ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Publication Date: 2015-08-29
    Description: Magnetic perturbations on ground at high latitudes are directly associated only with the divergence-free component of the height-integrated horizontal ionospheric current, J ⊥, d f . Here we show how J ⊥, d f can be expressed as the total horizontal current J ⊥ minus its curl-free component, the latter being completely determined by the global Birkeland current pattern. Thus in regions where J ⊥ =0, the global Birkeland current distribution alone determines the local magnetic perturbation. We show with observations from ground and space that in the polar cap, the ground magnetic field perturbations tend to align with the Birkeland current contribution in darkness but not in sunlight. We also show that in sunlight, the magnetic perturbations are typically such that the equivalent overhead current is anti-parallel to the convection, indicating that the Hall current system dominates. Thus the ground magnetic field in the polar cap relates to different current systems in sunlight and in darkness.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-03
    Description: Flux transfer events (FTEs) are the manifestation of bursty and/or patchy magnetic reconnection at the magnetopause. We compare two sequences of the ionospheric signatures of flux transfer events observed in global auroral imagery and coherent ionospheric radar measurements. Both sequences were observed during very similar seasonal and interplanetary magnetic field (IMF) conditions, though with differing solar wind speed. A key observation is that the signatures differed considerably in their local time extent. The two periods are 26 August 1998, when the IMF had components B Z ≈−10 nT and B Y ≈9 nT and the solar wind speed was V X ≈650 km s −1 , and 31 August 2005, IMF B Z ≈−7 nT, B Y ≈17 nT, and V X ≈380 km s −1 . In the first case, the reconnection rate was estimated to be near 160 kV, and the FTE signatures extended across at least 7 hours of MLT of the dayside polar cap boundary. In the second, a reconnection rate close to 80 kV was estimated, and the FTEs had a MLT extent of roughly two hours. We discuss the ramifications of these differences for solar wind-magnetosphere coupling.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-17
    Description: We present an analysis of ionospheric convection data derived from velocity measurements made by the Super Dual Auroral Radar Network (SuperDARN). Our analysis uses an established technique for combining the network data to produce maps of large-scale convection by fitting a spherical harmonic expansion of the ionospheric electric potential to the radar measurements. We discuss how the basis functions of the spherical harmonic expansion describe different characteristic elements of the ionospheric convection pattern and show how their associated coefficients can be used to quantify the morphology of the convection, much like the total transpolar voltage is used to quantify its strength, in relation to upstream interplanetary magnetic field conditions and associated magnetospheric activity. We find that ∼2/3 of the voltage associated with the typical convection pattern is described by a simple twin vortex basis function. The magnitude of the twin vortex is strongly dependent on IMF BZ and the degree of its (typically westward) rotation is weakly dependent on IMF BY. The remaining ∼1/3 of the total voltage is associated with deviations from the basic twin vortex pattern, introduced by the addition of other basis functions, such as IMF BY associated dusk-dawn asymmetries, nightside convection features associated with tail activity, and “reverse” high-latitude convection cells associated with intervals of IMF BZ 〉 0.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-04
    Description: The ultimate formation mechanism of the substorm current wedge (SCW) remains to-date unclear. In this study, we investigate its relationship to plasma flows at substorm onset and throughout the following expansion phase. We revisit the case of September 8, 2002, which has been defined as “one of the best textbook examples of a substorm” because of its excellent coverage by both spacecraft in the magnetotail and ground-based observatories. We found that a dense sequence of arrival of nightside flux transfer events (NFTEs, which can be understood as the lobe magnetic signature due to a bursty bulk flow travelling earthward in the central plasmasheet) in the near-Earth tail leads to a modulation (and further step-like built-up) of the SCW intensity during the substorm expansion phase. In addition, we found that small SCWs are created also during the growth phase of the event in association with another less intense sequence of NFTEs. The differences between the sequence of NFTEs in the growth and expansion phase are discussed. We conclude that the envelope of the magnetic disturbances which we typically refer to as an intense magnetic substorm is the result of a group or sequence of more intense and more frequent NFTEs.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-26
    Description: During southward IMF, dayside reconnection will drive the Dungey cycle in the magnetosphere, which is manifested as a two cell convection pattern in the ionosphere. We address the response of the ionospheric convection to changes in the dayside reconnection rate by examining magnetic field perturbations at 780 km altitude. The AMPERE data products derived from the Iridium constellation, provide global maps of the magnetic field perturbations. Cluster data just upstream of the Earth's bow shock have been used to estimate the dayside reconnection rate. By using a statistical model where the magnetic field can respond on several time scales, we confirm previous reports of an almost immediate response both near noon and near midnight combined with a 10-20 minutes reconfiguration time of the two cell convection pattern. The response of the ionospheric convection has been associated with the expansion of the polar cap boundary in the Cowley-Lockwood paradigm. In the original formulation of this paradigm the expansion spreads from noon to midnight in 15-20 minutes. However, also an immediate global response has been shown to be consistent with the paradigm when the previous dayside reconnection history is considered. In this paper we present a new explanation for how the immediate response can be accommodated in the Cowley-Lockwood paradigm. The new explanation is based on how MHD waves propagate in the magnetospheric lobes when newly reconnected open flux tubes are added to the lobes, and the magnetopause flaring angle increases.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-07
    Description: We have used EISCAT Svalbard Radar data, obtained during the International Polar Year 2007 campaign, to study ionospheric upflow events with fluxes exceeding 10 13   m −2   s −1 . In this study, we have classified the upflow events into low, medium and high flux upflows, and we report on the incidence and seasonal distribution of these different classes. It is observed that high upflow fluxes are comparatively rare and low flux upflow events are a frequent phenomenon. Analysis shows that occurrence peaks around local noon at 31%, 16% and 2% for low, medium and high-flux upflow respectively during geomagnetically disturbed periods. In agreement with previous studies on vertical and field-aligned flows, ion upflow is observed to take place over a wide range of geomagnetic conditions, with downflow flux occurrence being lower than upflow occurrence. In contrast to previous observations, however, the upflow occurrence is greater around noon during highly disturbed geomagnetic conditions than for moderate geomagnetic conditions. Analysis of the seasonal distribution reveals that while high-flux upflow has its peak around local noon in the summer, with its occurrence being driven predominantly by high geomagnetic disturbance, the occurrence of low-flux upflow is broadly distributed across all seasons, geomagnetic activity conditions and times of day. The medium-flux upflow events, although distributed across all seasons, show an occurrence peak strongly related to high Kp . Furthermore, during highly disturbed conditions, the low-flux and medium-flux upflow events show a minimum occurrence during the winter, whereas minimum occurrence for the high-flux upflow events occurs in autumn.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-01
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-05
    Description: The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions, and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere. Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission. Here, we describe current community efforts to prepare for SMILE, and the benefits and context various experiments that have explicitly expressed support for SMILE can offer. A dedicated group of international scientists representing many different experiment types and geographical locations, the Ground-based and Additional Science Working Group, is facilitating these efforts. Preparations include constructing an online SMILE Data Fusion Facility, the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar, and the consideration of particular observing strategies and spacecraft conjunctions. We anticipate growing interest and community engagement with the SMILE mission, and we welcome novel ideas and insights from the solar-terrestrial community.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...