ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (49,153)
  • Other Sources  (550,881)
  • NASA Technical Reports  (550,074)
  • Articles and Proceedings (GFZpublic)  (49,153)
  • Bibliography of Innovation Network of Climate Change Adaptation Brandenburg Berlin  (807)
  • iass_oai
Collection
  • Articles  (49,153)
  • Other Sources  (550,881)
Years
  • 101
    Publication Date: 2024-04-22
    Description: Predicting Earth Orientation Parameters (EOP) is crucial for precise positioning and navigation both on the Earth’s surface and in space. In recent years, many approaches have been developed to forecast EOP, incorporating observed EOP as well as information on the effective angular momentum (EAM) derived from numerical models of the atmosphere, oceans, and land-surface dynamics. The Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) aimed to comprehensively evaluate EOP forecasts from many international participants and identify the most promising prediction methodologies. This paper presents the validation results of predictions for universal time and length-of-day variations submitted during the 2nd EOP PCC, providing an assessment of their accuracy and reliability. We conduct a detailed evaluation of all valid forecasts using the IERS 14 C04 solution provided by the International Earth Rotation and Reference Systems Service (IERS) as a reference and mean absolute error as the quality measure. Our analysis demonstrates that approaches based on machine learning or the combination of least squares and autoregression, with the use of EAM information as an additional input, provide the highest prediction accuracy for both investigated parameters. Utilizing precise EAM data and forecasts emerges as a pivotal factor in enhancing forecasting accuracy. Although several methods show some potential to outperform the IERS forecasts, the current standard predictions disseminated by IERS are highly reliable and can be fully recommended for operational purposes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2024-04-22
    Description: Hydrothermal alteration is crucial in the formation of many ore deposits, with potassium (K) mobilization and cycling being prevalent. Potassic metasomatism of wall rocks generally forms K-bearing minerals, such as hydrothermal feldspar and mica. However, determining the source and redistribution of K (and other elements transported by the same fluid) in hydrothermal systems is challenging. K isotopes offer a potential solution to this problem. This study presents new K isotope data from two K-rich alteration assemblages — K-feldspar and sericite-quartz-pyrite — in the Jiaodong gold province of China. The data covers a compositional range from unaltered granites to syn-magmatic potassic alteration (formation of K-feldspar) and post-magmatic syn-mineralization phyllic alteration (formation of sericite). Potassic alteration in granite correlates with significant K addition, whereas phyllic alteration of earlier phases of magmatic and hydrothermal K-feldspar resulted in K loss. K-feldspar altered granites display similar δ41K values (–0.55 to –0.42 ‰ for whole-rocks and –0.56 to –0.48 ‰ for K-feldspar separates) as unaltered granite (–0.52 to –0.47 ‰). The narrow δ41K range suggests that magmatic fluid exsolution and magmatic-hydrothermal alteration have a minor effect on δ41K of the altered rock. Phyllic alteration of K-feldspar altered precursor rock leads to K loss and elevated δ41K values ranging from –0.36 to –0.19 ‰ for whole-rocks and –0.34 to –0.17 ‰ for sericite mineral separates. As sericite preferentially incorporates 41K, sericite will have higher δ41K values than the precursor K-feldspar, whereas the fluids will have lower δ41K values. Our study demonstrates that hydrothermal alteration may affect the K isotope composition of altered rocks in several ways, contingent on the nature of the involved phases, making K isotopes a promising tool for studying hydrothermal alteration and associated mineralization.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2024-04-22
    Description: Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2 sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4 m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
  • 105
    Publication Date: 2024-05-03
    Description: The Tawa River is one among the major southern tributary of the Narmada River in India, exhibiting substantial variation in rainfall, altering the water availability. The variation in water availability effect the hydrological characteristics such groundwater recharge, soil moisture level, water balance. Studying rainfall-runoff conversion is necessary for proper and sustainable surface and ground water resources planning and management. In the changing climate, it becomes imperative to understand the hydrological response and project water availability for sustainable water management. In this work, the MIKE 11 NAM model is calibrated and validated to evaluate the climate change impact on availability of water. Using the outputs of downscaled, bias-corrected data of CMIP6, the future projection of runoff is done for the near century, mid-century and end century under the scenario SSP245 and SSP 585. MPI-ESM1-2-HRand EC-EARTH 3-VEG climate models were selected. Temporal analysis was performed to evaluate the impact on the availability of water at the 50%, 75% and 90% percentage dependability flow. The annual analysis revealed that scenario SSP5-8.5 has a higher increase in the runoff than SSP2- 4.5, mainly for the end century, as depicted by both the models. Monthly analysis revealed strong intra-seasonal variations and highlighted that August is projected as the most active month of the year, and wet seasons displayed a larger change than dry seasons. The findings indicate that climate change shall significantly influence hydrological processes in the Tawa watershed and potentially impact the availability of water in the Tawa River basin. Our study underscores the imperative need to adapt water resource planning and management strategies to mitigate the potential impacts of climate change on the availability of water in the Tawa River basin.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2024-05-03
    Description: Precise control over the crystalline phase and crystallographic orientation within thin films of metal–organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations. Pole figure analysis showed that solution-based growth of the MOFs follows the axial texture of the metal hydroxide precursor, resulting in heteroepitaxy. In contrast, the vapour-phase method results in non-epitaxial growth with uniplanar texture only.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2024-05-03
    Description: The prediction of landslide deformation is an important part of landslide early warning systems. Displacement prediction based on geotechnical in-situ monitoring performs well, but its high costs and spatial limitations hinder frequent use within large areas. Here, we propose a novel physically-based and cost-effective landslide displacement prediction framework using the combination of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and machine learning techniques. We first extract displacement time series for the landslide from spaceborne Copernicus Sentinel-1A SAR imagery by MT-InSAR. Using wavelet transform, we then decompose the nonlinear displacement time series into trend terms, periodic terms, and noises. The advanced machine learning method of Gated Recurrent Units (GRU) is utilized to predict the trend and periodic displacements, respectively. The modeling inputs for trend and periodic displacement predictions are determined by analyzing their corresponding influencing factors. The total displacements are finally predicted by summing the predicted displacements of trend and periodic items. The Shuping and Muyubao landslides, identified as seepage-driven and buoyancy-driven, respectively, in the Three Gorges Reservoir area in China are selected as case studies to evaluate the performance of our methodology. The prediction results demonstrate that machine learning algorithms can accurately establish the nonlinear relationship between the landslide deformation and its triggers. GRU outperforms the algorithms of Long Short-Term Memory networks and Kernel-based Extreme Learning Machine, and the Adam algorithm can effectively optimize the model hyperparameters. The root mean square error and mean absolute percentage error are 3.817 and 0.022 in Shuping landslide, and 5.145 and 0.020 in Muyubao landslide, respectively. By integrating the advantages of MT-InSAR and machine learning techniques, our proposed prediction framework, considering the physics principles behind landslide deformation, can predict landslide displacement cost-effectively within large areas.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2024-05-03
    Description: The Eocene-Oligocene Transition (EOT) marks the passage from Eocene greenhouse to Oligocene icehouse conditions. It holds keys to our understanding of the behavior of climate systems under major pCO2 shifts. While the environmental impact of the EOT is rather homogenous in oceans, it is much more heterogeneous on continents. Although little to no changes are recorded in some regions, several EOT studies in western Eurasia suggest an increase in seasonal climatic contrast (e.g., higher amplitude of changes in mean temperature or precipitation), along with a higher sensitivity of the climate to orbital variations. However, these variations remain to be properly documented through changes in sedimentary facies and structures and forcing mechanisms. Here we investigate the depocenter of the Mulhouse Basin (Upper Rhine Graben; URG) revealing a prominent transition from massive mudstones to laminated sediments and varves, alongside the emergence of astronomically-forced mudstone-evaporite alternations. These changes are identified in the distal and proximal parts of the southern URG, where they consist of millimeter-thick mudstone-evaporite couplets and siliciclastic-carbonate couplets. The elemental composition and micro-facies analysis of the laminae show a recurrent depositional pattern consistent with a seasonal depositional process, which suggests that they are varves. We propose that the occurrence of varved sediments, together with the observed orbital cyclicity in the southern URG, reflects an increase in seasonal climatic contrast, and an increase in the sensitivity of climate to orbital variations across the EOT. We show that similar changes were noticed in the Rennes and Bourg-en-Bresse basins, and that of other western Eurasian records for similar climatic conditions. This work emphasizes the potential of high-resolution sedimentary structures to serve as markers of climate change across the EOT.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-05-03
    Description: This data set includes the results of high-resolution digital elevation models (DEM) and digital image correlation (DIC) analysis applied to analogue modelling experiments. Twenty generic analogue models are extended on top of a rubber sheet. Two benchmark experiments are also reported. Detailed descriptions of the experiments can be found in Liu et al. (submitted) to which this data set is supplement. The data presented here are visualized as topography and the horizontal cumulative surface strain (principal strain and slip rake).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-05-03
    Description: Enhanced knowledge of the Pamir salient formation can contribute to comprehending the tectonic evolution of Himalaya-Tibetan orogen. However, whether the Pamir salient formed along a linear or a curved southern Asian margin between the Tarim and Tajik cratons remains controversial. Likewise, the role of the two craton blocks during the evolution of the Pamir salient is unclear. Here we present three sandbox experiments exploring the effect of the geometry of the southern Asian margin, as well as the presence of Tarim and Tajik cratons. The results show that the highly curved shape of the Pamir salient, transpressional faults in its wings and strike-slip faults within its interior only form along a curved southern Asian margin. A westward-deflecting arcuate thrust wedge formed along the asymmetric curved southern Asian margin. Together with the Tarim craton and the Tajik craton, this wedge facilitated the westward transfer of materials in the Pamir, and resulted in the westward deflection of the velocity field in Pamir and the formation of the Tajik fold-thrust belt. The oblique slip of arcuate thrust wedge along the western edge of the Tarim craton generated the Kongur extensional system. Moreover, the Tarim and Tajik cratons concentrated deformation mainly along the non-cratonic continental margin and promoted the formation of transpressional faults surrounding the Pamir and the strike-slip faults within the Pamir.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-05-03
    Description: Dark (low albedo) surface ice on the Greenland Ice Sheet enhances melting and subsequent runoff, a major mass loss contributor during the ablation season. The accumulation of both biological (e.g., glacier ice algae) and abiotic (e.g., mineral dust) light-absorbing particulates are important darkening factors, that are potentially influenced by the duration of snow-free, bare ice (a phenological factor), and other geo-topographical factors such as elevation, slope, aspect and the distance from the ice margin. Here, we present the first medium-resolution (30 m) analysis of the phenological and geo-topographical controls on the distribution of dark ice in SE and SW Greenland from statistical analysis of data derived from a harmonized satellite albedo product and ArcticDEM. The duration of bare ice primarily controls the distribution of dark surface ice, allowing for algae growth on inland ice surfaces in particular, whereas geo-topographical factors are only secondary controls.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-05-03
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-05-03
    Description: The Varved Sediments Database (VARDA) was launched in 2020 and aimed to establish a community database for annually resolved chronological archives with their associated high-resolution proxy records. This resource would support reproducibility through accessible data for the paleoclimate and modelling communities. In this paper, VARDA has been extended by a dataset of European tephra geochemical data and metadata to enable the synchronisation of varve records during the Last Glacial–Interglacial Transition (LGIT; here defined as 25 to 8 ka; Beckett et al., 2022). Geochemical data from 49 known individual tephra layers across 19 lake records have been included, with Lago di Grande Monticchio being the single biggest contributor of geochemical data with 28 tephra layers. The Vedde Ash and Laacher See tephra are the most common layers found in six different records. This highlights the potential of refining the absolute age estimates for these tephra layers using varve chronologies and for synchronising regional paleoclimate archives. This is the first stage in a 5-year plan funded by the Past Global Changes (PAGES) Data Stewardship Scholarship to incorporate a global dataset of tephra geochemical data into varve records. Further stages of this project will focus on different regions and timescales. Data collated for this project are available open access at https://doi.org/10.5880/fidgeo.2023.015 (Beckett et al., 2022).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-05-03
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-05-03
    Description: Despite considerable advances in flood forecasting during recent decades, state-of-the-art, operational flood early warning systems (FEWS) need to be equipped with near-real-time inundation and impact forecasts and their associated uncertainties. High-resolution, impact-based flood forecasts provide insightful information for better-informed decisions and tailored emergency actions. Valuable information can now be provided to local authorities for risk-based decision-making by utilising high-resolution lead-timemaps and potential impacts to buildings and infrastructures. Here, we demonstrate a comprehensive flood lain inundation hindcast of the 2021 European Summer Flood illustrating these possibilities for better disaster preparedness, offering a 17-hour lead time for informed and advisable actions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-05-03
    Description: The NASA MODIS MOD10A1 snow albedo product has enabled numerous glaciological applications. The temporal consistency of MODIS albedo is critical to obtaining reliable results from this 22-year time series. The orbit of Terra began to drift toward earlier acquisition times after the final inclination adjustment maneuver to maintain its nominal orbit by NASA on 27 February 2020, which may introduce biases that compromise the accuracy of quantitative time series analysis as the drift continues. Here, we evaluate the impact of Terra's orbital drift by comparing the differences between the Terra MODIS albedo and albedo products derived from Aqua MODIS, harmonized Landsat and Sentinel 2, Sentinel 3, and PROMICE (Programme for Monitoring of the Greenland Ice Sheet) ground measurements over the Greenland ice sheet. Our results suggest that the influence of orbital drift on albedo is small (+0.01 in 2020), but potentially biased for time series analysis. Our analysis also finds that the drift effect that causes earlier image acquisition time may lead to more apparently cloudy pixels and thus effectively reduce the Terra MODIS temporal resolution over Greenland.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2024-05-03
    Description: In recent years, several catastrophic landslide events have been observed throughout the globe, threatening to lives and infrastructures. To minimize the impact of landslides, the need of landslide susceptibility map is important. The study aims to extract high-quality non-landslide samples and improve the accuracy of landslide susceptibility modelling (LSM) outcomes by applying a coupled method of ensemble learning and Machine Learning (ML). The Zigui-Badong section of the Three Gorges Reservoir area (TGRA) in China was considered in the present study. Twelve influencing factors were selected as inputs for LSM, and the relationship between each causal factor and landslide spatial development was quantitatively analyzed. A total of 179 landslides have been used in the present study. About 70% of the landslide pixels were randomly considered for training, and the remaining 30% were used for validation. Logistic Regression (LR) model was applied to produce an initial susceptibility map, and the non-landslide samples were selected within the classified low-susceptibility zone. Subsequently, two ML classifiers – the Classification and Regression Tree (CART), and the Multi-Layer Perceptron (MLP), and four coupling models – the CART-Bagging, CART-Boosting, MLP-Bagging, and MLP-Boosting, were utilized for LSM. Finally, the receiver operating characteristics (ROC) curve and statistical analysis were applied for accuracy assessment. The results show that altitude and distance to rivers were the main causal factors of landslides in the study area. The LR-MLP-Boosting performed the best with an accuracy of 0.986 followed by the LR-CART-Bagging, LR-CART-Boosting, and LR-MLP-Bagging. Accuracy comparisons demonstrate that ensemble learning algorithm can notably enhance the LSM performance of ML classifiers, and the Boosting algorithm marginally outperforms the Bagging algorithm. Moreover, the LR model can effectively constrain the selection range of non-landslide samples. The non-landslide sampling method constrained by LR yields higher quality samples compared to raditional random sampling method with no constraints, which develops a more excellent LSM.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2024-05-03
    Description: This study introduces the S1S2-Water dataset—a global reference dataset for training, validation, and testing of convolutional neural networks (CNNs) for semantic segmentation of surface water bodies in publicly available Sentinel-1 and Sentinel-2 satellite images. The dataset consists of 65 triplets of Sentinel-1 and Sentinel-2 images with quality-checked binary water mask. Samples are drawn globally on the basis of the Sentinel-2 tile-grid (100 km × 100 km) under consideration of predominant landcover and availability of water bodies. Each sample is complemented with metadata and digital elevation model (DEM) raster from the Copernicus DEM. On the basis of this dataset, we carry out performance evaluation of CNN architectures to segment surface water bodies from Sentinel-1 and Sentinel-2 images. We specifically evaluate the influence of image bands, elevation features (slope) and data augmentation on the segmentation performance and identify best-performing baseline-models. The model for Sentinel-1 achieves an Intersection over Union (IoU) of 0.845, Precision of 0.932, and Recall of 0.896 on the test data. For Sentinel-2 the best model produces an IoU of 0.965, Precision of 0.989, and Recall of 0.951, respectively. We also evaluate the performance impact when a model is trained on permanent water data and applied to independent test scenes of floods.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-05-03
    Description: Most biodiversity monitoring globally tends to concentrate on trends in species’ populations and ranges rather than on threats and their management. Here we review the estimated impact of threats and the extent to which their management is understood and implemented for all threats to all Australian threatened bird taxa. The assessment reports the situation in 2020 and how this differs from 2010. The most marked finding was that the impact of climate change has increased greatly over the last decade, and now surpasses invasive species as the threat imposing the heaviest threat load. Climate change has driven recent massive population declines from increased temperatures in tropical montane rainforests and from fire. For both direct climate change impacts and fire management, progress in understanding how to relieve the threats has been slow and patchy. Consequently, little effective management has occurred. By comparison, our analysis showed that the single successful campaign to eradicate introduced mammals from Macquarie Island relieved the total threat load on Australian threatened birds by 5%, and more than halved the load on the birds from oceanic islands. Protection or rehabilitation of habitat, particularly on islands, has also delivered measurable benefit as have, in the longer term, controls on longline fishing. Our approach can be used with other taxonomic groups to understand progress in research and management and to allow quantification of potential benefits from proposed actions, such as the national threatened species plan.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-05-03
    Description: We present a field study of salt ridges and minibasins of the Moroccan High Atlas near Rich that shows the along- and across-strike variability of such structures. Salt walls evolved from halokinesis during Jurassic rifting, to shortening during Cenozoic orogeny. Salt wall segments exhibit variable degrees of welding due primarily to the local presence of intrasalt inclusions (basalt and gabbro) rather than orientation with respect to the shortening or position along the ridge. Flanking Jurassic minibasins may be upright and symmetric or tilted; tilting may have started during halokinesis but was largely acquired during shortening. Minibasins tilt away from welded diapiric segments towards inclusion-rich segments, indicating differential diapir rise. The structure of the central parts of the salt walls differs from the lateral terminations. While the central parts are relatively simple with aperture or welding governed by the inclusions, many salt walls end buried by suprasalt sedimentary wedges. These perched wedges were not arched upward during diapir squeezing but were unexpectedly folded into synclines. The folding was formed by the flanking minibasin tilting in one limb and by inhomogeneous diapir rise and lateral salt escape in the other, thus defining a new modality of roof and shoulder folding above salt diapirs.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-05-03
    Description: The rapid and accurate detection of forest disturbances in temperate forests has become increasingly crucial as policy demands and climate pressure on these forests rise. The cloud-penetrating Sentinel-1 radar constellation provides frequent and high-resolution observations with global coverage, but few studies have assessed its potential for mapping disturbances in temperate forests. This study investigated the sensitivity of temporally dense C-band backscatter data from Sentinel-1 to varying management-related disturbance intensities in temperate forests, and the influence of confounding factors such as radar backscatter signal seasonality, shadow, and layover on the radar backscatter signal at a pixel level. A unique network of 14 experimental sites in the Netherlands was used in which trees were removed to simulate different levels of management-related forest disturbances across a range of representative temperate forest species. Results from six years (2016–2022) of Sentinel-1 observations indicated that backscatter seasonality is dependent on species phenology and degree of canopy cover. The backscatter change magnitude was sensitive to medium- and high-severity disturbances, with radar layover having a stronger impact on the backscatter disturbance signal than radar shadow. Combining ascending and descending orbits and complementing polarizations compared to a single orbit or polarization was found to result in a 34% mean increase in disturbance detection sensitivity across all disturbance severities. This study underlines the importance of linking high-quality experimental ground-based data to dense satellite time series to improve future forest disturbance mapping. It suggests a key role for C-band backscatter time series in the rapid and accurate large-area monitoring of temperate forests and, in particular, the disturbances imposed by logging practices or tree mortality driven by climate change factors.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-05-06
    Description: Postglacial flooding of the Persian Gulf (PG) was important in shaping human history and driving landscape changes in the region. However, there is a paucity of data regarding the postglacial transgression. The position of the PG at the edge of major synoptic systems of the Indian Ocean Summer Monsoon (IOSM) and Mid-latitude Westerlies (MLW) makes the environment particularly sensitive to Holocene climate shifts. To investigate the timing of the flooding and to detect the impacts of significant climate shifts on the regional environment during the Holocene, a multiproxy study was conducted on three short sediment cores from two deep sites in the PG. Sedimentological, palynological and geochemical analyses were performed on the cores. The results show that inundation of the western part of the PG that started from ca. 11.5 ka bp continued with successive prominent phases of transgression centered on 10.4 and 9.2 ka cal bp, and definitive marine conditions were established around 8.8 ka cal bp. The IOSM was the dominant system in the region until about 9 to ~6.3 ka cal bp. After that time, the intensity of the IOSM declined, as MLW dominated the region after ~6.3 ka cal bp. These climatic shifts induced significant changes in regional vegetation and hydrology, and possibly triggered socio-cultural transformations.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2024-05-08
    Description: An increasing pressure from governing bodies and funding agencies to disseminate research data in an open and FAIR (Findable, Accessible, Interoperable, and Reusable) format has led to an increase in online research portals of varying quality. The task of constructing and maintaining such portals is challenging, especially when left to individuals with limited understanding of modern web architecture. For those starting out on this endeavour, an over-abundance of online advice, coupled with the rapid evolution of “latest technologies”, can be overwhelming. The inevitable uncertainty leads to technologically-isolated portals with limited interoperability that ultimately hinders the exchange of geoscientific information. To reduce uncertainty for new initiatives, Geoluminate (https://geoluminate.github.io/geoluminate/) – a new micro web framework – offers a simple but robust platform for the rapid creation and deployment of new geoscience research portals. The framework's simplicity ensures that even those with limited expertise in web development can create and maintain effective portals that exhibit consistency in both design and functionality. Geoluminate aims to foster interoperability, reliability and decentralization of geoscience portals by providing a consistent and stable foundation on which they are built. Leveraging existing features of the Python-based Django Web Framework, Geoluminate offers a comfortable learning curve for those already familiar with Python programming. On top of the feature-rich ecosystem of Django, Geoluminate offers additional features specifically tailored to the needs of geoscientific research portals. Geoluminate is highly-opinionated and comes “batteries included” so that, as a research community, the focus can remain on designing data models that fit specific community needs and less on tedious implementation details. Currently backed by the international geothermal community as part of the World Heat Flow Database Project (http://heatflow.world/project), Geoluminate is under active development at the GFZ German Research Centre for Geosciences in Potsdam. Under the guidance of the partner repository GFZ Data Services, all data models are intrinsically tied to existing standards of metadata collection (e.g. Datacite, IGSN, ROR, ORCID) such that data publishing is easily facilitated through established pathways. Geoluminate champions the principles of open science and collaborative knowledge dissemination. This poster presentation aims to showcase the practical implementation and benefits of Geoluminate in creating geoscience research portals that align with FAIR data principles. By fostering a community-centric approach, Geoluminate contributes to the democratization of data management, enabling researchers to actively shape and enhance the landscape of those same portals they likely utilize in their own research.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2024-05-08
    Description: The understanding of the coupled thermo-hydro-mechanical behavior of fault zones in naturally fractured rocks is essential both for fundamental and applied sciences and in particular for the safety assessment of radioactive waste disposal facilities. An international research program called CHENILLE was built to address key questions related to the impact of high temperatures (up to 120°C) on shear zones as well as fault reactivation processes in shale formations. Here, we report on an ongoing thermally controlled in-situ fluid injection experiment on a strike-slip fault zone outcropping at IRSN’s Tournemire Underground Research Laboratory (URL). This includes a series of laboratory experiments to understand the mechanical, hydraulic, structural and thermal evolution occurring within the fault zones during the thermal and hydraulic loading. Reported preliminary results comprise acoustic emission activity and active seismic monitoring results, the thermal diffusion and the temperature evolution measured in-situ with DTS in and around the fault and the corresponding numerical thermal simulation of the experimental setup.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-05-08
    Description: Since its establishment in 1963, the International Heat Flow Commission (IHFC) has fostering and curating the Global Heat Flow Database (GHFDB). The dynamic nature of techniques and methodologies used in heat-flow density determination has necessitated regular updates to the database. Despite its widespread utility, the GHFDB faces challenges arising from variations in measurement techniques and data quality. Ongoing efforts are dedicated to overcoming these challenges, aiming to elevate the database's accuracy and reliability, thus solidifying its value within the scientific community. Multiple iterations of the GHFDB exist, primarily focused on characterizing the quality of individual heat-flow data points. However, the establishment of a new, authenticated GHFDB demanded the development of a fresh reporting standards for heat-flow data submitted to the IHFC. This new framework, derived from a collaborative global initiative, incorporates 62 metadata fields. This comprehensive approach became imperative due to the escalating volume of data and the diverse methodologies employed, necessitating a standardized scheme to evaluate the quality of heat-flow density determinations consistently. This update provides insights into the community-driven initiative initiated in 2021, targeting the reassessment of approximately 1,414 publications containing 73,033 global heat-flow data points. A noteworthy aspect of this initiative is the introduction of a novel quality scheme, unifying three independent criteria into a combined score. This score encompasses quantified uncertainty, methodological quality, and the status of overruling effects. The integration of these criteria facilitates a swift comparison of heat-flow data, instantly revealing any missing data or inadequately documented information. The introduction of this quality scheme empowers users to efficiently select reliable heat-flow values tailored to their specific research purposes.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-05-08
    Description: Methane (CH4) mitigation from anthropogenic sources such as in the production and transport of fossil fuels has been found as one of the most promising strategies to curb global warming in the near future. Satellite-based imaging spectrometers have demonstrated to be well-suited to detect and quantify these emissions at high spatial resolution, which allows the attribution of plumes to sources. The PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite mission (ASI, Italy) has been successfully used for this application, and the recently launched Environmental Mapping and Analysis Program (EnMAP) mission (DLR/GFZ, Potsdam, Germany) presents similar spatial and spectral characteristics (30-m spatial resolution, 30-km swath, about 8-nm spectral sampling at 2300 nm). In this work, we investigate the potential and limitations of EnMAP for CH4 remote sensing, using PRISMA as a benchmark to deduce its added value. We analyze the spectral and radiometric performance of EnMAP in the 2300-nm region used for CH4 retrievals acquired using the matched-filter method. Our results show that in arid areas, EnMAP spectral resolution is about 2.7 nm finer and the signal-to-noise ratio values are approximately twice as large, which leads to an improvement in retrieval performance. Several EnMAP examples of plumes from different sources around the world with flux rate values ranging from 1 to 20 t/h are illustrated. We show plumes from sectors such as onshore oil and gas (O&G) and coal mining, but also from more challenging sectors such as landfills and offshore O&G. We detect two plumes in a close-to-sunglint configuration dataset with unprecedented flux rates of about 1 t/h, which suggests that the detection limit in offshore areas can be considerably lower under favorable conditions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2024-05-07
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-05-07
    Description: According to studies by the Intergovernmental Panel on Climate Change (IPCC), tropical mountainous areas are experiencing increasingly unfavorable climatic conditions regarding geohazards due to a heightened occurrence of intense rainfall events. These climatic shifts contribute to heightened geological risks, notably an elevated frequency of landslides, exacerbating the challenges faced by these regions. There is an urgent need to understand and measure how rainfall variability affects geo-hydrological hazards, which remain difficult to determine and predict. The complex and non-linear space-time relationships and dynamics of rainfall, El Niño-Southern Oscillation (ENSO), and landslides in the Tropical Andean Mountain region in Colombia require an adequate analysis and understanding of their link in terms of its spatial and temporal component at different scales. By evaluation in annual, seasonal, and monthly scales, additional insights on the relationships using a wavelet spectral analysis and a space-time permutation scan statistics method using SaTScan™ are provided. In this study, a space-time and frequency analysis of landslides using a 42-year (1981–2022) rainfall and Multivariate ENSO Index v2.0 time series is presented. According to the results, landslides closely aligned with rainfall patterns, exhibiting a bimodal annual cycle. The ENSO added complexity, with La Niña years leading to more frequent landslides throughout the year and El Niño years showing concentrated occurrences in specific months. This study highlights the influence of rainfall patterns and antecedent rainfall on landslide occurrence, the impact of ENSO phases on rainfall and landslides, and the increasing trend of landslides in Colombia.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-05-07
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-05-07
    Description: Abstract In this work, we develop a software suite for studies of atmosphere–underlying SNOW-spaceborne optical receiver light TRANsmission calculations (SNOWTRAN) with applications for the solution of forward and inverse radiative transfer problems in polar regions. Assuming that the aerosol load is extremely low, the proposed theory does not require the numerical procedures for the solution of the radiative transfer equation and is based on analytical equations for the spectral nadir reflectance and simple approximations for the local optical properties of atmosphere and snow. The developed model is validated using EnMAP and PRISMA spaceborne imaging spectroscopy data close to the Concordia research station in Antarctica. A new, fast technique for the determination of the snow grain size and assessment of the snowpack vertical inhomogeneity is then proposed and further demonstrated on EnMAP imagery over the Aviator Glacier and in the vicinity of the Concordia research station in Antarctica. The results revealed a large increase in precipitable water vapor at the Concordia research station in February 2023 that was linked to a warming event and a four times larger grain size at Aviator Glacier compared with Dome C.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-01-22
    Description: The European Geosciences Union (EGU) brings together geoscientists from all over Europe and the rest of the world, covering all disciplines of Earth, planetary and space sciences. The Division on Energy, Resources and the Environment (ERE), as part of the EGU, follows an interdisciplinary approach to serve society and provide solutions to challenges of our time and in the future. One task for humankind, for example, is to provide adequate and reliable supplies of affordable energy and other resources, obtained in environmentally sustainable ways, which will be essential for economic prosperity, environmental quality and political stability around the world. This volume of Advances in Geosciences spans the range of topics of the division and continues a series of ten ERE special issues over the course of the last ten years. We incorporate emerging topics into the division ERE along the line and we advocate that every idea and opportunity should be studied and tested.
    Description: The European Geosciences Union (EGU) brings together geoscientists from all over Europe and the rest of the world, covering all disciplines of Earth, planetary and space sciences. The Division on Energy, Resources and the Environment (ERE), as part of the EGU, follows an interdisciplinary approach to serve society and provide solutions to challenges of our time and in the future. One task for humankind, for example, is to provide adequate and reliable supplies of affordable energy and other resources, obtained in environmentally sustainable ways, which will be essential for economic prosperity, environmental quality and political stability around the world. This volume of Advances in Geosciences spans the range of topics of the division and continues a series of ten ERE special issues over the course of the last ten years. We incorporate emerging topics into the division ERE along the line and we advocate that every idea and opportunity should be studied and tested.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-01-31
    Description: The ‘Fermi paradox’ refers to the mismatch between a widely held expectation that advanced technological life should be common in the Universe—recently given impetus by the discovery that other planetary systems are common—and the absence of any evidence for it. Here we briefly review attempted solutions to the paradox and conclude that either (1) extraterrestrial technological civilizations are extremely rare (or absent) in the Galaxy or (2) they exist but are deliberately hiding from us, a scenario generally known as the ‘zoo hypothesis’. In this sense, we propose that the answer to the Fermi paradox is ‘the zoo hypothesis or nothing’. We argue that, given a strong commitment to the continued exploration of the Universe, humanity may be able to distinguish between these two alternatives within the next half-century.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    facet.materialart.
    Unknown
    In:  Advances in Natural Gas: Formation, Processing, and Applications. Volume 3: Natural Gas Hydrates
    Publication Date: 2024-02-23
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
  • 135
    Publication Date: 2024-02-23
    Description: Several studies investigated changes in microbial community composition in thawing permafrost landscapes, but microbial assemblages in the transient ecosystems of the Arctic coastline remain poorly understood. Thermokarst lakes, abrupt permafrost thaw features, are widespread along the pan-Arctic coast and transform into thermokarst lagoons upon coastal erosion and sea-level rise. This study looks at the effect of marine water inundation (imposing a sulfate-rich, saline environment on top of former thermokarst lake sediments) on microbial community composition and the processes potentially driving microbial community assembly. In the uppermost lagoon sediment influenced from marine water inflow, the microbial structures were significantly different from those deeper in the lagoon sediment and from those of the lakes. In addition, they became more similar along depth compared with lake communities. At the same time, the diversity of core microbial consortia community decreased compared with the lake sediments. This work provides initial observational evidence that Arctic thermokarst lake to lagoon transitions do not only substantially alter microbial communities but also that this transition has a larger effect than permafrost thaw and lake formation history.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2024-02-23
    Description: Many observed time series of precipitation and streamflow show heavy-tail behaviour. For heavy-tailed distributions, the occurrence of extreme events has a higher probability than for distributions with an exponentially receding tail. If we neglect heavy-tail behaviour we might underestimate the magnitude of rarely observed, high-impact events. Robust estimation of upper-tail behaviour is often hindered by the limited length of observational records. Using long time series and a better understanding of the relevant process controls can help with achieving more robust tail estimations. Here, a simulation-based approach is used to analyse the effect of precipitation and runoff generation characteristics on the upper tail of flood peak distributions. Long, synthetic precipitation time series with different tail behaviour are produced by a stochastic weather generator. These are used to force a conceptual rainfall–runoff model. In addition, catchment characteristics linked to a threshold process in the runoff generation are varied between model runs. We characterize the upper-tail behaviour of the simulated precipitation and discharge time series with the shape parameter of the generalized extreme value (GEV) distribution. Our analysis shows that runoff generation can strongly modulate the tail behaviour of flood peak distributions. In particular, threshold processes in the runoff generation lead to heavier tails. Beyond a certain return period, the influence of catchment processes decreases and the tail of the rainfall distribution asymptotically governs the tail of the flood peak distribution. Beyond which return period this is the case depends on the catchment storage in relation to the mean annual rainfall amount.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2024-02-12
    Description: For robust multi-modal person re-identification (re-ID) models, it is crucial to effectively utilize the complementary information and constraint relationships among different modalities. However, current multi-modal methods often overlook the correlation between modalities at the feature fusion stage. To address this issue, we propose a novel multimodal person re-ID method called Transformer Relation Regularization (TRR). Firstly, we introduce an adaptive collaborative matching module that facilitates the exchange of useful information by mining feature correspondences between modalities. This module allows for the integration of complementary information, enhancing the re-ID performance. Secondly, we propose an enhanced embedded module that corrects general information using discriminative information within each modality. By leveraging this approach, we improve the model’s stability in challenging multi-modal environments. Lastly, we propose an adaptive triple loss to enhance sample utilization efficiency and mitigate the problem of inconsistent representation among multimodal samples. This loss function optimizes the model’s ability to distinguish between different individuals, leading to improved re-ID accuracy. Experimental results on several challenging visible-infrared person re-ID benchmark datasets demonstrate that our proposed TRR method achieves optimal performance. Additionally, extensive ablation studies validate the effective contribution of each component to the overall model. In summary, our proposed TRR method effectively leverages complementary information, addresses the correlation between modalities, and improves the re-ID performance in multi-modal scenarios. The results obtained from various benchmark datasets and the comprehensive analysis support the efficacy of our approach.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2024-02-12
    Description: Tree-specific canopy conductance (Gc) and its adjustment play a critical role in mitigating excess water loss in changing environmental conditions. However, the change of Gc sensitivity to environmental conditions due to drought remains unclear for European tree species. Here we quantified the environmental operational space of Gc, i.e., the water supply (soil moisture, tree water deficit) and demand conditions (vapor pressure deficit) under which Gc ≥ 50% is possible (Gc50OS), at two sites with different soil water availability for three common European tree species. We collected sap flow and dendrometer measurements for co-occurring Pinus sylvestris, Fagus sylvatica and Quercus petraea growing under different soil hydrological conditions (drier/wetter). These measurements were combined with meteorological variables and soil moisture conditions in five depths. Dendrometer measurements were used to confirm soil water availability patterns. For all analyses, the contrasting soil hydrology between sites was the main driver of Gc response. At the drier sites, F. sylvatica and P. sylvestris reduced their water consumption in response to decreasing soil water supply earlier in the growing season than Q. petraea. However, our analysis on the Gc50OS revealed that at the drier sites, F. sylvatica and Q. petraea reduced the extent of their Gc50OS to a higher degree than P. sylvestris. This indicates a higher level of Gc50OS adjustment to the drier site conditions for the two broadleaved species. These differences were more pronounced when using the dendrometer-derived tree internal water status as proxy for tree water supply. Our results provide preliminary evidence for diverging short-term Gc responses when temperate trees are exposed to prolonged reduction in water availability. These findings suggest that Gc50OS can help to constrain species-specific predictions of water use by mature trees, especially when combined with high-resolution water potential measurements.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2024-02-12
    Description: The International GNSS Service (IGS) provides combined satellite and station clock products, which are generated from the individual clock solutions produced by the analysis centers (ACs). Combinations for GPS and GLONASS are currently available, but there is still a lack of combined products for the new constellations such as Galileo, BeiDou, and QZSS. This study presents a combination framework based on least squares variance component estimation using the ACs’ aligned clock solutions. We present the various alignments required to harmonize the solutions from the ACs, namely the radial correction derived from the differences of the associated orbits, the alignment of the AC clocks to compensate for different reference clocks within each AC solution, and the inter-system bias (ISB) alignment to correct for different AC ISB definitions when multiple constellations are used. The combination scheme is tested with IGS MGEX and repro3 products. The RMS computed between the combined product and the aligned ACs’ solutions differ for each constellation, where the lowest values are obtained for Galileo and GPS with on average below 45 psec (13 mm) and reaching more than 150 psec (45 mm) for QZSS. The same behavior is repeated when the process is performed with the repro3 products. A clock and orbit combination validation is done using precise point positioning (PPP) that shows ionosphere-free phase residuals below 10 mm for all constellations, comparable with the AC solutions that are in the same level.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2024-02-15
    Description: We provide grid files that collectively allow recreating 3D structural subsurface model of Brandenburg discussed in the papers (Noack, et al., 2010), (Noack, et al., 2012) and (Noack, 2013). The crustal-scale model covers an area of 250 km in E–W direction and 210 km in N–S direction and is located in the Northeast German Basin (NEGB). We provide ASCII files with top surface elevation and thickness of individual stratigraphic layers. There are two versions of the stratigraphic layering: one with the Rupelian clay layer and one without it. The coordinate system used is Gauss Krueger zone 4.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2024-02-15
    Description: The dry continental interior of Asia has remained arid throughout most of its geological history, yet the future of this unique ecosystem remains unclear. Here we use palynological and isotopic records to track vegetation and moisture throughout the warm early Eocene (57 to 44 million years ago) as an analogue for extreme atmospheric CO2 scenarios. We show that rainfall temporarily doubled and replaced the regional steppe by forested ecosystems. By reconstructing the season of pedogenic carbonate growth, we constrain the soil hydrologic regime and show that most of this rainfall occurred during the summer season. This humid event is therefore attributed to an inland expansion of monsoonal moisture following the massive greenhouse gas release of the Palaeocene–Eocene Thermal Maximum as identified by a negative carbon isotope excursion. The resulting abrupt greening of the Central Asian steppe-desert would have enabled mammal dispersal and could have played a role in carbon cycle feedbacks by enhancing soil organic carbon burial and silicate weathering. These extreme Eocene proto-monsoons, albeit different from the topography-driven Asian monsoon today, highlight the potential for abrupt shifts in Central Asian rainfall and ecosystems under future global warming.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2024-02-15
    Description: High-resolution flood maps are needed for more effective flood risk assessment and management. Producing these directly with hydrodynamic models is slow and computationally prohibitive at large scales. Here we demonstrate a new algorithm for post-processing low-resolution inundation layers by using high-resolution terrain models to disaggregate or downscale. The new algorithm is roughly 8 times faster than state-of-the-art algorithms and shows a slight improvement in accuracy when evaluated against observations of a recent flood using standard performance metrics. Qualitatively, the algorithm generates more physically coherent flood maps in some hydraulically challenging regions compared to the state of the art. The algorithm developed here is open source and can be applied in conjunction with a low-resolution hydrodynamic model and a high-resolution DEM to rapidly produce high-resolution inundation maps. For example, in our case study with a river reach of 20 km, the proposed algorithm generated a 4 m resolution inundation map from 32 m hydrodynamic model outputs in 33 s compared to a 4 m hydrodynamic model runtime of 34 min. This 60-fold improvement in runtime is associated with a 25 % increase in RMSE when compared against the 4 m hydrodynamic model results and observations of a recent flood. Substituting downscaling into flood risk model chains for high-resolution modelling has the potential to drastically improve the efficiency of inundation map production and increase the lead time of impact-based forecasts, helping more at-risk communities prepare for and mitigate flood damages.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2024-02-15
    Description: To design user-centred and scientifically high-quality outreach products to inform about earthquake-related hazards and the associated risk, a close collaboration between the model developers and communication experts is needed. In this contribution, we present the communication strategy developed to support the public release of the first openly available European Seismic Risk Model and the updated European Seismic Hazard Model. The backbone of the strategy was the communication concept in which the overall vision, communication principles, target audiences (including personas), key messages, and products were defined. To fulfil the end-users' needs, we conducted two user testing surveys: one for the interactive risk map viewer and one for the risk poster with a special emphasis on the European earthquake risk map. To further ensure that the outreach products are not only understandable and attractive for different target groups but also adequate from a scientific point of view, a two-fold feedback mechanism involving experts in the field was implemented. Through a close collaboration with a network of communication specialists from other institutions supporting the release, additional feedback and exchange of knowledge was enabled. Our insights, gained as part of the release process, can support others in developing user-centred products reviewed by experts in the field to inform about hazard and risk models.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    Publication Date: 2024-02-13
    Language: English
    Type: info:eu-repo/semantics/lecture
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2024-02-13
    Description: Sequential climate hazards, such as “warm and wet” compound extremes, have direct societal implications for highly urbanized regions and agricultural production. While typically extreme temperatures and rainfall are inversely correlated during the summer, extreme humid heatwaves often lead to atmospheric instability and moisture convection, increasing the likelihood of extreme precipitation (EP). Little is known about how heatwave characteristics, such as peak intensity and duration, influence EP at a regional scale. Using high-resolution, sub-daily station-based observational records over five decades (1971–2021) across India, we find a robust increase in the frequency of compound humid heat-peak precipitation events in all seasons. Our sensitivity analysis of the impact of humid heatwave characteristics on the subsequent sub-daily rainfall extremes reveals that, with an increase in peak heatwave intensity for a given heatwave duration, 〉50% of sites show an increase in the magnitude of rainfall; conversely, with an increase in heatwave duration for a given peak heatwave intensity, around 67% sites show a decline in sub-daily rainfall extremes. An asymmetrical shift toward above-average precipitation extremes in response to humid heat stress is mainly clustered around low-elevation, densely populated coastal areas and the irrigation-intensive Indo-Gangetic Plains.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-02-16
    Description: The bacterial strains Brochothrix thermosphacta DH-B18 and Rathayibacter sp. DH-RSZ4 were isolated from raw sausage and escalope samples and grown in a CO2-rich modified atmosphere. Here, we present both circular genomes obtained by nanopore sequencing.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-02-16
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-02-21
    Description: Dynamic perturbations reveal unconventional nonlinear behavior in rocks, as evidenced by field and laboratory studies. During the passage of seismic waves, rocks exhibit a decrease in elastic moduli, slowly recovering after. Yet, comprehensive physical models describing these moduli alterations remain sparse and insufficiently validated against observations. Here, we demonstrate the applicability of two physical damage models—the internal variable model (IVM) and the continuum damage model (CDM)—to provide quantitative descriptions of nonlinear co-seismic elastic wave propagation observations. While the IVM uses one internal variable to describe the evolution of elastic material moduli, the CDM damage variable is a mathematical representation of microscopic defects. We recast the IVM and CDM models as nonlinear hyperbolic partial differential equations and implement 1D and 2D numerical simulations using an arbitrary high-order discontinuous Galerkin method. We verify the modeling results with co-propagating acousto-elastic experimental measurements. Subsequently, we infer the parameters for these nonlinear models from laboratory experiments using probabilistic Bayesian inversion and 2D simulations. By adopting the Adaptive Metropolis Markov chain Monte Carlo method, we quantify the uncertainties of inferred parameters for both physical models, investigating their interplay in 70,000 simulations. We find that the damage variables can trade off with the stress-strain nonlinearity in discernible ways. We discuss physical interpretations of both damage models and that our CDM quantitatively captures an observed damage increase with perturbation frequency. Our results contribute to a more holistic understanding of co-seismic damage and post-seismic recovery after earthquakes bridging the worlds of theoretical analysis and laboratory findings.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-02-21
    Description: Distributed Acoustic Sensing (DAS) is becoming a powerful tool for earthquake monitoring, providing continuous strain-rate records of seismic events along fiber optic cables. However, the use of standard seismological techniques for earthquake source characterization requires the conversion of data in ground motion quantities. In this study we provide a new formulation for far-field strain radiation emitted by a seismic rupture, which allows to directly analyze DAS data in their native physical quantity. This formulation naturally accounts for the complex directional sensitivity of the fiber to body waves and to the shallow layering beneath the cable. In this domain, we show that the spectral amplitude of the strain integral is related to the Fourier transform of the source time function, and its modeling allows to determine the source parameters. We demonstrate the validity of the technique on two case-studies, where source parameters are consistent with estimates from standard seismic instruments in magnitude range 2.0–4.3. When analyzing events from a 1-month DAS survey in Chile, moment-corner frequency distribution shows scale invariant stress drop estimates, with an average of Δσ = (0.8 ± 0.6) MPa. Analysis of DAS data acquired in the Southern Apennines shows a dominance of the local attenuation that masks the effective corner frequency of the events. After estimating the local attenuation coefficient, we were able to retrieve the corner frequencies for the largest magnitude events in the catalog. Overall, this approach shows the capability of DAS technology to depict the characteristic scales of seismic sources and the released moment.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-02-21
    Description: The seismogenesis of rocks is mainly affected by their mineral composition and in situ conditions (temperature and state of stress). Diverse laboratory experiments have explored the frictional behaviour of the rocks and rock-forming minerals most common in the crust and uppermost mantle. However, it is debated how to “upscale” these results to the lithosphere. In particular, most earthquakes in the crust nucleate down to the crustal seismogenic depth (CSD), which is a proxy for the maximum depth of crustal earthquake ruptures in seismic hazard assessments. In this study we propose a workflow to upscale and validate those laboratory experiments to natural geological conditions relevant for crustal and upper-mantle rocks. We used the southern Caribbean and northwestern South America as a case study to explore the three-dimensional spatial variation of the CSD (mapped as D90, the 90 % percentile of hypocentral depths) and the temperatures at which crustal earthquakes likely occur. A 3D steady-state thermal field was computed for the region with a finite-element scheme using the software GOLEM, considering the uppermost 75 km of a previously published 3D data-integrative lithospheric configuration, lithology-constrained thermal parameters, and appropriate upper and lower boundary conditions. The model was validated using additional, independent measurements of downhole temperatures and heat flow. We found that the majority of crustal earthquakes nucleate at temperatures less than 350 ∘C, in agreement with frictional experiments of typical crustal rocks. A few outliers with larger hypocentral temperatures evidence nucleation conditions consistent with the seismogenic window of olivine-rich rocks, and can be due to either uncertainties in the Moho depths and/or in the earthquake hypocentres or the presence of ultramafic rocks within different crustal blocks and allochthonous terranes accreted to this complex margin. Moreover, the spatial distribution of crustal seismicity in the region correlates with the geothermal gradient, with no crustal earthquakes occurring in domains with low thermal gradient. Finally, we find that the largest earthquake recorded in the region (Mw=7.1, Murindó sequence, in 1992) nucleated close to the CSD, highlighting the importance of considering this lower-stability transition for seismogenesis when characterizing the depth of seismogenic sources in hazard assessments. The approach presented in this study goes beyond a statistical approach in that the local heterogeneity of physical properties is considered in our simulations and additionally validated by the observed depth distribution of earthquakes. The coherence of the calculated hypocentral temperatures with those expected from laboratory measurements provides additional support to our modelling workflow. This approach can be applied to other tectonic settings worldwide, and it could be further refined as new, high-quality hypocentral locations and heat flow and temperature observations become available.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-02-19
    Description: Northeastern Eurasia is one of the least explored regions in the world. Very little geophysical data is available for this inaccessible area. Even the exact location of the plate boundary between Eurasia and North America remains a subject of ongoing debate. The effective elastic thickness (EET) of the lithosphere is a proxy for lithospheric strength and can provide insight into the thermal regime and tectonic processes. We have computed a high-resolution map of the EET for northeastern Eurasia using the fan wavelet coherence technique applied to the Bouguer gravity anomalies and topography/bathymetry data, appropriately adjusted to account for the influence of density variations within sediments. The results obtained provide insights into different tectonic regimes within this predominantly understudied region. In particular, we identify the boundary between the Eurasian and North American plates in Siberia as a rheologically weak diffusive zone extending from the Verkhoyansk and Sette-Daban Ranges to the eastern boundary of the Chersky Range. Unlike the Sette-Daban and Verkhoyansk Ranges, which were formed by plate collision and have an EET of 30–50 km, other mountainous regions have much lower EET values, usually less than 15 km. These areas have recently experienced tectonic activity that has weakened the lithosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    In:  Journal of Analytical Atomic Spectrometry
    Publication Date: 2024-02-19
    Description: This study introduces a new approach for in situ Rb–Sr dating that utilizes rapid line scans instead of static spot ablation, enabling the creation of two-dimensional 87Rb/86Sr and 87Sr/86Sr isotope ratio and Rb–Sr age maps. The data acquisition is conducted utilizing an ICP-MS/MS instrument with N2O as the reaction gas, coupled to a 193 nm excimer laser via a low-aerosol-dispersion interface. This configuration allows for high repetition rates (〉100 Hz) and sensitivities, enabling data acquisition at a high scanning speed and small laser beam size (3–4 μm). Notably, this approach requires just about 1/30 of the sample volume typically utilized in conventional spot ablation mode, while achieving similar levels of precision and accuracy. Line scan ablation is tested and compared to spot ablation on age-homogeneous crystalline muscovite and biotite, for which reference Rb–Sr age data is acquired through ID-TIMS. Results show that a key requirement for accurate Rb–Sr ages based on line scan analyses is matrix correction using chemically matched crystalline mica. By presenting Rb–Sr age maps of three naturally deformed mica samples, we highlight the potential of Rb–Sr mapping for extracting age data from rocks that exhibit complex metamorphic-metasomatic histories and microscale dynamic recrystallization. Additionally, we show that quantitative elemental information (Al, Fe, Si, Li) can be collected alongside Rb–Sr isotope data. This advancement offers a distinctly more insightful assessment of isotope mobility in natural systems, the timing of element enrichment processes and enables, in high-Rb/Sr rock systems, precise and accurate isotopic dating of intricate geological processes at small scales.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2024-02-21
    Description: Correction to: Rock Mechanics and Rock Engineering https://doi.org/10.1007/s00603-023-03714-4 In the original publication, the “Funding Information” and “Acknowledgements” were mistakenly swapped.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publication Date: 2024-01-30
    Description: With the ongoing deployment of Global Navigation Satellite Systems (GNSS) ground stations and the modernization of satellite signal systems, the utilization of various augmentation technologies enables the realization of Precise Point Positioning (PPP) in real-time. Augmentation technology, which introduces precise atmospheric and signal-related delays, has become an essential component of high-precision real-time services and is attracting growing interest in scientific research, disaster monitoring, autopilot, etc. Previous studies have dedicated significant efforts to enhance the generation and dissemination of augmentation information on the service side and improve real-time positioning algorithms on the user side. The real-time atmosphere augmentation information with sufficient accuracy and proper constraint, and reliable Ambiguity Resolution (AR) for this purpose is the main focus of current GNSS research. However, these efforts have primarily been concentrated on small or medium-sized regions with the capability for transmitting massive data volumes. Alternatively, they have focused on larger areas, but with slow convergence due to the imprecise nature of atmosphere information. To address the challenge posed by the trade-offs among service area size, correction volume, and the precision of represented correction, a new augmentation strategy is proposed. This approach integrates the advantages of atmospheric delay fitting models, unmodeled residuals, and uncertainty information to achieve rapid and high-precision positioning, all while reducing data transmission volume for larger areas. It also allows users to implement different positioning modes depending on their communication capacity. Additionally, all deviations among different types of receivers and satellite signals are calibrated in this study for reliable AR can be achieved on all reference stations. The main contribution of this thesis is summarized as follows. With the real-time precise orbit, clock, and Uncalibrated Phase Delay (UPD) products, precise atmospheric delay corrections relying on reliable AR can be derived for large-areas augmentation services. To address the challenge of achieving reliable AR across different receiver types and various satellite signals, this thesis proposes a comprehensive method for calibrating receiver-type-related satellite-specific deviations and analyzes the impact of satellite signal bias corrections in data processing. The primary objective is to enhance the reliability of AR, enabling the utilization of all available signals and receiver types in large-area services. Subsequently, new tropospheric and ionospheric delay fitting models applied for large-area are carried out according to the properties of their propagation paths. In addition, the corresponding atmospheric delay uncertainty for large areas is introduced based on the fitting residuals. Finally, a hierarchical mode is developed for augmentation services, leveraging the advantages of the fitting model and uncertainty grid to reduce data volume and incorporating regional fitting residuals using the interpolation model and ionospheric delay error function, depending on the network capability. Based on hierarchical augmentation, positioning in large areas can not only achieve rapid/instantaneous high-precision convergence but also overcome the conflict among correction volume, represented precision, and coverage size. In order to derive precise atmospheric delay and accelerate positioning, implementing reliable and robust AR across all types of receivers and satellite signals is essential. It also demonstrates and discusses the advantages of calibrating satellite-signal and receiver-type-related satellite-specific deviations in AR solutions. The deviations related to receivers in terms of UPD products are assessed and calibrated, confirming that a 0.03 cycle consistency in wide lane UPD can be achieved. The effectiveness of the proposed approach is demonstrated using GPS satellite signals, which can improve the AR rate by at least 10% and produce more reliable results. In addition, the impact of different signal settings and corrections on orbit, clock, and UPD generation, as well as positioning and pseudo-range signal systematic and stochastic residuals, is analyzed. These processing strategies provide flexible observation selections, allowing the utilization of all available satellite signals and receiver types, thereby enabling reliable AR and a higher fixing rate. As a result, an AR fixing rate exceeding 95% is achievable across all stations in large-area services. For precise atmospheric delay modeling over large areas, new models are proposed, including a tropospheric Zenith Wet Delay (ZWD) model and a satellite-wise ionospheric slant delay fitting model. The tropospheric delay model takes the exponential function of water vapor vertical changes into consideration, addressing model anomalies in areas with large altitude differences. The new ionospheric delay fitting model introduces the trigonometric functions to describe differences in slant path delays between the optimal reference propagation path and others, achieving superior modeling performance in large areas. The precision of the fitting model, utilizing a 200 km station-spacing network, demonstrates tropospheric ZWD and ionospheric slant delays of 1.3 cm and 8.9 cm, respectively, with smaller standard deviations. These new fitting models overcome the challenge of handling massive information for providing station-wise corrections and avoid an increase in the number of coefficients. In addition to the function model, the stochastic model, i.e., uncertainty information, is essential for describing the quality of corrections. The atmospheric delay uncertainty for the large-area fitting model is generated based on the fitting residuals and represented in forms of grid-point. Additionally, regional ionosphere unmodeled residual uncertainty is represented by the form of liner function, which is established by the relationship between distance and interpolation precision through inter-satellite cross-verification among all reference stations. The differences between uncertainty value and real delays are 2.5 cm and 0.5 cm for grid and function forms, respectively. For real-time applications in large areas, the fitting model and grid-based atmosphere uncertainty serve as the essential information, satisfying the requirement of rapid positioning. By further incorporating unmodeled residuals and ionosphere error function, a hierarchical augmentation model is provided. Based on the fitting model established for large areas, unmodeled residuals are further introduced as optional compensation for specific areas, depending on the magnitude of fitting residuals. This approach results in a 97% reduction in tropospheric delay and a 65% reduction in ionospheric delay transmission volume. Furthermore, leveraging the regional high capability of communication, 85.3% of all solutions can achieve instantaneous convergence at the first epoch with the aid of corresponding regional compensation. This thesis proposes a large areas augmentation service to overcome the conflict among correction data volume, represented precision, and coverage size. It demonstrates the benefits of an augmentation mode that integrates regional information into large-area services. Under these conditions, a more reliable and rapid AR solution can be easily achieved based on precise atmospheric delay correction and uncertainty in large areas with fewer data volume requirements. This is beneficial for actual real-time services and applications.
    Description: Mit der laufenden Bereitstellung von Bodenstationen für globale Navigationssatellitensysteme (GNSS) und der Modernisierung von Satellitensignal-Systemen ermöglicht die Nutzung verschiedener Augmentationstechnologien die Realisierung der Präzisen Punkt-Positionierung (PPP) in Echtzeit. Augmentationstechnologie, die präzise atmosphärische und signalbezogene Verzögerungen einführt, ist zu einem wesentlichen Bestandteil hochpräziser Echtzeitdienste geworden und findet wachsendes Interesse in wissenschaftlicher Forschung, Katastrophenüberwachung, Autopiloten usw. Frühere Studien haben erhebliche Anstrengungen darauf verwendet, die Erzeugung und Verbreitung von Augmentationsinformationen auf der Dienstseite zu verbessern und Echtzeit-Positionierungsalgorithmen auf der Benutzerseite zu optimieren. Die Echtzeit-Atmosphärenaugmentationsinformationen mit ausreichender Genauigkeit und angemessener Einschränkung sowie zuverlässige Ambiguitätsauflösung (AR) für diesen Zweck stehen im Mittelpunkt der aktuellen GNSS-Forschung. Diese Bemühungen konzentrierten sich jedoch hauptsächlich auf kleine oder mittelgroße Regionen mit der Fähigkeit zur Übertragung großer Datenmengen. Alternativ richteten sie sich auf größere Gebiete, jedoch mit langsamer Konvergenz aufgrund der ungenauen Natur der Atmosphäreninformation. Um der Herausforderung durch die Abwägung zwischen Größe des Dienstleistungsgebiets, Korrekturvolumen und Präzision der dargestellten Korrektur zu begegnen, wird eine neue Augmentationsstrategie vorgeschlagen. Dieser Ansatz integriert die Vorteile atmosphärischer Verzögerungsanpassungsmodelle, nicht modellierter Reste und Unsicherheitsinformationen, um eine schnelle und hochpräzise Positionierung zu erreichen, und das bei gleichzeitiger Reduzierung der Datenübertragungsvolumina für größere Gebiete. Es ermöglicht den Benutzern auch, verschiedene Positionierungsmodi je nach ihrer Kommunikationskapazität zu implementieren. Zusätzlich werden in dieser Studie alle Abweichungen zwischen verschiedenen Typen von Empfängern und Satellitensignalen kalibriert, um eine zuverlässige AR an allen Referenzstationen zu erreichen. Die Hauptbeiträge dieser Arbeit werden wie folgt zusammengefasst. Mit den Echtzeit-Präzbitbahnen, Uhren und Uncalibrated Phase Delay (UPD)-Produkten können präzise atmosphärische Verzögerungskorrekturen für großflächige Augmentationsdienste abgeleitet werden, die auf zuverlässiger AR basieren. Um die Herausforderung zu bewältigen, eine zuverlässige AR über verschiedene Empfängertypen und verschiedene Satellitensignale hinweg zu erreichen, schlägt diese Arbeit eine umfassende Methode zur Kalibrierung von empfängertypbezogenen satellspezifischen Abweichungen vor und analysiert die Auswirkungen von Korrekturen für Satellitensignalverzerrungen in der Datenverarbeitung. Das Hauptziel besteht darin, die Zuverlässigkeit der AR zu verbessern und die Nutzung aller verfügbaren Signale und Empfängertypen in großflächigen Diensten zu ermöglichen. Anschließend werden neue troposphärische und ionosphärische Verzögerungsanpassungsmodelle für großflächige Anwendungen gemäß den Eigenschaften ihrer Ausbreitungspfade durchgeführt. Darüber hinaus wird die entsprechende atmosphärische Verzögerungsunsicherheit für große Gebiete auf der Grundlage der Anpassungsreste eingeführt. Schließlich wird ein hierarchischer Modus für Augmentationsdienste entwickelt, der die Vorteile des Anpassungsmodells und des Unsicherheitsgitters nutzt, um das Datenvolumen zu reduzieren und regionale Anpassungsreste unter Verwendung des Interpolationsmodells und der ionosphärischen Verzögerungsfehlerfunktion, abhängig von der Netzwerkfähigkeit, zu integrieren. Basierend auf der hierarchischen Augmentation kann die Positionierung in großen Gebieten nicht nur eine schnelle/instantane hochpräzise Konvergenz erreichen, sondern auch den Konflikt zwischen Korrekturvolumen, dargestellter Präzision und Abdeckungsgröße überwinden. Um präzise atmosphärische Verzögerungen abzuleiten und die Positionierung zu beschleunigen, ist es entscheidend, eine zuverlässige und robuste AR über alle Arten von Empfängern und Satellitensignalen zu implementieren. Es zeigt auch die Vorteile der Kalibrierung von satellitensignal- und empfängertypbezogenen satellspezifischen Abweichungen in AR-Lösungen auf. Die Abweichungen im Zusammenhang mit Empfängern in Bezug auf UPD-Produkte werden bewertet und kalibriert, wobei bestätigt wird, dass eine Konsistenz von 0,03 Zyklen bei Wide-Lane-UPD erreicht werden kann. Die Wirksamkeit des vorgeschlagenen Ansatzes wird unter Verwendung von GPS-Satellitensignalen demonstriert, die die AR-Rate um mindestens 10% verbessern und zu zuverlässigeren Ergebnissen führen können. Darüber hinaus wird der Einfluss unterschiedlicher Signalparameter und Korrekturen auf die Erzeugung von Orbit, Uhr und UPD sowie auf die Positionierung und systematische und stochastische Reste der Pseudo-Range-Signale analysiert. Diese Verarbeitungsstrategien bieten flexible Auswahlmöglichkeiten bei der Beobachtung und ermöglichen die Nutzung aller verfügbaren Satellitensignale und Empfängertypen, wodurch eine zuverlässige AR und eine höhere Fixierungsrate ermöglicht wird. Als Ergebnis ist eine AR-Fixierungsrate von über 95% bei allen Stationen in großflächigen Diensten erreichbar. Für eine präzise Modellierung atmosphärischer Verzögerungen über großen Gebieten werden neue Modelle vorgeschlagen, darunter ein troposphärisches Zenith Wet Delay (ZWD)-Modell und ein satellitenweises ionosphärisches Schrägverzögerungsanpassungsmodell. Das troposphärische Verzögerungsmodell berücksichtigt die exponentielle Funktion der vertikalen Änderungen des Wasserdampfs und behebt Modellanomalien in Gebieten mit großen Höhendifferenzen. Das neue ionosphärische Verzögerungsanpassungsmodell verwendet trigonometrische Funktionen, um Unterschiede in den Schrägpfadverzögerungen zwischen dem optimalen Referenzausbreitungspfad und anderen zu beschreiben und erreicht so eine überlegene Modellierungsleistung in großen Gebieten. Die Präzision des Anpassungsmodells, unter Verwendung eines 200 km-Stationen-Netzwerks, zeigt troposphärische ZWD- und ionosphärische Schrägverzögerungen von jeweils 1,3 cm und 8,9 cm mit kleineren Standardabweichungen. Diese neuen Anpassungsmodelle überwinden die Herausforderung, massive Informationen für die Bereitstellung stationsspezifischer Korrekturen zu verarbeiten, und vermeiden eine Zunahme der Anzahl der Koeffizienten. Neben dem Funktionsmodell ist das stochastische Modell, d. h. Unsicherheitsinformationen, entscheidend für die Beschreibung der Qualität der Korrekturen. Die Unsicherheit der atmosphärischen Verzögerung für das großflächige Anpassungsmodell wird auf der Grundlage der Anpassungsreste generiert und in Form von Gitterpunkten dargestellt. Zusätzlich wird die regionale ionosphärische nicht modellierte Restunsicherheit durch die Form einer linearen Funktion repräsentiert, die durch die Beziehung zwischen Entfernung und Interpolationsgenauigkeit durch inter-satellitenkreuz-Verifikation zwischen allen Referenzstationen etabliert wird. Die Unterschiede zwischen Unsicherheitswert und realen Verzögerungen betragen 2,5 cm bzw. 0,5 cm für Gitter- und Funktionsformen. Für Echtzeitanwendungen in großen Gebieten dienen das Anpassungsmodell und die gitterbasierte Atmosphärenunsicherheit als wesentliche Informationen, die die Anforderungen an schnelle Positionierung erfüllen. Durch die weitere Integration von nicht modellierten Resten und Ionosphärenfehlerfunktion wird ein hierarchisches Augmentationsmodell bereitgestellt. Basierend auf dem für große Gebiete etablierten Anpassungsmodell werden nicht modellierte Reste zusätzlich als optionale Kompensation für spezifische Bereiche eingeführt, abhängig von der Größenordnung der Anpassungsreste. Dieser Ansatz führt zu einer Reduktion von 97% der troposphärischen Verzögerung und einer Reduktion von 65% des ionosphärischen Verzögerungsvolumens. Darüber hinaus können unter Nutzung der regionalen hohen Kommunikationsfähigkeit 85,3% aller Lösungen mit Hilfe entsprechender regionaler Kompensation eine sofortige Konvergenz beim ersten Epochenzeitpunkt erreichen. Diese Dissertation schlägt einen großflächigen Augmentationsdienst vor, um den Konflikt zwischen Korrekturvolumen, dargestellter Präzision und Abdeckungsgröße zu überwinden. Sie zeigt die Vorteile eines Augmentationsmodus, der regionale Informationen in großflächige Dienste integriert. Unter diesen Bedingungen kann eine zuverlässigere und schnellere AR-Lösung basierend auf präziser atmosphärischer Verzögerungskorrektur und Unsicherheit in großen Gebieten mit geringeren Anforderungen an das Datenvolumen leicht erreicht werden. Dies ist vorteilhaft für tatsächliche Echtzeitdienste und Anwendungen.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2024-02-12
    Description: Interferometric Synthetic Aperture Radar (InSAR) is a highly effective and widely used approach for monitoring large-scale ground deformation. The precise and timely prediction of deformation holds significant importance in mitigating and preventing geological hazards, particularly considering the long revisit cycle of satellites and the considerable time required for data processing. In this study, we propose a strategy that predicts spatiotemporal InSAR time series based on Independent Component Analysis (ICA) and the Long Short-Term Memory (LSTM) machine learning model. Unlike traditional methods that rely on physical or statistical models, the proposed strategy leverages the power of ICA and LSTM to achieve accurate predictions without such dependencies. ICA is employed to decompose and capture the InSAR displacement signals of interest caused by various natural or anthropogenic processes and to characterize each individual signal. The spatiotemporal unsupervised K-mean cluster method is then applied to partition large-scale deformation fields into homogeneous subregions, considering the spatial variations and temporal nonlinearities of time series. This process facilitates the refinement of the model, thereby enhancing the accuracy of large-scale predictions. The neural network models are then individually constructed for each cluster, and the optimal parameters are determined through a grid search strategy. Subsequently, the proposed framework is implemented and assessed using two datasets featuring distinct deformation patterns: Case I involves land subsidence in Willcox Basin, USA, while Case II focuses on post-seismic deformation following the 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake. The results demonstrate that our proposed ICA-assisted LSTM outperforms the original LSTM model on large-scale deformation prediction, with the average prediction accuracy for one-step prediction (12 days in our case) being improved by 34% and 17% for cases I and II, respectively. Furthermore, we perform iterative predictions on the spatiotemporal InSAR measurements with varying temporal characteristics for the subsequent five steps using Sentinel-1 data and evaluate its performance and limitations. The successful prediction of land subsidence and post-seismic deformation provides further evidence that the proposed prediction strategy can be effectively employed in monitoring other large-scale geohazards characterized by prolonged and gradual deformation. This capability enables expedited decision-making and timely implementation of risk mitigation measures.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-02-12
    Description: Trawl-fishing is broadly considered to be one of the most destructive anthropogenic activities toward benthic ecosystems. In this study, we examine the effects of bottom-contact fishing by otter trawls on the geochemistry and macrofauna in sandy silt sediment in an area of the Baltic Sea where clear spatial patterns in trawling activity were previously identified by acoustic mapping. We calibrated an early diagenetic model to biogeochemical data from various coring locations. Fitting measured mercury profiles allowed for the determination of the sediment mixing and burial velocity. For all sites, independent of the trawl mark density, good fits were obtained by applying the model with the same organic matter loading and parameter values, while iron fluxes scaled linearly with the burial velocity. A sensitivity analysis revealed that the fitted sulfate reduction rate, solid sulfur contents, ammonium concentration, and both the isotopic composition and concentration of dissolved inorganic carbon provided reliable constraints for the total mineralization rate, which exhibited a narrow range of variability (around ±20 % from the mean) across the sites. Also, the trawling intensity did not significantly correlate with total organic carbon contents in surficial sediment, indicating limited loss of organic matter due to trawling. The fits to the reactive iron, acid volatile sulfur, chromium(II) reducible sulfur contents, and porewater composition demonstrate that sediment burial and mixing primarily determine the redox stratification. The mixing depth did not correlate with trawling intensity and is more likely the result of bioturbation, as the analyzed macrofaunal taxonomy and density showed a high potential for sediment reworking. The extraordinarily long-lived Arctica islandica bivalve dominated the infaunal biomass, despite the expectation that trawling leads to the succession from longer-lived to shorter-lived and bigger to smaller macrofauna. Our results further suggest that a clear geochemical footprint of bottom-trawling may not develop in sediments actively reworked by tenacious macrofauna.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2023-12-18
    Description: Inorganic geochemistry is a powerful tool in paleolimnology. It has become one of the most commonly used techniques to analyze lake sediments, particularly due to the development and increasing availability of XRF core scanners during the last two decades. It allows for the reconstruction of the continuous processes that occur in lakes and their watersheds, and it is ideally suited to identify event deposits. How earth surface processes and limnological conditions are recorded in the inorganic geochemical composition of lake sediments is, however, relatively complex. Here, we review the main techniques used for the inorganic geochemical analysis of lake sediments and we offer guidance on sample preparation and instrument selection. We then summarize the best practices to process and interpret bulk inorganic geochemical data. In particular, we emphasize that log-ratio transformation is critical for the rigorous statistical analysis of geochemical datasets, whether they are obtained by XRF core scanning or more traditional techniques. In addition, we show that accurately interpreting inorganic geochemical data requires a sound understanding of the main components of the sediment (organic matter, biogenic silica, carbonates, lithogenic particles) and mineral assemblages. Finally, we provide a series of examples illustrating the potential and limits of inorganic geochemistry in paleolimnology. Although the examples presented in this paper focus on lake and fjord sediments, the principles presented here also apply to other sedimentary environments.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2023-12-19
    Description: The Altiplano-Puna Plateau of the Central Andes hosts numerous lakes, playa-lakes, and salars with a great diversity and abundance of carbonates forming under extreme climatic, hydrologic, and environmental conditions. To unravel the underlying processes controlling the formation of carbonates and their geochemical signatures in hypersaline systems, we investigated coupled brine-carbonate samples in a high-altitude Andean lake using a wide suite of petrographic (SEM, XRD) and geochemical tools (δ2H, δ18O, δ13C, δ11B, major and minor ion composition, aqueous modelling). Our findings show that the inflow of hydrothermal springs in combination with strong CO2 degassing and evaporation plays an important role in creating a spatial diversity of hydro-chemical sub-environments allowing different types of microbialites (microbial mounds and mats), travertines, and fine-grained calcite minerals to form. Carbonate precipitation occurs in hot springs triggered by a shift in carbonate equilibrium by hydrothermal CO2 degassing and microbially-driven elevation of local pH at crystallisation. In lakes, carbonate precipitation is induced by evaporative supersaturation, with contributions from CO2 degassing and microbiological processes. Lake carbonates largely record the evaporitic enrichment (hence salinity) of the parent water which can be traced by Na, Li, B, and δ18O, although other factors (such as e.g., high precipitation rates, mixing with thermal waters, groundwater, or precipitation) also affect their signatures. This study is of significance to those dealing with the fractionation of oxygen, carbon, and boron isotopes and partitioning of elements in natural brine-carbonate environments. Furthermore, these findings contribute to the advancement in proxy development for these depositional environments.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-01-24
    Description: Anthropogenic climate change drives extreme weather events, leading to significant consequences for both society and the environment. This includes damage to road infrastructure, causing disruptions in transportation, obstructing access to emergency services, and hindering humanitarian organizations after natural disasters. In this study, we develop a novel method for analyzing the impacts of natural hazards on transportation networks rooted in the gravity model of travel, offering a fresh perspective to assess the repercussions of natural hazards on transportation network stability. Applying this approach to the Ahr valley flood of 2021, we discovered that the destruction of bridges and roads caused major bottlenecks, affecting areas considerably distant from the flood’s epicenter. Furthermore, the flood-induced damage to the infrastructure also increased the response time of emergency vehicles, severely impeding the accessibility of emergency services. Our findings highlight the need for targeted road repair and reinforcement, with a focus on maintaining traffic flow for emergency responses. This research provides a new perspective that can aid in prioritizing transportation network resilience measures to reduce the economic and social costs of future extreme weather events.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-01-29
    Description: The hazardous plasma environment surrounding Earth poses risks to satellites due to internal charging and surface charging effects. Accurate predictions of these risks are crucial for minimizing damage and preparing for system failures of satellites. To forecast the plasma environment, it is essential to know the current state of the system, as the accuracy of the forecast depends on the accuracy of the initial condition of the forecast. In this study, we use data assimilation techniques to combine observational data and model predictions, and present the first global validation of a data-assimilative electron ring current nowcast during a geomagnetic storm. By assimilating measurements from one satellite and validating the results against another satellite in a different magnetic local time sector, we assess the global response and effectiveness of the data assimilation technique for space weather applications. Using this method, we found that the simulation accuracy can be drastically improved at times when observations are available while eliminating almost all of the bias previously present in the model. These findings contribute to the construction of improved operational models in estimating surface charging risks and providing realistic ’source’ populations for radiation belt simulations.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-01-09
    Description: Analyzing seismic data in a timely manner is essential for potential eruption forecasting and early warning in volcanology. Here, we demonstrate that unsupervised machine learning methods can automatically uncover hidden details from the continuous seismic signals recorded during Iceland’s 2021 Geldingadalir eruption. By pinpointing the eruption’s primary phases, including periods of unrest, ongoing lava extrusion, and varying lava fountaining intensities, we can effectively chart its temporal progress. We detect a volcanic tremor sequence three days before the eruption, which may signify impending eruptive activities. Moreover, the discerned seismicity patterns and their temporal changes offer insights into the shift from vigorous outflows to lava fountaining. Based on the extracted patterns of seismicity and their temporal variations we propose an explanation for this transition. We hypothesize that the emergence of episodic tremors in the seismic data in early May could be related to an increase in the discharge rate in late April.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-01-09
    Description: In modelling atmospheric loading effects for terrestrial gravimetry, state-of-the-art approaches take advantage of numerical weather models to account for the global 3-D distribution of air masses. Deformation effects are often computed assuming the Inverse Barometer (IB) hypothesis to be generally valid over the oceans. By a revision of the IB assumption and its consequences we show that although the seafloor is not deformed by atmospheric pressure changes, there exists a fraction of ocean mass that current modelling schemes are usually not accounting for. This causes an overestimation of the atmospheric attraction effect over oceans, even when the dynamic response of the ocean to atmospheric pressure and wind is accounted through dynamic ocean models. This signal can reach a root mean square variability of a few nm s−2, depending on the location of the station. We therefore test atmospheric and non-tidal ocean loading effects at five superconducting gravimeter (SG) stations, showing that a better representation of the residual gravity variations is found when Newtonian attraction effects due to the IB response of the ocean are correctly considered. A sliding window variance analysis shows that the main reduction takes place for periods between 5 and 10 d, even for stations far away from the oceans. Since periods of non-tidal ocean mass variability closely resemble atmospheric signals recorded by SGs, we recommend to directly incorporate both an ocean component together with the IB into services that provide weather-related corrections for terrestrial gravimetry.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-01-09
    Description: Ferropericlase (Mg,Fe)O is after bridgmanite the most abundant phase in the lower mantle. The ultralow velocity zones above the core-mantle boundary may contain very Fe-rich magnesiowüstite (Fe,Mg)O, possibly as result of the fractional crystallisation of a basal magma ocean. We have experimentally studied the solubility of nitrogen in the ferropericlase-magnesiowüstite solid solution series as function of iron content. Multi-anvil experiments were performed at 20–33 GPa and 1600–1800 °C in equilibrium with Fe metal. Nitrogen solubility increases from a few tens ppm (μg/g) for Mg-rich ferropericlase to more than 10 wt. % for nearly pure wüstite. Such high solubilities appear to be due to solid solution with NiAs-type FeN. Our data suggest that during fractional crystallisation of a magma ocean, the core-mantle boundary would have become extremely enriched with nitrogen, such that the deep mantle today could be the largest nitrogen reservoir on Earth. The often discussed “subchondritic N/C” ratio of the bulk silicate Earth may be an artefact of insufficient sampling of this deep reservoir.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-01-09
    Description: Existing research indicates that to create geothermal reservoirs using CO2 injection, additional stimulation methods are necessary. N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) injection has been predicted to increase the permeability of CO2 injection-induced cloud-fracture networks (CFNs) and could serve as an additional stimulation method. Nevertheless, the influence of differential stress, flow geometry, and scale on the characteristics of permeability enhancement by GLDA injection is yet to be clarified. Accordingly, this study experimentally elucidated the permeability enhancement characteristics of injecting a chelating agent in fractured granite under differential stress conditions as an additional method for creating geothermal reservoirs using CO2 injection. GLDA injection experiments were conducted on fractured-granite samples under conventional- and true-triaxial stress states under varying differential stress and pH conditions. Regardless of the differential stress and pH conditions, rock deformation and acoustic emission (AE) were negligible during the chelating agent flow-through experiments on the fractured samples, whereas similar permeability enhancement factors were achieved within the same duration. Thus, stress did not affect the permeability enhancement by chelating agent injections. The permeability enhancement factors were inferred to be high near the injection borehole because of the high viscosity of the solution. Therefore, reservoir stimulation should be conducted using low-concentration chelating agent solutions at constant injection pressures. The study provides insights into the stimulation strategies for creating geothermal reservoirs using CO2 injection.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-01-17
    Description: Climate change poses a significant threat to the distribution and composition of forest tree species worldwide. European forest tree species’ range is expected to shift to cope with the increasing frequency and intensity of extreme weather events, pests and diseases caused by climate change. Despite numerous regional studies, a continental scale assessment of current changes in species distributions in Europe is missing due to the difficult task of modeling a species realized distribution and to quantify the influence of forest disturbances on each species. In this study we conducted a trend analysis on the realized distribution of 6 main European forest tree species (Abies alba Mill., Fagus sylvatica L., Picea abies L. H. Karst., Pinus nigra J. F. Arnold, Pinus sylvestris L. and Quercus robur L.) to capture and map the prevalent trends in probability of occurrence for the period 2000–2020. We also analyzed the impact of forest disturbances on each species’ range and identified the dominant disturbance drivers. Our results revealed an overall trend of stability in species’ distributions (85% of the pixels are considered stable by 2020 for all species) but we also identified some hot spots characterized by negative trends in probability of occurrence, mostly at the edges of each species’ latitudinal range. Additionally, we identified a steady increase in disturbance events in each species’ range by disturbance (affected range doubled by 2020, from 3.5% to 7% on average) and highlighted species-specific responses to forest disturbance drivers such as wind and fire. Overall, our study provides insights into distribution trends and disturbance patterns for the main European forest tree species. The identification of range shifts and the intensifying impacts of disturbances call for proactive conservation efforts and long-term planning to ensure the resilience and sustainability of European forests.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-03-04
    Description: This dataset comprises event peak flows, representing extreme floods at 516 stations in Germany. The data generation process involves several key steps. Initially, observed rainfall events associated with 10 historical flood disasters from 1950 to 2021 are undergone spatial shifts. These shifts involve three distances (20, 50, and 100 km) and eight directions (North, Northeast, East, Southeast, South, Southwest, West, Northwest), resulting in 24 counterfactual precipitation events. Including the factual (no shift) event, a total of 25 distinct shifting events are considered. Subsequently, these shifted fields are used as atmospheric forcing for a mesoscale hydrological model (mHM) set up and calibrated for the entire Germany. The model produces daily stream flows across its domain, from which the event peak flows are derived. This dataset is expected to provide a valuable resource for analyzing and modeling the dynamics extreme flood events in Germany.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
  • 168
    Publication Date: 2024-03-04
    Description: We present SeisMIC, a fast, versatile, and adaptable open-source software to estimate seismic velocity changes from ambient seismic noise. SeisMIC includes a broad set of tools and functions to facilitate end-to-end processing of ambient noise data, from data retrieval and raw data analysis via spectrogram computation, over waveform coherence analysis, to post-processing of the final velocity change estimates. A particular highlight of the software is its ability to invert velocity change time series onto a spatial grid, making it possible to create maps of velocity changes. To tackle the challenge of processing large continuous datasets, SeisMIC can exploit multithreading at high efficiency with an about five-time improvement in compute time compared to MSNoise, probably the most widespread ambient noise software. In this manuscript, we provide a short tutorial and tips for users on how to employ SeisMIC most effectively. Extensive and up-to-date documentation is available online. Its broad functionality combined with easy adaptability and high efficiency make SeisMIC a well-suited tool for studies across all scales.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-03-04
    Description: The dataset is the basis for describing a 60-year-long evolution of groundwater dynamics and thermal field in the North German Basin beneath the Federal State of Brandenburg (NE Germany), covering the period between 1953 and 2014 with monthly increments. It was produced by one-way coupling of a near-surface distributed hydrologic model to a 3D basin-scale thermohydraulic groundwater model with the goal of investigating feedbacks between climate-driven forcing (in terms of time- and space-varying recharge and temperature), basin-scale geology, and topographic gradients. Modeled pressure and temperature distributions are validated against published groundwater level and temperature time series from observation wells. Our results indicate the spatio-temporal extent of the groundwater system subjected to nonlinear interactions between local geological variability and climate conditions. The dataset comprises of input files and scripts required to run the groundwater model in GOLEM and output files from the transient thermo-hydraulic simulations in EXODUS format. The input and output data is organized as separate archived folders (*.gz format).
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2024-03-04
    Description: Assessing the potential and extent of earthquake-induced liquefaction is paramount for seismic hazard assessment, for the large ground deformations it causes can result in severe damage to infrastructure and pose a threat to human lives, as evidenced by many contemporary and historical case studies in various tectonic settings. In that regard, numerical modeling of case studies, using state-of-the-art soil constitutive models and numerical frameworks, has proven to be a tailored methodology for liquefaction assessment. Indeed, these simulations allow for the dynamic response of liquefiable soils in terms of effective stresses, large strains, and ground displacements to be captured in a consistent manner with experimental and in-situ observations. Additionally, the impact of soil properties spatial variability in liquefaction response can be assessed, because the system response to waves propagating are naturally incorporated within the model. Considering that, we highlight that the effect of shear-wave velocity Vs spatial variability has not been thoroughly assessed. In a case study in Metropolitan Concepción, Chile, our research addresses the influence of Vs spatial variability on the dynamic response to liquefaction. At the study site, the 2010 Maule Mw 8.8 megathrust Earthquake triggered liquefaction-induced damage in the form of ground cracking, soil ejecta, and building settlements. Using simulated 2D Vs profiles generated from real 1D profiles retrieved with ambient noise methods, along with a PressureDependentMultiYield03 sand constitutive model, we studied the effect of Vs spatial variability on pore pressure generation, vertical settlements, and shear and volumetric strains by performing effective stress site response analyses. Our findings indicate that increased Vs variability reduces the median settlements and strains for soil units that exhibit liquefaction-like responses. On the other hand, no significant changes in the dynamic response are observed in soil units that exhibit non-liquefaction behavior, implying that the triggering of liquefaction is not influenced by spatial variability in Vs. We infer that when liquefaction-like behavior is triggered, an increase of the damping at the shallowest part of the soil domain might be the explanation for the decrease in the amplitude of the strains and settlements as the degree of Vs variability increases.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2024-01-26
    Description: Premise The rise of angiosperm-dominated tropical rainforests has been proposed to have occurred shortly after the Cretaceous–Paleogene transition. Paleocene fossil wood assemblages are rare yet provide important data for understanding these forests and whether their wood anatomical features can be used to document the changes that occurred during this transition. Methods We used standard techniques to section 11 fossil wood specimens of Paleocene-age, described the anatomy using standard terminology, and investigated their affinities to present-day taxa. Results We report here the first middle Paleocene fossil wood specimens from Myanmar, which at the time was near the equator and anchored to India. Some fossils share affinities with Arecaceae, Sapindales (Anacardiaceae, Meliaceae) and Moraceae and possibly Fabaceae or Lauraceae. One specimen is described as a new species and genus: Compitoxylon paleocenicum gen. et sp. nov. Conclusions This assemblage reveals the long-lasting presence of these aforementioned groups in South Asia and suggests the early presence of multiple taxa of Laurasian affinity in Myanmar and India. The wood anatomical features of the dicotyledonous specimens reveal that both “modern” and “primitive” features (in a Baileyan scheme) are present with proportions similar to features in specimens from Paleocene Indian localities. Their anatomical diversity corroborates that tropical flora display “modern” features early in the history of angiosperms and that their high diversity remained steady afterward.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-03-01
    Description: Public earthquake early warning systems (PEEWSs) have the potential to save lives by warning people of incoming seismic waves up to tens of seconds in advance. Given the scale and geographical extent of their impact, this potential is greatest for destructive earthquakes, such as the M7.8 Pazarcik (Türkiye) event of 6 February 2023, which killed almost 60,000 people. However, warning people of imminent strong shaking is particularly difficult for large-magnitude earthquakes because the warning must be given before the earthquake has reached its final size. Here, we show that the Earthquake Network (EQN), the first operational smartphone-based PEEWS and apparently the only one operating during this earthquake, issued a cross-border alert within 12 s of the beginning of the rupture. A comparison with accelerometer and macroseismic data reveals that, owing to the EQN alerting strategy, Turkish and Syrian EQN users exposed to intensity IX and above benefitted from a warning time of up to 58 s before the onset of strong ground shaking. If the alert had been extended to the entire population, approximately 2.7 million Turkish and Syrian people exposed to a lifethreatening earthquake would have received a warning ranging from 30 to 66 s in advance.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-03-05
    Description: This study presents the findings of a splitting analysis conducted on core-refracted teleseismic shear waves (SKS, SKKS and PKS, called together as XKS) and local shear waves, obtained from a dense seismological network spanning the Kamchatka Peninsula. The objective of the study is to examine the pattern of mantle flow beneath the study area through the investigation of seismic anisotropy. The peninsula is situated at the northeastern end of the Kuril–Kamchatka subduction zone, where the Kuril trench intersects with the western boundary of the Aleutian trench. The data set utilized in this study comprises waveform data from a dense network of seismic stations (99 broad-band and short-period stations for the local shear wave splitting analysis and 69 broad-band stations for the SKS splitting analysis). The seismograms were downloaded from publicly available data repositories including the IRIS Data Management Center and the GFZ Data Services (GEOFON program). The dense station coverage allows us to investigate the lateral variations in anisotropy, providing insights into the flow patterns within the mantle. The processing of the combined data sets of local shear wave and teleseismic XKS waves allowed us to partially decipher the source of anisotropy in the mantle. Small delay (splitting) times (∼0.35 s) observed from the local-S data suggest that anisotropy in the mantle wedge is relatively weak with lateral variations. Larger splitting times (∼1.1 s) observed for the XKS waves relative to local S suggest that the main part of splitting on the XKS waves occurs in the subslab mantle. On the other hand, the rotational pattern of seismic anisotropy observed by both the local S and XKS waves suggests the presence of a toroidal flow at the NE edge of the subducting slab, which affects both the mantle wedge and subslab mantle. For the regions away from the edge of the slab, the mantle flow seems to be governed mainly by the drag of the lithospheric plate over the underlying asthenosphere.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-03-05
    Description: The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions, and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere. Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission. Here, we describe current community efforts to prepare for SMILE, and the benefits and context various experiments that have explicitly expressed support for SMILE can offer. A dedicated group of international scientists representing many different experiment types and geographical locations, the Ground-based and Additional Science Working Group, is facilitating these efforts. Preparations include constructing an online SMILE Data Fusion Facility, the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar, and the consideration of particular observing strategies and spacecraft conjunctions. We anticipate growing interest and community engagement with the SMILE mission, and we welcome novel ideas and insights from the solar-terrestrial community.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-03-06
    Description: Drainage basins delineate Earth's land surface into individual water collection units. Basin shape and river sinuosity determine water and sediment dynamics, affecting landscape evolution and connectivity between ecosystems and freshwater species. However, a high-resolution global dataset for the boundaries and geometry of basins is still missing. Using a 90 m resolution digital elevation model, we measured the areas, lengths, widths, aspect ratios, slopes, and elevations of basins over 50 km2 globally. Additionally, we calculated the lengths and sinuosities of the longest river channels within these 0.67 million basins. We built a new global dataset, Basin90m, to present the basins and rivers, as well as their morphological metrics. To highlight the use cases of Basin90m, we explored the correlations among morphological metrics, such as Hack's law. By comparing with HydroSHEDS, HydroATLAS, and Google Earth images, we demonstrated the high accuracy of Basin90m. Basin90m, available in shapefile format, can be used on various GIS platforms, including QGIS, ArcGIS, and GeoPandas. Basin90m has substantial application prospects in geomorphology, hydrology, and ecology. Basin90m is available at https://doi.org/10.5880/GFZ.4.6.2023.004 (He et al., 2023).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2024-03-06
    Description: Regions experiencing prolonged dry spell exhibit intensified land-atmosphere coupling, exacerbating dry conditions within the hydrological system. Yet, understanding the propagation of these processes within the context of permafrost degradation remains limited. Our study investigates concurrent hydro-climate variations in the semi-arid Selenga River basin in the southern edge of Siberian permafrost. Driven by the natural atmospheric circulations, this region experienced two distinct dry spells during 1954–2013. It enables comparative investigations into the role of warming-induced permafrost degradations in drought dynamics under land-atmosphere coupling. Based on a comprehensive analysis of observed borehole data from 1996 to 2009 and empirical methods, we identify widespread permafrost loss in the semi-arid Selenga region. Such large-scale landscape changes may increase the infiltration of water from the surface to the subsurface hydrological system, and significantly influence the dry conditions in landsurface. First, significant decreasing trends are observed in river runoff (−0.30mm/yr, p 〈 0.05) and TWS (−3.16 mm/yr, p = 0.1), despite the absence of an apparent trend in annual precipitation (0.009 mm/yr, p = 0.9). Furthermore, in comparison to the first dry spell (1974–1983, 10yrs), the hydro-climatic variables show prolonged and more severe water deficits in runoff and TWS during the second dry spell (1996–2012, 17 yrs), with a reduced runoff-generation efficiency from precipitation. Such exacerbated dry conditions are coincident with amplified positive anomalies observed in air temperature, PET, as well as low-level geopotential height. These concurrent “hot-dry” phenomena indicate an enhanced land-atmospheric interaction within the hydro-climate system, which is further evidenced by the negative relationship between permafrost thawing index and runoff deficits (regression coefficient = –3.8, p 〈 0.001). As climate warming continues, the ongoing permafrost degradation could reinforce water scarcity, triggering an irreversible shift in water availability in water-scarce regions. Our findings could support freshwater management for regional food supply, human health, and ecosystem functions in the regions undergoing large-scale permafrost degradation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2024-02-05
    Description: Geothermal energy is one of the most viable sources of renewable heat. However, the potential risk of induced seismicity associated with geothermal operations may slow down the growth of the geothermal sector. Previous research has led to significant progress in understanding fluidinjection- induced seismicity in geothermal reservoirs. However, an in-depth assessment of thermal effects on the seismic risk was generally considered to be of secondary importance. This study aims to investigate the relative influence of temperature and key geological and operational parameters on the slip tendency of pre-existing faults. This is done through coupled thermo-hydro-mechanical simulations of the injection and production processes in synthetic geothermal reservoir models of the most utilized and potentially exploitable Dutch geothermal reservoir formations: Slochteren sandstone, Delft sandstone and Dinantian limestone. In our study, changes in the slip tendency of a fault can largely be attributed to thermo-elastic effects, which confirms the findings of recent studies linking thermal stresses to induced seismicity. While the direct pore pressure effect on slip tendency tends to dominate over the early phase of the operations, once pore pressure equilibrium is established in a doublet system, it is the additional stress change associated with the growing cold-water front around the injection well that has the greatest influence. Therefore, the most significant increase in the slip tendency was observed when this low-temperature front reached the fault zone. The distance between an injection well and a pre-existing fault thus plays a pivotal role in determining the mechanical stability of a fault. A careful selection of a suitable target formation together with an appropriate planning of the operational parameters is also crucial to mitigate the risk of induced seismicity. Besides the well-known relevance of the in situ stress field and local fault geometry, rock-mechanical properties and operation conditions exert a major influence on induced stress changes and therefore on the fault (re)activation potential during geothermal operations.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    In:  Geomechanics for Energy and the Environment
    Publication Date: 2024-02-05
    Description: The CNSC, the Canadian regulator for the nuclear industry, participated in DECOVALEX-2023 Task G that focuses on the thermo (T) - hydro (H)- mechanical (M) behaviour of rock joints. Joints are omnipresent in rock masses and are planes of weakness in the host rock. When deep geological repositories (DGRs) for radioactive waste are being considered in areas where rock joints are present, the joints could be preferential pathways for radionuclide migration. Therefore, their THM behaviour must be better understood to assess the safety of the DGR. Under different possible internal and external perturbations, a joint can move by shear and dilation. If the joint crosses the emplacement area of a waste container, the heat generated from the waste can itself induce shearing of the joint. Excessive shear movement can in turn lead to failure of the container, resulting in earlier release of radionuclides. Furthermore, dilation that might accompany shear, results in an increase in the joint aperture creating a faster flow path for radionuclide transport. Mathematical models are important tools that need to be developed and employed, in order to assess joint shear and dilation under different loading conditions, such as the heat generated from the emplaced waste. The authors have developed such a mathematical model based on a macroscopic formulation within the framework of elasto-plasticity. It is verified against analytical solutions and validated against shear under constant normal load tests and thermal shearing tests of joints in granite.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2024-02-05
    Description: The deflection and the control of the effects of the complex urban seismic wavefield on the built environment is a major challenge in earthquake engineering. The interactions between the soil and the structures and between the structures strongly modify the lateral variability of ground motion seen in connection to earthquake damage. Here we investigate the idea that flexural and compressional resonances of tall turbines in a wind farm strongly influence the propagation of the seismic wavefield. A large-scale geophysical experiment demonstrates that surface waves are strongly damped in several distinct frequency bands when interacting at the resonances of a set of wind turbines. The ground-anchored arrangement of these turbines produces unusual amplitude and phase patterns in the observed seismic wavefield, in the intensity ratio between stations inside and outside the wind farm and in surface wave polarization while there is no metamaterial-like complete extinction of the wavefield. This demonstration is done by setting up a dense grid of 400 geophones and another set of radial broadband stations outside the wind farm to study the properties of the seismic wavefield propagating through the wind farm. Additional geophysical equipment (e.g., an optical fiber, rotational and barometric sensors) was used to provide essential explanatory and complementary measurements. A numerical model of the turbine also confirms the mechanical resonances that are responsible for the strong coupling between the wind turbines and the seismic wavefield observed in certain frequency ranges of engineering interest.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    In:  Journal of Geophysical Research: Solid Earth
    Publication Date: 2024-02-05
    Description: Teleseismic back-projection imaging has emerged as a powerful tool for understanding the rupture propagation of large earthquakes. However, its application often suffers from artifacts related to the receiver array geometry. We developed a teleseismic back-projection technique that can accommodate data from multiple arrays. Combined processing of P and pP waveforms may further improve the resolution. The method is suitable for defining arrays ad-hoc to achieve a good azimuthal distribution for most earthquakes. We present a catalog of short-period rupture histories (0.5–2.0 Hz) for all earthquakes from 2010 to 2022 with MW ≥ 7.5 and depth less than 200 km (56 events). The method provides automatic estimates of rupture length, directivity, speed, and aspect ratio, a proxy for rupture complexity. We obtained short-period rupture length scaling relations that are in good agreement with previously published relations based on estimates of total slip. Rupture speeds were consistently in the sub-Rayleigh regime for thrust and normal earthquakes, whereas a tenth of strike-slip events propagated at supershear speeds. Many rupture histories exhibited complex behaviors, for example, rupture on conjugate faults, bilateral propagation, and dynamic triggering by a P wave. For megathrust earthquakes, ruptures encircling asperities were frequently observed, with downdip, updip, and balanced patterns. Although there is a preference for short-period emissions to emanate from central and downdip parts of the megathrust, emissions updip of the main asperity are more frequent than suggested by earlier results.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2024-02-26
    Description: The proximity of fast‐slipping crustal faults to urban areas may result in pulse‐like ground motions from rupture directivity, which can contribute to increased levels of damage even for engineered structures. Systematic modeling of directivity within probabilistic seismic hazard analysis (PSHA) remains challenging to implement at the regional scale, despite the availability of directivity models in the literature. In the process of developing the 2022 National Seismic Hazard Model for New Zealand (2022 NSHM), we explored the feasibility and impact of modeling directivity for PSHA at a national scale using the previous generation 2010 NSHM. The results of this analysis allowed us to quantify the impact of directivity on the resulting seismic hazard maps for New Zealand and gain insights into the factors that contribute to the expected increases (and decreases) in ground‐motion level. For the 2022 NSHM, the earthquake rupture forecast (ERF) seismogenic source models introduced enormous challenges for directivity modeling due to the abundance of large multisegment or multifault ruptures with complex geometries. To overcome these challenges, we applied a machine learning‐based strategy to “overfit” an artificial neural network to capture the distributions of directivity amplification and its variability for each unique rupture in the earthquake rupture forecast. This produces a compact representation of the spatial fields of amplification that are computationally efficient to generate within a complete PSHA calculation for the 2022 NSHM. This flexible and reproducible framework facilitates the implementation of directivity in PSHA at a regional scale for complex ERF source models and opens up the possibility of more complex characterization of epistemic uncertainties for near‐source ground motion in practice.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2024-02-26
    Description: The morphology of coastal sequences provides fundamental observations to unravel past sea level (SL) variations. For that purpose, converting morphometric observations into a SL datum requires understanding their morphogenesis. The long-lasting sequence of coral reef terraces (CRTs) at Cape Laundi (Sumba Island, Indonesia) could serve as a benchmark. Yet, it epitomizes a pitfall that challenges the ultimate goal: the overall chronology of its development remains poorly constrained. The polycyclic nature of the terraces, involving marine erosion and reoccupation of old coral colonies by more recent ones hinders any clear assignment of Marine Isotope Stages (MIS) to specific terraces, in particular the reference datum corresponding to the last Interglacial maximum (i.e., MIS 5e). Thus, to overcome these obstacles, we numerically model the genesis of the sequence, testing a range of eustatic SL (ESL) reconstructions and uplift rates, as well as exploring the parameter space to address reef growth, erosion and sedimentation. A total of 625 model runs allowed us to improve the morpho-chronological constraints of the coastal sequence and, more particularly, to explain the morphogenesis of the several CRTs associated with MIS 5e. Our results suggest that the lowermost main terrace was first constructed during the marine transgression of MIS 5e and was later reshaped during the marine regression of MIS 5e, as well as during the MIS 5c and MIS 5a highstands. Finally, we discuss the general morphology of the sequence and the implications it may have on SL reconstructions. At Cape Laundi, as elsewhere, we emphasize the necessity of addressing the development of CRT sequences with a dynamic approach, that is, considering that a CRT is a landform built continuously throughout the history of SL oscillations, and not simply during a singular SL maximum.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-02-26
    Description: Hydraulic fracturing has been widely used to enhance reservoir permeability during the extraction of shale gas. As one of the external input parameters, injection rate has a significant impact on formation breakdown pressure and the complexity of hydraulic fractures. To gain deeper insights into the effect of injection rate on breakdown pressure and fracture morphology, we conducted five hydraulic fracturing experiments on Changning shale in the laboratory. We used five different injection rates between 3 and 30 mL/min to fracture cylindrical core samples with 50 mm in diameter and 100 mm in length. We monitored acoustic emissions and surface displacements during the tests, and analyzed the fracture pattern post mortem by using a fluorescent tracer. We find a semi-logarithmic relationship between the breakdown pressure and the injection rates. Second, we find that it is the injection rate that dictates sample deformation and crack formation during breakdown rather than the fluid volume injected during the whole process. The analysis of amplitudes and frequency of acoustic signals indicates that hydraulic fracturing of Changning shale is overall dominated by tensile fractures (〉 60%). However, at low injection rates, shear events are facilitated before rock breakdown. On the other hand, high injection rates result in reducing fracture tortuosity and surface roughness due to limited fluid infiltration in the relatively short injection window. We close this study with a conceptual model to explain the difference between fluid infiltration (low injection rates) and the loading rate effect (high injection rate) in low-permeability shale rocks. The findings obtained in this study can help to adjust injection rates in the field to economically and safely produce gas from shale.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-02-26
    Description: Secondary ion mass spectrometry was used to test the d18O and d34S nanogram-scale homogeneity of a suite of candidate sulfate minerals, ultimately selecting three barite, two anhydrite, and two gypsum samples from the Royal Ontario Museum that have repeatabilities for their SIMS measurements of better than 0.39‰ and 0.37‰ (1s) for oxygen and sulfur isotope ratios, respectively. Metrological splits of each of the seven materials were sent to multiple gas source isotope ratio mass spectrometry laboratories in order to establish their absolute 18O/16O and 34S/32S ratios. The inter-laboratory results of GS-IRMS analyses yielded reasonably narrow ranges in d18OVSMOW, whereas larger variations in d34SVCDT values were found between the results from the gas source laboratories. All samples have good reproducibility within laboratories of GS-IRMS 103d18O values of between 0.24‰ and 0.44‰ (1s). The reproducibility within laboratories of GS-IRMS 103d34S values range from 0.07‰ to 0.99‰ (1s). Here we also discuss some of the current analytical limitations affecting these isotope-mineral systems. A total of 256 metrological splits have been prepared from each of these seven materials; these aliquots will be made available to the global geochemical community.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-02-26
    Description: The goals of the Paris Agreement (PA) on collectively managing climate change can only be reached if all parties to the United Nations Framework Convention on Climate Change (UNFCCC) commit to actions supporting their Nationally Determined Contributions (NDCs). Developing-economy nations play a crucial role in reaching the PA targets, particularly in the Agriculture, Forest, and Other Land Uses (AFOLU) sector. However, developing country Parties also face several constraints in tracking and communicating progress towards their climate policy targets and implementation of their NDCs. The operationalization of Biennial Transparency Report (BTR) and Enhanced Transparency Framework (ETF) under the PA will bring stricter reporting timeframes and advanced transparency for all parties. With these requirements rapidly coming into force, addressing reporting gaps is now a pressing priority. The present study analyzes the NDCs, and Biennial Update Reports (BURs) submitted by developing country Parties under the UNFCCC. In an illustrative exercise, our in-depth analysis concentrates on reporting on the AFOLU sector and identifies issues impeding a comprehensive and comparable Global Stock Take (GST): (i) issues of consistency in reporting timeframes (ii) issues in transparency of reporting on mitigation sectors and on relevant progress indicators (iii) incomparability of methodological approaches proposed and used, and (iv) the implications of limited national capacity for transparent reporting. The UNFCCC and developed country Parties now have the opportunity of providing specialized support for developing country Parties. This could include tailored guidance to address gaps in both greenhouse-gas (GHG) emissions accounting, and reporting challenges, to ensure consistent, comprehensive, and transparent reporting to reinforce capacities moving forward following the next GST.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2024-02-26
    Description: The increasing demand for fertilizers and their rising prices has led to the search for new nutrient sources, especially in rural areas where family farming predominates. In this study, we assessed the potential of reusing sediment deposited in surface reservoirs as a soil conditioner in a semiarid region, focusing on two features: the characterization of sediment physicochemical properties at the regional scale and the effect of the substrate containing sediment on the growth and physiology of maize.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2024-02-26
    Description: The crustal motions throughout Germany have not yet been fully understood because the research scope of previous studies often focuses only on some active grabens. Thus, we investigate it in detail to identify the neotectonic motion characteristics and specific deformation-ongoing regions. High accuracy for monitoring and data analyses is required because the expected crustal deformation in Germany is small. For this reason, we use high-precision GNSS time series processing techniques and interdisciplinary data to reflect actual motions and determine the causes of deformation. Also, an advanced technique of discontinuity correction is introduced to unify the fragments of the GNSS coordinate time series for better velocity field reliability. Our findings show that the crustal motions in Germany tend to increase at a maximum speed of +1.0 mm/year. Meanwhile, local subsidence of around 0.8 mm/year is concentrated in the river basins (e.g., the Rhine, Ems, Elbe, Northern Oder, and Danube) and extensive mining regions. The Earth’s crust here also behaves with noticeable compressions. The intra-plate motion in Germany is 0.8 mm/year. A special region with an extension rate of +4.3 nstrain/year is observed along the North–South trending Regensburg-Leipzig-Rostock shear zone. Machine Learning clusters the 3D plate velocity field in Germany into three distinct regions with increasing speeds: Northwest, East, and Southwest. Significant surface deformations are detected mainly in the Upper Rhine graben, Eifel volcanic field, and Thuringian-Vogtland slate mountains. The harmonic motions of the Earth’s crust in Germany have an amplitude of 4.7 mm, in which the surface loads contribute half to this type of motion. The findings will contribute to the overall picture of neotectonics here.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2024-02-26
    Description: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2024-02-26
    Description: Microbial blooms colonize the Greenland Ice Sheet bare ice surface during the ablation season and significantly reduce its albedo. On the ice surface, microbes are exposed to high levels of irradiance, freeze–thaw cycles, and low nutrient concentrations. It is well known that microorganisms secrete metabolites to maintain homeostasis, communicate with other microorganisms, and defend themselves. Yet, the exometabolome of supraglacial microbial blooms, dominated by the pigmented glacier ice algae Ancylonema alaskanum and Ancylonema nordenskiöldii, remains thus far unstudied. Here, we use a high-resolution mass spectrometry-based untargeted metabolomics workflow to identify metabolites in the exometabolome of microbial blooms on the surface of the southern tip of the Greenland Ice Sheet. Samples were collected every 6 h across two diurnal cycles at 5 replicate sampling sites with high similarity in community composition, in terms of orders and phyla present. Time of sampling explained 46% (permutational multivariate analysis of variance [PERMANOVA], pseudo-F = 3.7771, p = 0.001) and 27% (PERMANOVA, pseudo-F = 1.8705, p = 0.001) of variance in the exometabolome across the two diurnal cycles. Annotated metabolites included riboflavin, lumichrome, tryptophan, and azelaic acid, all of which have demonstrated roles in microbe–microbe interactions in other ecosystems and should be tested for potential roles in the development of microbial blooms on bare ice surfaces.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2024-02-26
    Description: The analysis of Coulomb stress changes has become an important tool for seismic hazard evaluation because such stress changes may trigger or delay subsequent earthquakes. Processes that can cause significant Coulomb stress changes include coseismic slip and transient postseismic processes such as poroelastic effects and viscoelastic relaxation. However, the combined influence of poroelastic effects and viscoelastic relaxation on co- and postseismic Coulomb stress changes has not been systematically studied so far. Here, we use three-dimensional finite-element models with arrays of normal and thrust faults to investigate how pore fluid pressure changes and viscoelastic relaxation overlap during the postseismic phase. In different experiments, we vary the permeability of the upper crust and the viscosity of the lower crust or lithospheric mantle while keeping the other parameters constant. In addition, we perform experiments in which we combine a high (low) permeability of the upper crust with a low (high) viscosity of the lower crust. Our results show that the coseismic (i.e., static) Coulomb stress changes are altered by the signal from poroelastic effects and viscoelastic relaxation during the first month after the earthquake. For sufficiently low viscosities, the Coulomb stress change patterns show a combined signal from poroelastic and viscoelastic effects already during the first postseismic year. For sufficiently low permeabilities, Coulomb stress changes induced by poroelastic effects overlap with the signals from viscoelastic relaxation and interseismic stress accumulation for decades. Our results imply that poroelastic and viscoelastic effects have a strong impact on postseismic Coulomb stress changes and should therefore be considered together when analyzing Coulomb stress transfer between faults.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2024-02-26
    Description: The impact of faults on the contemporary stress field in the upper crust has been discussed in various studies. Data and models clearly show that there is an effect, but so far, a systematic study quantifying the impact as a function of distance from the fault is lacking. In the absence of data, here we use a series of generic 3-D models to investigate which component of the stress tensor is affected at which distance from the fault. Our study concentrates on the far field, lo- cated hundreds of metres from the fault zone. The models assess various techniques to represent faults, different mate- rial properties, different boundary conditions, variable orien- tation, and the fault’s size. The study findings indicate that most of the factors tested do not have an influence on ei- ther the stress tensor orientation or principal stress magni- tudes in the far field beyond 1000 m from the fault. Only in the case of oblique faults with a low static friction coeffi- cient of μ = 0.1 can noteworthy stress perturbations be seen up to 2000 m from the fault. However, the changes that we detected are generally small and of the order of lateral stress variability due to rock property variability. Furthermore, only in the first hundreds of metres to the fault are variations large enough to be theoretically detected by borehole-based stress data when considering their inherent uncertainties. This find- ing agrees with robust stress magnitude measurements and stress orientation data. Thus, in areas where high-quality and high-resolution data show gradual and continuous stress ten- sor rotations of 〉 20◦ observed over lateral spatial scales of 10 km or more, we infer that these rotations cannot be at- tributed to faults. We hypothesize that most stress orienta- tion changes attributed to faults may originate from different sources such as density and strength contrasts.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-02-27
    Description: The Samail Ophiolite in the Oman Mountains formed at a Cretaceous subduction zone that was part of a wider Neo-Tethys plate-boundary system. The original configuration and evolution of this plate-boundary system is hidden in a structurally and metamorphically complex nappe stack below the Samail Ophiolite. Previous work provided evidence for high-temperature metamorphism high in the nappe pile (in the metamorphic sole of the Samail Ophiolite), and high-pressure metamorphism in the deepest part of the nappe pile (Saih Hatat window), possibly reflecting a downward younging, progressive accretion history at the Samail subduction zone. However, there is evidence that the two subduction-related metamorphic events are disparate, but temporally overlapping during the mid-Cretaceous. We present the first geochronologic dataset across the entire high-pressure nappe stack below the Samail Ophiolite, and the shear zones between the high-pressure nappes. Our 22 new Rbsingle bondSr multimineral isochron ages from the Saih Hatat window, along with independent new field mapping and kinematic reconstructions, constrain the timing and geometry of tectonometamorphic events. Our work indicates the existence of a high-pressure metamorphic event in the nappes below the ophiolite that was synchronous with the high-temperature conditions in the metamorphic sole. We argue that the thermal conditions of these synchronous metamorphic events can only be explained through the existence of two Cretaceous subduction zones/segments that underwent distinctly different thermal histories during subduction infancy. We infer that these two subduction zones initially formed at two perpendicular subduction segments at the Arabian margin and subsequently rotated relative to each other and, as a consequence, their records became juxtaposed: (1) The high-temperature metamorphic sole and the Samail Ophiolite both formed above the structurally higher, outboard, ‘hot’ and rotating Samail subduction zone and, (2) the high-pressure nappes developed within the structurally lower, inboard, ‘cold’ Ruwi subduction zone. We conclude that the formation and evolution of both subduction zones were likely controlled by the density structure of the mafic-rock-rich Arabian rifted margin and outermost Arabian Platform, and the subsequent arrival of the buoyant, largely mafic-rock-free, full-thickness Arabian lithosphere, which eventually halted subduction at the southern margin of Neo-Tethys. Previous article in issue
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-02-28
    Description: This data set contains the results from a 2023 GFZ Innovative Research Expedition project to explore for natural hydrogen gas (H2) occurrences in the NW Pyrenean foreland, near the town of Biarritz in France. The data represent in-situ measurements of soil and spring water gas, as well as in-situ spring water property measurements, complemented with laboratory analysis results of gas contents and noble gas isotopic compositions of gas and spring water samples collected during the expedition. This GFZ Innovative Research Expedition was inspired by previous exploration efforts in the region by Lefeuvre et al. (2021, 2022). These authors detected elevated concentrations of natural H2 gas in the soil and interpreted this natural H2 to be derived from serpentinizing mantle rocks below the Pyrenees. The main aims of this expedition were the following: (1) in-situ measuring soil gas contents and taking soil gas samples for laboratory analysis at a site near the town of Peyrehorade in the NW of the general study area of Lefeuvre et al. (2021), thus improving the soil gas data coverage along the NW end of the North Pyrenean Frontal Thrust (NPFT); (2) taking gas samples from degassing springs (or water samples from non-degassing springs to be degassed in the lab) in the general Lefeuvre et al. (2021) study area for additional laboratory analysis of gas contents and noble gas isotopic compositions, which may be indicative of (deep) gas origins; and (3) performing a detailed soil gas analysis by means of a portable mass spectrometer at Sauveterre-de-Béarn, a site along the NPFT where Lefeuvre et al. (2022) measured elevated concentrations of natural H2 in the soil. Furthermore, we also measured the properties of the visited springs (temperature, pH, conductivity) while on site, and performed additional in-situ soil gas measurements from manual drillholes. Details on the measurement and sampling methods, on the laboratory analyses, as well as the results of these measurements and analyses are provided in the data description file The expedition involved six field days in July 2023, during which a total of 26 sites were visited. These sites were selected for their vicinity near a major geological contact or fault zone that could have facilitated upward circulation of gas or (thermal) water from the (deep) subsurface (i.e., potentially from the mantle).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2024-04-03
    Description: The gravity anomalies reflect density perturbations at different depths, which control the physical state and dynamics of the lithosphere and sub-lithospheric mantle. However, the gravity effect of the crust masks the mantle signals. In this study, we develop two frameworks (correction with density contrasts and actual densities) to calculate the gravity anomalies generated by the layered crust. We apply the proposed approaches to evaluate the global mantle gravity disturbances based on the new crustal models. Consistent patterns and an increasing linear trend of the mantle gravity disturbances with lithospheric thickness and Vs velocities at 150 km depth are obtained. Our results indicate denser lithospheric roots in most cratons and lighter materials in the oceanic mantle. Furthermore, our gravity map corresponds well to regional geological features, providing new insights into mantle structure and dynamics. Specifically, (1) reduced anomalies associated with the Superior and Rae cratons indicate more depleted roots compared with other cratons of North America. (2) Negative anomalies along the Cordillera (western North America) suggest mass deficits owing to the buoyant hot mantle. (3) Positive anomalies in the Baltic, East European, and Siberian cratons support thick, dense lithosphere with significant density heterogeneities, which could result from thermo-chemical modifications of the cratonic roots. (4) Pronounced positive anomalies correspond to stable blocks, e.g., Arabian Platform, Indian Craton, and Tarim basin, indicating a thick, dense lithosphere. (5) Low anomalies in the active tectonic units and back-arc basins suggest local mantle upwellings. (6) The cold subducting/detached plates may result in the high anomalies observed in the Zagros and Tibet.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2024-04-03
    Description: The 1400 km long North Anatolian Fault Zone in Türkiye runs through numerous densely populated regions, including the city of Düzce that was recently hit by an Mw 6.1 earthquake on 23 November 2022. This was the first moderate event in the region after the devastating Mw 7.2 earthquake in 1999, which cost the lives of over 700 people. Despite its moderate size, the earthquake caused unexpected severe damage to a significant number of buildings, as reported by local institutions (Disaster and Emergency Management Presidency, AFAD). It is well established that ground motions in the near field can lead to increased damage due to near-field domain effects, such as groundmotion pulses and directivity effects (i.e., when the site is aligned with rupture propagation). We examine potential near-field effects using the strong ground motion database of AFAD-Turkish Accelerometric Database and Analysis Systems. To achieve this, we first analyze the behavior of the ground-motion intensities in terms of their spatial distribution and observe higher peak ground velocity than expected by ground-motion models in spatially constrained azimuthal ranges. Furthermore, we find that the majority of the near-fault recordings contain velocity pulses that are primary concentrated on the fault-parallel component. This outcome questions the widely accepted understanding from the previous studies, which mainly suggested that impulsive ground motions that are associated with directivity effects primarily occur on the fault-normal component of large-magnitude events.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2024-04-03
    Description: We report uplift and shortening rates from a late Neogene–Pleistocene deformation stage of the frontal fold-thrust belt and adjacent wedge-top in the Principal Cordillera of the southern Central Andes (33-39° SL). A structural model is presented based on integration of surface field data and subsurface 2D seismic sections. Shortening, uplift, and sedimentation rates were calculated from different steps of kinematic modelling. Our structural interpretations and modelling are integrated with new detrital zircon U-Pb geochronology to define a previously overlooked Pleistocene period of orogenic shortening and syntectonic sedimentation in the Malargüe basin. This task was possible due to the dating of three samples yielding between ∼12 and 1 Ma obtained from a 900 m deep well located in the foreland. From stratigraphic correlations, our data records an active Plio-Pleistocene wedge-top depozone coeval with retreat of the volcanism, and the emplacement of retroarc basalts. Structural modelling, together with detrital zircon U-Pb provenance data register shortening producing a foredeep to wedge-top Plio-Pleistocene transition, adjusting and completing the knowledge of the frontal fold-thrust belt and foreland basin in the southern Central Andes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    facet.materialart.
    Unknown
    In:  Environmental Sciences: Processes and Impacts
    Publication Date: 2024-04-03
    Description: Arsenic and silica are known inhibitors of the crystallization of iron minerals from poorly ordered precursor phases. However, little is known about the effects of co-existing As and Si on the crystallization and long-term stability of mixed-valence Fe minerals such as green rust (GR). GR usually forms in anoxic, Fe2+-rich, near-neutral pH environments, where they influence the speciation and mobility of trace elements, nutrients and contaminants. In this work, the Fe2+-induced transformation of As- and/or Si-bearing ferrihydrite (FHY) was monitored at pH 8 ([As]initial = 100 μM, Si/As = 10) over 720 h. Our results showed that in the presence of As(III) + Si or As(V) + Si, GR sulfate (GRSO4) formation from FHY was up to four times slower compared to single species system containing only As(III), As(V) or Si. Co-existing As(III) + Si and As(V) + Si also inhibited GRSO4 transformation to magnetite, contrary to systems with only Si or As(V). Overall, our findings demonstrate the synergistic inhibitory effect of co-existing Si on the crystallization and solid-phase stability of As-bearing GRSO4, establishing an inhibitory effect ladder: As(III) + Si 〉 As(V) + Si 〉 As(III) 〉 Si 〉 As(V). This further highlights the importance of GR in potentially controlling the fate and mobility of As in ferruginous, Si-rich groundwater and sediments such as those in South and Southeast Asia.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    In:  The Impacts of Igneous Systems on Sedimentary Basins and their Energy Resources | Geological Society special publication
    Publication Date: 2024-04-03
    Description: Lava flows form important fluid reservoirs and have been extensively exploited for water aquifers, geothermal energy, hydrocarbon production and, more recently, for carbon storage. Effusive subaerial mafic to intermediate lava flows account for vast rock volumes globally, and form reservoirs with properties dictated by well-known lava flow facies ranging from pāhoehoe through several transitional forms to ‘a’ā lava. These variations in flow type lead to critical differences in the pore structure, distribution, connectivity, strength and fracturing of individual lava flows, which, alongside lava flow package architectures, determine primary reservoir potential. Lava flow margins with vesicular, fracture and often autobreccia-hosted pore structures can have porosities commonly exceeding 40% and matrix permeabilities over 10−11 m2 (〉10 D) separated by much lower porosity and permeability flow interiors. Secondary post-emplacement physicochemical changes related to fracturing, meteoric, diagenetic and hydrothermal alteration can significantly modify reservoir potential through a complex interplay of mineral transformation, pore-clogging secondary minerals and dissolution, which must be carefully characterized and assessed during exploration and appraisal. Within this contribution, a review of selected global lava flow-hosted reservoir occurrences is presented, followed by a discussion of the factors that influence lava flow reservoir potential.
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2024-04-03
    Description: For an ω2-source model, moment-based estimates of the stress drop are obtained by combining corner frequency and seismic moment source parameters. Therefore, the moment-based estimates of the stress drop are informative about the amount of energy radiated at high frequencies by dynamic rupture processes. This study aims to systematically estimate such stress drop from the harmonized dataset at the European scale and to characterize the distributions of the stress drop for application in future stochastic simulations. We analyze the seismological records associated with shallow crustal seismic events that occurred in Western Europe between January 1990 and May 2020. We processed 220,000 high-quality records and isolated the contributions of the source, site, and path contributions using the Generalized Inversion Technique. The source parameters, including the corner frequency, moment magnitude, and stress drop, of 6135 seismic events are calculated. The events processed are mainly tectonic events (e.g., earthquakes of the central Italy 2009–2016 sequence), although non-tectonic events associated with the Groningen gas field and mining activities in Western Europe are also included in the analysis. The impact of different attenuation models and reference site choices are evaluated. Most of the obtained source spectra follow the standard ω2-model except for a few events where the data sampling considered does not allow an effective spectral decomposition. The resulting stress drop shows a positive correlation with moment magnitude between 3 and 4, and a self-similarity for magnitudes greater than 4 with a mean stress drop of 13.8 MPa.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    In:  PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
    Publication Date: 2024-04-03
    Description: During flood events near real-time, synthetic aperture radar (SAR) satellite imagery has proven to be an efficient management tool for disaster management authorities. However, one of the challenges is accurate classification and segmentation of flooded water. A common method of SAR-based flood mapping is binary segmentation by thresholding, but this method is limited due to the effects of backscatter, geographical area, and surface characterstics. Recent advancements in deep learning algorithms for image segmentation have demonstrated excellent potential for improving flood detection. In this paper, we present a deep learning approach with a nested UNet architecture based on a backbone of EfficientNet-B7 by leveraging a publicly available Sentinel‑1 dataset provided jointly by NASA and the IEEE GRSS Committee. The performance of the nested UNet model was compared with several other UNet-based convolutional neural network architectures. The models were trained on flood events from Nebraska and North Alabama in the USA, Bangladesh, and Florence, Italy. Finally, the generalization capacity of the trained nested UNet model was compared to the other architectures by testing on Sentinel‑1 data from flood events of varied geographical regions such as Spain, India, and Vietnam. The impact of using different polarization band combinations of input data on the segmentation capabilities of the nested UNet and other models is also evaluated using Shapley scores. The results of these experiments show that the UNet model architectures perform comparably to the UNet++ with EfficientNet-B7 backbone for both the NASA dataset as well as the other test cases. Therefore, it can be inferred that these models can be trained on certain flood events provided in the dataset and used for flood detection in other geographical areas, thus proving the transferability of these models. However, the effect of polarization still varies across different test cases from around the world in terms of performance; the model trained with the combinations of individual bands, VV and VH, and polarization ratios gives the best results.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...