ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,582)
  • Open Access-Papers  (2,582)
  • PANGAEA  (2,542)
  • American Chemical Society
  • American Chemical Society (ACS)
  • MDPI Publishing
Collection
  • Articles  (2,582)
  • 1
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology Letters, American Chemical Society
    Publication Date: 2024-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science & Technology, American Chemical Society (ACS), 58(9), pp. 4302-4313, ISSN: 0013-936X
    Publication Date: 2024-03-28
    Description: The pollution of the marine environment with plastic debris is expected to increase, where ocean currents and winds cause their accumulation in convergence zones like the North Pacific Subtropical Gyre (NPSG). Surface-floating plastic (〉330 μm) was collected in the North Pacific Ocean between Vancouver (Canada) and Singapore using a neuston catamaran and identified by Fourier-transform infrared spectroscopy (FT-IR). Baseline concentrations of 41,600–102,700 items km–2 were found, dominated by polyethylene and polypropylene. Higher concentrations (factors 4–10) of plastic items occurred not only in the NPSG (452,800 items km–2) but also in a second area, the Papaha̅naumokua̅kea Marine National Monument (PMNM, 285,200 items km–2). This second maximum was neither reported previously nor predicted by the applied ocean current model. Visual observations of floating debris (〉5 cm; 8–2565 items km–2 and 34–4941 items km–2 including smaller “white bits”) yielded similar patterns of baseline pollution (34–3265 items km–2) and elevated concentrations of plastic debris in the NPSG (67–4941 items km–2) and the PMNM (295–3748 items km–2). These findings suggest that ocean currents are not the only factor provoking plastic debris accumulation in the ocean. Visual observations may be useful to increase our knowledge of large-scale (micro)plastic pollution in the global oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-04
    Description: Second-generation anticoagulant rodenticides (SGARs) are widely used to control rodent populations, resulting in the serious secondary exposure of predators to these contaminants. In the United Kingdom (UK), professional use and purchase of SGARs were revised in the 2010s. Certain highly toxic SGARs have been authorized since then to be used outdoors around buildings as resistance-breaking chemicals under risk mitigation procedures. However, it is still uncertain whether and how these regulatory changes have influenced the secondary exposure of birds of prey to SGARs. Based on biomonitoring of the UK Common Buzzard (Buteo buteo) collected from 2001 to 2019, we assessed the temporal trend of exposure to SGARs and statistically determined potential turning points. The magnitude of difenacoum decreased over time with a seasonal fluctuation, while the magnitude and prevalence of more toxic brodifacoum, authorized to be used outdoors around buildings after the regulatory changes, increased. The summer of 2016 was statistically identified as a turning point for exposure to brodifacoum and summed SGARs that increased after this point. This time point coincided with the aforementioned regulatory changes. Our findings suggest a possible shift in SGAR use to brodifacoum from difenacoum over the decades, which may pose higher risks of impacts on wildlife.
    Keywords: apex predator ; conditional inference trees ; effectiveness evaluation ; regulatory changes ; seasonal fluctuation
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science and Technology, American Chemical Society (ACS), 58(10), pp. 4637-4647, ISSN: 0013-936X
    Publication Date: 2024-04-08
    Description: Marine dissolved organic matter (DOM) is an important component of the global carbon cycle, yet its intricate composition and the sea salt matrix pose major challenges for chemical analysis. We introduce a direct injection, reversed-phase liquid chromatography ultrahigh resolution mass spectrometry approach to analyze marine DOM without the need for solid-phase extraction. Effective separation of salt and DOM is achieved with a large chromatographic column and an extended isocratic aqueous step. Postcolumn dilution of the sample flow with buffer-free solvents and implementing a counter gradient reduced salt buildup in the ion source and resulted in excellent repeatability. With this method, over 5,500 unique molecular formulas were detected from just 5.5 nmol carbon in 100 μL of filtered Arctic Ocean seawater. We observed a highly linear detector response for variable sample carbon concentrations and a high robustness against the salt matrix. Compared to solid-phase extracted DOM, our direct injection method demonstrated superior sensitivity for heteroatom-containing DOM. The direct analysis of seawater offers fast and simple sample preparation and avoids fractionation introduced by extraction. The method facilitates studies in environments, where only minimal sample volume is available e.g. in marine sediment pore water, ice cores, or permafrost soil solution. The small volume requirement also supports higher spatial (e.g., in soils) or temporal sample resolution (e.g., in culture experiments). Chromatographic separation adds further chemical information to molecular formulas, enhancing our understanding of marine biogeochemistry, chemodiversity, and ecological processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science and Technology, American Chemical Society (ACS), ISSN: 0013-936X
    Publication Date: 2024-04-08
    Description: Marine permeable sediments are important sites for organic matter turnover in the coastal ocean. However, little is known about their role in trapping dissolved organic matter (DOM). Here, we examined DOM abundance and molecular compositions (9804 formulas identified) in subtidal permeable sediments along a near- to offshore gradient in the German North Sea. With the salinity increasing from 30.1 to 34.6 PSU, the DOM composition in bottom water shifts from relatively higher abundances of aromatic compounds to more highly unsaturated compounds. In the bulk sediment, DOM leached by ultrapure water (UPW) from the solid phase is 54 ± 20 times more abundant than DOM in porewater, with higher H/C ratios and a more terrigenous signature. With 0.5 M HCl, the amount of leached DOM (enriched in aromatic and oxygen-rich compounds) is doubled compared to UPW, mainly due to the dissolution of poorly crystalline Fe phases (e.g., ferrihydrite and Fe monosulfides). This suggests that poorly crystalline Fe phases promote DOM retention in permeable sediments, preferentially terrigenous, and aromatic fractions. Given the intense filtration of seawater through the permeable sediments, we posit that Fe can serve as an important intermediate storage for terrigenous organic matter and potentially accelerate organic matter burial in the coastal ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-16
    Description: The uptake ability toward arsenic(V), chromium(VI), and boron(III) ions of ad hoc functionalized magnetic nanostructured devices has been investigated. To this purpose, ligands based on meglumine have been synthesized and used to coat magnetite nanoparticles (Fe3O4) obtained by the co-precipitation methodology. The as-prepared hybrid material was characterized by infrared spectroscopy (IR), X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy combined with energy-dispersive X-ray analysis. Moreover, its magnetic hysteresis properties were measured to evaluate its magnetic properties, and the adsorption kinetics and isothermal models were applied to discern between the different adsorption phenomena. Specifically, the better fitting was observed by the Langmuir isotherm model for all metal ions tested, highlighting a higher uptake in arsenic (28.2 mg/g), chromium (12.3 mg/g), and boron (23.7 mg/g) sorption values if compared with other magnetic nanostructured materials. After adsorption, an external magnetic stimulus can be used to efficiently remove nanomaterials from the water. Finally the nanomaterial can be reused up to five cycles and regenerated for another three cycles.
    Description: Published
    Description: 10775–10788
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science & Technology, American Chemical Society (ACS), 57(17), pp. 6799-6807, ISSN: 0013-936X
    Publication Date: 2023-08-16
    Description: Plastic pollution has become ubiquitous with very high quantities detected even in ecosystems as remote as arctic sea ice and deepsea sediments. Ice algae growing underneath sea ice are released upon melting and can form fast-sinking aggregates. In this pilot study, we sampled and analyzed the ice algaeMelosira arcticaand ambient sea water from three locations in the Fram Strait to assess their microplastic content and potential as a temporary sink and pathway to the deep seafloor. Analysis by μ-Raman and fluorescence microscopy detected microplastics (≥2.2 μm) in all samples at concentrations ranging from 1.3 to 5.7 × 104 microplastics (MP) m−3 in ice algae and from 1.4 to 4.5 × 103 MP m−3 in sea water, indicating magnitude higher concentrations in algae. On average, 94% of the total microplastic particles were identified as 10 μm or smaller in size and comprised 16 polymer types without a clear dominance. The high concentrations of microplastics found in our pilot study suggest thatM. arctica could trap microplastics from melting ice and ambient sea water. The algae appear to be a temporary sink and could act as a key vector to food webs near the sea surface and on the deep seafloor, to which its fast-sinking aggregates could facilitate an important mechanism of transport.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science and Technology, American Chemical Society (ACS), 57(15), pp. 6033-6039, ISSN: 0013-936X
    Publication Date: 2024-04-17
    Description: Plastic pollution is an international environmental problem. Desire to act is shared from the public to policymakers, yet motivation and approaches are diverging. Public attention is directed to reducing plastic consumption, cleaning local environments, and engaging in citizen science initiatives. Policymakers and regulators are working on prevention and mitigation measures, while international, regional, and national bodies are defining monitoring recommendations. Research activities are focused on validating approaches to address goals and comparing methods. Policy and regulation are eager to act on plastic pollution, often asking questions researchers cannot answer with available methods. The purpose of monitoring will define which method is implemented. A clear and open dialogue between all actors is essential to facilitate communication on what is feasible with current methods, further research, and development needs. For example, some methods can already be used for international monitoring, yet limitations including target plastic types and sizes, sampling strategy, available infrastructure and analytical capacity, and harmonization of generated data remain. Time and resources to advance scientific understanding must be balanced against the need to answer pressing policy issues.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-12-07
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in James, B., de Vos, A., Aluwihare, L., Youngs, S., Ward, C., Nelson, R., Michel, A., Hahn, M., & Reddy, C. Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire. ACS Environmental Au, 2(5), (2022): 467–479, https://doi.org/10.1021/acsenvironau.2c00020.
    Description: In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or “nurdles” (∼1680 tons), littering the country’s coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. Additional support was provided by the WHOI Marine Microplastics Catalyst Program, the WHOI Marine Microplastics Innovation Accelerator Program, the WHOI Investment in Science Fund, the March Marine Initiative (a program of March Limited, Bermuda), The Seaver Institute, Gerstner Philanthropies, the Wallace Research Foundation, the Richard Saltonstall Charitable Foundation, the Harrison Foundation, Hollis and Ermine Lovell Charitable Foundation, and the Richard Grand Foundation. AdV was supported by funding from the Schmidt Foundation.
    Keywords: Microplastic ; Resin pellets ; Pollution ; Additives ; Open burning ; Weathering ; Maritime accident
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mazzotta, M. G., Reddy, C. M., & Ward, C. P. Rapid degradation of cellulose diacetate by marine microbes. Environmental Science & Technology Letters, 9(1), (2022): 37-41. https://doi.org/10.1021/acs.estlett.1c00843.
    Description: The persistence of cellulose diacetate (CDA), a biobased plastic used in textiles and single-use consumer products, in the ocean is currently unknown. Here, we probe the disintegration and degradation of CDA-based materials (25 μm films, 510 μm foam, and 97 g/m2 fabric) by marine microbes in a continuous flow seawater mesocosm. Photographic evidence and mass loss measurements demonstrate that CDA-based materials disintegrate in months. Disintegration is marked by the increasing esterase and cellulase activity of the biofilm community, suggesting that marine microbes degrade CDA. The natural abundance stable (13C) and radiocarbon (14C) isotopic signature of carbon dioxide respired during short-term bottle incubations confirms the rapid degradation of both acetyl and cellulosic components of CDA by seawater microbial communities. These findings challenge the paradigm set by governmental agencies and advocacy groups that CDA-based materials persist in the ocean for decades, and represent a positive step toward identifying high-utility, biobased plastics with low environmental persistence.
    Description: M.G.M., C.M.R., and C.P.W. thank Eastman Chemical Co. and Woods Hole Oceanographic Institution (WHOI) for scientific and financial support.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xie, L., Liu, X., Caratenuto, A., Tian, Y., Chen, F., DeGiorgis, J. A., Wan, Y., & Zheng, Y. Environmentally friendly and efficient hornet nest envelope-based photothermal absorbers. Acs Omega, 6(50), (2021): 34555–34562, https://doi.org/10.1021/acsomega.1c04851.
    Description: Water shortage is a critical global issue that threatens human health, environmental sustainability, and the preservation of Earth’s climate. Desalination from seawater and sewage is a promising avenue for alleviating this stress. In this work, we use the hornet nest envelope material to fabricate a biomass-based photothermal absorber as part of a desalination isolation system. This system realizes an evaporation rate of 3.98 kg m–2 h–1 under one-sun illumination, with prolonged evaporation rates all above 4 kg m–2 h–1. This system demonstrates a strong performance of 3.86 kg m–2 h–1 in 3.5 wt % saltwater, illustrating its effectiveness in evaporation seawater. Thus, with its excellent evaporation rate, great salt rejection ability, and easy fabrication approach, the hornet nest envelope constitutes a promising natural material for solar water treatment applications.
    Description: The authors acknowledge the support from the National Science Foundation, USA, through grant number CBET-1941743 and the National Science Foundation under EPSCoR Cooperation Agreement OIA-1655221.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3INTERACT Webinar on Data Repositories, Online, 2022-05-12Bremerhaven, PANGAEA
    Publication Date: 2022-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-01-07
    Description: Microplastic (MP) pollution has been found in the Southern Ocean surrounding Antarctica, but many local regions within this vast area remain uninvestigated. The remote Weddell Sea contributes to the global thermohaline circulation, and one of the two Antarctic gyres is located in that region. In the present study, we evaluate MP (〉300 μm) concentration and composition in surface (n = 34) and subsurface water samples (n = 79, ∼11.2 m depth) of the Weddell Sea. All putative MP were analyzed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. MP was found in 65% of surface and 11.4% of subsurface samples, with mean (±standard deviation (SD)) concentrations of 0.01 (±0.01 SD) MP m–3 and 0.04 (±0.1 SD) MP m–3, respectively, being within the range of previously reported values for regions south of the Polar Front. Additionally, we aimed to determine whether identified paint fragments (n = 394) derive from the research vessel. Environmentally sampled fragments (n = 101) with similar ATR-FTIR spectra to reference paints from the research vessel and fresh paint references generated in the laboratory were further subjected to micro-X-ray fluorescence spectroscopy (μXRF) to compare their elemental composition. This revealed that 45.5% of all recovered MP derived from vessel-induced contamination. However, 11% of the measured fragments could be distinguished from the reference paints via their elemental composition. This study demonstrates that differentiation based purely on visual characteristics and FTIR spectroscopy might not be sufficient for accurately determining sample contamination sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-21
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Colson, B. C., & Michel, A. P. M. Flow-through quantification of microplastics using impedance spectroscopy. ACS Sensors, 6(1), (2021): 238–244, doi:10.1021/acssensors.0c02223.
    Description: Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212–1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300–1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.
    Description: The authors thank the Richard Saltonstall Charitable Foundation and the National Academies Keck Futures Initiative (NAKFI DBS13) for their funding support.
    Keywords: Microplastics ; Plastics ; Impedance spectroscopy ; Dielectric properties ; Instrumentation ; Particle detection ; Flow-through ; Environmental sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walsh, A. N., Reddy, C. M., Niles, S. F., McKenna, A. M., Hansel, C. M., & Ward, C. P. Plastic formulation is an emerging control of its photochemical fate in the ocean. Environmental Science & Technology, 55(18), (2021): 12383–12392, https://doi.org/10.1021/acs.est.1c02272.
    Description: Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15–36% inorganic additives, primarily calcium carbonate (13–34%) and titanium dioxide (TiO2; 1–2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68–94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.
    Description: Funding was provided by the Seaver Institute, the Gerstner Family Foundation, Woods Hole Oceanographic Institution, and the National Science Foundation Graduate Research Fellowship Program (A.N.W.). The Ion Cyclotron Resonance user facility at the National High Magnetic Field Laboratory is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR-1644779 and the State of Florida.
    Keywords: Plastic pollution ; Marine debris ; Additives ; Dissolved organic carbon ; Photochemical oxidation ; FT-ICR-MS ; Titanium dioxide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gosselin, K. M., Nelson, R. K., Spivak, A. C., Sylva, S. P., Van Mooy, B. A. S., Aeppli, C., Sharpless, C. M., O’Neil, G. W., Arrington, E. C., Reddy, C. M., & Valentine, D. L. Production of two highly abundant 2-methyl-branched fatty acids by blooms of the globally significant marine cyanobacteria Trichodesmium erythraeum. ACS Omega, 6(35), (2021): 22803–22810, https://doi.org/10.1021/acsomega.1c03196.
    Description: The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.
    Description: This work was funded with grants from the National Science Foundation grants OCE-1333148, OCE-1333162, and OCE-1756254 and the Woods Hole Oceanographic Institution (IR&D). GCxGC analysis made possible by WHOI’s Investment in Science Fund.
    Keywords: Lipids ; Alkyls ; Bacteria ; Genetics ; Chromatography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Widner, B., Kido Soule, M. C., Ferrer-González, F. X., Moran, M. A., & Kujawinski, E. B. Quantification of amine- and alcohol-containing metabolites in saline samples using pre-extraction benzoyl chloride derivatization and ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC MS/MS). Analytical Chemistry, 93(11), (2021): 4809-4817, https://doi.org/10.1021/acs.analchem.0c03769.
    Description: Dissolved metabolites serve as nutrition, energy, and chemical signals for microbial systems. However, the full scope and magnitude of these processes in marine systems are unknown, largely due to insufficient methods, including poor extraction of small, polar compounds using common solid-phase extraction resins. Here, we utilized pre-extraction derivatization and ultrahigh performance liquid chromatography electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) to detect and quantify targeted dissolved metabolites in seawater and saline culture media. Metabolites were derivatized with benzoyl chloride by their primary and secondary amine and alcohol functionalities and quantified using stable isotope-labeled internal standards (SIL-ISs) produced from 13C6-labeled benzoyl chloride. We optimized derivatization, extraction, and sample preparation for field and culture samples and evaluated matrix-derived biases. We have optimized this quantitative method for 73 common metabolites, of which 50 cannot be quantified without derivatization due to low extraction efficiencies. Of the 73 metabolites, 66 were identified in either culture media or seawater and 45 of those were quantified. This derivatization method is sensitive (detection limits = pM to nM), rapid (∼5 min per sample), and high throughput.
    Description: Funding included the Gordon and Betty Moore Foundation (Award GBMF5503 to M.A.M. and E.B.K.), Simons Foundation International (Award 409923 to E.B.K.), and the National Science Foundation (Award 1656311 to M.A.M.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-03-13
    Description: Goniodomin A (GDA, 1) is a phycotoxin produced by at least four species of Alexandrium dinoflagellates that are found globally in brackish estuaries and lagoons. It is a linear polyketide with six oxygen heterocyclic rings that is cyclized into a macrocyclic structure via lactone formation. Two of the oxygen heterocycles in 1 comprise a spiro-bis-pyran, whereas goniodomin B (GDB) contains a 2,7-dioxabicyclo[3.3.1]nonane ring system fused to a pyran. When H2O is present, 1 undergoes facile conversion to isomer GDB and to an α,β-unsaturated ketone, goniodomin C (GDC, 7). GDB and GDC can be formed from GDA by cleavage of the spiro-bis-pyran ring system. GDA, but not GDB or GDC, forms a crown ether-type complex with K+. Equilibration of GDA with GDB and GDC is observed in the presence of H+ and of Na+, but the equilibrated mixtures revert to GDA upon addition of K+. Structural differences have been found between the K+ and Na+ complexes. The association of GDA with K+ is strong, while that with Na+ is weak. The K+ complex has a compact, well-defined structure, whereas Na+ complexes are an ill-defined mixture of species. Analyses of in vitro A. monilatum and A. hiranoi cultures indicate that only GDA is present in the cells; GDB and GDC appear to be postharvest transformation products.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology, American Chemical Society, 54(24), pp. 15893-15903, ISSN: 0013-936X
    Publication Date: 2021-04-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-08-20
    Description: The main purpose of this project was to detect subsidence of the ground and of buildings in a permafrost affected landscape. Therefore, we surveyed many points using GNSS in the village of Ny Ålesund and in the watershed of the Bayelva River close to the long term observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McLean, C., & Kujawinski, E. B. AutoTuner: high fidelity and robust parameter selection for metabolomics data processing. Analytical Chemistry, 92(8), (2020): 5724-5732, doi:10.1021/acs.analchem.9b04804.
    Description: Untargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-spectral peaks across samples. This step requires selection of dataset-specific parameters, as erroneous parameters can result in noise inflation. While several algorithms exist to automate parameter selection, each depends on gradient descent optimization functions. In contrast, our new parameter optimization algorithm, AutoTuner, obtains parameter estimates from raw data in a single step as opposed to many iterations. Here, we tested the accuracy and the run-time of AutoTuner in comparison to isotopologue parameter optimization (IPO), the most commonly used parameter selection tool, and compared the resulting parameters’ influence on the properties of feature tables after processing. We performed a Monte Carlo experiment to test the robustness of AutoTuner parameter selection and found that AutoTuner generated similar parameter estimates from random subsets of samples. We conclude that AutoTuner is a desirable alternative to existing tools, because it is scalable, highly robust, and very fast (∼100–1000× speed improvement from other algorithms going from days to minutes). AutoTuner is freely available as an R package through BioConductor.
    Description: We thank Titus Brown and Ben Temperton for advice on the algorithm validation, Arthur Eschenlauer for constructive feedback on the software design, Krista Longnecker for continuous support and discussions, Gabriel Leventhal for mathematics advice, the users of AutoTuner for debugging help through Github, and David Angeles-Albores and two anonymous reviewers for critical feedback on the manuscript. Funding support included the National GEM Consortium and NSF graduate research program fellowships (C.M.) and grants from the MIT Microbiome Center (Award 6936800, E.B.K.) and the Simons Foundation (Award ID #509034, E.B.K.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.
    Description: The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
    Description: This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-30
    Description: The purpose of this list of digital platforms is to facilitate the research of scientific data (articles, books, conferences, websites, indexers, etc.) by students of all undergraduate levels. The interface of platforms have similarities and because of this, low degree of difficulty of use. I emphasize that the key to an excellent literature search on digital platforms is to choose the right "keyword".
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-09-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology, American Chemical Society, 53, pp. 8747-8756, ISSN: 1520-5851
    Publication Date: 2020-06-04
    Description: Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chemical information is still sparse. In the present study, INA and free glucose concentrations were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from −17.4 to −26.8 °C. Glucose concentrations varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A positive correlation was observed between free glucose concentration and INA in Arctic water samples (T50(°C) = (−25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment composition resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3SponGES 2019 General Assembly Meeting, Wageningen, 2019-05-19-2019-05-24Bremerhaven, PANGAEA
    Publication Date: 2019-06-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/zip
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Coordination Workshop SPP 1158, 2019-09-25-2019-09-27Bremerhaven, PANGAEA
    Publication Date: 2019-09-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of sponges and echinoderms in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Sponges: The map of interpolated occurrence of sponges is based on quantitative abundance data (Gerdes 2014 a - o) and on semi-quantitative data obtained by W. Arntz (retired; formerly AWI) (see Teschke & Brey 2019a for presence / absence records of the latter dataset). The abundance data were classified to be merged with the semi-quantitative data and an inverse distance weighted method was performed on the united dataset. Areas with very common occurrence of sponges occurred on the shelf near Brunt Ice Shelf along Riiser - Larsen Ice Shelf to Ekstrøm Ice Shelf. Echinoderms: A cluster analysis with species x station datasets of asteroids (Teschke & Brey 2019b), ophiuroids (Teschke & Brey 2019c) and holothurians (Gutt et al. 2014) from the Antarctic Weddell Sea indicated a particular cold-water echinoderm fauna on the Filchner shelf. We approximated this potential habitat by bottom temperature ≤ -1°, based on seawater temperature data from the Finite Element Sea Ice - Ocean Model provided by R. Timmermann (AWI). More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of demersal and pelagic fishes in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Antarctic toothfish: The map of Dissostichus mawsoni occurrence probability is based on catch per unit effort (CPUE) data from the database of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) (data request: 03-08-2016) and on bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO). We fitted a four-parameter Weibull model to the simulated CPUE data per depth interval by means of the R package \textquotesinglefitdistrplus\textquotesingle. The highest D. mawsoni occurrence probability was shown at depths between 1500 and 2000 m and only approximately 20 % of the Antarctic toothfish population occurred deeper than 2000 m. Antarctic silverfish: The map of interpolated abundances of Pleuragramma antarctica was based on pelagic trawl survey data, which were collected during "Polarstern" cruises ANT-I/2, ANT-III/3 and in the context of the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6, ANT-XXIV/2). The first mentioned data were provided by V. Siegel (retired; formerly Th\"unen Institute), the LAKRIS data by H. Flores (AWI). Those data were complemented by benthic trawl survey data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI) as well as by data on counts of fish species from trawl and dredge samples by Drescher et. (2012), Ekau et al. (2012a, b), Hureau et al. (2012), Kock et al. (2012) and W\"ohrmann et al. (2012). An inverse distance weighted interpolation was performed for a 10 nautical mile radius around each record. Areas with highest numbers of P. antarctica (〉 36 individuals/1000 m²) occurred offshore Riiser -Larsen Ice Shelf and on the southern Weddell Sea continental shelf offshore Filchner Ice Shelf. Demersal fish: The map of predicted habitat suitability for demersal fish is based on data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI). The habitat suitability model was developed by the use of the modelling package "biomod2". Most suitable habitat conditions for demersal fish in the wider Weddell Sea occurred on the continental shelf between approx. 5° and 30°W, on the shelf west and east of the tip of the Antarctic Peninsula as well as around the South Shetland and South Orkney Islands. Nesting sites of demersal fish: The map on observation of nesting sites of demersal fish is based on data, which were collected during "Polarstern" cruises ANT-XXVII/3, ANT-XXIX/9 and ANT-XXXI/2 and were obtained by T. Lund\"alv (retired; formerly University of Gothenburg), D. Gerdes (retired; formerly AWI) and E. Riginella (University of Padova), respectively. Those data were complemented by a literature research. Most nesting sites were observed west of 25°W, north of the tip of the Antarctic Peninsula and along the west coast of the Antarctic Peninsula. More information is given in the working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management CCAMLR (available at https://www.ccamlr.org/en/wg-emm-16). Revised versions of the spatial analysis are described in working paper WG-SAM-17/30 and WS-SM-18/13 submitted to the CCAMLR Working Group on Statistics, Assessments and Modelling and the CCAMLR Workshop on Spatial Management, respectively (available at https://www.ccamlr.org/en/wg-sam-17; https://www.ccamlr.org/en/ws-sm-1
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-09-07
    Description: Here, we provided four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic krill, Euphausia superba, (adults and larvae) and ice krill, Euphausia crystallorophias, in the wider Weddell Sea. The files were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic krill (adults): The map of predicted habitat suitability for adult Antarctic krill was based on krill data from the database KRILLBASE (Atkinson et al., 2017; data request: 26-09-13). Those data were complemented by krill data, which were collected (a) during the Norwegian Antarctic research expedition 1976/77 (M/V "Polarsirkel"), (b) during two Soviet research cruises (RV "Gizhiga", 1977; RV "Volny Vetter", 1983), (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-XXIX/3. The habitat suitability model was developed by the use of the modelling package "biomod2". As predictor variables, we used (i) dissolved oxygen from the World Ocean Atlas 2013, (ii) ice coverage from AMSR-E sea ice maps, (iii) seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI), (iv) bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO) and (v) SeaWiFS chlorophyll-a concentration data. Most suitable habitat conditions for the Antarctic krill seem to occur near the tip of the Antarctic Peninsula, on the continental slope between 15°W and 15°E and on the Maud Rise plateau. Antarctic krill (larvae): The map of interpolated abundances of krill larvae is based on abundance data, which were collected (a) during the Norwegian Antarctic research expeditions 1976/77, 1977/78 and 1979/80 (M/V "Polarsirkel"), (b) in the context of the First International BIOMASS Experiment survey (FIBEX) (Walther Herwig cruise 1981) and the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6) as well as (c) during "Polarstern" cruise ANT-VII/4 and the combined "Polarstern" (ANT-VIII/2) and R.V. "Akademik Fedorova" cruise. An inverse distance weighted (IDW) interpolation was performed for a 30 km radius around each krill larvae record. Areas with highest numbers of E. superba larvae (〉 1000 individuals/m²) occurred west of the Prime Meridian from approximately 65°S to the ice shelf. Ice krill (adults): The map of the potential habitat of E. crystallorophias was approximated by water depth from 0 m to 550 m, using bathymetric data from IBCSO, and mean sea surface temperature ≤ 0°C based on temperature data from FESOM provided by R. Timmermann (AWI). The map of interpolated density of individuals of E. crystallorophias is based on abundance data, which were collected (a) during the Norwegian Antarctic research expedition 1979/80 (M/V "Polarsirkel"), (b) during the German Antarctic research cruise 1975/76 with "Walther Herwig", (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-V/1-3, ANT-VII/4 and ANT-XXIX/3. An IDW interpolation was performed for a 30 km radius around each record of ice krill. Areas with highest densities of E. crystallorophias individuals occurred on the south-eastern Weddell Sea shelf and near the tip of the Antarctic Peninsula. Volker Siegel (retired; formerly Th\"unen Institute) provided the data for the Antarctic krill and ice krill. More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2019. This article is posted here by permission of American Chemical Society for personal use, not for redistribution. The definitive version was published in Kivenson, V., Lemkau, K. L., Pizarro, O., Yoerger, D. R., Kaiser, C., Nelson, R. K., Carmichael, C., Paul, B. G., Reddy, C. M., & Valentine, D. L. (2019). Ocean Dumping of Containerized DDT Waste Was a Sloppy Process. Environmental Science and Technology (2019), doi:10.1021/acs.est.8b05859.
    Description: Industrial-scale dumping of organic waste to the deep ocean was once common practice, leaving a legacy of chemical pollution for which a paucity of information exists. Using a nested approach with autonomous and remotely operated underwater vehicles, a dumpsite offshore California was surveyed and sampled. Discarded waste containers littered the site and structured the suboxic benthic environment. Dichlorodiphenyltrichloroethane (DDT) was reportedly dumped in the area, and sediment analysis revealed substantial variability in concentrations of p,p-DDT and its analogs, with a peak concentration of 257 μg g–1, ∼40 times greater than the highest level of surface sediment contamination at the nearby DDT Superfund site. The occurrence of a conspicuous hydrocarbon mixture suggests that multiple petroleum distillates, potentially used in DDT manufacture, contributed to the waste stream. Application of a two end-member mixing model with DDTs and polychlorinated biphenyls enabled source differentiation between shelf discharge versus containerized waste. Ocean dumping was found to be the major source of DDT to more than 3000 km2 of the region’s deep seafloor. These results reveal that ocean dumping of containerized DDT waste was inherently sloppy, with the contents readily breaching containment and leading to regional scale contamination of the deep benthos.
    Description: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship for V.K. under Grant No. 1650114. Expeditions AT-18-11 and AT-26-06 were funded by the NSF (OCE-0961725 and OCE-1046144). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We thank the captain and crew of the RV Atlantis, the pilots and crew of the ROV Jason, the crew of the AUV Sentry, the scientific party of the AT-18-11 and AT-26-06 expeditions, Justin Tran for assistance with the preparation of multibeam data, M. Indira Venkatesan for a helpful discussion of the NOAA datasets, and Nathan Dodder for advice on the procedure for compound identification.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2019. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology 53(16), (2019): 9398-9406, doi:10.1021/acs.est.9b02395.
    Description: Geochemical data from 40 water wells were used to examine the occurrence and sources of radium (Ra) in groundwater associated with three oil fields in California (Fruitvale, Lost Hills, South Belridge). 226Ra+228Ra activities (range = 0.010–0.51 Bq/L) exceeded the 0.185 Bq/L drinking-water standard in 18% of the wells (not drinking-water wells). Radium activities were correlated with TDS concentrations (p 〈 0.001, ρ = 0.90, range = 145–15,900 mg/L), Mn + Fe concentrations (p 〈 0.001, ρ = 0.82, range = 〈0.005–18.5 mg/L), and pH (p 〈 0.001, ρ = −0.67, range = 6.2–9.2), indicating Ra in groundwater was influenced by salinity, redox, and pH. Ra-rich groundwater was mixed with up to 45% oil-field water at some locations, primarily infiltrating through unlined disposal ponds, based on Cl, Li, noble-gas, and other data. Yet 228Ra/226Ra ratios in pond-impacted groundwater (median = 3.1) differed from those in oil-field water (median = 0.51). PHREEQC mixing calculations and spatial geochemical variations suggest that the Ra in the oil-field water was removed by coprecipitation with secondary barite and adsorption on Mn–Fe precipitates in the near-pond environment. The saline, organic-rich oil-field water subsequently mobilized Ra from downgradient aquifer sediments via Ra-desorption and Mn/Fe-reduction processes. This study demonstrates that infiltration of oil-field water may leach Ra into groundwater by changing salinity and redox conditions in the subsurface rather than by mixing with a high-Ra source.
    Description: This article was improved by the reviews of John Izbicki and anonymous reviewers for the journal. This work was funded by the California State Water Resources Control Board’s Regional Groundwater Monitoring in Areas of Oil and Gas Production Program and the USGS Cooperative Water Program. A.V., A.J.K., and Z.W were supported by USDA-NIFA grant (#2017-68007-26308). Any use of trade, firm, or product names is for description purposes only and does not imply endorsement by the U.S. Government.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2019. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology 53(14), (2019):8244-8251, doi:10.1021/acs.est.9b02344.
    Description: Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735 to 1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI, USA to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments with radiocarbon (14C) data of higher plant leaf-wax n-alkanoic acids. Isotope-mass balance calculations of perylene and n-alkanoic acids indicate that ~40 % of sedimentary organic matter is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and insensitive to elevated 14C concentrations following nuclear weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional flux during urban sprawl. These findings suggest that perylene is definitely a product of soil derived fungi, and a powerful chemical tracer to study spatial and temporal connectivity between terrestrial and aquatic environments.
    Description: We thank John King, Sean Sylva, Brad Hubeny, Peter Sauer, and Jim Broda for their help in sampling; Carl Johnson and Daniel Montluçon for their incessant help with analyses; as well as Mark Yunker for critical discussion on the perils of perylene. Professor Phil Meyers and two anonymous reviewers provided comments that improved the quality of the manuscript. U.M.H. acknowledges the Swiss National Science Foundation for his postdoctoral fellowship and T.I.E. and K.A.H. acknowledges the NSF for research grants CHE-0089172 and OCE-9708478.
    Description: 2020-06-19
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science and Technology, American Chemical Society (ACS), 53(15), pp. 8747-8756, ISSN: 0013-936X
    Publication Date: 2024-04-12
    Description: Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chemical information is still sparse. In the present study, INA and free glucose concentrations were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from −17.4 to −26.8 °C. Glucose concentrations varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A positive correlation was observed between free glucose concentration and INA in Arctic water samples (T50(°C) = (−25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment composition resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-12-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-01-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-01-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-03-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-03-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-05-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-09-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology, American Chemical Society, 52(22), pp. 13279-13288
    Publication Date: 2019-03-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-01-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-01-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-01-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-04-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-04-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-07-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-04-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-04-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-11-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-07-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-02-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Crystal Growth & Design, American Chemical Society, 18, pp. 2563-2571
    Publication Date: 2018-04-23
    Description: The morphology and growth kinetics of ice single crystals in aqueous solutions of type III antifreeze protein (AFP-III) have been studied in detail over a range of AFP-III concentrations and supercoolings. In pure water, the shape of ice crystals changes from the circular disklike to planar dendritic with increasing supercooling. In AFP-III solutions, ice crystals in the form of faceted plates, irregular dendrites with polygonized tips, and needles appear with increasing supercooling and AFP-III concentration. The growth rate of ice crystals in the crystallographic a direction is 2 orders of magnitude higher than that in the c direction. AFP-III molecules cause the stoppage of the growth of the prismatic and basal faces at low supercoolings. When supercooling exceeds the critical value, AFP-III favors the acceleration of the growth in both a and c directions. The observed behavior of AFP-III is explained in terms of the Cabrera-Vermilyea pinning model and the specificity of the dissipation of latent heat from the growing crystals with different shapes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-07-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-11-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2018-11-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-25
    Description: Author Posting. © American Chemical Society, 2018. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology Letters 5 (2018): 226–231, doi:10.1021/acs.estlett.8b00084.
    Description: Chemical dispersants are one of many tools used to mitigate the overall environmental impact of oil spills. In principle, dispersants break up floating oil into small droplets that disperse into the water column where they are subject to multiple fate and transport processes. The effectiveness of dispersants typically decreases as oil weathers in the environment. This decrease in effectiveness is often attributed to evaporation and emulsification, with the contribution of photochemical weathering assumed to be negligible. Here, we aim to test this assumption using Macondo well oil released during the Deepwater Horizon spill as a case study. Our results indicate that the effects of photochemical weathering on Deepwater Horizon oil properties and dispersant effectiveness can greatly outweigh the effects of evaporative weathering. The decrease in dispersant effectiveness after light exposure was principally driven by the decreased solubility of photo-oxidized crude oil residues in the solvent system that comprises COREXIT EC9500A. Kinetic modeling combined with geospatial analysis demonstrated that a considerable fraction of aerial applications targeting Deepwater Horizon surface oil had low dispersant effectiveness. Collectively, the results of this study challenge the paradigm that photochemical weathering has a negligible impact on the effectiveness of oil spill response and provide critical insights into the “window of opportunity” to apply chemical dispersants in response to oil spills in sunlit waters.
    Description: This work was supported, in part, by National Science Foundation Grant OCE-1333148, Gulf of Mexico Research Initiative Grants 015, SA 16-30, the DEEP-C consortium, and the Clark Family Foundation, Inc. EPA funding was provided to R.N.C. from the Oil Spill Liability Trust Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Analytical Chemistry, American Chemical Society (ACS), 90(24), pp. 14188-14197, ISSN: 0003-2700
    Publication Date: 2024-04-09
    Description: Investigating the biogeochemistry of dissolved organic matter (DOM) requires the synthesis of data from several complementary analytical techniques. The traditional approach to data synthesis is to search for correlations between measurements made on the same sample using different instruments. In contrast, data fusion simultaneously decomposes data from multiple instruments into the underlying shared and unshared components. Here, Advanced Coupled Matrix and Tensor Factorization (ACMTF) was used to identify the molecular fingerprint of DOM fluorescence fractions in Arctic fjords. ACMTF explained 99.84% of the variability with six fully shared components. Individual molecular formulas were linked to multiple fluorescence components and vice versa. Molecular fingerprints differed in diversity and oceanographic patterns, suggesting a link to the biogeochemical sources and diagenetic state of DOM. The fingerprints obtained through ACMTF were more specific compared to traditional correlation analysis and yielded greater compositional insight. Multivariate data fusion aligns extremely complex, heterogeneous DOM data sets and thus facilitates a more holistic understanding of DOM biogeochemistry.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-02-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/plain
    Format: text/csv
    Format: text/csv
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2017-10-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2017-10-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-11-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2017-02-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2017-02-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2017-02-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/vnd.google-earth.kmz
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2017-02-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-02-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...