ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (84)
  • Latest Papers from Table of Contents or Articles in Press  (84)
  • Molecular Sequence Data  (84)
  • American Association for the Advancement of Science (AAAS)  (84)
  • American Chemical Society
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • Molecular Diversity Preservation International
  • Springer
  • Springer Nature
  • Wiley
  • Wiley-Blackwell
  • 2020-2022
  • 2010-2014
  • 2000-2004  (84)
  • 1990-1994
  • 1980-1984
  • 1975-1979
  • 1960-1964
  • 2000  (84)
  • Physics  (84)
  • Biology  (84)
  • Medicine  (84)
  • Technology
  • Process Engineering, Biotechnology, Nutrition Technology
Collection
  • Articles  (84)
Source
  • Latest Papers from Table of Contents or Articles in Press  (84)
Publisher
  • American Association for the Advancement of Science (AAAS)  (84)
  • American Chemical Society
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • +
Years
  • 2020-2022
  • 2010-2014
  • 2000-2004  (84)
  • 1990-1994
  • 1980-1984
  • +
Year
Topic
  • 1
    Publication Date: 2000-01-05
    Description: Phytochromes are a family of photoreceptors used by green plants to entrain their development to the light environment. The distribution of these chromoproteins has been expanded beyond photoautotrophs with the discovery of phytochrome-like proteins in the nonphotosynthetic eubacteria Deinococcus radiodurans and Pseudomonas aeruginosa. Like plant phytochromes, the D. radiodurans receptor covalently binds linear tetrapyrroles autocatalytically to generate a photochromic holoprotein. However, the attachment site is distinct, using a histidine to potentially form a Schiff base linkage. Sequence homology and mutational analysis suggest that D. radiodurans bacteriophytochrome functions as a light-regulated histidine kinase, which helps protect the bacterium from visible light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S J -- Vener, A V -- Vierstra, R D -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2517-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/chemistry/genetics/*metabolism ; Biliverdine/analogs & derivatives/metabolism ; Binding Sites ; Gram-Positive Cocci/genetics/*metabolism ; Histidine/metabolism ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Photoreceptors, Microbial/chemistry/genetics/*metabolism ; Phytochrome/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Pseudomonas aeruginosa/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-15
    Description: Mutation at the mouse progressive ankylosis (ank) locus causes a generalized, progressive form of arthritis accompanied by mineral deposition, formation of bony outgrowths, and joint destruction. Here, we show that the ank locus encodes a multipass transmembrane protein (ANK) that is expressed in joints and other tissues and controls pyrophosphate levels in cultured cells. A highly conserved gene is present in humans and other vertebrates. These results identify ANK-mediated control of pyrophosphate levels as a possible mechanism regulating tissue calcification and susceptibility to arthritis in higher animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, A M -- Johnson, M D -- Kingsley, D M -- 5T32GM07365/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 14;289(5477):265-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, CA 94305-5327, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10894769" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis/*genetics/metabolism/pathology ; Base Sequence ; Biological Transport ; COS Cells ; Calcinosis/*genetics ; Chromosome Mapping ; Cloning, Molecular ; Dna ; Diphosphates/*metabolism ; Durapatite/metabolism ; Gene Expression ; Genetic Complementation Test ; Humans ; Membrane Proteins/*genetics/metabolism/*physiology ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Phenotype ; Phosphate Transport Proteins ; Physical Chromosome Mapping ; Sequence Homology, Nucleic Acid ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-09-01
    Description: Activation of the transcription factor nuclear factor (NF)-kappaB by proinflammatory stimuli leads to increased expression of genes involved in inflammation. Activation of NF-kappaB requires the activity of an inhibitor of kappaB (IkappaB)-kinase (IKK) complex containing two kinases (IKKalpha and IKKbeta) and the regulatory protein NEMO (NF-kappaB essential modifier). An amino-terminal alpha-helical region of NEMO associated with a carboxyl-terminal segment of IKKalpha and IKKbeta that we term the NEMO-binding domain (NBD). A cell-permeable NBD peptide blocked association of NEMO with the IKK complex and inhibited cytokine-induced NF-kappaB activation and NF-kappaB-dependent gene expression. The peptide also ameliorated inflammatory responses in two experimental mouse models of acute inflammation. The NBD provides a target for the development of drugs that would block proinflammatory activation of the IKK complex without inhibiting basal NF-kappaB activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉May, M J -- D'Acquisto, F -- Madge, L A -- Glockner, J -- Pober, J S -- Ghosh, S -- AI 33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1550-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968790" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemistry/pharmacology ; COS Cells ; Cells, Cultured ; E-Selectin/biosynthesis/genetics ; Endothelium, Vascular/metabolism ; Gene Expression Regulation ; HeLa Cells ; Humans ; I-kappa B Kinase ; Inflammation/drug therapy ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; NF-kappa B/*metabolism ; Peptides/chemistry/*pharmacology ; Point Mutation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-03-04
    Description: The large chlorella virus PBCV-1, which contains double-stranded DNA (dsDNA), encodes a 94-codon open reading frame (ORF) that contains a motif resembling the signature sequence of the pore domain of potassium channel proteins. Phylogenetic analyses of the encoded protein, Kcv, indicate a previously unidentified type of potassium channel. The messenger RNA encoded by the ORF leads to functional expression of a potassium-selective conductance in Xenopus laevis oocytes. The channel blockers amantadine and barium, but not cesium, inhibit this conductance, in addition to virus plaque formation. Thus, PBCV-1 encodes the first known viral protein that functions as a potassium-selective channel and is essential in the virus life cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plugge, B -- Gazzarrini, S -- Nelson, M -- Cerana, R -- Van Etten, J L -- Derst, C -- DiFrancesco, D -- Moroni, A -- Thiel, G -- 971/Telethon/Italy -- GM32441/GM/NIGMS NIH HHS/ -- GM41333/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 3;287(5458):1641-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Albrecht-von-Haller-Institut fur Pflanzenwissenschaften, Universitat Gottingen, 37073 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10698737" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/pharmacology ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Barium/pharmacology ; Cesium/pharmacology ; Chlorella/virology ; Isoelectric Point ; Molecular Sequence Data ; Molecular Weight ; Oocytes ; Patch-Clamp Techniques ; Phycodnaviridae/chemistry/drug effects/*genetics/*physiology ; Potassium/metabolism ; Potassium Channels/*chemistry/genetics/*physiology ; RNA, Messenger/genetics/metabolism ; Recombinant Proteins/metabolism ; Sodium/metabolism ; Viral Plaque Assay ; *Viral Proteins ; Virus Replication/drug effects ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-10-20
    Description: Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, M -- Wang, L C -- Hymowitz, S G -- Schilbach, S -- Lee, J -- Goddard, A -- de Vos, A M -- Gao, W Q -- Dixit, V M -- New York, N.Y. -- Science. 2000 Oct 20;290(5491):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11039935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Cell Line ; DNA-Binding Proteins/metabolism ; Ectodermal Dysplasia/genetics ; Ectodysplasins ; Epidermis/embryology/*metabolism ; Humans ; *I-kappa B Proteins ; In Situ Hybridization ; Ligands ; Membrane Proteins/*chemistry/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Morphogenesis ; NF-kappa B/metabolism ; Phosphorylation ; Point Mutation ; Protein Conformation ; Proteins/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-03-10
    Description: The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tettelin, H -- Saunders, N J -- Heidelberg, J -- Jeffries, A C -- Nelson, K E -- Eisen, J A -- Ketchum, K A -- Hood, D W -- Peden, J F -- Dodson, R J -- Nelson, W C -- Gwinn, M L -- DeBoy, R -- Peterson, J D -- Hickey, E K -- Haft, D H -- Salzberg, S L -- White, O -- Fleischmann, R D -- Dougherty, B A -- Mason, T -- Ciecko, A -- Parksey, D S -- Blair, E -- Cittone, H -- Clark, E B -- Cotton, M D -- Utterback, T R -- Khouri, H -- Qin, H -- Vamathevan, J -- Gill, J -- Scarlato, V -- Masignani, V -- Pizza, M -- Grandi, G -- Sun, L -- Smith, H O -- Fraser, C M -- Moxon, E R -- Rappuoli, R -- Venter, J C -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1809-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710307" target="_blank"〉PubMed〈/a〉
    Keywords: Antigenic Variation ; Antigens, Bacterial/immunology ; Bacteremia/microbiology ; Bacterial Capsules/genetics ; Bacterial Proteins/genetics/physiology ; DNA Transposable Elements ; Evolution, Molecular ; Fimbriae, Bacterial/genetics ; *Genome, Bacterial ; Humans ; Meningitis, Meningococcal/microbiology ; Meningococcal Infections/microbiology ; Molecular Sequence Data ; Mutation ; Neisseria meningitidis/classification/*genetics/*pathogenicity/physiology ; Open Reading Frames ; Operon ; Phylogeny ; Recombination, Genetic ; *Sequence Analysis, DNA ; Serotyping ; Transformation, Bacterial ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-08-11
    Description: Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nissen, P -- Hansen, J -- Ban, N -- Moore, P B -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- GM54216/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):920-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937990" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallization ; Evolution, Molecular ; Haloarcula marismortui/chemistry/metabolism/ultrastructure ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligonucleotides/metabolism ; *Peptide Biosynthesis ; Peptides/metabolism ; Peptidyl Transferases/antagonists & inhibitors/chemistry/*metabolism ; Phosphates/chemistry/metabolism ; Protein Conformation ; Puromycin/metabolism ; RNA, Archaeal/chemistry/metabolism ; RNA, Catalytic/*chemistry/*metabolism ; RNA, Ribosomal, 23S/*chemistry/*metabolism ; RNA, Transfer/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-10
    Description: A Drosophila model for Huntington's and other polyglutamine diseases was used to screen for genetic factors modifying the degeneration caused by expression of polyglutamine in the eye. Among 7000 P-element insertions, several suppressor strains were isolated, two of which led to the discovery of the suppressor genes described here. The predicted product of one, dHDJ1, is homologous to human heat shock protein 40/HDJ1. That of the second, dTPR2, is homologous to the human tetratricopeptide repeat protein 2. Each of these molecules contains a chaperone-related J domain. Their suppression of polyglutamine toxicity was verified in transgenic flies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kazemi-Esfarjani, P -- Benzer, S -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1837-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA. parsa@its.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Cloning, Molecular ; Crosses, Genetic ; DNA Transposable Elements ; Disease Models, Animal ; *Drosophila Proteins ; Drosophila melanogaster/anatomy & histology/embryology/*genetics/metabolism ; Expressed Sequence Tags ; Eye/metabolism ; Eye Abnormalities ; Female ; Genes, Insect ; *Genes, Suppressor ; HSP40 Heat-Shock Proteins ; Heat-Shock Proteins/chemistry/*genetics/physiology ; Male ; Molecular Sequence Data ; *Nerve Degeneration ; Neurodegenerative Diseases ; Peptides/genetics/*metabolism ; Phenotype ; Proteins/chemistry ; Repetitive Sequences, Nucleic Acid ; Retina/metabolism ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-02-11
    Description: The nonclassical major histocompatibility complex (MHC) class I molecule HLA-E inhibits natural killer (NK) cell-mediated lysis by interacting with CD94/NKG2A receptors. Surface expression of HLA-E depends on binding of conserved peptides derived from MHC class I molecules. The same peptide is present in the leader sequence of the human cytomegalovirus (HCMV) glycoprotein UL40 (gpUL40). It is shown that, independently of the transporter associated with antigen processing, gpUL40 can up-regulate expression of HLA-E, which protects targets from NK cell lysis. While classical MHC class I molecules are down-regulated, HLA-E is up-regulated by HCMV. Induction of HLA-E surface expression by gpUL40 may represent an escape route for HCMV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomasec, P -- Braud, V M -- Rickards, C -- Powell, M B -- McSharry, B P -- Gadola, S -- Cerundolo, V -- Borysiewicz, L K -- McMichael, A J -- Wilkinson, G W -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1031.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Wales College of Medicine, Cardiff CF14 4XN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669413" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; *Antigens, CD ; Cell Line ; Cell Membrane/immunology ; Cells, Cultured ; Conserved Sequence ; Cytomegalovirus/genetics/immunology/*metabolism ; Cytotoxicity, Immunologic ; Down-Regulation ; HLA Antigens/immunology/*metabolism ; Histocompatibility Antigens Class I/immunology/*metabolism ; Humans ; Killer Cells, Natural/*immunology ; Molecular Sequence Data ; Open Reading Frames ; Protein Sorting Signals/chemistry/*metabolism ; Receptors, Immunologic/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection ; Up-Regulation ; Viral Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-04-25
    Description: Susceptibility to murine and human insulin-dependent diabetes mellitus correlates strongly with major histocompatibility complex (MHC) class II I-A or HLA-DQ alleles that lack an aspartic acid at position beta57. I-Ag7 lacks this aspartate and is the only class II allele expressed by the nonobese diabetic mouse. The crystal structure of I-Ag7 was determined at 2.6 angstrom resolution as a complex with a high-affinity peptide from the autoantigen glutamic acid decarboxylase (GAD) 65. I-Ag7 has a substantially wider peptide-binding groove around beta57, which accounts for distinct peptide preferences compared with other MHC class II alleles. Loss of Asp(beta57) leads to an oxyanion hole in I-Ag7 that can be filled by peptide carboxyl residues or, perhaps, through interaction with the T cell receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corper, A L -- Stratmann, T -- Apostolopoulos, V -- Scott, C A -- Garcia, K C -- Kang, A S -- Wilson, I A -- Teyton, L -- CA58896/CA/NCI NIH HHS/ -- DK55037/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):505-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10775108" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Crystallography, X-Ray ; Diabetes Mellitus, Type 1/*immunology ; Drosophila melanogaster ; *Genes, MHC Class II ; Glutamate Decarboxylase/metabolism ; Histocompatibility Antigens Class II/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Mice ; Mice, Inbred NOD ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...