ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (31,318)
  • Latest Papers from Table of Contents or Articles in Press  (31,318)
  • Molecular Diversity Preservation International  (31,318)
  • 2020-2022  (31,318)
  • 1980-1984
  • 1925-1929
  • Process Engineering, Biotechnology, Nutrition Technology  (12,483)
  • Physics  (10,270)
  • Architecture, Civil Engineering, Surveying  (8,565)
Collection
  • Articles  (31,318)
Source
  • Latest Papers from Table of Contents or Articles in Press  (31,318)
Years
Year
Journal
  • 1
    Publication Date: 2020-08-27
    Description: Ablation of BaWO4 Raman crystals with different impurity concentrations by ultrashort laser pulses was experimentally studied. Laser pulses with duration varying from 0.3 ps to 1.6 ps at wavelengths of 515 nm and 1030 nm were applied. A single-pulse optical damage threshold of the crystal surface changed from 1.3 J/cm2 to 4.2 J/cm2 depending on the laser pulse parameters and BaWO4 crystal purity. The optical damage threshold under multi-pulse irradiation was an order of magnitude less.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-27
    Description: Partial and total photoionization cross sections of iron-peak elements are important for the determination of abundances in late-type stars and nebular objects. We have investigated photoionization of neutral chromium from the ground and excited states in the low energy region from the first ionization threshold at 6.77 eV to 30 eV. Accurate descriptions of the initial bound states of Cr I and the final residual Cr II ionic states have been obtained in the multiconfiguration Hartree-Fock method together with adjustable configuration expansions and term-dependent non-orthogonal orbitals. The B-spline R-matrix method has been used for the calculation of photoionization cross sections. The 194 LS final ionic states of Cr II 3d44s, 3d34s2, 3d5, 3d44p, and 3d34s4p principal configurations have been included in the close-coupling expansion. The inclusion of all terms of these configurations has significant impact on the near-threshold resonance structures as well as on the nonresonant background cross sections. Total photoionization cross sections from the ground 3d54sa7S and excited 3d54sa5S, 3d44s2a5D, 3d54pz5P, and 3d44s4py5P states of Cr I have been compared with other available R-matrix calculation to estimate the likely uncertainties in photoionization cross sections. We analyzed the partial photoionization cross sections for leaving the residual ion in various states to identify the important scattering channels, and noted that 3d electron ionization channel becomes dominant at higher energies.
    Electronic ISSN: 2218-2004
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-26
    Description: A modified expression of the electron entropy production in a plasma is deduced by means of the Kelly equations of state instead of the ideal gas equations of state. From the Debye–Hückel model which considers the interaction between the charges, such equations of state are derived for a plasma and the entropy is deduced. The technique to obtain the modified entropy production is based on usual developments but including the modified equations of state giving the regular result plus some extra terms. We derive an expression of the modified entropy production in terms of the tensorial Hermitian moments hr1…rm(m) by means of the irreducible tensorial Hermite polynomials.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-27
    Description: As acidic deposition has decreased across Eastern North America, forest soils at some sites are beginning to show reversal of soil acidification. However, the degree of recovery appears to vary and is not fully explained by deposition declines alone. To assess if other site and soil factors can help to explain degree of recovery from acid deposition, soil resampling chemistry data (8- to 24-year time interval) from 23 sites in the United States and Canada, located across 25° longitude from Eastern Maine to Western Ontario, were explored. Site and soil factors included recovery years, sulfate (SO42−) deposition history, SO42− reduction rate, C horizon pH and exchangeable calcium (Ca), O and B horizon pH, base saturation, and exchangeable Ca and aluminum (Al) at the time of the initial sampling. We found that O and B horizons that were initially acidified to a greater degree showed greater recovery and B horizon recovery was further associated with an increase in recovery years and lower initial SO42− deposition. Forest soils that seemingly have low buffering capacity and a reduced potential for recovery have the resilience to recover from the effects of previous high levels of acidic deposition. This suggests, that predictions of where forest soils acidification reversal will occur across the landscape should be refined to acknowledge the importance of upper soil profile horizon chemistry rather than the more traditional approach using only parent material characteristics.
    Electronic ISSN: 2571-8789
    Topics: Biology , Chemistry and Pharmacology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-26
    Description: Geospatial data is urgently needed in decision-making processes to achieve Sustainable Development Goals (SDGs) at global, national, regional and local scales. While the advancement of geo-technologies to obtain or produce geospatial data has become faster and more affordable, many countries in the global south still experience a geospatial data scarcity at the rural level due to complex geographical terrains, weak coordination among institutions and a lack of knowledge and technologies to produce visualised geospatial data like maps. We proposed a collaborative spatial learning framework that integrates the spatial knowledge of stakeholders to obtain geospatial data. By conducting participatory mapping workshops in three villages in the Deli Serdang district in Indonesia, we tested the framework in terms of facilitating communication and collaboration of the village stakeholders while also supporting knowledge co-production and social learning among them. Satellite images were used in digital and non-digital mapping workshops to support village stakeholders to produce proper village maps while fulfilling the SDGs’ emphasis to make geospatial data available through a participatory approach.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-26
    Description: East Asia is the most complex region in the world for aerosol studies, as it encounters a lot of varieties of aerosols, and aerosol classification can be a challenge in this region. In the present study, we focused on the relationship between aerosol types and aerosol optical properties. We analyzed the long-term (2005–2012) data of vertical profiles of aerosol extinction coefficients, lidar ratio (Sp), and other aerosol optical properties obtained from a NASA Micro-Pulse Lidar Network and Aerosol Robotic Network site in northern Taiwan, which frequently receives Asian continental outflows. Based on aerosol extinction vertical profiles, the profiles were classified into two types: type 1 (single-layer structure) and type 2 (two-layer structure). Fall season (October–November) was the prevailing season for the Type 1, whereas type 2 mainly happened in spring (March–April). In type 1, air masses normally originated from three regional sectors, i.e., Asia continental (AC), Pacific Ocean (PO), and Southeast Asia (SA). The mean Sp values were 39 ± 17 sr, 30 ± 12 sr, and 38 ± 18 sr for the AC, PO, and SA sectors, respectively. The Sp results suggested that aerosols from the AC sector contained dust and anthropogenic particles, and aerosols from the PO sector were most likely sea salts. We further combined the EPA dust event database and backward trajectory analysis for type 2. Results showed that Sp was 41 ± 14 sr and 53 ± 21 sr for dust storm and biomass-burning events, respectively. The Sp for biomass-burning events in type 2 showed two peaks patterns. The first peak occurred within range of 30–50 sr corresponding to urban pollutant, and the second peak occurred within range of 60–80 sr in relation to biomass burning. Finally, our study summarized the Sp values for four major aerosol types over northern Taiwan, viz., urban (42 ± 18 sr), dust (34 ± 6 sr), biomass-burning (69 ± 12 sr), and oceanic (30 ± 12 sr). Our findings provide useful references for aerosol classification and air pollution identification over the western North Pacific.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-27
    Description: Urbanization is a complex process closely involving the economy, society, and population. While monitoring urban development and exploring the industry-driving force in a real-time and effective way are the prerequisites for optimizing industry structure, narrowing the urban development gap, and achieving sustainable development. Nighttime light is an effective tool to monitor urban development from a macro perspective. However, the systematic research of nighttime light spatiotemporal variation modes and the industry-driving force of urban nighttime light are still unknown. Considering these issues, this paper analyzes the spatiotemporal variation modes of the average light index (ALI) and investigates the industry-driving force of ALI in 100 major prefecture-level cities across China mainland based on National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP VIIRS). The conclusions are as following three aspects. First, ALI is observed a funnel pattern among four regions in spatial dimension, with low in center and high in the surrounding, and it shows 5 variation modes (“W,” “√,” “Exponent,” “Logarithm,” and “N”) in temporal dimension, of which the “√” mode accounts for the highest proportion (60%). Second, the industry structure is closely related to ALI. Besides, the factor analysis result illustrates that the secondary and tertiary industry are the driving industries of ALI. Third, the classification result based on the industry contribution rate indicates that cities driven by different industries show significant spatial distribution differences. The three major industry-driving cities are mainly distributed in central and western regions, the secondary and tertiary industry-driving cities are evenly distributed, and the tertiary industry-driving cities are mainly distributed in provincial capitals. From 2013 to 2018, the fluctuation of city distribution driven by different industries changes obviously. The number of tertiary industry-driving cities increases steadily and the three major industry-driving cities are distributed wider spatially. Additionally, the impacts of location and raw coal on ALI are discussed. In general, these findings are essential to further research urban development mode and can be considered as the reference to narrow urban development gap.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-27
    Description: A low-mass and low-volume dual-polarization L-band radiometer is introduced that has applications for ground-based remote sensing or unmanned aerial vehicle (UAV)-based mapping. With prominent use aboard the ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture Active Passive (SMAP) satellites, L-band radiometry can be used to retrieve environmental parameters, including soil moisture, sea surface salinity, snow liquid water content, snow density, vegetation optical depth, etc. The design and testing of the air-gapped patch array antenna is introduced and is shown to provide a 3-dB full power beamwidth of 37°. We present the radio-frequency (RF) front end design, which uses direct detection architecture and a square-law power detector. Calibration is performed using two internal references, including a matched resistive source (RS) at ambient temperature and an active cold source (ACS). The radio-frequency (RF) front end does not require temperature stabilization, due to characterization of the ACS noise temperature by sky measurements. The ACS characterization procedure is presented. The noise equivalent delta (Δ) temperature (NEΔT) of the radiometer is ~0.14 K at 1 s integration time. The total antenna temperature uncertainty ranges from 0.6 to 1.5 K.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: Avalanche disasters are extremely destructive and catastrophic, often causing serious casualties, economic losses and surface erosion. However, far too little attention has been paid to utilizing remote sensing mapping avalanches quickly and automatically to mitigate calamity. Such endeavors are limited by formidable natural conditions, human subjective judgement and insufficient understanding of avalanches, so they have been incomplete and inaccurate. This paper presents an objective and widely serviceable method for regional auto-detection using the scattering and interference characteristics of avalanches extracted from Sentinel-1 SLC images. Six indices are established to distinguish avalanches from surrounding undisturbed snow. The active avalanche belts in Kizilkeya and Aktep of the Western TianShan Mountains in China lend urgency to this research. Implementation found that smaller avalanches can be consistently identified more accurately in descending images. Specifically, 281 and 311 avalanches were detected in the ascending and descending of Kizilkeya, respectively. The corresponding numbers on Aktep are 104 and 114, respectively. The resolution area of single avalanche detection can reach 0.09 km2. The performance of the model was excellent in all cases (areas under the curve are 0.831 and 0.940 in descending and ascending of Kizilkeya, respectively; and 0.807 and 0.938 of Aktep, respectively). Overall, the evaluation of statistical indices are POD 〉 0.75, FAR 〈 0.34, FOM 〈 0.13 and TSS 〉 0.75. The results indicate that the performance of the innovation proposed in this paper, which employs multivariate comprehensive descriptions of avalanche characteristics to actualize regional automatic detection, can be more objective, accurate, applicable and robust to a certain extent. The latest and more complete avalanche inventory generated by this design can effectively assist in addressing the increasingly severe avalanche disasters and improving public awareness of avalanches in alpine areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-26
    Description: An extremely heavy rainfall event hit Guangdong province, China, from 27 August to 1 September 2018. There were two different extreme rain regions, respectively, at the Pearl River estuary and eastern Guangdong, and a record-breaking daily precipitation of 1056.7 mm was observed at Gaotan station on 30 August. This paper utilizes a suite of observations from soundings, a gauge network, disdrometers, and polarimetric radars to gain insights to the two rainfall centers. The large-scale meteorological forcing, rainfall patterns, and microphysical processes, as well as radar-based precipitation signatures are investigated. It is concluded that a west-moving monsoon depression played a critical role in sustaining the moisture supply to the two extreme rain regions, and the combined orographic enhancement further contributed to the torrential rainfall over Gaotan station. The raindrop size distributions (DSD) observed at Zhuhai and Huidong stations, as well as the observed polarimetric radar signatures indicate that the rainfall at Doumen region was characterized by larger raindrops but a lower number concentration compared with that at Gaotan region. In addition, the dual-polarization radars are used to quantify precipitation intensity during this extreme event, providing timely information for flood warning and emergency management decision-making.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-08-27
    Description: Earth remote sensing optical satellite systems are often divided into two categories—geosynchronous and sun-synchronous. Geosynchronous systems essentially rotate with the Earth and continuously observe the same region of the Earth. Sun-synchronous systems are generally in a polar orbit and view differing regions of the Earth at the same local time. Although similar in instrument design, there are enough differences in these two types of missions that often the calibration of the instruments can be substantially different. Thus, respective calibration teams develop independent methods and do not interact regularly or often. Yet, there are numerous areas of overlap and much to learn from one another. To address this issue, a panel of experts from both types of systems was convened to discover common areas of concern, areas where improvements can be made, and recommendations for the future. As a result of the panelist’s efforts, a set of eight recommendations were developed. Those that are related to improvements of current technologies include maintaining sun-synchronous orbits (not allowing orbital decay), standardization of spectral bandpasses, and expanded use of well-developed calibration techniques such as deep convective clouds, pseudo invariant calibration sites, and lunar methodologies. New techniques for expanded calibration capability include using geosynchronous instruments as transfer radiometers, continued development of ground-based prelaunch calibration technologies, expansion of RadCalNet, and development of space-based calibration radiometer systems.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-27
    Description: As satellite observation technology improves, the number of remote sensing images significantly and rapidly increases. Therefore, a growing number of studies are focusing on remote sensing image retrieval. However, having a large number of remote sensing images considerably slows the retrieval time and takes up a great deal of memory space. The hash method is being increasingly used for rapid image retrieval because of its remarkably fast performance. At the same time, selecting samples that contain more information and greater stability to train the network has gradually become the key to improving retrieval performance. Given the above considerations, we propose a deep hash remote sensing image retrieval method, called the hard probability sampling hash retrieval method (HPSH), which combines hash code learning with hard probability sampling in a deep network. Specifically, we used a probability sampling method to select training samples, and we designed one novel hash loss function to better train the network parameters and reduce the hashing accuracy loss due to quantization. Our experimental results demonstrate that HPSH could yield an excellent representation compared with other state-of-the-art hash approaches. For the university of California, merced (UCMD) dataset, HPSH+S resulted in a mean average precision (mAP) of up to 90.9% on 16 hash bits, 92.2% on 24 hash bits, and 92.8% on 32 hash bits. For the aerial image dataset (AID), HPSH+S achieved a mAP of up to 89.8% on 16 hash bits, 93.6% on 24 hash bits, and 95.5% on 32 hash bits. For the UCMD dataset, with the use of data augmentation, our proposed approach achieved a mAP of up to 99.6% on 32 hash bits and 99.7% on 64 hash bits.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-25
    Description: Subcooled water is the primordial matrix for ice embryo formation by homogeneous and heterogeneous nucleation. The knowledge of the specific Gibbs free energy and other thermodynamic quantities of subcooled water is one of the basic prerequisites of the theoretical analysis of ice crystallization in terms of classical nucleation theory. The most advanced equation of state of subcooled water is the IAPWS G12-15 formulation. The determination of the thermodynamic quantities of subcooled water on the basis of this equation of state requires the iterative determination of the fraction of low-density water in the two-state mixture of low-density and high-density subcooled water from a transcendental equation. For applications such as microscopic nucleation simulation models requiring highly frequent calls of the IAPWS G12-15 calculus, a new two-step predictor-corrector method for the approximative determination of the low-density water fraction has been developed. The new solution method allows a sufficiently accurate determination of the specific Gibbs energy and of all other thermodynamic quantities of subcooled water at given pressure and temperature, such as specific volume and mass density, specific entropy, isothermal compressibility, thermal expansion coefficient, specific isobaric and isochoric heat capacities, and speed of sound. The misfit of this new approximate analytical solution against the exact numerical solution was demonstrated to be smaller than or equal to the misprediction of the original IAPWS G12-15 formulation with respect to experimental values.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-08-26
    Description: Upwelling and downwelling processes play a critical role in the connectivity between offshore waters and coastal ecosystems, having relevant implications in terms of intense biogeochemical activity and global fisheries production. A variety of in situ and remote-sensing networks were used in concert with the Iberia–Biscay–Ireland (IBI) circulation forecast system, in order to investigate two persistent upwelling and downwelling events that occurred in the Northwestern (NW) Iberian coastal system during summer 2014. Special emphasis was placed on quality-controlled surface currents provided by a high-frequency radar (HFR), since this land-based technology can effectively monitor the upper layer flow over broad coastal areas in near-real time. The low-frequency spatiotemporal response of the ocean was explored in terms of wind-induced currents’ structures and immediacy of reaction. Mean kinetic energy, divergence and vorticity maps were also calculated for upwelling and downwelling favorable events, in order to verify HFR and IBI capabilities, to accurately resolve the prevailing surface circulation features, such as the locus of a persistent upwelling maximum in the vicinity of Cape Finisterre. This integrated approach proved to be well-founded to efficiently portray the three-dimensional characteristics of the NW Iberian coastal upwelling system regardless of few shortcomings detected in IBI performance, such as the misrepresentation of the most energetic surface dynamics or the overestimation of the cooling and warming associated with upwelling and downwelling conditions, respectively. Finally, the variability of the NW Iberian upwelling system was characterized by means of the development of a novel ocean-based coastal upwelling index (UI), constructed from HFR-derived hourly surface current observations (UIHFR). The proposed UIHFR was validated against two traditional UIs for 2014, to assess its credibility. Results suggest that UIHFR was able to adequately categorize and characterize a wealth of summer upwelling and downwelling events of diverse length and strength, paving the way for future investigations of the subsequent biophysical implications.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-08-26
    Description: Shore-based phased-array HF radars have been widely used for remotely sensing ocean surface current, wave, and wind around the world. However, phase uncertainties, especially phase distortions, in receiving elements significantly degrade the performance of beam forming and direction-of-arrival (DOA) estimation for phased-array HF radar. To address this problem, the conventional array signal model is modified by adding a direction-based phase error matrix. Subsequently, an array phase manifold calibration method using antenna responses of incoming ship echoes is proposed. Later, an assessment on the proposed array calibration method is made based on the DOA estimations and current measurements that are obtained from the datasets that were collected with a multi-frequency HF (MHF) radar. MHF radar-estimated DOAs using three calibration strategies are compared with the ship directions that are provided by an Automatic Identification System (AIS). Additionally, comparisons between the MHF radar-derived currents while using three calibration strategies and Acoustic Doppler Current Profilers (ADCP)-measured currents are made. The results indicate that the proposed array calibration method is effective in DOA estimation and current measurement for phased-array HF radars, especially in the phase distortion situation.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-08-26
    Description: In this study we (1) mapped the areal extent of current dust sources over Northern Africa between 8°W–31°E and 22°N - Mediterranean coast; and (2) identified and characterized the geomorphic units and soil types that emit dust from these areas. We used the full resolution (3 km) data from the MSG-SEVIRI to map dust sources over a 2-year period between 2005–2006, and examined these regions with remotely sensed images and geomorphic and soil maps. A total of 〉2600 individual dust emission events were mapped; with frequency up to 34 events in the 2-year study period. The areal extent of dust emission sources exhibited a lognormal distribution with most sources ranging from 20 to 130 km2. Most dust events were singular and related to a variety of specific geomorphic units. Dust events that created hotspots were mostly located over playas and fluvial landforms, and to a lesser extent over sand dunes and anthropogenic affected regions. About 20% of dust hotspots were offset a few kilometers from clear geomorphic units. Quantitative analysis of emissions revealed that dust sourced from various geomorphic units, among them playas (12%) and fluvial systems (10%). The importance of sand dunes as dust-emission sources greatly differs between examined datasets (7% vs. 30%). Our study emphasizes the importance of scattered dust emission events that are not considered as hotspots, as these sources are usually neglected in dust emission modeling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-08-26
    Description: n/a
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-08-26
    Description: Despite many studies reporting hemispheric asymmetry in the representation and processing of emotions, the essence of the asymmetry remains controversial. Brain network analysis based on electroencephalography (EEG) is a useful biological method to study brain function. Here, EEG data were recorded while participants watched different emotional videos. According to the videos’ emotional categories, the data were divided into four categories: high arousal high valence (HAHV), low arousal high valence (LAHV), low arousal low valence (LALV) and high arousal low valence (HALV). The phase lag index as a connectivity index was calculated in theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (31–45 Hz) bands. Hemispheric networks were constructed for each trial, and graph theory was applied to quantify the hemispheric networks’ topological properties. Statistical analyses showed significant topological differences in the gamma band. The left hemispheric network showed significantly higher clustering coefficient (Cp), global efficiency (Eg) and local efficiency (Eloc) and lower characteristic path length (Lp) under HAHV emotion. The right hemispheric network showed significantly higher Cp and Eloc and lower Lp under HALV emotion. The results showed that the left hemisphere was dominant for HAHV emotion, while the right hemisphere was dominant for HALV emotion. The research revealed the relationship between emotion and hemispheric asymmetry from the perspective of brain networks.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-08-26
    Description: Surface all-wave net radiation (Rn) is a crucial variable driving many terrestrial latent heat (LE) models that estimate global LE. However, the differences between different Rn products and their impact on global LE estimates still remain unclear. In this study, we evaluated two Rn products, Global LAnd Surface Satellite (GLASS) beta version Rn and Modern-Era Retrospective Analysis for Research and Applications-version 2 (MERRA-2) Rn, from 2007–2017 using ground-measured data from 240 globally distributed in-situ radiation measurements provided by FLUXNET projects. The GLASS Rn product had higher accuracy (R2 increased by 0.04–0.26, and RMSE decreased by 2–13.3 W/m2) than the MERRA-2 Rn product for all land cover types on a daily scale, and the two Rn products differed greatly in spatial distribution and variations. We then determined the resulting discrepancies in simulated annual global LE using a simple averaging model by merging five diagnostic LE models: RS-PM model, SW model, PT-JPL model, MS-PT model, and SIM model. The validation results showed that the estimated LE from the GLASS Rn had higher accuracy (R2 increased by 0.04–0.14, and RMSE decreased by 3–8.4 W/m2) than that from the MERRA-2 Rn for different land cover types at daily scale. Importantly, the mean annual global terrestrial LE from GLASS Rn was 2.1% lower than that from the MERRA-2 Rn. Our study showed that large differences in satellite and reanalysis Rn products could lead to substantial uncertainties in estimating global terrestrial LE.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-08-28
    Description: In recent years, there has been increasing interest in the development of micron-scale devices utilizing thermal gradients to manipulate molecules and colloids, and to measure their thermophoretic properties quantitatively. Various devices have been realized, such as on-chip implements, micro-thermogravitational columns and other micron-scale thermophoretic cells. The advantage of the miniaturized devices lies in the reduced sample volume. Often, a direct observation of particles using various microscopic techniques is possible. On the other hand, the small dimensions lead to some technical problems, such as a precise temperature measurement on small length scale with high spatial resolution. In this review, we will focus on the “state of the art” thermophoretic micron-scale devices, covering various aspects such as generating temperature gradients, temperature measurement, and the analysis of the current micron-scale devices. We want to give researchers an orientation for their development of thermophoretic micron-scale devices for biological, chemical, analytical, and medical applications.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-08-30
    Description: Detection of terrain features (ridges, spurs, cliffs, and peaks) is a basic research topic in digital elevation model (DEM) analysis and is essential for learning about factors that influence terrain surfaces, such as geologic structures and geomorphologic processes. Detection of terrain features based on general geomorphometry is challenging and has a high degree of uncertainty, mostly due to a variety of controlling factors on surface evolution in different regions. Currently, there are different computational techniques for obtaining detailed information about terrain features using DEM analysis. One of the most common techniques is numerically identifying or classifying terrain elements where regional topologies of the land surface are constructed by using DEMs or by combining derivatives of DEM. The main drawbacks of these techniques are that they cannot differentiate between ridges, spurs, and cliffs, or result in a high degree of false positives when detecting spur lines. In this paper, we propose a new method for automatically detecting terrain features such as ridges, spurs, cliffs, and peaks, using shaded relief by controlling altitude and azimuth of illumination sources on both smooth and rough surfaces. In our proposed method, we use edge detection filters based on azimuth angle on shaded relief to identify specific terrain features. Results show that the proposed method performs similar to or in some cases better (when detecting spurs than current terrain features detection methods, such as geomorphon, curvature, and probabilistic methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-29
    Description: The shipborne high-frequency surface wave radar (HFSWR) platform produces six degrees of freedom (DOF) motion at sea, which affects the performance of radar target detection and remote sensing of ocean surface dynamics parameters. Motion compensation can mitigate the effect of six-DOF motion, but motion parameters (including amplitude and angular frequency) need to be known. Motion parameters obtained by using high precision sensors are affected by the precision error and time delay, thus affecting the effect of motion compensation. To obtain the motion parameters accurately and in real time, a method of identifying the motion parameters by using an artificially transmitted reference radio frequency (RF) signal generated at the shore is proposed. Based on the results of the parameter identification, the reference RF signal and the first-order radar cross-sections (RCSs) modulated by six-DOF motion of the shipborne HFSWR platform can be compensated. The identification of angular frequency is divided into two steps: (1) Preliminary identification results are obtained by using the reference RF signal; (2) the pattern search method is used to further improve the identification accuracy of angular frequency. The amplitude of translation (including surge and sway) can be identified accurately through the reference RF signal. Due to the small amplitude of rotation (including roll, pitch, and yaw), it needs to be identified by the reference RF signal and pattern search method. After identifying the motion parameters, division in the time domain is used for motion compensation. Through the simulation results, both translation and rotation have good motion compensation effects. In addition, the method of using high precision sensors to obtain motion parameters and compensation is compared with the method in this paper, the simulation results of motion compensation show that the latter is better.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-08-29
    Description: The information of building types is highly needed for urban planning and management, especially in high resolution building modeling in which buildings are the basic spatial unit. However, in many parts of the world, this information is still missing. In this paper, we proposed a framework to derive the information of building type using geospatial data, including point-of-interest (POI) data, building footprints, land use polygons, and roads, from Gaode and Baidu Maps. First, we used natural language processing (NLP)-based approaches (i.e., text similarity measurement and topic modeling) to automatically reclassify POI categories into which can be used to directly infer building types. Second, based on the relationship between building footprints and POIs, we identified building types using two indicators of type ratio and area ratio. The proposed framework was tested using over 440,000 building footprints in Beijing, China. Our NLP-based approaches and building type identification methods show overall accuracies of 89.0% and 78.2%, and kappa coefficient of 0.83 and 0.71, respectively. The proposed framework is transferrable to other China cities for deriving the information of building types from web mapping platforms. The data products generated from this study are of great use for quantitative urban studies at the building level.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-08-30
    Description: In order to maximize energy efficiency in heterogeneous networks (HetNets), a turbo Q-Learning (TQL) combined with multistage decision process and tabular Q-Learning is proposed to optimize the resource configuration. For the large dimensions of action space, the problem of energy efficiency optimization is designed as a multistage decision process in this paper, according to the resource allocation of optimization objectives, the initial problem is divided into several subproblems which are solved by tabular Q-Learning, and the traditional exponential increasing size of action space is decomposed into linear increase. By iterating the solutions of subproblems, the initial problem is solved. The simple stability analysis of the algorithm is given in this paper. As to the large dimension of state space, we use a deep neural network (DNN) to classify states where the optimization policy of novel Q-Learning is set to label samples. Thus far, the dimensions of action and state space have been solved. The simulation results show that our approach is convergent, improves the convergence speed by 60% while maintaining almost the same energy efficiency and having the characteristics of system adjustment.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-08-29
    Description: X-ray photon correlation spectroscopy accesses a wide variety of dynamic phenomena at the nanoscale by studying the temporal correlations among photons that are scattered by a material in dynamical equilibrium when it is illuminated with a coherent X-ray beam. The information that is obtained is averaged over the illuminated area, which is generally of the order of several square microns. We propose here that more local information can be obtained by using nanobeams with great potential for the study of heterogeneous systems and show the feasibility of this approach with the support of numerical simulations.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-08-29
    Description: Despite the potential implications of a cropland canopy water content (CCWC) thematic product, no global remotely sensed CCWC product is currently generated. The successful launch of the Landsat-8 Operational Land Imager (OLI) in 2012, Sentinel-2A Multispectral Instrument (MSI) in 2015, followed by Sentinel-2B in 2017, make possible the opportunity for CCWC estimation at a spatial and temporal scale that can meet the demands of potential operational users. In this study, we designed and tested a novel radiative transfer model (RTM) inversion technique to combine multiple sources of a priori data in a look-up table (LUT) for inverting the NASA Harmonized Landsat Sentinel-2 (HLS) product for CCWC estimation. This study directly builds on previous research for testing the constraint of the leaf parameter (Ns) in PROSPECT, by applying those constraints in PRO4SAIL in an agricultural setting where the variability of canopy parameters are relatively minimal. In total, 225 independent leaf measurements were used to train the LUTs, and 102 field data points were collected over the 2015–2017 growing seasons for validating the inversions. The results confirm increasing a priori information and regularization yielded the best performance for CCWC estimation. Despite the relatively low variable canopy conditions, the inclusion of Ns constraints did not improve the LUT inversion. Finally, the inversion of Sentinel-2 data outperformed the inversion of Landsat-8 in the HLS product. The method demonstrated ability for HLS inversion for CCWC estimation, resulting in the first HLS-based CCWC product generated through RTM inversion.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-08-29
    Description: The technological growth and accessibility of Unoccupied Aerial Systems (UAS) have revolutionized the way geographic data are collected. Digital Surface Models (DSMs) are an integral component of geospatial analyses and are now easily produced at a high resolution from UAS images and photogrammetric software. Systematic testing is required to understand the strengths and weaknesses of DSMs produced from various UAS. Thus, in this study, we used photogrammetry to create DSMs using four UAS (DJI Inspire 1, DJI Phantom 4 Pro, DJI Mavic Pro, and DJI Matrice 210) to test the overall accuracy of DSM outputs across a mixed land cover study area. The accuracy and spatial variability of these DSMs were determined by comparing them to (1) 12 high-precision GPS targets (checkpoints) in the field, and (2) a DSM created from Light Detection and Ranging (LiDAR) (Velodyne VLP-16 Puck Lite) on a fifth UAS, a DJI Matrice 600 Pro. Data were collected on July 20, 2018 over a site with mixed land cover near Middleton, NS, Canada. The study site comprised an area of eight hectares (~20 acres) with land cover types including forest, vines, dirt road, bare soil, long grass, and mowed grass. The LiDAR point cloud was used to create a 0.10 m DSM which had an overall Root Mean Square Error (RMSE) accuracy of ±0.04 m compared to 12 checkpoints spread throughout the study area. UAS were flown three times each and DSMs were created with the use of Ground Control Points (GCPs), also at 0.10 m resolution. The overall RMSE values of UAS DSMs ranged from ±0.03 to ±0.06 m compared to 12 checkpoints. Next, DSMs of Difference (DoDs) compared UAS DSMs to the LiDAR DSM, with results ranging from ±1.97 m to ±2.09 m overall. Upon further investigation over respective land covers, high discrepancies occurred over vegetated terrain and in areas outside the extent of GCPs. This indicated LiDAR’s superiority in mapping complex vegetation surfaces and stressed the importance of a complete GCP network spanning the entirety of the study area. While UAS DSMs and LiDAR DSM were of comparable high quality when evaluated based on checkpoints, further examination of the DoDs exposed critical discrepancies across the study site, namely in vegetated areas. Each of the four test UAS performed consistently well, with P4P as the clear front runner in overall ranking.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-08-30
    Description: Radar images suffer from the impact of sidelobes. Several sidelobe-suppressing methods including the convolutional neural network (CNN)-based one has been proposed. However, the point spread function (PSF) in the radar images is sometimes spatially variant and affects the performance of the CNN. We propose the spatial-variant convolutional neural network (SV-CNN) aimed at this problem. It will also perform well in other conditions when there are spatially variant features. The convolutional kernels of the CNN can detect motifs with some distinctive features and are invariant to the local position of the motifs. This makes the convolutional neural networks widely used in image processing fields such as image recognition, handwriting recognition, image super-resolution, and semantic segmentation. They also perform well in radar image enhancement. However, the local position invariant character might not be good for radar image enhancement, when features of motifs (also known as the point spread function in the radar imaging field) vary with the positions. In this paper, we proposed an SV-CNN with spatial-variant convolution kernels (SV-CK). Its function is illustrated through a special application of enhancing the radar images. After being trained using radar images with position-codings as the samples, the SV-CNN can enhance the radar images. Because the SV-CNN reads information of the local position contained in the position-coding, it performs better than the conventional CNN. The advance of the proposed SV-CNN is tested using both simulated and real radar images.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-08-29
    Description: Vanadium dioxide (VO2), due to its electrically induced metal-to-insulator transition with dramatic changes in electrical and optical properties, is considered to be a powerful material for electro-optical devices. However, there are still some controversies about phase transition mechanism under voltage. Here, based on optical characterizations on VO2 crystal nanofilm during the whole process of phase transition, temporal evolution and spatial distribution of changes in electricity, optic and temperature are investigated simultaneously, to explore the mechanism. The variations of Raman spectrum and reflected spectrum, and changes in current and temperature are evidences for occurrence of phase transition, which exhibit different changing behaviors with time and space. These results offer a better understanding of the phase transition mechanism, implying that lattice structure of VO2 changes gradually after applying voltage until the structure is completely converted to metallic structure, which causes a rapid increase in carrier density, resulting in a rapid change in current, reflected spectrum and temperature. Temperature rise before phase transition and applied electric field alone are not enough for triggering metal-insulator transition, but these two factors can act synergistically on structural transformation to induce phase transition.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-08-29
    Description: Recent studies suggest that real-time auditory feedback is an effective method to facilitate motor learning. The evaluation of the parameter mapping (sound-to-movement mapping) is a crucial, yet frequently neglected step in the development of audio feedback. We therefore conducted two experiments to evaluate audio parameters with target finding exercises designed for balance training. In the first experiment with ten participants, five different audio parameters were evaluated on the X-axis (mediolateral movement). Following that, in a larger experiment with twenty participants in a two-dimensional plane (mediolateral and anterior-posterior movement), a basic and synthetic audio model was compared to a more complex audio model with musical characteristics. Participants were able to orient themselves and find the targets with the audio models. In the one-dimensional condition of experiment one, percussion sounds and synthetic sound wavering were the overall most effective audio parameters. In experiment two, the synthetic model was more effective and better evaluated by the participants. In general, basic sounds were more helpful than complex (musical) sound models. Musical abilities and age were correlated with certain exercise scores. Audio feedback is a promising approach for balance training and should be evaluated with patients. Preliminary evaluation of the respective parameter mapping is highly advisable.
    Electronic ISSN: 2624-599X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-08-29
    Description: In this paper we document the design, development, results, performance and field applications of a compact directive transmit antenna for the long-range High Frequency ocean RADAR (HFR) systems operating in the International Telecommunication Union (ITU) designated 4MHz and 5MHz radiodetermination bands. The antenna design is based on the combination of the concepts of an electrically small loop with that of travelling wave antenna. This has the effect of inducing a radiated wave predominantly in a direction opposed to that of energy flow on the antenna structures. We demonstrate here that travelling wave design allows for a more compact antenna than other directive options, it has straightforward feed-point matching arrangements, and a flat frequency and phase response over an entire radiodetermination band. In situ measurements of the antenna radiation pattern, obtained with the aid of a drone, correlate well with those obtained from simulations, and show between 8dB and 30dB front-to-back suppression, with a 3dB beam width in the forward lobe of 100∘ or more. The broad-beam radiation pattern ensures proper illumination over the ocean and the significant front-to-back suppression guarantees reduced interference to terrestrial services. The proposed antenna design is compact and straight forward and can be easily deployed by minimal modifications of an existing transmission antenna. The design may be readily adapted to different environments due to the relative insensitivity of its radiation pattern and frequency response to geometric detail. The only downside to these antennas is their relatively low radiation efficiency which, however, may easily be compensated for by the available power output of a typical HFR transmitter. Antennas based on this design are currently deployed at the SeaSonde HFR sites in New South Wales, Australia, with operational ranges up to 200 km offshore despite their low radiating efficiency and the extremely low output power in use at these installations. Due to their directional pattern, it is also planned to test these antennas in phased-array Wellen RADAR (WERA) systems in both the standard receive arrays: where in-band radio frequency noise of terrestrial origin is impacting on data quality, and in the transmit array: to possibly simplify splitting, phasing and tuning requirements.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-08-28
    Description: Supraglacial liquid water at the margins of ice sheets has an important impact on the surface energy balance and can also influence the ice flow when supraglacial lakes drain to the bed. Optical imagery is able to monitor supraglacial lakes during the summer season. Here we developed an alternative method using polarimetric SAR from Sentinel-1 during 2017–2020 to distinguish between liquid water and other surface types at the margin of the Northeast Greenland Ice Stream. This allows the supraglacial hydrology to be monitored during the winter months too. We found that the majority of supraglacial lakes persist over winter. When comparing our results to optical data, we found significantly more water. Even during summer, many lakes are partly or fully covered by a lid of ice and snow. We used our classification results to automatically map the outlines of supraglacial lakes, create time series of water area for each lake, and hence detect drainage events. We even found several winter time drainages, which might have an important effect on ice flow. Our method has problems during the peak of the melt season, but for the rest of the year it provides crucial information for better understanding the component of supraglacial hydrology in the glaciological system.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-08-29
    Description: Based on the conceptual basis of information theory, we propose a novel mutual information measure—‘path-based mutual information’. This information measure results from the representation of a set of random variables as a probabilistic graphical model. The edges in this graph are modeled as discrete memoryless communication channels, that is, the underlying data is ergodic, stationary, and the Markov condition is assumed to be applicable. The associated multilinear stochastic maps, tensors, transform source probability mass functions into destination probability mass functions. This allows for an exact expression of the resulting tensor of a cascade of discrete memoryless communication channels in terms of the tensors of the constituting communication channels in the paths. The resulting path-based information measure gives rise to intuitive, non-negative, and additive path-based information components—redundant, unique, and synergistic information—as proposed by Williams and Beer. The path-based redundancy satisfies the axioms postulated by Williams and Beer, the identity axiom postulated by Harder, and the left monotonicity axiom postulated Bertschinger. The ordering relations between redundancies of different joint collections of sources, as captured in the redundancy lattices of Williams and Beer, follow from the data processing inequality. Although negative information components can arise, we speculate that these either result from unobserved variables, or from adding additional sources that are statistically independent from all other sources to a system containing only non-negative information components. This path-based approach illustrates that information theory provides the concepts and measures for a partial information decomposition.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-08-30
    Description: To investigate the effect of wave-induced mixing on the upper ocean structure, especially under typhoon conditions, an ocean-wave coupled model is used in this study. Two physical processes, wave-induced turbulence mixing and wave transport flux residue, are introduced. We select tropical cyclone (TC) Nepartak in the Northwest Pacific ocean as a TC example. The results show that during the TC period, the wave-induced turbulence mixing effectively increases the cooling area and cooling amplitude of the sea surface temperature (SST). The wave transport flux residue plays a positive role in reproducing the distribution of the SST cooling area. From the intercomparisons among experiments, it is also found that the wave-induced turbulence mixing has an important effect on the formation of mixed layer depth (MLD). The simulated maximum MLD is increased to 54 m and is only 1 m less than the observed value. The wave transport flux residue shows a dominant role in the mixed layer temperature (MLT) changing. The mean error of the MLT is reduced by 0.19 °C compared with the control experiment without wave mixing effects. The study shows that the effect of wave mixing should be included in the upper ocean structure modeling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-08-28
    Description: In this paper, we propose an adaptive entropy model (AEM), which incorporates the entropy measurement and the adaptability into the conventional Markowitz’s mean-variance model (MVM). We evaluate the performance of AEM, based on several portfolio performance indicators using the five-year Shanghai Stock Exchange 50 (SSE50) index constituent stocks data set. Our outcomes show, compared with the traditional portfolio selection model, that AEM tends to make our investments more decentralized and hence helps to neutralize unsystematic risks. Due to the existence of self-adaptation, AEM turns out to be more adaptable to market fluctuations and helps to maintain the balance between the decentralized and concentrated investments in order to meet investors’ expectations. Our model applies equally well to portfolio optimizations for other financial markets.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-08-29
    Description: The current techniques used for monitoring the blasting process in open pit mines are manual, intermittent and inefficient and can expose technical manpower to hazardous conditions. This study presents the application of unmanned aerial vehicle (UAV) systems for monitoring and improving the blasting process in open pit mines. Field experiments were conducted in different open pit mines to assess rock fragmentation, blast-induced damage on final pit walls, blast dynamics and the accuracy of blastholes including production and pre-split holes. The UAV-based monitoring was done in three different stages, including pre-blasting, blasting and post-blasting. In the pre-blasting stage, pit walls were mapped to collect structural data to predict in situ block size distribution and to develop as-built pit wall digital elevation models (DEM) to assess blast-induced damage. This was followed by mapping the production blasthole patterns implemented in the mine to investigate drillhole alignment. To monitor the blasting process, a high-speed camera was mounted on the UAV to investigate blast initiation, sequencing, misfired holes and stemming ejection. In the post-blast stage, the blasted rock pile (muck pile) was monitored to estimate fragmentation and assess muck pile configuration, heave and throw. The collected aerial data provide detailed information and high spatial and temporal resolution on the quality of the blasting process and significant opportunities for process improvement. The current challenges with regards to the application of UAVs for blasting process monitoring are discussed, and recommendations for obtaining the most value out of an UAV application are provided.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-08-28
    Description: The aim of this paper is to provide the geometrical structure of a gravitational field that includes the addition of dark matter in the framework of a Riemannian and a Riemann–Sasaki spacetime. By means of the classical Riemannian geometric methods we arrive at modified geodesic equations, tidal forces, and Einstein and Raychaudhuri equations to account for extra dark gravity. We further examine an application of this approach in cosmology. Moreover, a possible extension of this model on the tangent bundle is studied in order to examine the behavior of dark matter in a unified geometric model of gravity with more degrees of freedom. Particular emphasis shall be laid on the problem of the geodesic motion under the influence of dark matter.
    Electronic ISSN: 2218-1997
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-08-30
    Description: Quantum turbulence deals with the phenomenon of turbulence in quantum fluids, such as superfluid helium and trapped Bose-Einstein condensates (BECs). Although much progress has been made in understanding quantum turbulence, several fundamental questions remain to be answered. In this work, we investigated the entropy of a trapped BEC in several regimes, including equilibrium, small excitations, the onset of turbulence, and a turbulent state. We considered the time evolution when the system is perturbed and let to evolve after the external excitation is turned off. We derived an expression for the entropy consistent with the accessible experimental data, which is, using the assumption that the momentum distribution is well-known. We related the excitation amplitude to different stages of the perturbed system, and we found distinct features of the entropy in each of them. In particular, we observed a sudden increase in the entropy following the establishment of a particle cascade. We argue that entropy and related quantities can be used to investigate and characterize quantum turbulence.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-08-30
    Description: In a general Markov decision progress system, only one agent’s learning evolution is considered. However, considering the learning evolution of a single agent in many problems has some limitations, more and more applications involve multi-agent. There are two types of cooperation, game environment among multi-agent. Therefore, this paper introduces a Cooperation Markov Decision Process (CMDP) system with two agents, which is suitable for the learning evolution of cooperative decision between two agents. It is further found that the value function in the CMDP system also converges in the end, and the convergence value is independent of the choice of the value of the initial value function. This paper presents an algorithm for finding the optimal strategy pair (πk0,πk1) in the CMDP system, whose fundamental task is to find an optimal strategy pair and form an evolutionary system CMDP(πk0,πk1). Finally, an example is given to support the theoretical results.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-08-29
    Description: A method for estimation of the turbulent energy dissipation rate from measurements by a conically scanning pulsed coherent Doppler lidar (PCDL), with allowance for the wind transport of turbulent velocity fluctuations, has been developed. The method has been tested in comparative atmospheric experiments with a Stream Line PCDL (Halo Photonics, Brockamin, Worcester, United Kingdom) and a sonic anemometer. It has been demonstrated that the method provides unbiased estimates of the dissipation rate at arbitrarily large ratios of the mean wind velocity to the linear scanning speed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-08-28
    Description: Pathological ECM remodelling and biomineralization in human aortic valve and bioprosthesis tissue were investigated by Fourier transformed infrared (FT-IR) spectroscopic imaging and multivariate data analysis. Results of histological von Kossa staining to monitor hydroxyapatite biomineralization correlated to the definition of mineralized tissue using FT-IR spectroscopic imaging. Spectra exhibit signals of carbonate and phosphate groups of hydroxyapatite. Proteins could be identified by the amide I and amide II bands. Proteins were detected in the calcified human aortic valve tissue, but no absorption signals of proteins were observed in the mineralized bioprosthesis sample region. A shift of the amide I band from 1654 cm−1 to 1636 cm−1 was assumed to result from β-sheet structures. This band shift was observed in regions where the mineralization process had been identified but also in non-mineralized bioprosthesis tissue independent of prior implantation. The increased occurrence of β-sheet conformation is hypothesized to be a promoter of the biomineralization process. FT-IR spectroscopic imaging offers a wealth of chemical information. For example, slight variations in band position and intensity allow investigation of heterogeneity across aortic valve tissue sections. The exact evaluation of these properties and correlation with conventional histological staining techniques give insights into aortic valve tissue remodelling and calcific pathogenesis.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-08-29
    Description: Pansharpening is a typical image fusion problem, which aims to produce a high resolution multispectral (HRMS) image by integrating a high spatial resolution panchromatic (PAN) image with a low spatial resolution multispectral (MS) image. Prior arts have used either component substitution (CS)-based methods or multiresolution analysis (MRA)-based methods for this propose. Although they are simple and easy to implement, they usually suffer from spatial or spectral distortions and could not fully exploit the spatial and/or spectral information existed in PAN and MS images. By considering their complementary performances and with the goal of combining their advantages, we propose a pansharpening weight network (PWNet) to adaptively average the fusion results obtained by different methods. The proposed PWNet works by learning adaptive weight maps for different CS-based and MRA-based methods through an end-to-end trainable neural network (NN). As a result, the proposed PWN inherits the data adaptability or flexibility of NN, while maintaining the advantages of traditional methods. Extensive experiments on data sets acquired by three different kinds of satellites demonstrate the superiority of the proposed PWNet and its competitiveness with the state-of-the-art methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-08-29
    Description: One of the main contributions of the Capital Assets Pricing Model (CAPM) to portfolio theory was to explain the correlation between assets through its relationship with the market index. According to this approach, the market index is expected to explain the co-movement between two different stocks to a great extent. In this paper, we try to verify this hypothesis using a sample of 3.000 stocks of the USA market (attending to liquidity, capitalization, and free float criteria) by using some functions inspired by cooperative dynamics in physical particle systems. We will show that all of the co-movement among the stocks is completely explained by the market, even without considering the market beta of the stocks.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-08-28
    Description: Digital Elevation Models (DEMs) are widely used as a proxy for bathymetric data and several studies have attempted to improve DEM accuracy for hydrodynamic (HD) modeling. Most of these studies attempted to quantitatively improve estimates of channel conveyance (assuming a non-braided morphology) rather than accounting for the actual channel planform. Accurate representation of river conveyance and planform in a DEM is critical to HD modeling and can be achieved with a combination of remote sensing (e.g., satellite image) and field data, such as water surface elevation (WSE). Therefore, the objectives of this study are (i) to develop an algorithm for predicting channel conveyance and characterizing planform via satellite images and in situ WSE and (ii) to estimate discharge using the predicted conveyance via an HD model. The algorithm is named River Bathymetry via Satellite Image Compilation (RiBaSIC) and uses Landsat satellite imagery, Shuttle Radar Topography Mission (SRTM) DEM, Multi-Error-Removed Improved-Terrain (MERIT) DEM, and observed WSE. The algorithm is tested on four study areas along the Willamette River, Kushiyara River, Jamuna River, and Solimoes River. Channel slope and predicted hydraulic radius are subsequently estimated for approximating Manning’s roughness factor. Two-dimensional HD models using DEMs modified by the RiBaSIC algorithm and corresponding Manning’s roughness factors are employed for discharge estimation. The proposed algorithm can represent river planform and conveyance in single-channeled, meandering, wandering, and braided river reaches. Additionally, the HD models estimated discharge within 14–19% relative root mean squared error (RRMSE) in simulation of five years period.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-08-30
    Description: Quantifying river discharge is a critical component for hydrological studies, floodplain ecological conservation research, and water resources management. In recent years, a series of remote sensing-based discharge estimation methods have been developed. An example is the use of the near infrared (NIR) band of optical satellite images, with the principle of calculating the ratio between a stable land pixel for calibration (C) and a pixel within the river for measurement (M), applying a linear regression between C/M series and observed discharge series. This study trialed the C/M method, utilizing the Harmonized Landsat and Sentinel-2 (HLS) surface reflectance product on relatively small rivers with 30~100 m widths. Two study sites with different river characteristics and geographic settings in the Murray-Darling Basin (MDB) of Australia were selected as case studies. Two independent sets of HLS data and gauged discharge data for the 2017 and 2018 water years were acquired for modeling and validation, respectively. Results reveal high consistency between the HLS-derived discharge and gauged discharge at both sites. The Relative Root Mean Square Errors are 53% and 19%, and the Nash-Sutcliffe Efficiency coefficients are 0.24 and 0.69 for the two sites. This study supports the effectiveness of applying the fine-resolution HLS for modeling discharge on small rivers based on the C/M methodology, which also provides evidence of using multisource synthesized datasets as the input for discharge estimation.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-08-29
    Description: An evergreen scientific feature is the ability for scientific works to be reproduced. Since chaotic systems are so hard to understand analytically, numerical simulations assume a key role in their investigation. Such simulations have been considered as reproducible in many works. However, few studies have focused on the effects of the finite precision of computers on the simulation reproducibility of chaotic systems; moreover, code sharing and details on how to reproduce simulation results are not present in many investigations. In this work, a case study of reproducibility is presented in the simulation of a chaotic jerk circuit, using the software LTspice. We also employ the OSF platform to share the project associated with this paper. Tests performed with LTspice XVII on four different computers show the difficulties of simulation reproducibility by this software. We compare these results with experimental data using a normalised root mean square error in order to identify the computer with the highest prediction horizon. We also calculate the entropy of the signals to check differences among computer simulations and the practical experiment. The methodology developed is efficient in identifying the computer with better performance, which allows applying it to other cases in the literature. This investigation is fully described and available on the OSF platform.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-08-29
    Description: We report a new mixture, which is modified from Merck TL-216, for liquid-crystal-on-silicon spatial light modulators (SLMs). To achieve 2π phase change at λ = 633 nm with 5 V operation voltage, the measured response time is about 3 ms at 50 °C. Meanwhile, our mixture exhibits no sign of photodegradation and even the total dosage has exceeded 400 MJ/cm2 at a blue laser wavelength λ = 465 nm. In comparison, E7 died at about 30 MJ/cm2. Widespread applications of this material for high brightness SLMs, near-eye displays, and head-up displays are foreseeable.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-08-29
    Description: Details are presented of the development of a coupled modeling simulator for assessing the evolution in the near-field of a geological repository for radioactive waste disposal where concrete is used as a backfill. The simulator uses OpenMI, a standard for exchanging data between simulation software programs at run-time, to form a coupled chemical-mechanical-hydrogeological model of the system. The approach combines a tunnel scale stress analysis finite element model, a discrete element model for accurately modeling the patterns of emerging cracks in the concrete, and a finite element and finite volume model of the chemical processes and alteration in the porous matrix and cracks in the concrete, to produce a fully coupled model of the system. Combining existing detailed simulation software in this way with OpenMI has the benefit of not relying on simplifications that might be necessary to combine all of the modeled processes in a single piece of software.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-07-17
    Description: On 2 February 2018, the China Seismo-Electromagnetic Satellite (CSES) ZhangHeng 01 (ZH-01) was successfully launched, carrying on board, in addition to a suite of plasma and particle physics instruments, a high precision magnetometer package (HPM), able to observe the ultra-low frequency (ULF) waves. In this paper, a night time Pi2 pulsation observed by CSES is reported for the first time. This Pi2 event occurred on 3 September 2018, and began at 14:30 UT (02:37 magnetic local time), when the satellite was in the southern hemisphere between −49 and −13 magnetic latitude (MLAT). Kakioka (KAK) ground station in Japan detected the same Pi2 between 14:30–14:42 UT (23:30–23:42 local time). The Pi2 oscillations in the compressional, toroidal, and poloidal components at the CSES satellite and the H-component at the KAK station are investigated by estimating coherence, amplitude, and cross-phase. We noticed a high degree of similarity between the Pi2 event in the horizontal component at KAK and the ionospheric fluctuations in the compressional component at CSES. This high correlation indicated the magnetospheric source of the Pi2 event. In addition, Pi2 is exhibited clearly in the δBy component at CSES, which is highly correlated with the ground H component, so the Pi2 event could be explained by the Substorm Current Wedge (SCW). This interpretation is further confirmed by checking the compressional component of Van Allen Probe (VAP) B satellite inside the plasmasphere, which, for the first time, gives observational support for an earlier model. This ULF wave observation shows the consistency and reliability of the high precision magnetometer (HPM) equipped by two fluxgate magnetometers (FGM1 and FGM2) onboard CSES.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-07-18
    Description: High-lying vegetated marshes and low-lying bare mudflats have been suggested to be two stable states in intertidal ecosystems. Being able to identify the conditions enabling the shifts between these two stable states is of great importance for ecosystem management in general and the restoration of tidal marsh ecosystems in particular. However, the number of studies investigating the conditions for state shifts from bare mudflats to vegetated marshes remains relatively low. We developed a GIS approach to identify the locations of expected shifts from bare intertidal flats to vegetated marshes along a large estuary (Western Scheldt estuary, SW Netherlands), by analyzing the interactions between spatial patterns of vegetation biomass, elevation, tidal currents, and wind waves. We analyzed false-color aerial images for locating marshes, LIDAR-based digital elevation models, and spatial model simulations of tidal currents and wind waves at the whole estuary scale (~326 km²). Our results demonstrate that: (1) Bimodality in vegetation biomass and intertidal elevation co-occur; (2) the tidal currents and wind waves change abruptly at the transitions between the low-elevation bare state and high-elevation vegetated state. These findings suggest that biogeomorphic feedback between vegetation growth, currents, waves, and sediment dynamics causes the state shifts from bare mudflats to vegetated marshes. Our findings are translated into a GIS approach (logistic regression) to identify the locations of shifts from bare to vegetated states during the studied period based on spatial patterns of elevation, current, and wave orbital velocities. This GIS approach can provide a scientific basis for the management and restoration of tidal marshes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-07-20
    Description: High frequency and spatially explicit irrigated land maps are important for understanding the patterns and impacts of consumptive water use by agriculture. We built annual, 30 m resolution irrigation maps using Google Earth Engine for the years 1986–2018 for 11 western states within the conterminous U.S. Our map classifies lands into four classes: irrigated agriculture, dryland agriculture, uncultivated land, and wetlands. We built an extensive geospatial database of land cover from each class, including over 50,000 human-verified irrigated fields, 38,000 dryland fields, and over 500,000 km 2 of uncultivated lands. We used 60,000 point samples from 28 years to extract Landsat satellite imagery, as well as climate, meteorology, and terrain data to train a Random Forest classifier. Using a spatially independent validation dataset of 40,000 points, we found our classifier has an overall binary classification (irrigated vs. unirrigated) accuracy of 97.8%, and a four-class overall accuracy of 90.8%. We compared our results to Census of Agriculture irrigation estimates over the seven years of available data and found good overall agreement between the 2832 county-level estimates (r 2 = 0.90), and high agreement when estimates are aggregated to the state level (r 2 = 0.94). We analyzed trends over the 33-year study period, finding an increase of 15% (15,000 km 2 ) in irrigated area in our study region. We found notable decreases in irrigated area in developing urban areas and in the southern Central Valley of California and increases in the plains of eastern Colorado, the Columbia River Basin, the Snake River Plain, and northern California.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-07-21
    Description: Due to the influence of equipment instability and surveying environment, scattering echoes and other factors, it is sometimes difficult to obtain high-quality sub-bottom profile (SBP) images by traditional denoising methods. In this paper, a novel SBP image denoising method is developed for obtaining underlying clean images based on a non-local low-rank framework. Firstly, to take advantage of the inherent layering structures of the SBP image, a direction image is obtained and used as a guidance image. Secondly, the robust guidance weight for accurately selecting the similar patches is given. A novel denoising method combining the weight and a non-local low-rank filtering framework is proposed. Thirdly, after discussing the filtering parameter settings, the proposed method is tested in actual measurements of sub-bottom, both in deep water and shallow water. Experimental results validate the excellent performance of the proposed method. Finally, the proposed method is verified and compared with other methods quantificationally based on the synthetic images and has achieved the total average peak signal-to-noise ratio (PSNR) of 21.77 and structural similarity index (SSIM) of 0.573, which is far better than other methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-07-21
    Description: This paper is intended to give a comprehensive overview of the current status and developments of the Paris Observatory STARK-B, MOLAT and SESAM databases which can be interrogated thanks to interoperability tools. The STARK-B database provides shifting and broadening parameters of different atomic and ionic transitions due to impacts with charged particles (the so-called Stark broadening) for different temperatures and densities. The spectroscopic MOLAT and SESAM databases provide the wavelengths, the oscillator strengths or Einstein spontaneous emission coefficients of H 2 , CO and isotopologues molecules.
    Electronic ISSN: 2218-2004
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-07-17
    Description: River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow [...]
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-07-21
    Description: Dryland ecosystems are frequently struck by droughts. Yet, woody vegetation is often able to recover from mortality events once precipitation returns to pre-drought conditions. Climate change, however, may impact woody vegetation resilience due to more extreme and frequent droughts. Thus, better understanding how woody vegetation responds to drought events is essential. We used a phenology-based remote sensing approach coupled with field data to estimate the severity and recovery rates of a large scale die-off event that occurred in 2014–2015 in Senegal. Novel low (L-band) and high-frequency (Ku-band) passive microwave vegetation optical depth (VOD), and optical MODIS data, were used to estimate woody vegetation dynamics. The relative importance of soil, human-pressure, and before-drought vegetation dynamics influencing the woody vegetation response to the drought were assessed. The die-off in 2014–2015 represented the highest dry season VOD drop for the studied period (1989–2017), even though the 2014 drought was not as severe as the droughts in the 1980s and 1990s. The spatially explicit Die-off Severity Index derived in this study, at 500 m resolution, highlights woody plants mortality in the study area. Soil physical characteristics highly affected die-off severity and post-disturbance recovery, but pre-drought biomass accumulation (i.e., in areas that benefited from above-normal rainfall conditions before the 2014 drought) was the most important variable in explaining die-off severity. This study provides new evidence supporting a better understanding of the “greening Sahel”, suggesting that a sudden increase in woody vegetation biomass does not necessarily imply a stable ecosystem recovery from the droughts in the 1980s. Instead, prolonged above-normal rainfall conditions prior to a drought may result in the accumulation of woody biomass, creating the basis for potentially large-scale woody vegetation die-off events due to even moderate dry spells.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-07-17
    Description: Augmented reality can improve construction and facility management by visualizing an as-planned model on its corresponding surface for fast, easy, and correct information retrieval. This requires the localization registration of an as-built model in an as-planned model. However, the localization and registration of indoor environments fail, owing to self-similarity in an indoor environment, relatively large as-planned models, and the presence of additional unplanned objects. Therefore, this paper proposes a computer vision-based method to (1) homogenize indoor as-planned and as-built models, (2) reduce the search space of model matching, and (3) localize the structure (e.g., room) for registration of the scanned area in its as-planned model. This method extracts a representative horizontal cross section from the as-built and as-planned point clouds to make these models similar, restricts unnecessary transformation to reduce the search space, and corresponds the line features for the estimation of the registration transformation matrix. The performance of this method, in terms of registration accuracy, is evaluated on as-built point clouds of rooms and a hallway on a building floor. A rotational error of 0.005 rad and a translational error of 0.088 m are observed in the experiments. Hence, the geometric feature described on a representative cross section with transformation restrictions can be a computationally cost-effective solution for indoor localization and registration.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-07-21
    Description: An alternative to the Carnot-Clausius approach for introducing entropy and the second law of thermodynamics is outlined that establishes entropy as a nonequilibrium property from the onset. Five simple observations lead to entropy for nonequilibrium and equilibrium states, and its balance. Thermodynamic temperature is identified, its positivity follows from the stability of the rest state. It is shown that the equations of engineering thermodynamics are valid for the case of local thermodynamic equilibrium, with inhomogeneous states. The main findings are accompanied by examples and additional discussion to firmly imbed classical and engineering thermodynamics into nonequilibrium thermodynamics.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-07-21
    Description: Salt marshes provide important services to coastal ecosystems in the southeastern United States. In many locations, salt marsh habitats are threatened by coastal development and erosion, necessitating large-scale monitoring. Assessing vegetation height across the extent of a marsh can provide a comprehensive analysis of its health, as vegetation height is associated with Above Ground Biomass (AGB) and can be used to track degradation or growth over time. Traditional methods to do this, however, rely on manual measurements of stem heights that can cause harm to the marsh ecosystem. Moreover, manual measurements are limited in scale and are often time and labor intensive. Unoccupied Aircraft Systems (UAS) can provide an alternative to manual measurements and generate continuous results across a large spatial extent in a short period of time. In this study, a multirotor UAS equipped with optical Red Green Blue (RGB) and multispectral sensors was used to survey five salt marshes in Beaufort, North Carolina. Structure-from-Motion (SfM) photogrammetry of the resultant imagery allowed for continuous modeling of the entire marsh ecosystem in a three-dimensional space. From these models, vegetation height was extracted and compared to ground-based manual measurements. Vegetation heights generated from UAS data consistently under-predicted true vegetation height proportionally and a transformation was developed to predict true vegetation height. Vegetation height may be used as a proxy for Above Ground Biomass (AGB) and contribute to blue carbon estimates, which describe the carbon sequestered in marine ecosystems. Employing this transformation, our results indicate that UAS and SfM are capable of producing accurate assessments of salt marsh health via consistent and accurate vegetation height measurements.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-07-20
    Description: Accounting for endmember variability is a challenging issue when unmixing hyperspectral data. This paper models the variability that is associated with each endmember as a conical hull defined by extremal pixels from the data set. These extremal pixels are considered as so-called prototypal endmember spectra that have meaningful physical interpretation. Capitalizing on this data-driven modeling, the pixels of the hyperspectral image are then described as combinations of these prototypal endmember spectra weighted by bundling coefficients and spatial abundances. The proposed unmixing model not only extracts and clusters the prototypal endmember spectra, but also estimates the abundances of each endmember. The performance of the approach is illustrated thanks to experiments conducted on simulated and real hyperspectral data and it outperforms state-of-the-art methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-07-20
    Description: Assessments of long-term changes of air quality and global radiative forcing at a large scale heavily rely on satellite aerosol optical depth (AOD) datasets, particularly their temporal binning products. Although some attempts focusing on the validation of long-term satellite AOD have been conducted, there is still a lack of comprehensive quantification and understanding of the representativeness of satellite AOD at different temporal binning scales. Here, we evaluated the performances of the Moderate Resolution Imaging Spectroradiometer (MODIS) AOD products at various temporal scales by comparing the MODIS AOD datasets from both the Terra and Aqua satellites with the entire global AErosol RObotic NETwork (AERONET) observation archive between 2000 and 2017. The uncertainty levels of the MODIS hourly and daily AOD products were similarly high, indicating that MODIS AOD retrievals could be used to represent daily aerosol conditions. The MODIS data showed the reduced quality when integrated from the daily to monthly scale, where the relative mean bias (RMB) changed from 1.09 to 1.21 for MODIS Terra and from 1.04 to 1.17 for MODIS Aqua, respectively. The limitation of valid data availability within a month appeared to be the primary reason for the increased uncertainties in the monthly binning products, and the monthly data associated uncertainties could be reduced when the number of valid AOD retrievals reached 15 times in one month. At all three temporal scales, the uncertainty levels of satellite AOD products decreased with increasing AOD values. The results of this study could provide crucial information for satellite AOD users to better understand the reliability of different temporal AOD binning products and associated uncertainties in their derived long-term trends.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-07-18
    Description: Human activities are mainly responsible for the Aral Sea crisis, and excessive farmland expansion and unreasonable irrigation regimes are the main manifestations. The conflicting needs of agricultural water consumption and ecological water demand of the Aral Sea are increasingly prominent. However, the quantitative relationship among the water balance elements in the oasis located in the lower reaches of the Amu Darya River Basin and their impact on the retreat of the Aral Sea remain unclear. Therefore, this study focused on the water consumption of the Nukus irrigation area in the delta of the Amu Darya River and analyzed the water balance variations and their impacts on the Aral Sea. The surface energy balance algorithm for land (SEBAL) was employed to retrieve daily and seasonal evapotranspiration (ET) levels from 1992 to 2018, and a water balance equation was established based on the results of a remote sensing evapotranspiration inversion. The results indicated that the actual evapotranspiration (ETa) simulated by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–Monteith method well, and the correlation coefficients between the two ETa sources were greater than 0.8. The total ETa levels in the growing seasons decreased from 1992 to 2005 and increased from 2005 to 2015, which is consistent with the changes in the cultivated land area and inflows from the Amu Darya River. In 2000, 2005 and 2010, the groundwater recharge volumes into the Aral Sea during the growing season were 6.74×109 m3, 1.56×109 m3 and 8.40×109 m3; respectively; in the dry year of 2012, regional ET exceeded the river inflow, and 2.36×109 m3 of groundwater was extracted to supplement the shortage of irrigation water. There is a significant two-year lag correlation between the groundwater level and the area of the southern Aral Sea. This study can provide useful information for water resources management in the Aral Sea region.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-07-19
    Description: In the literature of pan-sharpening based on neural networks, high resolution multispectral images as ground-truth labels generally are unavailable. To tackle the issue, a common method is to degrade original images into a lower resolution space for supervised training under the Wald’s protocol. In this paper, we propose an unsupervised pan-sharpening framework, referred to as “perceptual pan-sharpening”. This novel method is based on auto-encoder and perceptual loss, and it does not need the degradation step for training. For performance boosting, we also suggest a novel training paradigm, called “first supervised pre-training and then unsupervised fine-tuning”, to train the unsupervised framework. Experiments on the QuickBird dataset show that the framework with different generator architectures could get comparable results with the traditional supervised counterpart, and the novel training paradigm performs better than random initialization. When generalizing to the IKONOS dataset, the unsupervised framework could still get competitive results over the supervised ones.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-07-19
    Description: Roadside vegetation can affect the performance of installed road lighting. We demonstrate a workflow in which a car-mounted measurement system is used to assess the light-obstructing effect of roadside vegetation. The mobile mapping system (MMS) includes a panoramic camera system, laser scanner, inertial measurement unit, and satellite positioning system. The workflow and the measurement system were applied to a road section of Munkkiniemenranta, Helsinki, Finland, in 2015 and 2019. The relative luminance distribution on a road surface and the obstructing vegetation were measured before and after roadside vegetation pruning applying a luminance-calibrated mobile mapping system. The difference between the two measurements is presented, and the opportunities provided by the mobile 3D luminance measurement system are discussed.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-07-18
    Description: Density-dependent population growth regulates long-term urban expansion and shapes distinctive socioeconomic trends. Despite a marked heterogeneity in the spatial distribution of the resident population, Mediterranean European countries are considered more homogeneous than countries in other European regions as far as settlement structure and processes of metropolitan growth are concerned. However, rising socioeconomic inequalities among Southern European regions reflect latent demographic and territorial transformations that require further investigation. An integrated assessment of the spatio-temporal distribution of resident populations in more than 1000 municipalities (1961–2011) was carried out in this study to characterize density-dependent processes of metropolitan growth in Greece. Using geographically weighted regressions, the results of our study identified distinctive local relationships between population density and growth rates over time. Our results demonstrate that demographic growth rates were non-linearly correlated with other variables, such as population density, with positive and negative impacts during the first (1961–1971) and the last (2001–2011) observation decade, respectively. These findings outline a progressive shift over time from density-dependent processes of population growth, reflecting a rapid development of large metropolitan regions (Athens, Thessaloniki) in the 1960s, to density-dependent processes more evident in medium-sized cities and accessible rural regions in the 2000s. Density-independent processes of population growth have been detected in the intermediate study period (1971–2001). This work finally discusses how a long-term analysis of demographic growth, testing for density-dependent mechanisms, may clarify the intrinsic role of population concentration and dispersion in different phases of the metropolitan cycle in Mediterranean Europe.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-07-20
    Description: In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators’ policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street’s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-07-20
    Description: This study investigates the robustness of the physically-based hydrological model WaSiM (water balance and flow simulation model) for simulating hydrological processes in two data sparse small-scale inland valley catchments (Bankandi-Loffing and Mebar) in Burkina Faso. An intensive instrumentation with two weather stations, three rain recorders, 43 piezometers, and one soil moisture station was part of the general effort to reduce the scarcity of hydrological data in West Africa. The data allowed us to successfully parameterize, calibrate (2014–2015), and validate (2016) WaSiM for the Bankandi-Loffing catchment. Good model performance concerning discharge in the calibration period (R2 = 0.91, NSE = 0.88, and KGE = 0.82) and validation period (R2 = 0.82, NSE = 0.77, and KGE = 0.57) was obtained. The soil moisture (R2 = 0.7, NSE = 0.7, and KGE = 0.8) and the groundwater table (R2 = 0.3, NSE = 0.2, and KGE = 0.5) were well simulated, although not explicitly calibrated. The spatial transposability of the model parameters from the Bankandi-Loffing model was investigated by applying the best parameter-set to the Mebar catchment without any recalibration. This resulted in good model performance in 2014–2015 (R2 = 0.93, NSE = 0.92, and KGE = 0.84) and in 2016 (R2 = 0.65, NSE = 0.64, and KGE = 0.59). This suggests that the parameter-set achieved in this study can be useful for modeling ungauged inland valley catchments in the region. The water balance shows that evaporation is more important than transpiration (76% and 24%, respectively, of evapotranspiration losses) and the surface flow is very sensitive to the observed high interannual variability of rainfall. Interflow dominates the uplands, but base flow is the major component of stream flow in inland valleys. This study provides useful information for the better management of soil and scarce water resources for smallholder farming in the area.
    Electronic ISSN: 2306-5338
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-07-20
    Description: The frequency and intensity of flood quantiles and its attendant damage in agricultural establishments have generated a lot of issues in Ethiopia. Moreover, precise estimates of flood quantiles are needed for efficient design of hydraulic structures; however, quantification of these quantiles in data-scarce regions has been a continuing challenge in hydrologic design. Flood frequency analysis is thus essential to reduce possible flood damage by investigating the most suitable flood prediction model. The annual maximum discharges from six representative stations in the Upper Blue Nile River Basin were fitted to the commonly used nine statistical distributions. This study also assessed the performance evolution of the probability distributions with varying spatial scales, such that three different spatial scales of small-, medium-, and large-scale basins in the Blue Nile River Basin were considered. The performances of the candidate probability distributions were assessed using three goodness-of-fit test statistics, root mean square error, and graphical interpretation approaches to investigate the robust probability distribution for flood frequency analysis over different basin spatial scales. Based on the overall analyses, the generalized extreme value distribution was proven to be a robust model for flood frequency analysis in the study region. The generalized extreme value distribution significantly improved the performance of the flood prediction over different spatial scales. The generalized extreme value flood prediction performance improvement measured in root mean square error varied between 5.84 and 67.91% over other commonly used probability distribution models. Thus, the flood frequency analysis using the generalized extreme value distribution could be essential for the efficient planning and design of hydraulic structures in the Blue Nile River Basin. Furthermore, this study suggests that, in the future, significant efforts should be put to conduct similar flood frequency analyses over the other major river basins of Ethiopia.
    Electronic ISSN: 2306-5338
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-07-01
    Description: The reaction of (6-Ph2P-Ace-5-)2P(O)H with (tht)AuCl3 proceeds via elimination of tetrahydrothiophene (tht) and HCl, providing the zwitterionic PPP-pincer complex (6-Ph2P-Ace-5-)2P(O)AuCl2 (1) as yellow crystals. The molecular structure of 1 was established and studied by X-ray crystallography. The electronic structure was computationally analyzed using a comprehensive set of real-space bonding indicators derived from electron and electron-pair densities, providing insight into the relative contributions of covalent and non-covalent forces to the polar-covalent Au–Cl, Au–P, and P–O− bonds; the latter being one of the textbook cases for strongly polarized covalent interactions. Partial spatial complementarity between both bonding aspects is suggested by the electronic properties of the distinctively different Au–Cl bonds.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-07-01
    Description: The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state–space (SS) representation of vector autoregressive (VAR) models. Despite their high computational reliability these tools still suffer from estimation problems which emerge, in the case of low ratio between data points available and the number of time series, when VAR identification is performed via the standard ordinary least squares (OLS). In this work we propose to replace the OLS with penalized regression performed through the Least Absolute Shrinkage and Selection Operator (LASSO), prior to computation of the measures of information transfer and information modification. First, simulating networks of several coupled Gaussian systems with complex interactions, we show that the LASSO regression allows, also in conditions of data paucity, to accurately reconstruct both the underlying network topology and the expected patterns of information transfer. Then we apply the proposed VAR-SS-LASSO approach to a challenging application context, i.e., the study of the physiological network of brain and peripheral interactions probed in humans under different conditions of rest and mental stress. Our results, which document the possibility to extract physiologically plausible patterns of interaction between the cardiovascular, respiratory and brain wave amplitudes, open the way to the use of our new analysis tools to explore the emerging field of Network Physiology in several practical applications.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-07-01
    Description: The complex and intricate microstructure of B19′ martensite in shape memory nickel titanium alloys is generally explained with the Phenomenological Theory of Martensitic Crystallography (PTMC). Over the last decade, we have developed an alternative approach that supposes the existence of a “natural” parent–daughter orientation relationship (OR). As the previous TEM studies could not capture the global crystallographic characteristics of the B2→B19′ transformation required to discriminate the models, we used Electron BackScatter Diffraction (EBSD) and Transmission Kikuchi Diffraction (TKD) to investigate a polycrystalline NiTi alloy composed of B19′ martensite. The EBSD maps show the large martensite plates and reveal the coexistence of different ORs. The TKD maps permit us to image the “twins” and confirm the continuum of orientations suspected from EBSD. The results are interpreted with the alternative approach. The predominant OR in EBSD is the “natural” OR for which the dense directions and dense planes of B2 and B19′ phases are parallel—i.e., (010)B19′//(110)B2 and [101]B19′//[ 1 ¯ 11]B2. The natural OR was used to automatically reconstruct the prior parent B2 grains in the EBSD and TKD maps. From the distortion matrix associated with this OR, we calculated that the habit plane could be (1 1 ¯ 2)B2//(10 1 ¯ )B19′. The traces of these planes are in good agreement with the EBSD maps. We interpret the other ORs as “closing-gap” ORs derived from the natural OR to allow the compatibility between the distortion variants. Each of them restores a parent symmetry element between the variants that was lost by distortion but preserved by correspondence.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-07-01
    Description: Many developing nations are facing severe food insecurity partly because of their dependence on rainfed agriculture. Climate variability threatens agriculture-based community livelihoods. With booming population growth, agricultural land expands, and natural resource extraction increases, leading to changes in land use and land cover characterized by persistent vegetation greening and browning. This can modify local climate variability due to changing land–atmosphere interactions. Yet, for landscapes with significant interannual variability, such as the Mount Elgon ecosystem in Kenya and Uganda, characterizing these changes is a difficult task and more robust methods have been recommended. The current study combined trend (Mann–Kendall and Sen’s slope) and breakpoint (bfast) analysis methods to comprehensively examine recent vegetation greening and browning in Mount Elgon at multiple time scales. The study used both Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data and attempted to disentangle nature- versus human-driven vegetation greening and browning. Inferences from a 2019 field study were valuable in explaining some of the observed patterns. The results indicate that Mount Elgon vegetation is highly variable with both greening and browning observable at all time scales. Mann–Kendall and Sen’s slope revealed major changes (including deforestation and reforestation), while bfast detected most of the subtle vegetation changes (such as vegetation degradation), especially in the savanna and grasslands in the northeastern parts of Mount Elgon. Precipitation in the area had significantly changed (increased) in the post-2000 era than before, particularly in 2006–2010, thus influencing greening and browning during this period. The greenness–precipitation relationship was weak in other periods. The integration of Mann–Kendall and bfast proved useful in comprehensively characterizing vegetation greenness. Such a comprehensive description of Mount Elgon vegetation dynamics is an important first step to instigate policy changes for simultaneously conserving the environment and improving livelihoods that are dependent on it.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-07-01
    Description: Airborne laser scanning (ALS) systems tuned to the near-infrared (NIR; 1064 nm) wavelength have become the best available data source for characterizing vegetation structure. Proliferation of multi-spectral ALS (M-ALS) data with lasers tuned at two additional wavelengths (commonly 532 nm; green, and 1550 nm; short-wave infrared (SWIR)) has promoted interest in the benefit of additional wavelengths for forest inventory modelling. In this study, structural and intensity based M-ALS metrics were derived from wavelengths independently and combined to assess their value for modelling forest inventory attributes (Lorey’s height (HL), gross volume (V), and basal area (BA)) and overstorey species diversity (Shannon index (H), Simpson index (D), and species richness (R)) in a diverse mixed-wood forest in Ontario, Canada. The area-based approach (ABA) to forest attribute modelling was used, where structural- and intensity-based metrics were calculated and used as inputs for random forest models. Structural metrics from the SWIR channel (SWIRstruc) were found to be the most accurate for H and R (%RMSE = 14.3 and 14.9), and NIRstruc were most accurate for V (%RMSE = 20.4). The addition of intensity metrics marginally increased the accuracy of HL models for SWIR and combined channels (%RMSE = 7.5). Additionally, a multi-resolution (0.5, 1, 2 m) voxel analysis was performed, where intensity data were used to calculate a suite of spectral indices. Plot-level summaries of spectral indices from each voxel resolution alone, as well as combined with structural metrics from the NIR wavelength, were used as random forest predictors. The addition of structural metrics from the NIR band reduced %RMSE for all models with HL, BA, and V realizing the largest improvements. Intensity metrics were found to be important variables in the 1 m and 2 m voxel models for D and H. Overall, results indicated that structural metrics were the most appropriate. However, the inclusion of intensity metrics, and continued testing of their potential for modelling diversity indices is warranted, given minor improvements when included. Continued analyses using M-ALS intensity metrics and voxel-based indices would help to better understand the value of these data, and their future role in forest management.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-07-02
    Description: A brand-new gas sensor nanocomposite, In2O3-InN, was synthesized by in-situ partial oxidation of InN and presented fast response–recovery property for NO2 detecting. The structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray detection (EDX) analysis. The results show that the final In2O3-InN composites were composed of hexagonal type In2O3 and hexagonal type InN, which exhibited bottle nanotube structure on the relative macroscopic level. Microscopically, at the interface of In2O3 and InN, n–n hetero junction formed. Works form gas sensing property found that it is obviously that In2O3-InN got a quite stronger response, 1021, at relatively lower temperature, 100 °C, comparing to pure In2O3, 279.1 at 150 °C. After doping, the gas-sensing performance was improved. By analyzing the concentration of oxygen vacation and n–n hetero junctions mechanism, it was verified that the superiority of gas sensing properties of the In2O3-InN can be attributed to the high concentration of oxygen vacancies and the formation of n–n hetero junctions.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-01
    Description: Transformation to Continuous Cover Forestry (CCF) is a long and difficult process in which frequent management interventions rapidly alter forest structure and dynamics with long lasting impacts. Therefore, a critical component of transformation is the acquisition of up-to-date forest inventory data to direct future management decisions. Recently, the use of single tree detection methods derived from unmanned aerial vehicle (UAV) has been identified as being a cost effective method for inventorying forests. However, the rapidly changing structure of forest stands in transformation amplifies the difficultly in transferability of current individual tree detection (ITD) methods. This study presents a novel ITD Bayesian parameter optimisation approach that uses quantile regression and external biophysical tree data sets to provide a transferable and low cost ITD approach to monitoring stands in transformation. We applied this novel method to 5 stands in a variety of transformation stages in the UK and to a independent test study site in California, USA, to assess the accuracy and transferability of this method. Requiring small amounts of training data (15 reference trees) this approach had a mean test accuracy (F-score = 0.88) and provided mean tree diameter estimates (RMSE = 5.6 cm) with differences that were not significance to the ground data (p 〈 0.05). We conclude that this method can be used to monitor forests stands in transformation and thus can also be applied to a wide range of forest structures with limited manual parameterisation between sites.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-07-01
    Description: Glacier surface temperature (GST) is influenced by both the energy flux from the atmosphere above and the thermal dynamics at the ice–water–debris interfaces. However, previous studies on GST are inadequate in time series research and mountain glacier surface temperature retrieval. We evaluate the GST variability at Hailuogou glacier, a temperate glacier located in Southeastern Tibetan Plateau, from 1990 to 2018. We utilized a modified mono-window algorithm to calculate the GST using the Landsat 8 thermal infrared sensor (TIRS) band 10 data and Landsat 5 thematic mapper (TM) band 6 data. Three essential parameters, including the emissivity of ice and snow, atmospheric transmittance, and effective mean atmospheric temperature, were employed in the GST algorithm. The remotely-sensed temperatures were compared with two other single-channel algorithms to validate GST algorithm’s accuracy. Results from different algorithms showed a good agreement, with a mean difference of about 0.6 ℃. Our results showed that the GST of the Hailuogou glacier, both in the upper debris-free part and the lower debris-covered tongue, has experienced a slightly increasing trend at a rate of 0.054 ℃ a−1 during the past decades. Atmospheric warming, expanding debris cover in the lower part, and a darkening debris-free accumulation area are the main causes of the warming of the glacier surface.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-07-01
    Description: Building Information Modeling (BIM) has a crucial role in smart road applications, not only limited to the design and construction stages, but also to traffic monitoring, autonomous vehicle navigation, road condition assessment, and real-time data delivery to drivers, among others. Point clouds collected through LiDAR are a powerful solution to capture as-built conditions, notwithstanding the lack of commercial tools able to automatically reconstruct road geometry in a BIM environment. This paper illustrates a two-step procedure in which roads are automatically detected and classified, providing GIS layers with basic road geometry that are turned into parametric BIM objects. The proposed system is an integrated BIM-GIS with a structure based on multiple proposals, in which a single project file can handle different versions of the model using a variable level of detail. The model is also refined by adding parametric elements for buildings and vegetation. Input data for the integrated BIM-GIS can also be existing cartographic layers or outputs generated with algorithms able to handle LiDAR data. This makes the generation of the BIM-GIS more flexible and not limited to the use of specific algorithms for point cloud processing.
    Electronic ISSN: 2412-3811
    Topics: Architecture, Civil Engineering, Surveying
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-08-30
    Description: Tourism is a primary socio-economic factor on many coastal islands. Tourism contributes to the livelihoods of the residents, but also influences natural resources and energy consumption and can become a significant driver of land conversion and environmental change. Understanding the influence of tourist-related activities is vital for sustainable tourism development. We chose Hainan Island in South China as a research area to study the influence of tourist-driven activities on environmental variables (as Land Surface Temperatures (LST) and related ecosystem variables) during the period of 2000 to 2019. In Hainan, the local economy relies heavily on tourism, with an ever-growing influx of tourists each year. We categorised location-based points of interest (POIs) into two classes, non-tourism sites and tourism-related sites, and utilised satellite data from the cloud-based platform Google Earth Engine (GEE) to extract LST and Normalized Difference Vegetation Index (NDVI) data. We analysed the LST variations, NDVI changes and the land use/land cover (LULC) changes and compared the relative difference in LST and NDVI between the tourism-related sites and non-tourism-related sites. The main findings of this study were: (1) The median LST in the tourism-related sites was relatively higher (1.3) than the LST in the non-tourism-related sites for the 20 years. Moreover, every annual mean LST of tourism-related sites was higher than the LST values in non-tourism-related sites, with an average difference of 1.2 °C for the 20 years and a maximum difference of 1.7 °C. We found higher annual LST anomalies for tourist-related sites compared to non-tourism sites after 2010, which indicated the likely positive differences in LST above the average LST during 20 years for tourism-related sites when compared against the non-tourism related sites, thus highlighting the potential influence of tourism activities on LST. (2) The annual mean NDVI value for tourism-related sites was significantly lower than for non-tourism places every year, with an average NDVI difference of 0.26 between the two sites. (3) The land cover changed significantly: croplands and forests reduced by 3.5% and 2.8% respectively, while the areas covered by orchards and urban areas increased by 2% and 72.3% respectively. These results indicate the influence of the tourism-driven activities includes the relatively high LST, vegetation degradation and land-use conversion particular to urban cover type. The outcome of this work provides a method that combines cloud-based satellite-derived data with location-based POIs data for quantifying the long-term influence of tourism-related activities on sensitive coastal ecosystems. It contributes to designing evidence-driven management plans and policies for the sustainable tourism development in coastal areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-08-30
    Description: Providing recommendations in cold start situations is one of the most challenging problems for collaborative filtering based recommender systems (RSs). Although user social context information has largely contributed to the cold start problem, most of the RSs still suffer from the lack of initial social links for newcomers. For this study, we are going to address this issue using a proposed user similarity detection engine (USDE). Utilizing users’ personal smart devices enables the proposed USDE to automatically extract real-world social interactions between users. Moreover, the proposed USDE uses user clustering algorithm that includes contextual information for identifying similar users based on their profiles. The dynamically updated contextual information for the user profiles helps with user similarity clustering and provides more personalized recommendations. The proposed RS is evaluated using movie recommendations as a case study. The results show that the proposed RS can improve the accuracy and personalization level of recommendations as compared to two other widely applied collaborative filtering RSs. In addition, the performance of the USDE is evaluated in different scenarios. The conducted experimental results on USDE show that the proposed USDE outperforms widely applied similarity measures in cold start and data sparsity situations.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-08-31
    Description: Predictive models play a central role in decision making. Penalized regression approaches, such as least absolute shrinkage and selection operator (LASSO), have been widely used to construct predictive models and explain the impacts of the selected predictors, but the estimates are typically biased. Moreover, when data are ultrahigh-dimensional, penalized regression is usable only after applying variable screening methods to downsize variables. We propose a stepwise procedure for fitting generalized linear models with ultrahigh dimensional predictors. Our procedure can provide a final model; control both false negatives and false positives; and yield consistent estimates, which are useful to gauge the actual effect size of risk factors. Simulations and applications to two clinical studies verify the utility of the method.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-08-31
    Description: The variation of soil moisture (SM) is a complex and synthetic process, which is impacted by numerous factors. The effects of these factors on soil moisture are dynamic. As a result, the relationship between soil moisture and explanatory variables varies with time and season. This kind of change should be considered in obtaining fine spatial resolution soil moisture products. We chose a study area with four distinct seasons in the temperate monsoon region. In this research, we established seasonal downscaling models to avoid the influence of seasonal differences. Precipitation, land surface temperature, evapotranspiration, vegetation index, land cover, elevation, slope, aspect and soil texture were taken as explanatory variables to produce fine spatial resolution SM. SM products derived from Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) were downscaled with the help of machine learning algorithms. We compared three machine learning algorithms of random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN) to determine the most suitable algorithm for this study. The results show that season-based downscaling is even better than continuous time series. In the analysis of seasonal differences, precipitation plays a dominant role, but its contribution rate is different in each season. Moreover, the influence of vegetation is more prominent in winter, while the influence of terrain is more important in the other three seasons. It could be noted that the accuracy of the RF model is the best among three machine learning algorithms, and the RF-downscaled products have superior matching performance to both AMSR (AMSR-E and AMSR2) SM products and in-situ measurements. The analysis indicates considering seasonal difference and the application of machine learning has high potential for spatial downscaling in remote sensing applications.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-08-31
    Description: Satellite remote sensing and model data play an important role in research and applications of tropical meteorology and climatology over vast, data-sparse oceans and remote continents. Since the first weather satellite was launched by NASA in 1960, a large collection of NASA’s Earth science data is freely available to the research and application communities around the world, significantly improving our overall understanding of the Earth system and environment. Established in the mid-1980s, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), located in Maryland, USA, is a data archive center for multidisciplinary, satellite and model assimilation data products. As one of the 12 NASA data centers in Earth sciences, GES DISC hosts several important NASA satellite missions for tropical meteorology and climatology such as the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) Mission and the Modern-Era Retrospective analysis for Research and Applications (MERRA). Over the years, GES DISC has developed data services to facilitate data discovery, access, distribution, analysis and visualization, including Giovanni, an online analysis and visualization tool without the need to download data and software. Despite many efforts for improving data access, a significant number of challenges remain, such as finding datasets and services for a specific research topic or project, especially for inexperienced users or users outside the remote sensing community. In this article, we list and describe major NASA satellite remote sensing and model datasets and services for tropical meteorology and climatology along with examples of using the data and services, so this may help users better utilize the information in their research and applications.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-07-01
    Description: The influence of the anchoring forces on the Freedericksz transition in twisted ferronematics simultaneously subjected to magnetic and laser fields is studied in this work. Using the elastic continuum theory and Gouchen model for molecular anchoring on the cell support plates, the critical field and the saturation field were calculated as a function of the laser intensity and anchoring strength for two types of ferronematics based on 5CB and CCN-37 liquid crystals.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-07-01
    Description: Data acquisition and an efficient processing method for hydrological model initialization, such as soil moisture and parameter value identification are critical for a physics-based distributed watershed modelling of flood and flood related disasters such as sediment and debris flow. Site measurements can provide accurate estimates of soil moisture, but such techniques are limited due to the number of physical sensors required to cover a large area effectively. Available satellite-based digital soil moisture data ranges from 9 km to 20 km in resolution which obscures the soil moisture details of a hill slope scale. This resolution limitation of available satellite-based distributed soil moisture data has impacted critical analysis of soil moisture resolution variance on physics-based distributed simulation results. Moreover, available satellite-based digital soil moisture data represents only a few centimeters of the top soil column and that would inform little about the effective root-zone wetness. A recently developed soil moisture estimation method called SERVES (Soil moisture Estimation of Root zone through Vegetation index-based Evapotranspiration fraction and Soil properties) overcomes this limitation of satellite-based soil moisture data by estimating distributed effective root zone soil moisture at 30 m resolution. In this study, a distributed watershed hydrological model of a sub-catchment of Reynolds Creek Experimental Watershed was developed with the GSSHA (Gridded Surface Sub-surface Hydrological Analysis) Model. SERVES soil moisture estimated at 30 m resolution was deployed in the watershed hydrological parameter value calibration and identification process. The 30 m resolution SERVES soil moisture data was resampled to 4500 m and 9000 m resolutions and was separately employed in the calibrated hydrological model to determine the soil moisture resolution effect on the model simulated outputs and the model parameter values. It was found that the simulated discharge is underestimated, infiltration rate/volume is overestimated and higher soil moisture state distribution is filtered out as the initial soil moisture resolution was coarsened. To compensate for this disparity in the simulated results, the soil saturated hydraulic conductivity value decreased with respect to the decreased resolutions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-07-01
    Description: Micro, small, and medium-sized enterprises (MSMEs) are an essential part of economies at the national, regional, and local levels. Understanding the determinants of the development of this sector is interesting not only for researchers but also for local governments to support the development of this sector. This paper analyses micro, small, and medium enterprises at the gmina (local) level in one region, the Kujawsko-Pomorskie voivodship (NUTS2) in Poland. The authors use multivariate linear regression, spatial econometrics, and classification trees to model the influence of different factors on the number of enterprises relative to population size. The authors found that the most crucial factor in all cases, independently of the method used, is the local government’s revenue from personal income tax per capita. This finding, together with the lack of significance of variables related to the distance to technological parks or economic zones, indicates that the enterprises in the region produce mainly for local consumption and lack innovativeness. The authors also examined the influence of spatial context on the number of enterprises. The most important factor seems to be the percentage of built-up areas, but there are also others, depending on the model type; again, this confirms the local character of the activity of micro, small, and medium enterprises in the region. Variables representing the spatial context can explain the relative number of enterprises with coefficient of determination (R2) between 0.30 and 0.45, which shows that this context played a relatively significant role in the development of the MSME sector in the region. On the other hand, the econometric models (that include the neighborhood) are only significant (improving R2) for medium enterprises, which means that medium enterprises expand their activity beyond the local range.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-07-01
    Description: The impact of aerosol spatio-temporal variability on the Arctic radiative budget is not fully constrained. This case study focuses on the intra-Arctic modification of long-range transported aerosol and its direct aerosol radiative effect (ARE). Different types of air-borne and ground-based remote sensing observations (from Lidar and sun-photometer) revealed a high tropospheric aerosol transport episode over two parts of the European Arctic in April 2018. By incorporating the derived aerosol optical and microphysical properties into a radiative transfer model, we assessed the ARE over the two locations. Our study displayed that even in neighboring Arctic upper tropospheric levels, aged aerosol was transformed due to the interplay of removal processes (nucleation scavenging and dry deposition) and alteration of the aerosol source regions (northeast Asia and north Europe). Along the intra-Arctic transport, the coarse aerosol mode was depleted and the visible wavelength Lidar ratio (LR) increased significantly (from 15 to 64–82 sr). However, the aerosol modifications were not reflected on the ARE. More specifically, the short-wave (SW) atmospheric column ARE amounted to +4.4 - +4.9 W m−2 over the ice-covered Fram Strait and +4.5 W m−2 over the snow-covered Ny-Ålesund. Over both locations, top-of-atmosphere (TOA) warming was accompanied by surface cooling. These similarities can be attributed to the predominant accumulation mode, which drives the SW radiative budget, as well as to the similar layer altitude, solar geometry, and surface albedo conditions over both locations. However, in the context of retreating sea ice, the ARE may change even along individual transport episodes due to the ice albedo feedback.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-07-01
    Description: This study aimed to understand which vegetation indices (VIs) are an ideal proxy for describing phenology and interannual variability of Gross Primary Productivity (GPP) in short-rotation coppice (SRC) plantations. Canopy structure- and chlorophyll-sensitive VIs derived from Sentinel-2 images were used to estimate the start and end of the growing season (SOS and EOS, respectively) during the period 2016–2018, for an SRC poplar (Populus spp.) plantation in Lochristi (Belgium). Three different filtering methods (Savitzky–Golay (SavGol), polynomial (Polyfit) and Harmonic Analysis of Time Series (HANTS)) and five SOS- and EOS threshold methods (first derivative function, 10% and 20% percentages and 10% and 20% percentiles) were applied to identify the optimal methods for the determination of phenophases. Our results showed that the MEdium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) had the best fit with GPP phenology, as derived from eddy covariance measurements, in identifying SOS- and EOS-dates. For SOS, the performance was only slightly better than for several other indices, whereas for EOS, MTCI performed markedly better. The relationship between SOS/EOS derived from GPP and VIs varied interannually. MTCI described best the seasonal pattern of the SRC plantation’s GPP (R2 = 0.52 when combining all three years). However, during the extreme dry year 2018, the Chlorophyll Red Edge Index performed slightly better in reproducing growing season GPP variability than MTCI (R2 = 0.59; R2 = 0.49, respectively). Regarding smoothing functions, Polyfit and HANTS methods showed the best (and very similar) performances. We further found that defining SOS as the date at which the 10% or 20% percentile occurred, yielded the best agreement between the VIs and the GPP; while for EOS the dates of the 10% percentile threshold came out as the best.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-07-01
    Description: High-resolution real-time satellite-based precipitation estimation datasets can play a more essential role in flood forecasting and risk analysis of infrastructures. This is particularly true for extended deserts or mountainous areas with sparse rain gauges like Iran. However, there are discrepancies between these satellite-based estimations and ground measurements, and it is necessary to apply adjustment methods to reduce systematic bias in these products. In this study, we apply a quantile mapping method with gauge information to reduce the systematic error of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). Due to the availability and quality of the ground-based measurements, we divide Iran into seven climate regions to increase the sample size for generating cumulative probability distributions within each region. The cumulative distribution functions (CDFs) are then employed with a quantile mapping 0.6° × 0.6° filter to adjust the values of PERSIANN-CCS. We use eight years (2009–2016) of historical data to calibrate our method, generating nonparametric cumulative distribution functions of ground-based measurements and satellite estimations for each climate region, as well as two years (2017–2018) of additional data to validate our approach. The results show that the bias correction approach improves PERSIANN-CCS data at aggregated to monthly, seasonal and annual scales for both the calibration and validation periods. The areal average of the annual bias and annual root mean square errors are reduced by 98% and 56% during the calibration and validation periods, respectively. Furthermore, the averages of the bias and root mean square error of the monthly time series decrease by 96% and 26% during the calibration and validation periods, respectively. There are some limitations in bias correction in the Southern region of the Caspian Sea because of shortcomings of the satellite-based products in recognizing orographic clouds.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-07-01
    Description: Collecting in situ observations from remote, high mountain rivers presents major challenges, yet real-time, high temporal resolution (e.g., daily) discharge data are critical for flood hazard mitigation and river management. In this study, we propose a method for estimating daily river discharge (RD) based on free, operational remote sensing precipitation data (Tropical Rainfall Measuring Mission (TRMM), since 2001). In this method, an exponential filter was implemented to produce a new precipitation time series from daily basin-averaged precipitation data to model the time lag of precipitation in supplying RD, and a linear-regression relationship was constructed between the filtered precipitation time series and observed discharge records. Because of different time lags in the wet season (rainfall-dominant) and dry season (snowfall-dominant), the precipitation data were processed in a segmented way (from June to October and from November to May). The method was evaluated at two hydrological gauging stations in the Upper Brahmaputra (UB) river basin, where Nash–Sutcliffe Efficiency (NSE) coefficients for Nuxia (〉0.85) and Yangcun (〉0.80) indicate good performance. By using the degree-day method to estimate the snowmelt and acquire the time series of new active precipitation (rainfall plus snowmelt) in the target basins, the discharge estimations were improved (NSE 〉 0.9 for Nuxia) compared to the original data. This makes the method applicable for most rivers on the Tibetan Plateau, which are fed mainly by precipitation (including snowfall) and are subject to limited human interference. The method also performs well for reanalysis precipitation data (Chinese Meteorological Forcing Dataset (CMFD), 1980–2000). The real-time or historical discharges can be derived from satellite precipitation data (or reanalysis data for earlier historical years) by using our method.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-08-30
    Description: Industrial nitrogen liquefaction cycles are based on the Collins topology but integrate variations. Several pressure levels with liquefaction to medium pressure and compressor–expander sets are common. The cycle must be designed aiming to minimise specific power consumption rather than to maximise liquid yield. For these reasons, conclusions of general studies cannot be extrapolated directly. This article calculates the optimal share of total compressed flow to be expanded in an industrial Collins-based cycle for nitrogen liquefaction. Simulations in Unisim Design R451 using Peng Robinson EOS for nitrogen resulted in 88% expanded flow, which is greater than the 75–80% for conventional Collins cycles with helium or other substances. Optimum specific compression work resulted 430.7 kWh/ton of liquid nitrogen. For some operating conditions, the relation between liquid yield and specific power consumption was counterintuitive: larger yield entailed larger consumption. Exergy analysis showed 40.3% exergy efficiency of the optimised process. The exergy destruction distribution and exergy flow across the cycle is provided. Approximately 40% of the 59.7% exergy destruction takes place in the cooling after compression. This exergy could be used for secondary applications such as industrial heating, energy storage or for lower temperature applications as heat conditioning.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-08-30
    Description: This paper develops a non-equilibrium thermodynamic approach to life, with particular regards to the membrane role. The Onsager phenomenological coefficients are introduced in order to point out the thermophysical properties of the cell systems. The fundamental role of the cell membrane electric potential is highlighted, in relation to ions and heat fluxes, pointing out the strictly relation between heat exchange and the membrane electric potential. A Seebeck-like and Peltier-like effects emerge in order to simplify the description of the heat and the ions fluxes. Life is described as a continuos transition between the Peltier-like effect to the Seebeck-like one, and viceversa.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-08-31
    Description: Liquid crystal polarization gratings are of great interest for optical communications as elements performing beam steering, splitting, multiplexing or beam combining. Material birefringence, cell thickness or a period of the liquid crystal director pattern influence, among other features, spectroscopic and electro-optical characteristics of fabricated devices, determining thus their functionality and applicability. Here, we report on liquid crystal polarization gratings that allow for complete maximization of the first-order diffraction efficiency (resulting in total elimination of the zeroth-order diffraction) for any wavelength of an incident beam from green to the near-infrared spectral region by applying a low electric voltage. The gratings with periods as small as 10 μm were obtained by holographic exposure of the cell substrates coated with light-sensitive azo polymer alignment layers, and then filled with three different liquid crystal mixtures. The influence of gold nanoparticle dopants in the liquid crystalline mixtures on spectroscopic and electro-optical properties of the devices is presented. Moreover, on the basis of the measured transmittance spectra of the fabricated gratings, the unknown birefringence of liquid crystal mixtures as well as their effective birefringence due to molecular reorientation in the electric field in the visible and near IR region were determined.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-08-31
    Description: The paper is focused on the idea of multi-fuel combustion in a large-scale circulating fluidized bed (CFB) boiler. The article discusses the concept of simultaneous coal and syngas combustion. A comprehensive three-dimensional computational fluid dynamics (CFD) model is developed, which allows us to describe complex phenomena that occur in the combustion chamber of the CFB boiler burning coal and syngas produced from coal sludge.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-08-31
    Description: Emotional and physical stress can cause various health problems. In this paper, we used tissue blood oxygen saturation (StO2), a newly proposed physiological signal, to classify the human stress. We firstly constructed a public StO2 database including 42 volunteers subjected to two types of stress. During the physical stress experiment, we observed that the facial StO2 right after the stress can be either increased or decreased comparing to the baseline. We investigated the StO2 feature combinations for the classification and found that the average StO2 values from left cheek, chin, and the middle of the eyebrow can provide the highest classification rate of 95.56%. Comparison with other stress classification method shows that StO2 based method can provide best classification performance with lowest feature dimension. These results suggest that facial StO2 can be used as a promising features to identify stress states, including emotional and physical stress.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-08-31
    Description: The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission with the MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) L-band radiometer provides global soil moisture (SM) data. SM data and products from remote sensing are relatively new, but they are providing significant observations for weather forecasting, water resources management, agriculture, land surface, and climate models assessment, etc. However, the accuracy of satellite measurements is still subject to error from the retrieval algorithms and vegetation cover. Therefore, the validation of satellite measurements is crucial to understand the quality of retrieval products. The objectives of this study, precisely framed within this mission, are (i) validation of the SMOS Level 1C Brightness Temperature (TBSMOS) products in comparison with simulated products from the L-MEB model (TBL-MEB) and (ii) validation of the SMOS Level 2 SM (SMSMOS) products against ground-based measurements at 10 significant Iranian agrometeorological stations. The validations were performed for the period of January 2012 to May 2015 over the Southwest and West of Iran. The results of the validation analysis showed an RMSE ranging between 9 to 13 K and a strong correlation (R = 0.61–0.84) between TBSMOS and TBL-MEB at all stations. The bias values (0.1 to 7.5 K) showed a slight overestimation for TBSMOS at most of the stations. The results of SMSMOS validation indicated a high agreement (RMSE = 0.046–0.079 m3 m−3 and R = 0.65–0.84) between the satellite SM and in situ measurements over all the stations. The findings of this research indicated that SMSMOS shows high accuracy and agreement with in situ measurements which validate its potential. Due to the limitation of SM measurements in Iran, the SMOS products can be used in different scientific and practical applications at different Iranian study areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-08-30
    Description: European satellite missions Sentinel-1 (S1) and Sentinel-2 (S2) provide at high spatial resolution and high revisit time, respectively, radar and optical images that support a wide range of Earth surface monitoring tasks, such as Land Use/Land Cover mapping. A long-standing challenge in the remote sensing community is about how to efficiently exploit multiple sources of information and leverage their complementarity, in order to obtain the most out of radar and optical data. In this work, we propose to deal with land cover mapping in an object-based image analysis (OBIA) setting via a deep learning framework designed to leverage the multi-source complementarity provided by radar and optical satellite image time series (SITS). The proposed architecture is based on an extension of Recurrent Neural Network (RNN) enriched via a modified attention mechanism capable to fit the specificity of SITS data. Our framework also integrates a pretraining strategy that allows to exploit specific domain knowledge, shaped as hierarchy over the set of land cover classes, to guide the model training. Thorough experimental evaluations, involving several competitive approaches were conducted on two study sites, namely the Reunion island and a part of the Senegalese groundnut basin. Classification results, 79% of global accuracy on the Reunion island and 90% on the Senegalese site, respectively, have demonstrated the suitability of the proposal.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-08-31
    Description: Spaceborne lidar (light detection and ranging) is a very promising tool for the optical properties of global atmosphere and ocean detection. Although some studies have shown spaceborne lidar’s potential in ocean application, there is no spaceborne lidar specifically designed for ocean studies at present. In order to investigate the detection mechanism of the spaceborne lidar and analyze its detection performance, a spaceborne oceanic lidar simulator is established based on the semianalytic Monte Carlo (MC) method. The basic principle, the main framework, and the preliminary results of the simulator are presented. The whole process of the laser emitting, transmitting, and receiving is executed by the simulator with specific atmosphere–ocean optical properties and lidar system parameters. It is the first spaceborne oceanic lidar simulator for both atmosphere and ocean. The abilities of this simulator to characterize the effect of multiple scattering on the lidar signals of different aerosols, clouds, and seawaters with different scattering phase functions are presented. Some of the results of this simulator are verified by the lidar equation. It is confirmed that the simulator is beneficial to study the principle of spaceborne oceanic lidar and it can help develop a high-precision retrieval algorithm for the inherent optical properties (IOPs) of seawater.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-07-16
    Description: A 5-year study evaluated the change in the quantity of soil total C (STC), soil organic C (SOC), and soil inorganic C (SIC) stored in the surface 60 cm of the soil profile on two adjacent blocks of land with a long-term history of cropping (CH) or undisturbed grassland (NH) on similar soil types between 1999 and 2004. The NH area was tilled and a grass-legume species mix was seeded into plots on both the NH and the CH areas. Selected plots of restored grass were established so they could be grazed (GG) by livestock while other plots were left ungrazed (UG). Original undisturbed (and ungrazed) grassland plots within the NH area were used as a control treatment. Initially, STC and SOC in CH were lower than NH when compared under the semi-arid environmental conditions found in southwestern North Dakota. Over the study period, the undisturbed grass control plots had increases in STC and SOC levels in the soil profile of 3.90 kg·m−2 and 3.34 kg·m−2, respectively. Restored grass on the NH area with grazing showed increases in STC and SOC values of 2.11 and 1.26 kg·m−2, respectively, while without grazing, profile STC and SOC had values of 3.80 and 3.28 kg·m−2, respectively. Restored grass on the CH area showed increases in profile STC and SOC values of 0.55 and 1.96 kg·m−2, respectively, for the grazed plots and 0.78 and 2.11 kg·m−2, respectively, when left ungrazed. Soil inorganic C, though present in the soils, did not significantly change during the study. The lower C accumulation in the CH plots may be due to a lag time in the establishment of mycorrhizal associations with the seeded species, the inoculums of which were already present in the NH soils. Changes in STC were likely due to changes in water relationships in the soil profile where management changes affected water infiltration and its movement causing leaching of SIC below the 60 cm depth evaluated. Soils under undisturbed grassland continue to accumulate carbon while soils of the disturbed grassland or cropped prior to re-establishing grass showed losses that occurred due to either accumulating C at a lower rate or perhaps to C loss during the initial establishment period (1–2 years).
    Electronic ISSN: 2571-8789
    Topics: Biology , Chemistry and Pharmacology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-07-16
    Description: Recently, different biomedical applications of aluminum oxide (Al2O3) and zinc oxide (ZnO) have been studied, and they have displayed good biocompatible behavior. For this reason, this study explores nanolaminates of [Al2O3/ZnO]n obtained by atomic layer deposition (ALD) on silicon (100) and 316L stainless steel substrates with different bilayer periods: n = 1, 2, 5, and 10. The intention is to correlate the structure, chemical bonds, morphology, and electrochemical properties of ZnO and Al2O3 single layers and [Al2O3/ZnO]n nanolaminates with their cytotoxic and biocompatibility behavior, to establish their viability for biomedical applications in implants based on the 316L SS substrate. These nanolaminates have been characterized by grazing incident X-ray diffraction (XRD), finding diffraction planes for wurtzite type structure from zincite. The chemical bonding and composition for both single layers were identified through X-ray photoelectron spectroscopy (XPS). The morphology and roughness were tested with atomic force microscopy (AFM), which showed a reduction in roughness and grain size with a bilayer period increase. The thickness of the samples was measured with scanning electron microscopy, and the results confirmed the value of ~210 nm for the nanolaminate samples. The electrochemical impedance spectroscopy analysis with Hank’s balanced salt solution (HBSS) evidenced an evolution of [Al2O3/ZnO]n/316L system corrosion resistance of around 95% in relation with the uncoated steel substrate as function of the increase in the bilayers number. To identify the biocompatibility behavior of these nanolaminate systems, the lactate dehydrogenase test was performed with Chinese hamster ovary (CHO) cells for a short system of life cell evaluation. This test shows the cytotoxicity of the multilayer compared to the single layers of Al2O3, ZnO, and 316L stainless steel. The lowest cytotoxicity was found in the single layers of ZnO, which leads to cell proliferation easier than Al2O3, obtaining better adhesion and anchoring to its surface.
    Electronic ISSN: 2073-4352
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-07-16
    Description: Human activity events are often recorded with their geographic locations and temporal stamps, which form spatial patterns of the events during individual time periods. Temporal attributes of these events help us understand the evolution of spatial processes over time. A challenge that researchers still face is that existing methods tend to treat all events as the same when evaluating the spatiotemporal pattern of events that have different properties. This article suggests a method for assessing the level of spatiotemporal clustering or spatiotemporal autocorrelation that may exist in a set of human activity events when they are associated with different categorical attributes. This method extends the Voronoi structure from 2D to 3D and integrates a sliding-window model as an approach to spatiotemporal tessellations of a space-time volume defined by a study area and time period. Furthermore, an index was developed to evaluate the partial spatiotemporal clustering level of one of the two event categories against the other category. The proposed method was applied to simulated data and a real-world dataset as a case study. Experimental results show that the method effectively measures the level of spatiotemporal clustering patterns among human activity events of multiple categories. The method can be applied to the analysis of large volumes of human activity events because of its computational efficiency.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-07-16
    Description: Advanced time series analysis and causality detection techniques have been successfully applied to the assessment of synchronization experiments in tokamaks, such as Edge Localized Modes (ELMs) and sawtooth pacing. Lag synchronization is a typical strategy for fusion plasma instability control by pace-making techniques. The major difficulty, in evaluating the efficiency of the pacing methods, is the coexistence of the causal effects with the periodic or quasi-periodic nature of the plasma instabilities. In the present work, a set of methods based on the image representation of time series, are investigated as tools for evaluating the efficiency of the pace-making techniques. The main options rely on the Gramian Angular Field (GAF), the Markov Transition Field (MTF), previously used for time series classification, and the Chaos Game Representation (CGR), employed for the visualization of large collections of long time series. The paper proposes an original variation of the Markov Transition Matrix, defined for a couple of time series. Additionally, a recently proposed method, based on the mapping of time series as cross-visibility networks and their representation as images, is included in this study. The performances of the method are evaluated on synthetic data and applied to JET measurements.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...