ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles
  • Other Sources  (711)
  • NASA Technical Reports  (711)
  • iass_oai
  • Publication Database RIFS
  • Solar Physics  (711)
  • 1995-1999  (711)
  • 1
    Publication Date: 2010-03-15
    Description: The physical composition and intensities of solar particle event exposures or sensitive astronaut tissues are examined under conditions approximating an astronaut in deep space. Response functions for conversion of particle fluence into dose and dose equivalent averaged over organ tissue, are used to establish significant fluence levels and the expected dose and dose rates of the most important events from past observations. The BRYNTRN transport code is used to evaluate the local environment experienced by sensitive tissues and used to evaluate bioresponse models developed for use in tactical nuclear warfare. The present results will help to the biophysical aspects of such exposure in the assessment of RBE and dose rate effects and their impact on design of protection systems for the astronauts. The use of polymers as shielding material in place of an equal mass of aluminum would prowide a large safety factor without increasing the vehicle mass. This safety factor is sufficient to provide adequate protection if a factor of two larger event than has ever been observed in fact occurs during the mission.
    Keywords: Solar Physics
    Type: Radiation Measurements (ISSN 1350-4487); Volume 30; 361-382
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Observations from Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) are used to determine the nonthermal velocity in the corona for active and quiet Sun regions in 1991 and 1993. A nonthermal velocity of 20-30 km/s is obtained in all solar structures observed at both observing times. These observations can be used to constrain coronal heating models. The idea that magnetic reconnection could provide energy to heat the non-transient corona is not supported by the data.
    Keywords: Solar Physics
    Type: Yohkoh 8th Anniversary Symposium; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. They come from solar flares in the low corona, from shock waves driven outward by coronal mass ejections (CMEs), from planetary magnetospheres and bow shocks. They come from corotating interaction regions (CIRs) produced by high-speed streams in the solar wind, and from the heliospheric termination shock at the outer edge of the heliospheric cavity. We sample all these populations near Earth, but can distinguish them readily by their element and isotope abundances, ionization states, energy spectra, angular distributions and time behavior. Remote spacecraft have probed the spatial distributions of the particles and examined new sources in situ. Most acceleration sources can be "seen" only by direct observation of the particles; few photons are produced at these sites. Wave-particle interactions are an essential feature in acceleration sources and, for shock acceleration, new evidence of energetic-proton-generated waves has come from abundance variations and from local cross-field scattering. Element abundances often tell us the physics the source plasma itself, prior to acceleration. By comparing different populations, we learn more about the sources, and about the physics of acceleration and transport, than we can possibly learn from one source alone.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: We report the energy spectra and abundances of ions with atomic number, Z, in the interval Z is greater than or equal to 2 and Z is less than or equal to 36 and energies approximately 3-20 MeV/amu for solar and interplanetary quiet periods between 1994 November and 1998 April as measured by the large-geometry Low Energy Matrix Telescope (LEMT) telescope on the Wind spacecraft near Earth. The energy spectra show the presence of galactic (GCR) and "anomalous" cosmic ray (ACR) components, depending on the element. ACR components are reported for Mg and Si for the first time at 1 AU and the previous observation of S and Ar is confirmed. However, only GCR components are clearly apparent for the elements Ca, Ti, Cr, Fe, as well as for C. New limits are placed on a possible ACR contribution for other elements, including Kr.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: In the wealth of EUV spectroscopic and imaging data gathered by the SOHO and TRACE missions, a prominent role is played by the helium resonance emission. For example, He I lines are among the most intense features in CDS/NIS spectra, while the EIT 304 waveband (dominated by He II emission) is routinely employed to map the structure of the solar chromosphere and transition region. However, no 'standard' model has emerged so far that is able to interpret observed He spectra/images to a satisfactory degree of self-consistency. Recent research on the problem of the formation of the solar helium spectrum tends to rule out a dominant role of coronal radiation in exciting He resonance lines. However, while evidence for this result is strong, it is based on indirect tests. Here we present a preliminary assessment of this issue based on a more direct approach, which involves a measure with CDS/GIS of the photoionizing EUV radiation. This measure can be directly compared with the observed flux in the main He I and He II resonance lines observed with CDS/NIS2.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: Two periods of extremely large solar proton events (SPEs) occurred in the past thirty years, which forced significant long-term polar stratospheric changes. The August 2-10, 1972 and October 19-27, 1989 SPEs happened in stratospheres that were quite different chemically. The stratospheric chlorine levels were relatively small in 1972 (approximately 1.2 ppbv) and were fairly substantial in 1989 at about (approximately 3 ppbv). Although these SPEs produced both HO(x) and NO(y) constituents in the mesosphere and stratosphere, only the NO(y) constituents had lifetimes long enough to affect ozone for several months to years past the events. Our recently improved two-dimensional chemistry and transport atmospheric model was used to compute the effects of these gigantic SPEs in a changing stratosphere. Significant upper stratospheric ozone depletions 〉 10% are computed to last for a few months past these SPEs. The long-lived SPE-produced NO(y) constituents were transported to lower levels during winter after these huge SPEs and caused impacts in the middle and lower stratosphere. During periods of high halogen loading these impacts resulted in interference with the chlorine and bromine loss cycles for ozone destruction. The chemical state of the atmosphere, including the stratospheric sulfate aerosol density, substantially affected the predicted stratospheric influence of these extremely large SPEs.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-29
    Description: We present observational evidence of the effect of small scale ("microturbulent") velocities in enhancing the intensity of the He II lambda304 line with respect to other transition region emission lines, a process we call "velocity redistribution". We first show results from the 1991 and 1993 flights of SERTS (Solar EUV Rocket Telescope and Spectrograph). The spectral resolution of the SERTS instrument was sufficient to infer that, at the spatial resolution of 5", the line profile is nearly gaussian both in the quiet Sun and in active regions. We were then able to determine, for the quiet Sun, a lower limit for the amplitude of non-thermal motions in the region of formation of the 304 A line of the order of 10 km/s. We estimated that, in the presence of the steep temperature gradients of the solar Transition Region (TR), velocities of this magnitude can significantly enhance the intensity of that line, thus at least helping to bridge the gap between calculated and observed values. We also estimated the functional dependence of such an enhancement on the relevant parameters (non-thermal velocities, temperature gradient, and pressure). We then present results from a coordinated campaign, using SOHO/CDS and H-alpha spectroheliograms from Coimbra Observatory, aimed at determining the relationship between regions of enhanced helium emission and chromospheric velocity fields and transition region emission in the quiescent atmosphere. Using these data, we examined the behavior of the He II lambda304 line in the quiet Sun supergranular network and compared it with other TR lines, in particular with O III lambda600. We also examined the association of 304 A emission with the so-called "coarse dark mottle", chromospheric structures seen in H-alpha red wing images and associated with spicules. We found that all these observations are consistent with the velocity redistribution picture.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-23
    Description: We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the island. (3) The main-arch bright loops are likely to be heated via reconnection driven at the magnetic null over the island. The details of how and where (along the null line) the reconnection is driven determine which of the split-end loops are selected for strong heating. (4) The null does not appear to be directly involved in the heating of the sheared core fields or in the heating of an extended loop rooted in the island. Rather, these all appear to be heated by microflares in the sheared core field.
    Keywords: Solar Physics
    Type: Astrophysical Journal; Volume 528; 1004-1014
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-23
    Description: The imaging telescope on board the Transition Region and Coronal Explorer (TRACE) spacecraft observed the decaying transversal oscillations of a long [(130 +/- 6) x 10(exp 6) meters], thin [diameter (2.0 +/- 0.36) x 10(exp 6) meters], bright coronal loop in the 171 angstrom Fe-IX emission line. The oscillations were excited by a solar flare in the adjacent active region. The decay time of the oscillations is 12.1 +/- 6.7 minutes for an oscillation with a frequency 3.90 +/- 0.13 millihertz The coronal dissipation coefficient is estimated to be eight to nine orders of magnitude larger than the theoretically predicted classical value. The larger dissipation coefficient may solve existing difficulties with wave heating and reconnection theories.
    Keywords: Solar Physics
    Type: Science; Volume 285; 1-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-06-07
    Description: On century time scales, the variation in the total solar irradiance received by the earth is believed to be a major climate change driver. Therefore accurate and time stable measurements of the total solar irradiance are necessary. We present the latest contribution of the SOLar CONstant (SOLCON) instrument to these measurements, namely its measurements during the International Extreme Ultraviolet Hitchhiker (IEH) 3 space shuttle flight, and its results: the verification of the ageing of the Earth Radiation Budget Satellite (ERBS), and the measurement of the Space Absolute Radiometric Reference (SARR) adjustment coefficients for the Variability of solar IRradiance and Gravity Oscillations (VIRGO) radiometers.
    Keywords: Solar Physics
    Type: 1999 Shuttle Small Payloads Symposium; 275-283; NASA/CP-1999-209476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-08
    Description: Observations of X-ray and extreme ultraviolet (EUV) emissions from comet C/Hyakutake 1996 B2 made by the Rontgen X-ray satellite (ROSAT) and the Extreme Ultraviolet Explorer (EUVE) revealed a total X-ray luminosity of about 500 MW.
    Keywords: Solar Physics
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-08
    Keywords: Solar Physics
    Type: American Geophysical Union Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-08
    Description: Radio occultation and white-light measurements have shown that the solar corona comprises three distinction morphological regions in path-integrated density: streamer, quiet Sun, and polar coronal hole.
    Keywords: Solar Physics
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-05
    Description: In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.
    Keywords: Solar Physics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-05
    Description: Modeling solar cell performance for a specific radiation environment to obtain the end-of-life photovoltaic array performance has become both increasingly important and, with the rapid advent of new types of cell technology, more difficult. For large constellations of satellites, a few percent difference in the lifetime prediction can have an enormous economic impact. The tool described here automates the assessment of solar array on-orbit end-of-life performance and assists in the development and design of ground test protocols for different solar cell designs. Once established, these protocols can be used to calculate on-orbit end-of-life performance from ground test results. The Solar Array Verification Analysis Tool (SAVANT) utilizes the radiation environment from the Environment Work Bench (EWB) model developed by the NASA Lewis Research Center s Photovoltaic and Space Environmental Effects Branch in conjunction with Maxwell Technologies. It then modifies and combines this information with the displacement damage model proposed by Summers et al. (ref. 1) of the Naval Research Laboratory to determine solar cell performance during the course of a given mission. The resulting predictions can then be compared with flight data. The Environment WorkBench (ref. 2) uses the NASA AE8 (electron) and AP8 (proton) models of the radiation belts to calculate the trapped radiation flux. These fluxes are integrated over the defined spacecraft orbit for the duration of the mission to obtain the total omnidirectional fluence spectra. Components such as the solar cell coverglass, adhesive, and antireflective coatings can slow and attenuate the particle fluence reaching the solar cell. In SAVANT, a continuous slowing down approximation is used to model this effect.
    Keywords: Solar Physics
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Genesis is the NASA Discovery 5 mission to solar wind return samples to the Earth for analyses in terrestrial laboratories. This will significantly increase our knowledge of the chemical and isotopic composition of the solar system.
    Keywords: Solar Physics
    Type: European Geophysical Society; Hague; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-08
    Keywords: Solar Physics
    Type: American Geophysical Union; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: The concept of the heliosphere as a quasi-spherical cavity in the surrounding interstellar medium (ISM) has a history at least as long as that of an extended solar corona and solar wind.
    Keywords: Solar Physics
    Type: Proceedings of the International School of Physics Enrico Fermi Lecture II|International School of Physics Enrico Fermi Lecture II; Varenna; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: This seminar is the first of two on the sun and heliosphere. It adresses the sun, solar wind and magnetic field with emphasis on recent observations by the Ulysses mission.
    Keywords: Solar Physics
    Type: International School of Physics Enrico FERMI; Varenna; Italy|Proceedings of the International School of Physics Enrico FERMI
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: We review some of the new NASA/ESA Ulysses solar wind microscale results.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-08
    Keywords: Solar Physics
    Type: AGU Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: In this talk a proposal to use the Faraday rotation of the linear polarized radio signals to determine the magnetic field of the solar corona will be discussed.
    Keywords: Solar Physics
    Type: Structure and Dynamics of the Solar Corona; Moscow; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Solar Physics
    Type: The European Geophysical Society 24th General Assembly Symposium; The Hague; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-27
    Description: With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for plasma spectral modeling codes. These codes are to interpret data from stellar coronae, galaxies and clusters of galaxies. supernova remnants and other astrophysical sources, but they have been called into question in recent years as problems with understanding moderate resolution ASCA and EUVE data have arisen. The Emission Line Project is a collaborative effort to improve the models, with Phase 1 being the comparison of models with observed spectra of Capella, Procyon, and HR, 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent to which common simplifying assumptions (coronal equilibrium, time-independence, negligible optical depth) apply. We will discuss recent advances in our understanding of stellar coronae in this context.
    Keywords: Solar Physics
    Type: Astrophysical Plasmas: Codes, Models and Observations; 24-30 Oct. 199999; Mexico City, Mexico; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: If a disturbance in the supersonic solar wind reaches the heliospheric shock, a number of events ensue. First, the shock itself responds with inward or outward motion. Secondly, the disturbance propagates outward through the heliosheath as a sound or magnetoacoustic wave; eventually it reaches the heliopause and is (partially) reflected back toward the termination shock. The reflected wave can return to the shock, affecting the shock's motion, and be reflected yet again. The repetition of these processes can produce a 'ringing' in the heliosheath. This suggests that it may be useful to regard the heliosheath as a resonant acoustic cavity with inner and outer boundaries at the termination shock and heliopause, respectively. To evaluate this concept we have developed a simple model of small-amplitude resonant oscillations in an outwardly flowing gas, with appropriate boundary conditions (shock on the interior, tangential discontinuity on the exterior boundary). The fundamental mode of oscillation has a period of order T approx. 2D/C, where C is the speed of sound in the heliosheath and D is the distance between the two boundaries. Typical numerical models of the heliosphere give C approx. 200-500 km/s and D approx. 20 - 100 AU, giving T approx. 0.5 - 2.5 years. Hence we suggest that motions of the heliosheath and termination shock will occur with time scales of the order of a year, and are the consequence of the resonant nature of the heliospheric cavity rather than the history of variation at the Sun and/or in the solar wind. In particular, we suggest that the motion of the termination shock may be unrelated to solar variations over the time scale of the sunspot cycle.
    Keywords: Solar Physics
    Type: Progress in Cosmic Gay Dynamics; Sep 13, 1999 - Sep 17, 1999; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: During this past school year, the Smithsonian Predoctoral student, Jorge Sanz-Forcada, began work on this Ph.D. thesis research which will focus on the coronal structure of active cool binary stars. He developed a semi-automatic algorithm to derive the emission measure distribution from EUVE spectra using the latest atomic parameters. To date, he has modeled our long EUVE pointing on lambda And that occurred in the fall of 1998, and has reduced and modeled spectra from EUVE pointings on AR Lac and UX Ari. Some of these observations were made simultaneous with the Advanced Satellite for Cosmology and Physics (ASCA) satellite, and the results reported at the HEAD meeting in Spring 1999.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Flow speeds derived in recent years from chromospheric/transition region and coronal observations suggest that the solar wind acceleration process might start at heights in the solar atmosphere much lower than previously imagined. The goal of the proposed investigation was to study atmospheric outflows in coronal hole regions from the chromosphere into the corona using observational and theoretical approaches. In addition to outflows, other plasma properties such as electron densities, and electron and ion temperatures were also included in the study. To investigate these plasma properties in the inner corona is important as they play a crucial role in placing limits on possible coronal heating and solar wind acceleration mechanisms.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: In this report we comment on the relationship between the Lyman alpha and Calcium K-line emission from the Sun. We firstly examine resolved Lyman alpha images (from TRACE) and resolved K-line images. We find that the Lyman alpha emission is consistent with a linear dependence on the K-line emission. As this is in conflict with the analysis of Johannesson et al.(1995, 1998) we proceed by comparing the disk integrated Lyman alpha flux as a function of ratio between the disk integrated Mg II core and wing fluxes (Johannesson et al (1998) having previously found a linear dependence between this index and the BBSO K-line index). We find that a reasonably good fit can be obtained, however note the discrepancies which lead Johannesson et al to consider the square root relationship. We suggest an alternative interpretation of the discrepancy.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Key EUVE and ASCA data have been retrieved from their respective archives. New software has been written in the IDL language to carry out data analysis and to interface with the relevant atomic physics databases. During the analysis of ASCA spectra, it was found that the abundances of elements other than Fe could not be constrained very well, and Fe abundances were not constrained unless the underlying emission measure distribution model was reasonably well-determined. Consequently, the study has concentrated on the quantity Fe/H. A method has been developed as a means of deriving Fe/H based on fitting the continuum to EUVE spectra, thereby using the Fe lines to determine the Fe abundance. A Monte Carlo Markov Chain algorithm was also developed to determine the emission measure distribution based on observed spectral lines. This is the first application of this type of monte carlo approach to this scientific problem. This work has resulted in three scientific publications, one of which published, one of which is now ready for submission and the other of which is still in preparation:
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: We have analyzed the coronal dimmings for seven fast (〉 600 km/s) coronal mass ejections (CMEs) occurring between 23 April and 9 May which were associated with flares from NOAA active region (AR) 8210. These dimming regions were identified by their strong depletion in coronal emission within a half hour of the estimated time of CME lift-off. They included areas which were as dark as quiescent coronal holes as well as other regions with weaker brightness depletions. We found that the extended dimming areas in these events generally mapped out the apparent "footprint" of the CME. In two of the seven cases, a pair of dimmings were more or less symmetrically positioned north and south of the flare site. In the five remaining cases, the dimmings were most prominent to the north of AR 8210 (approximately S15 latitude) and extended well north of the solar equator, consistent with the locations of the CMEs. We discuss the implications of these results for the sigmoid/double dimming/flux rope model of CMEs.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-17
    Description: We introduce two quantitative measures of the global nonpotentiality of predominantly bipolar active regions and explore their usefulness as indicators of whether an active region is likely to produce coronal mass ejections. The two measures, length of strong-field strong-shear main neutral line (L (sub ss)) and global net current (I (sub N)), are obtained directly from vector magnetograms of the regions. From Marshall Space Flight Center vector magnetograms and Yohkoh Soft X-ray Telescope coronal X-ray images of four active regions, we find that (1) L (sub ss) and I (sub N) are each a useful indicator of an active region's likely CME (Coronal Mass Ejections) productivity, (2) L (sub ss) and I (sub N) may be more reliable predictors of the CME productivity of active regions than is the presence or absence of sigmoidal structure in X-ray images of the regions, and (3) L (sub ss) and I (sub N) may have threshold values above which CME production is likely and below which CME production is unlikely.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-17
    Description: Intensities of the Extreme-ultraviolet (EUV) spectral lines were measured as a function of radius off the solar limb by two flights of the Goddard's Solar Extreme-ultraviolet Rocket Telescope and Spectrograph (SERTS) for three quiet sun regions. Density scale heights were determined for the different spectral lines. Limits on the filling factor were determined. In the one case where an upper limit was determined it was much less than unity. Coronal heating above 1.15 solar radii is required for all three regions studied. For reasonable filling factors, local heating is needed.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-17
    Description: We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstancial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is "cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.
    Keywords: Solar Physics
    Type: May 30, 1999 - Jun 03, 1999; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-17
    Description: A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.
    Keywords: Solar Physics
    Type: Jun 02, 1999; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: We currently lack a comprehensive model for the solar dynamo which might be used for predicting solar cycle activity levels. We can, nonetheless, predict these activity levels with some skill using a variety of techniques based on correlations between activity indicators at different times. A number of the techniques currently in use for predicting solar activity on a solar cycle time-scale have been tested with historical data. Some techniques, e.g., regression and curve fitting, work well as solar activity approaches maximum and provide a month by month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but only provide an estimate of the amplitude of the next cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. The combination of two uncorrelated geomagnetic precursor techniques provides a more accurate prediction for the amplitude of a solar activity cycle of a time well before activity minimum. A mathematical function dependent on the time of cycle initiation and the cycle amplitude can then be used to describe the level of solar activity month by month for the next cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between previous activity levels and this function. The success of the geomagnetic precursors in predicting the amplitude of the next solar cycle supports the idea of extended solar cycle in which the activity cycles overlap. While the current cycle is producing sunspots and active regions in the Sun's equatorial regions the next cycle is already actively influencing the geomagnetic field, The precise nature and source of this influence remains unclear.
    Keywords: Solar Physics
    Type: Dec 15, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-17
    Description: In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.
    Keywords: Solar Physics
    Type: Dec 13, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Solar flares and coronal mass ejection's (CMES) can strongly affect the local environment at the Earth. A major challenge for solar physics is to understand the physical mechanisms responsible for the onset of solar flares. Flares, characterized by a sudden release of energy (approx. 10(exp 32) ergs for the largest events) within the solar atmosphere, result in the acceleration of electrons, protons, and heavier ions as well as the production of electromagnetic radiation from hard X-rays to km radio waves (wavelengths approx. = 10(exp -9) cm to 10(exp 6) cm). Observations suggest that solar flares and sunspots are strongly linked. For example, a study of data from 1956-1969, reveals that approx. 93 percent of major flares originate in active regions with spots. Furthermore, the global structure of the sunspot magnetic field can be correlated with flare activity. This talk will review what we know about flare causes and effects and will discuss techniques for quantifying parameters, which may lead to a prediction of solar flares.
    Keywords: Solar Physics
    Type: Jan 27, 1999; Memphis, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Photometric data have been analyzed and searched for events of flaring and other variability. Some flaring has been detected, though probably not at a level that will hinder our continuing spectral analysis. X-ray diagnostics for the very hot coronal emission measure are under investigation in order to determine whether or not the very hot coronal plasma contributes significantly to the observed X-ray flux in the (EUV) Extreme Ultraviolet Radiation. The key test of the MAD syndrome lies in whether or not the coronal lines indicate a depletion in metals in the corona relative to the underlying photosphere.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-17
    Description: In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop-aligned magnetic field component B(sub z) at the footpoints, but is correlated with the azimuthal field B(sub phi) = Bz(RDelta Phi/L) of a twisted loop, and is thus consistent with heating mechanisms based on field-aligned currents.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-17
    Description: Building upon the numerous successes of the pre-solar maximum International Solar Terrestrial Physics (ISTP) mission, the ISTP Solar Maximum Mission is expected to produce new insights into global flow of energy, momentum, and mass, from the Sun, through the heliosphere, into the magnetosphere and to their final deposition in the terrestrial upper atmosphere/ionosphere system. Of particular interest is the determination of the geo-effectiveness of solar events, principally Coronal Mass Ejections (CMEs). Given the expected increased frequency and strength of CMEs during the Solar Maximum period, a major advance in our understanding of nature of the coupling of CMEs to the magnetosphere-ionosphere-atmosphere system is expected. The roles during this time of the various ISTP assets will be discussed. These assets will include the SOHO, Wind, Polar, and Geotail spacecraft, the ground-based observing networks and the theory tools.
    Keywords: Solar Physics
    Type: May 24, 1999 - May 28, 1999; Reykjavik; Iceland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-17
    Description: We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal heating in the active region via a staccato of magnetic microexplosions, (2) the microflares at the feet of the extended loop behave as the flares at the feet of flaring arches in that more coronal heating is driven within the active bipole than in the extended loop, (3) the filling factor of the X-ray plasma in the core field microflares and in the extended loop is approximately 0.1, and (4) to release enough magnetic energy for a typical microflare (10^27 - 10^28 erg), a microflaring strand of sheared core field need expand and/or untwist by only a few percent at most. Finally, we point out that (1) the field configurations for strong coronal heating in our example active region (i.e., neutral-line core fields, many embedded in the feet of extended loops) are present in abundance in the magnetic network in quiet regions and coronal holes, and (2) it is known that many network bipoles do microflare and that many produce detectable coronal heating. We therefore propose that exploding sheared core fields are the drivers of most of the heating and dynamics of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to the multitude of fine-scale explosive events in the magnetic network. The low-lysing exploding core fields in the network drive microflares, spicules, global coronal heating, and ,consequently, the solar wind.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-17
    Description: The identification of the emission line feature at 17.62 Angstroms in solar x-ray spectra is re-examined. Using a Monte Carlo technique, we compute a realistic theoretical upper limit to the observed Fe L-alpha photospheric fluorescent line strength caused by irradiation from an overlying corona. These calculations demonstrate that the photospheric Fe L-alpha characteristic line is much too weak to account for the observed 17.62 Angstrom line flux. Instead, we identify this line with the configuration interaction 2s2p3p2P-2s2p6 2S transition in Fe XVIII seen in Electron Beam Ion Trap spectra and predicted in earlier theoretical work on the Fe XVIII x-ray spectrum.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-17
    Description: A global intensification of the aurora was observed by the Ultraviolet Imager on the NASA Polar spacecraft in conjunction with the arrival of the sheath from a solar coronal mass ejection. The aurora was first observed to brighten on the dayside and then the intensification progressed rapidly toward the nightside. During this time the IMP-8 spacecraft in the solar wind recorded a 35-minute period of increased solar wind dynamic pressure. A small substorm (or, possibly pseudobreakup) occurred within a minute of the arrival of the auroral intensification on the nightside in conjunction with a second peak in the dynamic pressure. We propose that the intensification of the aurora can be explained on the basis of the compression of the magnetopause and the generation of hydrodynamic waves by the rapid increase in the solar wind dynamic pressure. It is also evident that the substorm was triggered by waves, generated by a second rise in the dynamic pressure, that propagated to flux tubes connected to the premidnight aurora region.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-17
    Description: The spectral evolution of flare emission may be characterized using color-color diagrams (CCDs), a technique which has been widely employed by the astrophysics community, but not yet by the solar flare community. CCDs are constructed for a sample of flares observed simultaneously by CGRO/BATSE and Yohkoh/HXT. It is found that flare spectral evolution follows one of only a few patterns, which generally evolve differently than the soft-hard-soft pattern put forth as the norm in previous work. The implications for the nature of flare energy release and acceleration/propagation models are discussed
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-17
    Description: A number of techniques for predicting solar activity on a solar cycle time scale are identified, described, and tested with historical data. Some techniques, e.g. regression and curve-fitting, work well as solar activity approaches maximum and provide a complete description of future activity, while others, e.g. geomagnetic precursors, work well near solar minimum but only provide an estimate of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides the most accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This Combined Precursor Method gives a smoothed sunspot number maximum of 154+/-21 at the 95% level of confidence for the next cycle maximum. A mathematical function dependent upon the time of cycle initiation and the cycle amplitude then describes the level of solar activity for the next complete cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between previous activity levels and this function. This Combined Solar Cycle Activity Forecast gives, as of January 1999, a smoothed sunspot maximum of 146+/-20 at the 95% level of confidence for the next cycle maximum. The success of the geomagnetic precursors in predicting future solar activity suggests that solar magnetic phenomena at latitudes above the sunspot activity belts are linked to solar activity which occurs many years later in the lower latitudes.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-17
    Description: We find that small (10-200 rP) magnetic decreases comprise a dominant part of the polar solar wind microstructure at Ulysses distances (2.2 AU). These magnetic field dips are almost always bounded by tangential discontinuities, a feature which is not well understood at this time. Hundreds of these events have been examined in detail and a variety of types have been found. These will be described. It is speculated that these structures have been generated by perpendicular heating of ions closer to the Sun and have then been convected to distances of Ulysses. Such structures may be very important for the rapid cross- field diffusion of ions in the polar regions of the heliosphere.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: In a previous publication [Can. J. Phys. 75, 11 (1997)] we calculated the generalized polarizabilities up to multipole order 3 as well as certain higher-order hyperpolarizabilities for two-electron atoms and ions of Z=2-6 and 10. In this paper we apply some of these results to calculate excited-state energies in three times ionized (lithium-like) carbon. For states with angular momentum L greater than or equal to 3 accurate results are obtained using an asymptotic polarizability expansion that includes nonadiabatic effects. Comparison is made with recent optical measurements, and a critical discussion of the correct form of the expansion is given. In addition, the possibility of very accurate measurements of the fine-structure splitting encourages us to present a table of such splittings to very high accuracy. An appendix contains similar results for lithium-like oxygen and neon ions.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-27
    Description: The interplanetary magnetic field (IMF) carried past the Earth by the solar wind has long been known to be the principal quantity that controls geomagnetic storms and substorms. Intervals of strong southward IMF with durations of at least a significant fraction of a day produce storms, while more typical, shorter intervals of less-intense southward fields produce substorms. The strong, long-duration southward fields are generally associated with coronal mass ejections and magnetic clouds or else they are produced by interplanetary dynamics initiated by fast solar wind flows that compress preexisting southward fields. Smaller, short-duration southward fields that occur on most days are related to long period waves, turbulence, or random variations in the IMF. Southward IMF enhances dayside reconnection between the IMF and the Earth's dipole with the reconnected field lines supplementing open field lines of the geomagnetic tail and producing an expanded polar cap and increased tail energy. Although the frequent storage of solar wind energy and its release during substorms is the most common mode of solar wind/magnetosphere interaction, under certain circumstances, steady southward IMF seems to produce intervals of relatively steady magnetosphere convection without substorms. During these latter times, the inner magnetosphere remains in a stressed tail-like state while the more distant magnetotail has larger northward field and more dipolar-like field lines. Recent evidence suggests that enhanced magnetosphere particle densities associated with enhanced solar wind densities allow more particles to be accelerated for the ring current, thus creating larger storms.
    Keywords: Solar Physics
    Type: Spring 1999; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-17
    Description: The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to deriving reliable coronal magnetograms. With lessons learned and high quality data obtained during the past year, coronal magnetography will be successfully pursued under my new SOHO GI program.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-17
    Description: The microwave enhancement in coronal holes in comparison with the quiet Sun is a distinct and easily observed signature related to the magnetic activity. This has proven to be a new tool to study the solar atmospheric layer where the fast solar wind originates. We have developed a catalog of a large number of coronal holes using images obtained by SOHO's Extreme-ultraviolet Imaging Telescope in EUV and by the Nobeyama radioheliograph in microwaves. We also have high resolution longitudinal magnetograms obtained by SOHO's Michelson Doppler Imager. We present the statistical properties of the microwave enhancements and discuss the small-scale dynamics as revealed by the magnetograms and radioheliograms. We also discuss the geoeffectiveness of these coronal holes.
    Keywords: Solar Physics
    Type: Cyclical Evolution of Solar Magnetic Fields: Advances in Theory and Observations; Dec 13, 1999 - Dec 16, 1999; Kodaikanal; India
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-17
    Description: We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].
    Keywords: Solar Physics
    Type: Paper-1998JA900086 , Journal of Geophysical Research (ISSN 0148-0227); 104; A3; 4697-4708
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-15
    Description: This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 R(sub E), in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most part, in the context of the ISSI project.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: We have developed a steady state, 2D semi-empirical MHD model of the solar corona and the solar wind with many surprising results. This model for the first time shows, that the boundary between the fast and the slow solar wind as observed by Ulysses beyond 1 AU, is established in the low corona. The fastest wind observed by Ulysses (680-780 km/s) originates from the polar coronal holes at 70 -90 deg. latitude at the Sun. Rapidly diverging magnetic field geometry accounts for the fast wind reaching down to a latitude of +/- 30 deg. at the orbit of Earth. The gradual increase in the fast wind observed by Ulysses, with latitude, can be explained by an increasing field strength towards the poles, which causes Alfven wave energy flux to increase towards the poles. Empirically, there is a direct relationship between this gradual increase in wind speed and the expansion factor, f, computed at r greater than 20%. This relationship is inverse if f is computed very close to the Sun.
    Keywords: Solar Physics
    Type: Paper-1999GL010662 , Geophysical Research Letters (ISSN 0094-8276); 26; 19; 2901-2904
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: We have developed a two-dimensional semiempirical MHD model of the solar corona and solar wind. The model uses empirically derived electron density profiles from white-light coronagraph data measured during the Skylub period and an empirically derived model of the magnetic field which is fitted to observed streamer topologies, which also come from the white-light coronagraph data The electron density model comes from that developed by Guhathakurta and coworkers. The electron density model is extended into interplanetary space by using electron densities derived from the Ulysses plasma instrument. The model also requires an estimate of the solar wind velocity as a function of heliographic latitude and radial component of the magnetic field at 1 AU, both of which can be provided by the Ulysses spacecraft. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, effective temperature T(sub eff), and effective heat flux q(sub eff), which are derived from the equations of conservation of mass, momentum, and energy, respectively. The term effective indicates that wave contributions could be present. The model naturally provides the spiral pattern of the magnetic field far from the Sun and an estimate of the large-scale surface magnetic field at the Sun, which we estimate to be approx. 12 - 15 G. The magnetic field model shows that the large-scale surface magnetic field is dominated by an octupole term. The model is a steady state calculation which makes the assumption of azimuthal symmetry and solves the various conservation equations in the rotating frame of the Sun. The conservation equations are integrated along the magnetic field direction in the rotating frame of the Sun, thus providing a nearly self-consistent calculation of the fluid parameters. The model makes a minimum number of assumptions about the physics of the solar corona and solar wind and should provide a very accurate empirical description of the solar corona and solar wind Once estimates of mass density rho, flow velocity V, effective temperature T(sub eff), effective heat flux q(sub eff), and magnetic field B are computed from the model and waves are assumed unimportant, all other plasma parameters such as Mach number, Alfven speed, gyrofrequency, etc. can be derived as a function of radial distance and latitude from the Sun. The model can be used as a planning tool for such missions as Slar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind The model will be used to construct a semiempirical MHD description of the steady state solar corona and solar wind using the SOHO Large Angle Spectrometric Coronagraph (LASCO) polarized brightness white-light coronagraph data, SOHO Extreme Ultraviolet Imaging Telescope data, and Ulysses plasma data.
    Keywords: Solar Physics
    Type: Astrophysical Journal; 523; 812-826
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: There are now strong associations between the (3)He-rich, Fe-rich ions in "impulsive" solar energetic particle (SEP) events and the similar abundances derived from gamma-ray lines from flares. Compact flares, where wave energy can predominate, are ideal sites for the study of wave-particle physics. Yet there are nagging questions about the magnetic geometry, the relation between ions that escape and those that interact, and the relative roles of cascading Alfven waves and the EMIC waves required to enhance He-3. There are also questions about the relative timing of ion and electron acceleration and of heating; these relate to the variation of ionization states before and during acceleration and during transport out of the corona. We can construct a model that addresses many of these issues, but problems do remain. Our greatest lack is realistic theoretical simulations of element abundances, spectra, and their variations. By contrast, we now have a much better idea of the acceleration at CME-driven shock waves in the rare but large "gradual" SEP events, largely because of their slow temporal evolution and great spatial extent.
    Keywords: Solar Physics
    Type: High Energy Solar Physics: Anticipating HESSI; Oct 18, 1999 - Oct 20, 1999; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Our work on detecting and cataloging solar microflares using an automated method is illustrated in the accompanying figure. The figure represents the solar microflare distribution during the period of April 1991 to November 1992, the height of solar activity after the launch of The Compton Gamma Ray Observatory (CGRO). It also shows the distribution extending below the distribution obtained at Goddard Space Flight Center (GSFC) by manual means. We have implemented significant refinements in the search algorithm. The algorithm in its simplest form searches for transient events and based upon the distribution of the signal among the different Burst and Transient Source Experiment (BATSE) detectors, we can assign it to be of solar origin if the signal distribution conforms to what one expects from a burst or transient from that direction. One of the major problems in the earlier effort was to search for microflares and large flares simultaneously. The requirement for a dynamic range of almost 10 (exp 4) resulted in ambiguous identifications at the low side of the distribution. We have since restricted the search to events with peak count rates under 2000 s (exp -1). Larger events are easily identified in the manual search, so we have chosen not to duplicate that work. The second problem was that missing counts existed below channel 0 in the Burst and Transient Source Experiment Large Area Detector data (BATSE LAD). These have been recovered and are now included in the search process. This provides data below 20 keV, and as we get closer to the thermal part of the spectrum, it provides greater sensitivity. The third problem was that too many BATSE detector were used in the search. Detectors with pointing directions far from the Sun, although detecting the event, had poorly known responses. Detectors greater than approximately 60 deg. off the Sun are no longer included in the search process. By reducing the systematic errors with the large off-axis detectors we can conduct more rigorous statistical tests of a candidate event to ascertain whether it originated from the solar direction. We have reprocessed the period in the early mission that covers solar maximum and constructed the microflare distribution shown in the figure. The results of the automated search start to deviate from the manual search results below about 1000 s (exp -1). Not only do we now have this distribution but we have a database of solar microflares that was used to construct the distribution. This database contains the signal at higher energy channels as well as that in channel zero (and below). From this one can, using software at GSFC, construct a photon spectrum for some of the larger microflares. It can also be used in other solar studies, especially those that correlate the X-ray flux with emission at other wavelengths. With some additional effort we hope to integrate this database into the corresponding one residing at the Solar Data Analysis Center at GSFC. The entire CGRO mission's data can now be reprocessed to obtain the microflare distribution at all phases of the solar cycle. This work is in progress. The results of this work will be presented in forthcoming scientific workshops and conferences.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: This investigation is concerned with the large-scale evolution and topology of Coronal Mass Ejections (CMEs) in the solar wind. During this reporting period we have analyzed a series of low density intervals in the ACE (Advanced Composition Explorer) plasma data set that bear many similarities to CMEs. We have begun a series of 3D, MHD (Magnetohydrodynamics) coronal models to probe potential causes of these events. We also edited two manuscripts concerning the properties of CMEs in the solar wind. One was re-submitted to the Journal of Geophysical Research.
    Keywords: Solar Physics
    Type: Rept-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: This paper presents a final report on Data Reduction and Analysis from The SOHO Spacecraft from November 1, 1996-October 31, 1999. The topics include: 1) Instrumentation; 2) Health of Instrument; 3) Solar Wind Web Page; 3) Data Analysis; and 4) Science. This paper also includes appendices describing routine SOHO (Solar and Heliospheric Observatory) tasks, SOHO Science Procedures in the UMTOF (University Mass Determining Time-of-Flight) System, SOHO Programs on UMTOF and a list of publications.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Recently, Ahluwalia reviewed the solar and geomagnetic data for the last 6 decades and remarked that these data "indicate the existence of a three-solar-activity-cycle quasiperiodicity in them." Furthermore, on the basis of this inferred quasiperiodicity, he asserted that cycle 23 represents the initial cycle in a new three-cycle string, implying that it "will be more modest (a la cycle 17) with an annual mean sunspot number count of 119.3 +/- 30 at the maximum", a prediction that is considerably below the consensus prediction of 160 +/- 30 by Joselin et al. and of similar predictions by others based on a variety of predictive techniques. Several major sticking points of Ahluwalia's presentation, however, must be readdressed, and these issues form the basis of this comment. First, Ahluwalia appears to have based his analysis on a data set of Ap index values that is erroneous. For example, he depicts for the interval of 1932-1997 the variation of the Ap index in terms of annual averages, contrasting them against annual averages of sunspot number (SSN), and he lists for cycles 17-23 the minimum and maximum value of each, as well as the years in which they occur and a quantity which he calls "Amplitude" (defined as the numeric difference between the maximum and minimum values). In particular, he identifies the minimum Ap index (i.e., the minimum value of the Ap index in the vicinity of sunspot cycle minimum, which usually occurs in the year following sunspot minimum and which will be called hereafter, simply, Ap min) and the year in which it occur for cycles 17 - 23 respectively.
    Keywords: Solar Physics
    Type: Paper-1998JA900074 , Journal of Geophysical Research (ISSN 0148-0227); 104; A2; 2555-2558
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: The results of spectral modeling of the data for a series of RXTE observations and four ASCA observations of GRO J1655-40 are presented. The thermal Comptonization model is used instead of the power-law model for the hard component of the two-component continuum spectra. The previously reported dramatic variations of the apparent inner disk radius of GRO J1655-40 during its outburst may be due to the inverse Compton scattering in the hot corona. A procedure is developed for making the radiative transfer correction to the fitting parameters from RXTE data and a more stable inner disk radius is obtained. A practical process of determining the color correction (hardening) factor from observational data is proposed and applied to the four ASCA observations of GRO J1655-40. We found that the color correction factor may vary significantly between different observations and the finally corrected physical inner disk radius remains reasonably stable over a large range of luminosity and spectral states.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: The long high-latitude sampling of Ulysses provides the opportunity to study fine structures. At latitudes poleward of about -60 degrees the solar wind had fluctuations in velocity gradients which were attributed to "microstreams." The data also suggested fluctuations characterized by magnetic plus thermal pressure balance structures ('PBS'). At higher frequencies, MHD turbulence was observed and found to be less evolved than it is in the ecliptic but essentially independent of heliographic latitude. It is argued here that microstreams, PBS, and MHD turbulence could all be the remnants of mixing due to shear instabilities associated with plumes and other filamentary structures ("jets") in coronal holes. To show this, we simulate a plume-like jet in the presence of an ambient magnetic field. We find that the presence of the ambient field reduces the growth rate of the instability, but the shear between a jet and its ambient still becomes unstable to the MHD Kelvin-Helmholtz instability when the shear speed is larger than the largest local magnetosonic speed, a condition probably satisfied for plumes.
    Keywords: Solar Physics
    Type: Paper-1999JA900041 , Journal of Geophysical Research; 104; A7; 14,781-14,787
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Total solar irradiance (TSI), normalized to the mean earth-sun distance, is analyzed to assess long-term solar variability which may affect climate. TSI data sets are reviewed primarily from the 1984-1999 Earth Radiation Budgets Satellite (ERBS), 1978-1993 Nimbus7, 1980-1989 Solar Maximum Mission (SMM), 19911998 Upper Atmospheric Research Satellite (UARS), and 1996-1998 Solar and Heliospheric Observatory (SOHO)/ Variability of solar IRradiance and Gravity Oscillations (VIRGO) Spacecraft missions. The data sets indicate that 1365 W/sq m [Watts per meter square] is the most likely TSI amplitude at minimum solar magnetic activity as indicated by minimum sunspot numbers. The TSI long-term variability component was found to vary with a period of approximately 10 years and with an amplitude of 2 W/sq m. An empirical TSI fit model, based upon 10.7-cm solar radio fluxes and prompt photometric sunspot indices, was used to characterize TSI variability. Comparisons among TSI measurements and empirical fit trends are reviewed as well as inconsistencies among current spacecraft TSI data set trends. The 1996-1998, SOHO/VIRGO measurement indicate stronger TSI increasing trends than those suggested by the corresponding ERBS and UARS measurement and by the empirical model fit. 1978-1999 TSI data sets are analyzed to identify the probable existence of another long-term TSI variability component.
    Keywords: Solar Physics
    Type: Atmospheric Radiation; Jun 28, 1999 - Jul 02, 1999; Madison, WI; United States|10th Conference on Atmospheric Radiation; 284-287
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. This information is, however, not easy to extract from the in situ observations. The goal of the proposal was to determine solar wind models and coronal observations that are necessary tools for the interpretation of charge state observations. It has been shown that the interpretation of the in situ ion fractions are heavily dependent on the assumptions about conditions in the inner corona.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: We report on observations of the solar atmosphere in several extreme-ultraviolet and far-ultraviolet bandpasses obtained by the Multi-Spectral Solar Telescope Array, a rocket-borne spectroheliograph, on flights in 1987, 1991, and 1994, spanning the last solar maximum. Quiet-Sun emission observed in the 171-175 Angstrom bandpass, which includes lines of O v, O VI, Fe IX, and Fe X, has been analyzed to test models of the temperatures and geometries of the structures responsible for this emission. Analyses of intensity variations above the solar limb reveal scale heights consistent with a quiet-Sun plasma temperature of 500,000 less than or equal to T (sub e) less than or equal to 800,000 K. The structures responsible for the quiet-Sun EUV emission are modeled as small quasi-static loops. We submit our models to several tests. We compare the emission our models would produce in the bandpass of our telescope to the emission we have observed. We find that the emission predicted by loop models with maximum temperatures between 700,000 and 900,000 K are consistent with our observations. We also compare the absolute flux predicted by our models in a typical upper transition region line to the flux measured by previous observers. Finally, we present a preliminary comparison of the predictions of our models with diagnostic spectral line ratios from previous observers. Intensity modulations in the quiet Sun are observed to occur on a scale comparable to the supergranular scale. We discuss the implications that a distribution of loops of the type we model here would have for heating the local network at the loops' footpoints.
    Keywords: Solar Physics
    Type: Astrophysical Journal; 524; 1105-1121
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: This NASA grant supported my RXTE observing and data analysis during AO2. The research involved a 100 kilosecond observation of the active RS CVn binary sigma(sup 2) CrB obtained on 1997 March 11-13. This observation covered two orbits of the binary (2.5 days elapsed time) as part of a coordinated satellite and ground-based study of coronal structure and flaring within this system. Simultaneous data was obtained from the ASCA X-ray satellite and the Very Large Array radio telescope. The one month of effort funded for the PI was used to calibrate and analyze the RXTE data. Additional research effort on this project to lead to a final publication has been provided from LTSA and GSRP grants. An initial attempt was made to calibrate the RXTE data in May 1997 but the results were disappointing with poor background subtraction leading to a relatively noisy PCA light curve. Subsequently major improvements have been made in the calibration techniques for low count rate PCA data and we returned to Goddard Space Flight Center in February 1999 when we were able to produce vastly better calibrated data. The RXTE results are currently being integrated with the ASCA and VLA data and a paper should be submitted by the end of summer 1999.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: A number of techniques currently in use for predicting solar activity on a solar cycle timescale are tested with historical data. Some techniques, e.g., regression and curve fitting, work well as solar activity approaches maximum and provide a month-by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but only provide an estimate of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides a more accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This combined precursor method gives a smoothed sunspot number maximum of 154 plus or minus 21 at the 95% level of confidence for the next cycle maximum. A mathematical function dependent on the time of cycle initiation and the cycle amplitude is used to describe the level of solar activity month by month for the next cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between previous activity levels and this function. This Combined Solar Cycle Activity Forecast gives, as of January 1999, a smoothed sunspot maximum of 146 plus or minus 20 at the 95% level of confidence for the next cycle maximum.
    Keywords: Solar Physics
    Type: Paper-1999JA900313 , Journal of Geophysical Research; 104; A10; 22,375-22,388
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-10
    Description: Proton data from the GOES 6 and 7 satellites and heavy ion data from the IMP-8 satellite have been compared to the expected results of Nymmik's new model for solar particle event fluences. This model calculates the energy spectra of Ions for protons through nickel for solar particle events, based upon the observed proton integral fluence above 30 MeV. Based upon 27 observed proton events of solar cycle 22, and three large historical events, with integral fluences above 30 MeV of greater than 106 particles/cm2, a reasonable agreement with model predictions is seen for more than half of the events. However, several events show a marked departure from the model predictions, leading to the conclusion that there may exist more than a single class of event, or that it may be necessary to include additional parameters within the model, such as solar disk position of the source flare, or height of disturbance in the solar corona. Data for heavy Ions, (oxygen and iron), were limited to a total of six solar particle events, of which only two occurred in solar cycle 22. The agreement between data and the model predictions appeared to be quite good, however this agreement was sensitively dependent upon the value taken for the proton fluence above 30 MeV.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-10
    Description: This paper uses white-light measurements made by the SOHO LASCO coronagraph and HAO Mauna Loa Mk III K-coronameter to illustrate the new view of solar wind structure deduced originally from radio occultation measurements. It is shown that the density profile closest to the Sun at 1.15 Ro, representing the imprint of the Sun, is carried essentially radially into interplanetary space by small-scale raylike structures that permeate the solar corona and which have only been observed by radio occultation measurements. The only exception is the small volume of interplanetary space occupied by the heliospheric plasma sheet that evolves from coronal streamers within a few solar radii of the Sun. The radial preservation of the density profile also implies that a significant fraction of field lines which extend into interplanetary space originate from the quiet Sun, and are indistinguishable in character from those emanating from polar coronal holes. The white-light measurements dispel the long-held belief that the boundaries of polar coronal holes diverge significantly, and further support the view originally proposed that the fast solar wind originates from the quiet Sun as well as polar coronal holes.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: The report concerns work on detecting and cataloging solar microflares using an automated. An accompanying figure represents the solar microflare distribution during the period of April 1991 to November 1992, the height of solar activity after the launch of CGRO. It also shows the distribution extending below the distribution obtained at GSFC by manual means. We have implemented significant refinements in the search algorithm. The algorithm in its simplest form searches for transient events and based upon the distribution of the signal among the different BATSE detectors, we can assign it to be of solar origin if the signal distribution conforms to what one expects from a burst or transient from that direction. One of the major problems in an earlier effort was to search for microflares and large flares simultaneously. The requirement for a dynamic range of almost 10(exp 4) resulted in ambiguous identifications at the low side of the distribution. We have since restricted the search to events with peak count rates under 2000/s. Larger events are easily identified in the manual search, so we have chosen not to duplicate that work. The second problem was that missing counts existed below channel 0 in the BATSE Large Area Detector (LAD) data. These have been recovered and are now included in the search process. This provides data below 20 keV, and as we get closer to the thermal part of the spectrum, it provides greater sensitivity. The third problem was that too many BATSE detectors were used in the search. Detectors with pointing directions far from the Sun, although detecting the event, had poorly known responses. Detectors greater than approximately 60 degrees off the Sun are no longer included in the search process. By reducing the systematic errors with the large off-axis detectors we can conduct more rigorous statistical tests of a candidate event to ascertain whether it originated from the solar direction. We have reprocessed the period in the early mission that covers solar maximum and constructed the microflare distribution shown in the figure. The results of the automated search start to deviate from the manual search results below about 1000/s. Not only do we now have this distribution but we have a database of solar microflares that was used to construct the distribution. This database contains the signal at higher energy channels as well as that in channel zero (and below). From this one can, using software at GSFC, construct a photon spectrum for some of the larger microflares. It can also be used in other solar studies, especially those that correlate the X-ray flux with emission at other wavelengths. With some additional effort we hope to integrate this database into the corresponding one residing at the Solar Data Analysis Center at GSFC. The entire CGRO mission's data can now be reprocessed to obtain the microflare distribution at all phases of the solar cycle. This work is in progress. The results of this work will be presented in forthcoming scientific workshops and conferences.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-10
    Description: Co-rotating interaction regions (CIRs) and their associated shock pairs are dominant structures in the solar wind between the heliocentric distances of 2 and 8 AU. At larger heliocentric distances, these structures undergo a qualitative change. Shocks decay to a point where they are often difficult to detect, and may have little influence on the dynamics of the solar wind. Interaction regions spread and merge, though they appear to retain their identity to surprisingly large distances from the Sun. Solar wind and IMF data from the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were used to conduct a comprehensive survey of CIRs and their successors between heliocentric distances of 1 and 55 AU over the last two solar cycles. The structure of the solar wind varied in a consistent fashion with heliocentric distance. Similar structures were observed at similar heliocentric distances by all three spacecraft during different portions of the solar cycle.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-10
    Description: Estimates of solar normal mode frequencies from helioseismic observations can be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra from the time series, then using wavelet denoising of the log spectra. MTSA leads to a power spectrum estimate with reduced variance and better leakage properties than the conventional periodogram. Under the assumption of stationarity and mild regularity conditions, the log multitaper spectrum has a statistical distribution that is approximately Gaussian, so wavelet denoising is asymptotically an optimal method to reduce the noise in the estimated spectra. We find that a single m-upsilon spectrum benefits greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself can be used to improve m-averaged spectra. We compare estimates using two different 5-taper estimates (Stepian and sine tapers) and the periodogram estimate, for GONG time series at selected angular degrees l. We compare those three spectra with and without wavelet-denoising, both visually, and in terms of the mode parameters estimated from the pre-processed spectra using the GONG peak-fitting algorithm. The two multitaper estimates give equivalent results. The number of modes fitted well by the GONG algorithm is 20% to 60% larger (depending on l and the temporal frequency) when applied to the multitaper estimates than when applied to the periodogram. The estimated mode parameters (frequency, amplitude and width) are comparable for the three power spectrum estimates, except for modes with very small mode widths (a few frequency bins), where the multitaper spectra broadened the modest compared with the periodogram. We tested the influence of the number of tapers used and found that narrow modes at low n values are broadened to the extent that they can no longer be fit if the number of tapers is too large. For helioseismic time series of this length and temporal resolution, the optimal number of tapers is less than 10.
    Keywords: Solar Physics
    Type: NOAO-Preprint-833
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-10
    Description: We compare the initial behavior of Fe/O and He/H abundance ratios and their relationship to the evolution of the proton energy spectra in "small" and "large" gradual solar energetic particle (SEP) events. The results are qualitatively consistent with the behavior predicted by the theory of Ng et al. (1999a, b). He/H ratios that initially rise with time are a signature of scattering by non-Kolmogorov Alfven wave spectra generated by intense beams of shock-accelerated protons streaming outward in large gradual SEP events.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-10
    Description: Near-photospheric flow fields on the Sun are deduced using two independent methods applied to the same time series of velocity images observed by SOI-MDI on SOHO. Differences in travel times between f modes entering and leaving each pixel measured using time-distance helioseismology are used to determine sites of supergranular outflows. Alternatively, correlation tracking analysis of mesogranular scales of motion applied to the same time series is used to deduce the near-surface flow field. These two approaches provide the means to assess the patterns and evolution of horizontal flows on supergranular scales even near disk center, which is not feasible with direct line-of-sight Doppler measurements. We find that the locations of the supergranular outflows seen in flow fields generated from correlation tracking coincide well with the locations of the outflows determined from the time-distance analysis, with a mean correlation coefficient after smoothing of bar-r(sub s) = 0.840. Near-surface velocity field measurements can used to study the evolution of the supergranular network, as merging and splitting events are observed to occur in these images. The data consist of one 2048-minute time series of high-resolution (0.6" pixels) line-of-sight velocity images taken by MDI on 1997 January 16-18 at a cadence of one minute.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-10
    Description: We search for a solar cycle variation in mode widths and amplitudes derived from 3-month GONG time series. The variation of mode width and amplitude observed in GONG data are the combined effects of fill factor, temporal variation, and measurement uncertainties. The largest variation is caused by the fill factor resulting in modes with increased width and reduced amplitude when fill is lower. We assume that the solar cycle variation is the only other systematic variation beside the temporal window function effect. We correct all currently available data sets for the fill factor and simultaneously derive the solar cycle variation. We find an increase of about 3% on average in mode width from the previous minimum to Oct. 1998 and a decrease of about 7% and 6% in mode amplitude and mode area (width x amplitude). We find no l dependence of the solar-cycle changes. As a function of frequency, these changes show a maximum between 2.7 and 3.3 mHz with about 47% higher than average values for mode width and about 29% and 36% higher ones for mode amplitude and area. We estimate the significance of these rather small changes by a pre-whitening method and find that the results are significant at or above the 99.9% level with mode area showing the highest level of significance and mode width the lowest. The variation in background amplitude is most likely not significant and is consistent with a zero change.
    Keywords: Solar Physics
    Type: NOAO-Preprint-860
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-10
    Description: Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.
    Keywords: Solar Physics
    Type: ; 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-10
    Description: The objective of this research project was to use high resolution spectroscopic observations from the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) instrument on SOHO (Solar and Heliospheric Observatory) to study the structure of the solar transition region. Our main focus in this grant was to study the variation in density and emission across the quiet Sun transition region.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-10
    Description: The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.
    Keywords: Solar Physics
    Type: NASA/TP-1999-209369 , L-17780 , NAS 1.60:209369
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-10
    Description: Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.
    Keywords: Solar Physics
    Type: NASA/CR-1999-209254 , NAS 1.26:209254 , M-918
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-10
    Description: We propose a next generation Extreme-ultraviolet Imaging Spectrometer (EIS) that for the first time combines high spectral, spatial, and temporal resolution in a single solar spectroscopic instrument. The instrument consists of a multilayer-coated off-axis telescope mirror and a multilayer-coated grating spectrometer. The telescope mirror forms solar images on the spectrometer entrance slit assembly. The spectrometer forms stigmatic spectra of the solar region located at the slit. This region is selected by the articulated telescope mirror. Monochromatic images are obtained either by rastering the solar region across a narrow entrance slit, or by using a very wide slit (called a slot) in place of the slit. Monochromatic images of the region centered on the slot are obtained in a single exposure. Half of each optic is coated to maximize reflectance at 195 Angstroms; the other half to maximize reflectance at 270 Angstroms. The two Extreme Ultraviolet (EUV) wavelength bands have been selected to maximize spectral and dynamical and plasma diagnostic capabilities. Spectral lines are observed that are formed over a temperature range from about 0.1 MK to about 20 MK. The main EIS instrument characteristics are: wavelength bands - 180 to 204 Angstroms; 250 to 290 Angstroms; spectral resolution - 0.0223 Angstroms/pixel (34.3km/s at 195 Angstroms and 23.6 km/s at 284 Angstroms); slit dimensions - 4 slits, two currently specified dimensions are 1" x 1024" and 50" x 1024" (the slot); largest spatial field of view in a single exposure - 50" x 1024"; highest time resolution for active region velocity studies - 4.4 s.
    Keywords: Solar Physics
    Type: AO-98-OSS-05 , Rept-866MA-001
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-10
    Description: A novel imaging solar aureole radiometer, which can obtain absolute radiometric measurements of the solar aureole when operated on an unstable platform is described. A CCD array is used to image the aureole, while a neutral density occulter on a long pole blocks the direct solar radiation. This ensures accurate direction registration as the sun appears in acquired images, and the total circumsolar region is measured simultaneously. The imaging nature of this instrument along with a special triggering device permit acquisition of the circumsolar sky radiance within 7.5 degrees of the center of the solar disk, and within 1 degree of the edge of the solar disk. This innovation makes possible for the first time, reliable and accurate radiometric measurements of the solar aureole from unstable mobile platforms such as ships. This allows determination small angle atmospheric scattering. The instrument has been used in field studies of atmospheric aerosols and will be used in satellite validation and calibration campaigns.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The objective of this project is to study the structure of heated and flaring atmospheric models, including the corona, chromosphere, and photosphere, by means of both theoretical modeling and data analysis.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-17
    Description: observations of photospheric magnetic fields made with vector magnetographs have been used recently to study solar helicity. In this paper we indicate what can and cannot be derived from vector magnetograms, and point out some potential problems in these data that could affect the calculations of 'helicity'. Among these problems are magnetic saturation, Faraday rotation, low spectral resolution, and the method of resolving the ambiguity in the azimuth.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-17
    Description: We have engaged in detailed multi-wavelength analysis of the March 26, 1991, solar flare in order to develop a method of diagnostics of the physical processes responsible for the efficient acceleration of charged particles to high energies and also for diagnostics of the photospheric response to the injection of the accelerated particles. Consideration of this particular flare is of special interest because to date it is the only flare in which the gamma-ray emission with energies of 20-1000 MeV was registered throughout the entire development of the event in the optical, radio and soft x-ray bands. individual registration by the GAMMA-1 telescope of the energy and precise time for each registered gamma-ray photon allowed the maximum detailed investigation of the energy spectrum and flux evolution during the flare.
    Keywords: Solar Physics
    Type: High Energy Solar Physics: Anticipating HESSI; Oct 18, 1999 - Oct 20, 1999; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-17
    Description: In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple sunspot observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the sunspot's field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-17
    Description: Flow tubes adjacent to closed magnetic field lines on the boundaries of streamers can have extremely large geometric spreading factors. Numerical models in this thin layer are subject to grid definition uncertainties. Therefore, we compute flow tube geometry using the analytic model of streamer structure described by Pneuman. This model has been found to be more widely applicable than commonly believed as a consequence of observations made with SOHO/UVCS and YOKHOH/SXT. We use the model to compute the radial dependence of flow tube geometry (the "spreading factors") for several different streamer models. The results are used to analyze the hypothesis that extremely slow flows in these open flow tubes may cause high densities relative to adjacent coronal hole flow. Such high density could mean that the streamer brightness boundary is defined by the open flow tubes adjacent to streamers rather than closed field lines.
    Keywords: Solar Physics
    Type: European Solar Physics; Sep 01, 1999; Florence; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-17
    Description: Variations in the top-of-atmosphere reflected solar radiation flux, and in the factors that determine its value, are among the most important diagnostic indicators of changes in Earth's energy balance. Data from the MISR (Multi-angle Imaging SpectroRadiometer), MODIS (Moderate-resolution Imaging Spectroradiometer), SAGE-3 (Stratospheric Aerosol and Gas Experiment), and CERES (Clouds and Earth's Radiant Energy System), all of which are spacecraft instruments scheduled for launch in 1999, will each constrain pieces of the RSRF budget. Prior to launch, we are performing studies to determine the sensitivity of these instruments to key factors that influence the cloud-free RSRF: aerosol optical depth, aerosol scattering properties, and surface visible bidirectional reflectance distribution function (BRDF). We are also assessing the ability of the aggregate of instruments to constrain the overall RSRF budget under natural conditions over the globe. Consider the MISR retrieval of aerosols: according to simulations over cloud-free, calm ocean, for pure particles with natural ranges of optical depth, particle size, and indices of refraction, MISR can retrieve column aerosol optical depth for all but the darkest particles, to an uncertainty of at most 0.05 or 20%, whichever is larger, even if the particle properties are poorly known. For one common particle type, soot, constraints on the optical depth over dark ocean are very poor. The simulated measurements also allow us to distinguish spherical from non-spherical particles, to separate two to four compositional groups based on indices of refraction, and to identify three to four distinct size groups between 0. 1 and 2.0 microns characteristic radius at most latitudes. Based on these results, we expect to distinguish air masses containing different aerosol types, routinely and globally, with multiangle remote sensing data. Such results far exceed current satellite aerosol retrieval capabilities, which provide only total optical depth for assumed particle properties; the new information will complement in situ data, which give details about aerosol size and composition locally. In addition, our team is using climatologies that reflect the constraints each instrument is expected to provide, along with ERBE (Earth Radiation Budget Experiment) data and a radiative transfer code, to study overall sensitivity to RSRF, helping us prepare for similar studies with new data from the EOS-era instruments.
    Keywords: Solar Physics
    Type: Climate Variability Program; 25; JPL-Publ-99-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-17
    Description: Coronal X-ray and EUV synthesized images are constructed of Active Region 8227 (May-June 1996) and are compared with Yohkoh/SXT, SOHO/EIT, and TRACE observations. Using the rendering technique of Gary (1997) and Alexander, Gary, and Thompson (1998), specific geometric and physical models are used to integrated the plasma emission along the line of sight to obtain a rendered image. The specific instrumental profiles are convolved in the integration process as well as specific heating functions. We analyze coronal X-ray and EUV structures by constructing synthesized image and comparison with observations provide test of specific physical models. We investigate how different pressure distributions within the active region loop system affect the emission characteristics and compare the various results with coronal observations. We investigate how the different heating functions in the active region are reflected in the effect of overall structure of the region. Specific heating rates are tested.
    Keywords: Solar Physics
    Type: May 30, 1999 - Jun 03, 1999; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-17
    Description: We (Peter Cheeseman of NASA Ames/Caelum Research) & Jose Luis Alvarellos of the SJSU Physics Department/SJSU Foundation.) have carried out a numerical simulation of a plasma with characteristics similar to those found in the core of the Sun. Particular emphasis is placed on the Coulomb interaction between the ions and electrons, which could result in a relative velocity distribution different from the Maxwell-Boltzmann (MB) distribution generally assumed for a plasma. The fact that the distribution may not exactly follow the MB distribution could have very important consequences for a variety of problems in solar physics, especially the neutrino problem. Very briefly. the neutrino problem is that the observed neutrino detections from the Sun are smaller than what the standard solar theory predicts. In Section 1 we introduce the problem and in section 2 we discuss the approach to try to solve the problem: i.e., a molecular dynamics approach. In section 3 we provide details about the integration method, and any simplifications that can be applied to the problem. In section 4 (the core of this report) we state our results, first for the specific case of 1000 particles and then for other cases with different number of particles. In section 5 we summarize our findings and state our conclusions. Sections 6 and 7 provide the list of figures, reference material and acknowledgments respectively.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-15
    Description: The final flight of the Atmospheric Trace Molecule Spectroscopy experiment as part of the Atmospheric na Laboratory for Applications and Science (ATLAS-3) Space Shuttle mission in 1994 provided a new opportunity to measure broadband 625-4800/ cm, 2.1 - 16 micron infrared solar spectra at an unapodized resolution of 0.0l/ cm from space. The majority of the observations were obtained as exoatmospheric, of near Sun center, absorption spectra, which were later ratioed to grazing atmospheric measurements to compute the atmospheric transmission of the Earth's atmosphere and analyzed for vertical profiles of minor and trace gases. Relative to the SPACELAB-3 mission that produced 4800 high Sun spectra (which were averaged into four grand average spectra), the ATLAS-3 mission produced some 40,000 high Sun spectra (which have been similarly averaged) with an improvement in signal-to-noise ratio of a factor of 3-4 in the spectral region between 1000 and 4800/ cm. A brief description of the spectral calibration and spectral quality is given as well as the location of electronic archives of these spectra.
    Keywords: Solar Physics
    Type: Applied Optics (ISSN 0003-6935); 35; 16; 2747-2751
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-15
    Description: Scattering polarization from the photosphere observed close to the solar limb has recently become of interest to study turbulent magnetic fields, abundances, and radiative transfer effects. We extend these studies by measuring the scattering polarization off the limb, i.e. in the chromosphere. However, instrumental effects are much more pronounced and more complicated than those affecting on-disk measurements. In particular, scattered light from the telescope mirrors leads to a new type of instrumental polarization that we describe in detail. The differences between the linearly polarized spectra on the disk and off the limb are often very substantial. Here we show the profiles of HeI D(sub 3), the OI triplet at 777 nm, and the Nal D lines. The change in the latter is in reasonable agreement with the recent modeling efforts of atomic polarization in the lower level by Landi Degl'Innocenti (1998).
    Keywords: Solar Physics
    Type: NOAO-Preprint-832 , Solar Polarization; Oct 12, 1998 - Oct 16, 1998; Bangalore; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-16
    Description: In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-15
    Description: The goal of our Room Temperature Semiconductor Spectrometer (RTeSS) project is to develop a small high-energy solar flare spectrometer employing semiconductor detectors that do not require significant cooling when used as high-energy solar flare spectrometers. Specifically, the goal is to test Cadmium Zinc Telluride (CZT) detectors with coplanar grid electrodes as x-ray and gamma-ray spectrometers and to design an experiment that can be flown as a "piggy-back" payload on a satellite mission during the next solar maximum.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-17
    Description: Spectra of the cellular photospheric flows are determined from observations acquired by the MDI instrument on the SOHO spacecraft. Spherical harmonic spectra are obtained from the full-disk observations. Fourier spectra are obtained from the high-resolution observations. The p-mode oscillation signals and instrumental artifacts are reduced by temporal filtering of the Doppler data. The resulting spectra give power (kinetic energy) per wavenumber for effective spherical harmonic degrees from 1 to over 3000. The spectra show distinct peaks representing granules and supergranules but no distinct features at wavenumbers representative of mesogranu;es or giant cells. The observed cellular patterns and spectra are well represented by a model that only includes granules and supergranules.
    Keywords: Solar Physics
    Type: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-17
    Description: Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.
    Keywords: Solar Physics
    Type: The Universe at Low Radio Frequencies; Nov 30, 1999 - Dec 04, 1999; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Flow tubes adjacent to closed magnetic field lines on the boundaries of streamers can have spreading factors which change rapidly with height. Numerical models in this thin layer are subject to uncertainties. Here we use an analytic model of magnetically closed and adjacent open regions to analyze the spreading factor close to the closed field lines. The model is based on the one-temperature, isothermal flow model of Pneuman (1968), extended to calculate spreading factors and plasma beta, and to better explain streamer evolution with increasing temperature.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-17
    Description: We analyze the cooling of the X-ray plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope (SXT). A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approx. 2 x 10(exp 8) cm). The plasma heated to X-ray temperatures in the body of the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is fluid by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (X-ray brightness through the thin aluminum filter - 4 x 10(exp 3) DN/s/pixeL lifetime approx. 5 min, temperature approx. 6 x 10(exp 6) K, loop length approx. 10(exp 9) cm, loop diameter approx. 3 x 10(exp 8) cm), we find that for filling factors greater than approx. 1%: (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that: (1) heating to X-ray temperatures continues through nearly the entire lifetime of the microflare, (2) die heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (approx. 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from the Yohkoh SXT will show plenty of rapidly changing filamentary substructure in microflares. Our results also suggest that the heating in microflares may result from progressive reconnection similar to that inferred in many larger flares.
    Keywords: Solar Physics
    Type: Dec 06, 1999; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-17
    Description: The current upswing in solar activity bodies well for accomplishing the goals of the upcoming HESSI mission. The solar community is making good use of the increased activity through coordinated observations, both in space and on the ground. Ground-based measurements will provide crucial context observations and complementary measurements of the high-energy p,,ocesses which HESSI will observe; vector magnetographs will provide information on the morphology and strength of active region magnetic fields. At the time of the launch of HESSI, we will provide scientific data to the community with the MSFC vector magnetograph and will use the facilities to enhance the educational experience of the local community. In the meantime, to raise public consciousness about the solar cycle and to prepare for HESSI observations, we have prepared lesson plans and activities which are currently being distributed via the internet. Further, to inform the educational community about our activities, our teacher partners disseminate the information by attending teacher conferences. This poster will review what we have already accomplished and what we plan for the next, few pre-launch months.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-17
    Description: We analyze the radio emissions associated with a flare/CME event on the sun. For this solar event there were type II radio emissions observed in both the metric and decametric to kilometric wavelength regimes. By comparing the dynamics of the CME with that implied by the frequencies and frequency-drift rates of the type II radio emissions, it is concluded that only the decametric/kilometric type II radio emissions are associated with the CME. We provide the first direct one-to-one comparison between a CME and the associated type II radio emissions. The dynamics implied by the metric type II radio emissions suggest a distinct coronal shock, associated with the flare, which only produces radio emissions in the low corona.
    Keywords: Solar Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-17
    Description: We have carried out a numerical simulation of a plasma with characteristics similar to those found in the core of the Sun. Particular emphasis is placed on the Coulomb interaction between the ions and electrons, which could result in a relative velocity distribution different from the Maxwell-Boltzmann (MB) distribution generally assumed for a plasma. The fact that the distribution may not exactly follow the MB distribution could have very important consequences for a variety of problems in solar physics, especially the neutrino problem. Very briefly, the neutrino problem is that the observed neutrino detections from the Sun are smaller than what the standard solar theory predicts. In Section I we introduce the problem and in section II we discuss the approach to try to solve the problem: i.e., a molecular dynamics approach. In section III we provide details about the integration method, and any simplifications that can be applied to the problem. In section IV (the core of this report) we state our results. First for the specific case of 1000 particles and then for other cases with different number of particles. In section V we summarize our findings and state our conclusions. Sections VI VII and VIII provide the list of figures, reference material and acknowledgements respectively.
    Keywords: Solar Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...