently high-albedo soils in this region (an area of ∼104 km2). The changes are shown in a July 1985 Landsat image of the area. The increase in precipitation is specifically attributed to intensification of the dynamical processes of convection and advection resulting from plant-induced enhancement of thedaytime sensible heat flux from the generally dry surface. This enhancement results both from the reduced surface albedo and the reduced soil heat flux (reduced day-to-night heat storage in the soil) in October when insolation is strong. Stronger daytime convection can lead to penetration of the inversions capping the planetary boundary layer (which are weaker in October than in summer) while strengthened advection (sea breeze) can provide moist air from the warm Mediterranean Sea. This suggested mechanism is consistent with previous studies showing that the autumn rains in southern Israel exhibit convective mesoscale characteristics and occur predominantly in the daytime. However, other causes, such as a shift in the synoptic-scale circulation, cannot be ruled out at this stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...