ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI G5-17-90632
    In: Developments in paleoenvironmental research, 20
    Description / Table of Contents: The aim of this edited volume is to introduce the scientific community to paleoenvironmental studies of estuaries, to highlight the types of information that can be obtained from such studies, and to promote the use of paleoenvironmental studies in estuarine management. Readers will learn about the the application of different paleoecological approaches used in estuaries that develop our understanding of their response to natural and human influences. Particular attention is given to the essential steps required for undertaking a paleoecological study, in particular with regard to site selection, core extraction and chronological techniques, followed by the range of indicators that can be used. A series of case studies are discussed in the book to demonstrate how paleoecological studies can be used to address key questions, and to sustainably manage these important coastal environments in the future. This book will appeal to professional scientists interested in estuarine studies and/or paleoenvironmental research, as well as estuarine managers who are interested in the incorporation of paleoenvironmental research into their management programs.
    Type of Medium: Monograph available for loan
    Pages: ix, 700 Seiten , Illustrationen
    ISBN: 978-94-024-0988-8
    Series Statement: Developments in paleoenvironmental research 20
    Language: English
    Note: Contents: 1 Introduction to the Application of Paleoecological Techniques in Estuaries / Kathryn H. Taffs, Krystyna M. Saunders, Kaarina Weckström, Peter A. Gell, and C. Gregory Skilbeck. - PART I ESTARIES AND THEIR MANAGEMENT. - 2 Estuary Form and Function: Implications for Palaeoecological Studies / Peter Scanes, Angus Ferguson, and Jaimie Potts. - 3 Geology and Sedimentary History of Modern Estuaries / C. Gregory Skilbeck, Andrew D. Heap, and Colin D. Woodroffe. - 4 Paleoecological Evidence for Variability and Change in Estuaries: Insights for Management / Krystyna M. Saunders and Peter A. Gell. - PART II CORING AND DATING OF ESTUARINE SEDIMENTS. - 5 Sediment Sampling in Estuaries: Site Selection and Sampling Techniques / C. Gregory Skilbeck, Stacey Trevathan-Tackett, Pemika Apichanangkool, and Peter I. Macreadie. - 6 Some Practical Considerations Regarding the Application of 210Pb and 137Cs Dating to Estuarine Sediments / Thorbjoern Joest Andersen. - 7 Radiocarbon Dating in Estuarine Environments / Jesper Olsen, Philippa Ascough, Bryan C. Lougheed, and Peter Rasmussen. - PART III TECHNIQUES FOR PALAEOENVIRONMENTAL RECONSTRUCTIONS IN ESTUARINES. - 8 Lipid Biomarkers as Organic Geochemical Proxies for the Paleoenvironmental Reconstruction of Estuarine Environments / John K. Volkman and Rienk H. Smittenberg. - 9 C/N ratios and Carbon Isotope Composition of Organic Matter in Estuarine Environments / Melanie J. Leng and Jonathan P. Lewis. - 10 Physical and Chemical Factors to Consider when Studying Historical Contamination and Pollution in Estuaries / Amanda Reichelt-Brushett, Malcolm Clark, and Gavin Birch. - 11 Diatoms as Indicators of Environmental Change in Estuaries / Kathryn H. Taffs, Krystyna M. Saunders, and Brendan Logan. - 12 Dinoflagellate Cysts as Proxies for Holocene Environmental Change in Estuaries: Diversity, Abundance and Morphology / Marianne Ellegaard, Barrie Dale, Kenneth N. Mertens, Vera Pospelova, and Sofia Ribeiro. - 13 Applications of Foraminifera, Testate Amoebae and Tintinnids in Estuarine Palaeoecology / Anupam Ghosh and Helena L. Filipsson. - 14 Ostracods as Recorders of Palaeoenvironmental Change in Estuaries / Jessica M. Reeves. - 15 Application of Molluscan Analyses to the Reconstruction of Past Environmental Conditions in Estuaries / G. Lynn Wingard and Donna Surge. - 16 Corals in Estuarine Environments: Their Response to Environmental Changes and Application in Reconstructing Past Environmental Variability / Francisca Staines-Urías. - 17 Inferring Environmental Change in Estuaries from Plant Macrofossils / John Tibby and Carl D. Sayer. - 18 Applications of Pollen Analysis in Estuarine Systems / Joanna C. Ellison. - PART IV CASE STUDIES. - 19 Palaeo-Environmental Approaches to Reconstructing Sea Level Changes in Estuaries / Brigid V. Morrison and Joanna C. Ellison. - 20 Paleoecology Studies in Chesapeake Bay: A Model System for Understanding Interactions between Climate, Anthropogenic Activities and the Environment / Elizabeth A. Canuel, Grace S. Brush, Thomas M. Cronin, Rowan Lockwood, and Andrew R. Zimmerman. - 21 Paleosalinity Changes in the Río de la Plata Estuary and on the Adjacent Uruguayan Continental Shelf over the Past 1200 Years: An Approach Using Diatoms as a Proxy / Laura Perez, Felipe García-Rodríguez, and Till J.J. Hanebuth. - 22 Application of Paleoecology to Ecosystem Restoration: A Case Study from South Florida’s Estuaries / G. Lynn Wingard. - 23 Paleolimnological History of the Coorong: Identifying the Natural Ecological Character of a Ramsar Wetland in Crisis / Peter A. Gell. - 24 Palaeoenvironmental History of the Baltic Sea: One of the Largest Brackish-water Ecosystems in the World / Kaarina Weckström, Jonathan P. Lewis, Elinor Andrén, Marianne Ellegaard, Peter Rasmussen, and Richard Telford. - Glossary. - Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI G8-19-92586
    Description / Table of Contents: Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution.
    Type of Medium: Dissertations
    Pages: XIII, 131 Seiten , Illustrationen
    Language: Undetermined
    Note: Dissertation, Universität Potsdam, 2019 , TABLE OF CONTENTS Abstract Zusammenfassung Table of contents List of figures List of tables List of abbreviations 1 Introduction 1.1 Scientific background and motivation 1.1.1 Permafrost degradation 1.1.2 Snow cover 1.1.3 Vegetation phenology 1.2 Remote sensing of rapid changes 1.2.1 SAR remote sensing 1.2.2 TerraSar-X 1.3 Data and methods 1.4 Aims and objectives 1.5 Study areas and data 1.6 Thesis structure and author contributions 1.6.1 Chapter 2 – Monitoring inter-and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series 1.6.2 Chapter 3 – TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small Arctic catchments 1.6.3 Chapter 4 – Estimation of Arctic tundra vegetation phenology with TerraSAR-X 2 Monitoring inter-and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series 2.1 Abstract 2.2 Introduction 2.3 Study area 2.4 Data and methods 2.4.1 SAR data and processing 2.4.2 Automated cliff-top line extraction from SAR data 2.4.3 Quantification of cliff-top erosion with the Digital Shoreline Analysis System 2.4.4 Cliff top mapping from optical satellite data 2.4.5 In-situ observations of cliff top erosion 2.4.6 Climate data 2.4.7 Statistical data analysis 2.5 Results 2.5.1 TSX erosion versus in-situ and optical datasets 2.5.2 Inter-and intra-annual cliff-top erosion and climate data 2.5.3 Backscatter time series 2.6 Discussion 2.6.1 Inter-annual dynamics of cliff-top erosion 2.6.2 Intra-annual dynamics of cliff-top erosion 2.6.3 Backscatter dynamics of tundra and cliff surfaces 2.7 Conclusions 2.8 Acknowledgments 3 TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small Arctic catchments 3.1 Abstract 3.2 Introduction 3.3 Study area 3.4 Data and methods 3.4.1 SAR satellite data 3.4.2 Optical satellite data 3.4.3 In-situ time-lapse camera data 3.4.4 Snow Cover Extent from TerraSAR-X 3.4.5 Snow Cover Extent from Landsat 8 3.4.6 Accuracy assessment of TerraSAR-X Snow Cover Extent 3.4.7 Fractional Snow Cover time series analysis 3.5 Results 3.5.1 Evaluation of TSX Snow Cover Extent 3.5.2 Time series of Fractional Snow Cover in all catchments 3.5.3 Time series of Fractional SnowCover in small catchments 3.6 Discussion 3.6.1 Spatiotemporal monitoring of snowmelt dynamics using TSX 3.6.2 Technical considerations for using TSX for wet snow detection 3.7 Conclusions 3.8 Acknowledgements 3.9 Appendix 4 Relationships between X-Band SAR and vegetation phenology in a low Arctic ecosystem 4.1 Abstract 4.2 Introduction 4.3 Study area 4.4 Data and methods 4.4.1 In-situ time-lapse phenological cameras 4.4.2 Time-lapse image analysis 4.4.3 SAR satellite data 4.4.4 Backscatter and coherence time series 4.4.5 In-situ vegetation and climate data 4.5 Results 4.5.1 Phenocams 4.5.2 Backscatter dynamics 4.5.3 Coherence dynamics 4.6 Climate data 4.7 Backscatter and vegetation height 4.8 Discussion 4.9 Conclusion 4.10 Acknowledgments 5 Synthesis 5.1 Rapid permafrost disturbance 5.2 Snowmelt dynamics 5.3 Arctic tundra vegetation phenology 5.4 Seasonality and complementarity of TSX 5.5 Limitations and technical considerations 5.6 Key findings and outlook References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI G8-19-92587
    Description / Table of Contents: Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales.
    Type of Medium: Dissertations
    Pages: vi, 126 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2019 , Table of Contents Abstract Zusammenfassung Abbreviations 1 Introduction 1.1 Scientific Background and Motivation 1.1.1 Arctic Tundra Vegetation 1.1.2 Remote Sensing of Arctic Tundra Vegetation 1.1.3 Hyperspectral Remote Sensing of Arctic Vegetation 1.2 Aims and Objectives 1.3 Study Area and Data 1.3.1 Toolik Lake Research Natural Area 1.3.2 In-situ Canopy-level Spectral Data 1.3.3 True-colour Digital Photographs 1.3.4 Leaf-level Photosynthetic Pigment Data 1.3.5 Airborne AISA Imagery 1.3.6 Simulated EnMAP and Sentinel-2 Reflectance Spectra 1.3.7 Simulated EnMAP Imagery 1.4 Thesis Structure and Author Contributions 1.4.1 Chapter 2 -A Phenological Approach to Spectral Differentiation of Low-Arctic Tundra Vegetation Communities, North Slope Alaska 1.4.2 Chapter 3 -Monitoring Pigment-driven Vegetation Changes in a Low Arctic Tundra Ecosystem Using Digital Cameras 1.4.3 Implications of Litter and Non-vascular Components on Multiscale Hyperspectral Data in a low-Arctic Ecosystem 2 A Phenological Approach to Spectral Differentiation of Low Arctic Tundra Vegetation Communities, North Slope Alaska 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Study Site and Low Arctic Vegetation Types 2.3.2 Ground-Based Data and Sampling Protocol 2.3.3 EnMAP and Sentinel-2 Surface Reflectance Simulation 2.3.4 Stable Wavelength Identification Using the InStability Index 2.4 Results 2.4.1 Spectral Characteristics by Phenological Phase 2.4.2 InStability Index and Wavelength Selection of Ground-based Spectra 2.4.3 InStability Index and Wavelength Selection of Simulated Satellite Reflectance Spectra 2.5 Discussion 2.5.1 Phenological Phase and Wavelength Stability of Ground-based Spectra 2.5.2 Phenological Phase and Wavelength Stability of Satellite Resampled Spectra 2.5.3 Influence of Spatial Scale 2.6 Conclusions 2.7 Acknowledgements 2.8 Supplementary Material 2.8.1 Data Publication 3 Monitoring Pigment-driven Vegetation Changes in a Low Arctic Tundra Ecosystem Using Digital Cameras 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Study Site 3.3.2 Digital Photographs 3.3.3 Field-based Spectral Data 3.3.4 Vegetation Pigment Concentration 3.3.5 Data Analyses 3.4 Results 3.4.1 RGB Indices as a Surrogate for Pigment-driven Spectral Indices 3.4.2 RGB Indices as a Surrogate for Leaf-level Pigment concentration 3.5 Discussion 3.6 Conclusions 3.7 Supplementary Material 3.7.1 Data Publication 4 Implications of Litter and Non-vascular Components on Multiscale Hyperspectral Data in a Low Arctic Ecosystem 4.1 Abstract 4.2 Introduction 4.3 Materials and Methods 4.3.1 Study Site 4.4 Remote Sensing Data 4.4.1 Ground-based Image Spectroscopy Data 4.4.2 Airborne AISA Hyperspectral Data 4.4.3 EnMAP Simulation 4.4.4 Spectral Comparison by Wavelength 4.4.5 Linear Mixture Analysis 4.5 Results 4.5.1 Spatial Scaling of Spectral Signals 4.6 Discussion 4.7 Conclusions 4.8 Acknowledgements 5 Synthesis and Discussion 5.1 Phenological Phase: does phenology influence the spectral variability of dominant low Arctic vegetation communities? 5.2 Vegetation Colour: How does canopy-level vegetation colour relate to phenological changes in leaf-level photosynthetic pigment concentration? 5.3 Intrinsic Ecosystem Components: How does spatial aggregation of high spectral resolution data influence low Arctic tundra vegetation signals? 5.4 Key Innovations 5.5 Limitations and Technical Considerations 5.6 Outlook: Opportunities for Future Research 6 References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI Bio-20-93990
    Description / Table of Contents: Assumed comparable environmental conditions of early Mars and early Earth in 3.7 Ga ago – at a time when first fossil records of life on Earth could be found – suggest the possibility of life emerging on both planets in parallel. As conditions changed, the hypothetical life on Mars either became extinct or was able to adapt and might still exist in biological niches. The controversial discussed detection of methane on Mars led to the assumption, that it must have a recent origin – either abiotic through active volcanism or chemical processes, or through biogenic production. Spatial and seasonal variations in the detected methane concentrations and correlations between the presence of water vapor and geological features such as subsurface hydrogen, which are occurring together with locally increased detected concentrations of methane, gave fuel to the hypothesis of a possible biological source of the methane on Mars. Therefore the phylogenetically old methanogenic archaea, which have evolved under early Earth conditions, are often used as model-organisms in astrobiological studies to investigate the potential of life to exist in possible extraterrestrial habitats on our neighboring planet. In this thesis methanogenic archaea originating from two extreme environments on Earth were investigated to test their ability to be active under simulated Mars analog conditions. These extreme environments – the Siberian permafrost-affected soil and the chemoautotrophically based terrestrial ecosystem of Movile cave, Romania – are regarded as analogs for possible Martian (subsurface) habitats. Two novel species of methanogenic archaea isolated from these environments were described within the frame of this thesis. It could be shown that concentrations up to 1 wt% of Mars regolith analogs added to the growth media had a positive influence on the methane production rates of the tested methanogenic archaea, whereas higher concentrations resulted in decreasing rates. Nevertheless it was possible for the organisms to metabolize when incubated on water-saturated soil matrixes made of Mars regolith analogs without any additional nutrients. Long-term desiccation resistance of more than 400 days was proven with reincubation and indirect counting of viable cells through a combined treatment with propidium monoazide (to inactivate DNA of destroyed cells) and quantitative PCR. Phyllosilicate rich regolith analogs seem to be the best soil mixtures for the tested methanogenic archaea to be active under Mars analog conditions. Furthermore, in a simulation chamber experiment the activity of the permafrost methanogen strain Methanosarcina soligelidi SMA-21 under Mars subsurface analog conditions could be proven. Through real-time wavelength modulation spectroscopy measurements the increase in the methane concentration at temperatures down to -5 °C could be detected. The results presented in this thesis contribute to the understanding of the activity potential of methanogenic archaea under Mars analog conditions and therefore provide insights to the possible habitability of present-day Mars (near) subsurface environments. Thus, it contributes also to the data interpretation of future life detection missions on that planet. For example the ExoMars mission of the European Space Agency (ESA) and Roscosmos which is planned to be launched in 2018 and is aiming to drill in the Martian subsurface
    Type of Medium: Dissertations
    Pages: VI, 108 Blätter , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2015 , Table of contents Preface Table of contents Summary Zusammenfassung 1. Introduction 1.1. Environmental conditions on past and present Mars 1.2. Detection of methane on Mars 1.3. Methanogenic archaea 1.4. Description of study sites 1.5. Aims and approaches 1.6. Overview of the publications 2. Publication I: Methanosarcina soligelidi sp. nov., a desiccationandfreeze-thaw-resistant methanogenic archaeon from a Siberianpermafrost-affected soil 3. Publication II: Methanobacterium movilense sp. nov.,ahydrogenotrophic, secondary-alcohol-utilizing methanogen fromthe anoxic sediment of a subsurface lake 4. Publication III: Influence of Martian Regolith Analogs on the activityand growth of methanogenic archaea,with special regard to long-term desiccation 5. Publication IV: Laser spectroscopic real time measurements ofmethanogenic activity under simulated Martian subsurface conditions 6. Synthesis and Conclusion 6.1. Synthesis 6.2. Conclusion and future perspectives 7. References 8. Acknowledgments
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI Bio-20-93992
    Type of Medium: Dissertations
    Pages: XIII, 137 Seiten , Illustrationen, Diagramme , 1 CD-ROM
    Language: English
    Note: Dissertation, Universität Potsdam, 2017 , Content List of Abbreviations List of Figures List of Tables Summary Zusammenfassung Motivation Chapter 1 1. Scientific background 1.1 Late Quaternary climate changes and treeline transition in northern Siberia 1.2 Natural archives and proxies to assess vegetation history 1.3 Study area 1.3 Objectives of the thesis 1.4 Thesis outline 1.4.1 Chapters and manuscripts 1.4.2 Author's contribution 1.4.2.1 Manuscript I - published 1.4.2.2 Manuscript II - submitted 1.4.2.3 Manuscript III - prepared for submission Chapter 2 2. Manuscript I: Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia) 2.1 Abstract 2.2 Introduction 2.3 Geographical settings 2.4 Material and methods 2.4.1 Core material 2.4.2 Subsampling of the permafrost core 2.4.3 Molecular genetic laboratory work 2.4.4 Analysis of sequence data and taxonomic assignments 2.4.5 Pollen sample treatment and analysis 2.4.6 Statistical analyses and visualization 2.5 Results 2.5.1 SedaDNA 2.5.1.1 SedaDNA of terrestrial plants 2.5.1.2 SedaDNA of swamp and aquatic plants 2.5.1.3 SedaDNA of bryophytes and algae 2.5.2 Pollen 2.5.2.1 Pollen of terrestrial plants 2.5.2.2 Pollen and spores of swamp and aquatic plants 2.5.2.3 Spores and algae 2.5.3 Ratios of terrestrial to swamp and aquatic taxa and Poaceae to Cyperaceae 2.6 Discussion 2.6.1 Quality and proxy value of sedaDNA and pollen data 2.6.2 Environmental conditions during the pre-LGM (54-51 kyr BP, 18.9-8.35 m) and composition of deposited organic matter 2.6.3 Environmental conditions during the post-LGM (11.4-9.7 kyr BP (13.4-11.1 cal kyr BP)) and composition of deposited organic matter 2.7 Conclusions 2.8 Acknowledgements Chapter 3 3. Manuscript II: Genetic variation of larches at the Siberian tundra-taiga ecotone inferred from the assembly of chloroplast genomes and mitochondrial sequences 3.1. Abstract 3.2. Introduction 3.3. Material and methods 3.3.1 Plant material 3.3.2 DNA isolation and sequencing 3.3.3 Sequence processing and de novo assembly 3.3.4 Chloroplast genome assembly, annotation and variant detection 3.3.5 Mitochondrial sequences 3.3.6 Analyses of genetic variation 3.4 Results 3.4.1 Chloroplast genome structure and genetic variation 3.4.2 Mitochondrial sequences and genetic variation 3.5 Discussion 3.5.1 De novo assembly and genetic variation of chloroplast genomes and mitochondrial sequences 3.5.2 The distribution of genetic variation at the tundra-taiga ecotone 3.6 Conclusions 3.7 Acknowledgements Chapter 4 4. Manuscript III: The history of tree and shrub taxa and past genetic variation of larches on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the last interglacial uncovered by sedimentary ancient DNA 4.1 Abstract 4.2 Introduction 4.3 Materials and methods 4.3.1 Geographic setting 4.3.2 Core material 4.3.2.1 Core L14-02: Yedoma Ice Complex 4.3.2.2 Core L14-03: Thermo terrace 4.3.2.3 Core L14-04 and hand-pieces L14-04B and L14-04C: Thermo terrace including Eemian deposits 4.3.2.4 Core L14-05: Alas 4.3.3 Core sub-sampling 4.3.4 Molecular genetic laboratory work 4.3.4.1 Sedimentary ancient DNA metabarcoding approach 4.3.4.2 Specific amplification of Larix from sedimentary ancient DNA 4.3.5 Filtering of Illumina sequencing data and taxonomic assignments 4.3.6 Statistical analyses and visualization 4.3.7 Geochronology 4.4. Results 4.4.1 Overall composition of the DNA metabarcoding data 4.4.2 Terrestrial vegetation composition 4.4.2.1 Core L14-02: Late Pleistocene Yedoma Ice Complex 4.4.2.2 L14-03: Deeper late Pleistocene deposits 4.4.2.3 L14-04 Thermo terrace including Eemian deposits 4.4.2.4 Core L14-05: Alas with Holocene lake deposits and taberits of the Yedoma Ice Complex 4.4.2.5 The multivariate structure of the terrestrial vegetation among samples and cores 4.4.3 Genetic variation ofsediment-derived Larix sequences 4.5 Discussion 4.5.1 Tree taxa in the sedaDNA record - where do they come from? 4.5.2 Terrestrial plant community changes of warm phases since the last interglacial 4.5.3 Past genetic diversity of larch populations on Bol'shoy Lyakhovsky Island 4.6 Conclusion 4.7 Acknowledgements Chapter 5 5. Synopsis 5.1 The proxy potential of sedaDNA in paleobotanical reconstructions from sedimentary deposits 5.1.1 Combining sedaDNA and pollen to assess plant diversity and vegetation composition 5.1.2 Current limits and opportunities of sedaDNA approaches 5.2 Using genomic data to trace modern and past treeline dynamics 5.2.1 Modern genomic variation at the Siberian treeline 5.2.2 PCR-based markers for paleoenvironmental genetics 5.3 Terrestrial plant community changes and treeline dynamics in north-eastern Siberia since the last interglacial 5.3.1 Vegetation changes in north-eastern Siberia since the last interglacial 5.3.2 Implications for treeline dynamics 5.4 Conclusion 5.5 Outlook Appendix 1. Supplementary material for Manuscript I (Chapter 2) 2. Supplementary material for Manuscript II (Chapter 3) 3. Supplementary material for Manuscript III (Chapter 4) References Acknowledgements Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI G5-20-93989
    Type of Medium: Dissertations
    Pages: viii, 139 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2018 , Table of Content I. Abstract II. Deutsche Zusammenfassung 0 Preface 1 Scientific Background 1.1 Paleoenvironmental changes since the gLGM in arid Central Asia and north-western High Asia 1.1.1 Paleoclimatic changes 1.1.2 Lake level fluctuations following climatic changes 1.1.3 Inferred terrestrial vegetation responses to environmental changes and possible human impact 1.2 The role of proxy records in tracing environmental changes 1.2.1 Archives and Proxies investigated in environmental studies in Central Asia 1.2.2 Limnological systems as environmental archives 1.2.3 The multiproxy approach as a tool to decipher environmental change 1.3 Study area 1.4 Material and Method Overview 1.4.1 Field based sampling 1.4.2 Outline of material and methods 1.5 Aim and objectives ofthis thesis 1.6 Thesis outline 1.7 Contribution of the authors 1.7.1 Manuscript I - published 1.7.2 Manuscript II - published 1.7.3 Manuscript III - published 1.7.4 Manuscript IV - in preparation 2 Manuscript I Climatic and limnological changes at Lake Karakul (Tajikistan) during the last ~29 cal ka 2.1 Abstract 2.2 Introduction 2.3 Study Area 2.4 Material and methods 2.4.1 Fieldwork 2.4.2 Laboratory analysis 2.5 Results 2.5.1 Age-depth relationship in core KK12-1 2.5.2 TIC, TOC, TOC/TN, δ18Ocarb and δ13CCarb 2.5.3 Grain-size distribution and results ofend-member modelling 2.5.4 XRF data 2.5.5 Ordination results of sediment parameters 2.6 Discussion 2.6.1 Paleoenvironmental indicators from sediment variables 2.6.2 Implications ofthe Lake Karakul sediment record 2.6.3 Linking lake internal development to climate change 2.7 Conclusions 2.8 Acknowledgements 2.9 Data availability 3 Manuscript II Aquatic macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal ka revealed by sedimentary ancient DNA and geochemical analyses of macrofossil remains 3.1 Abstract 3.2 Introduction 3.3 Material and Methods 3.3.1 Sample acquisition and treatment 3.3.2 Genetic approach 3.3.3 Elemental isotopic analyses ofaquatic macrophyte remains 3.4 Results 3.4.1 Macrophyte records along lake depth transects in Lake Karakul 3.4.2 Submerged plant content 3.4.3 Ancient DNA analyses 3.4.4 C, N, δ13C and δ15N of Stuckenia cf. pamirica remains 3.5 Discussion 3.5.1 Assessment of aDNA and chemical aquatic macrophyte data as proxies for the macrophyte composition and the paleo-productivity 3.5.2 Changes of past submerged plant composition and productivity and potential drivers 3.6 Conclusions 3.7 Acknowledgements 3.8 Data Availability 4 Manuscript III Radiocarbon and optical stimulated luminescence dating of sediments from Lake Karakul, Tajikistan 4.1 Abstract 4.2 Introduction 4.3 Regional setting 4.4 Methods 4.4.1 Collection and correlation of cores 4.4.2 Radiocarbon dating 4.4.3 Optically stimulated luminescence (OSL) dating 4.4.4 Establishment ofage-depth model 4.4.5 Investigation of exposed lake sediments 4.5 Results 4.6 Discussion 4.6.1 Recovered sediments and correlation ofcores from Lake Karakul 4.6.2 Age-depth model, and assessment of radiocarbon and OSL age data 4.6.3 Significance ofexposed sediments at section KK13-S1 4.6.4 Implications ofthe chronological data 4.7 Conclusion 4.8 Acknowledgements 5 Manuscript IV Vegetation change in the Eastern Pamir Mountains inferred from Lake Karakul pollen spectra of the last 28 ka 5.1 Abstract 5.2 Introduction 5.3 Study site 5.4 Material and Methods 5.4.1 Sediment cores and chronology 5.4.2 Pollen sample preparation and pollen analyses 5.4.3 Pollen data treatment 5.5 Results 5.5.1 Composite core (KK12-1/2; 27.6 cal ka BP to present) 5.5.2 Short core TAJ-Kar-08-lB 5.6 Discussion 5.6.1 Interpretation of pollen data 5.6.2 Terrestrial vegetation change in the Eastern Pamir Mountains in response to past climate change 5.7 Conclusions 5.8 Acknowledgements 5.9 Data Availability 6 Synthesis 6.1 Proxy evaluation 6.1.1 Age-depth relationship 6.1.2 Limnological proxies 6.1.3 Terrestrial proxies 6.2 The potential of Lake Karakul as archive for long term environmental change in the Eastern Pamir 6.3 Climate and moisture availability changes over time - inferred from sedimentary proxies 6.4 Assessment ofthe aquatic macrophyte composition and paleoproductivity within Lake Karakul 6.5 Inferred terrestrial vegetation changes as responds to climatic changes over the last 28 cal ka 6.6 Comparison inferred regional vegetation, lake internal and lake external variations and changes in climate reconstructed in other studies 6.6.1 Pre- gLGM and global Last Glacial Maximum (27.6 to 19 cal ka BP) 6.6.2 Late glacial 6.6.3 Early to middle Holocene 6.6.4 Middle to late Holocene 6.7 Outlook 7 Appendix 7.1 Supplementary information for Manuscript I 7.2 Supplementary information for Manuscript II 7.3 Supplementary information for Manuscript III 8 References Danksagung Eldesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI A8-20-93986
    Type of Medium: Dissertations
    Pages: VI, 129 Seiten , Diagramme
    Language: German
    Note: Inhaltsverzeichnis Kurzfassung Abstract 1 EINFÜHRUNG 2 GRUNDLAGEN 2.1 Allgemeine Zirkulation 2.2 Barokline Instabiltät 2.3 Horizontale und vertikale Wellenausbreitung 2.4 Die Rolle der Arktis im Klimasystem 2.5 Einfluss des klimatischen Wandels in der Arktis auf die mittleren Breiten 2.6 Atmosphärisches Energiespektrum und Skalenwechselwirkung 3 DATEN UND METHODEN 3.1 Verwendete Reanalyse- und Modelldaten 3.1.1 ERA-Interim 3.1.2 AFES 3.1.3 Aufteilung der verwendeten Daten in Zeiträume mit hoher und niedriger Meereisbedeckung 3.2 Methoden 3.2.1 Instabilitätsanalyse für einen zonalgemittelten Grundzustand 3.2.2 Identifikation bevorzugter großskaliger Zirkulationsmuster 3.2.3 Energie- und Enstrophiespektren 3.2.4 Statistische Testverfahren 4 ERGEBNISSE 4.1 Instabilitätsanalyse für einen zonalgemittelten Grundzustand . 4.1.1 Klimatologie ERA-Interim und AFES 4.1.2 Sensititvitätsstudie 4.2 Identifikation bevorzugter großskaliger Zirkulationsmuster 4.2.1 September 4.2.2 Oktober 4.2.3 November 4.2.4 Dezember 4.2.5 Januar 4.2.6 Februar 4.2.7 Zugehörige synoptisch-skalige Aktivität und 2m-Temperatur 4.3 Kinetische Energiespektren und nichtlineare Wechselwirkungen 4.3.1 Kinetische Energiespektren 4.3.2 Enstrophiespektren 4.3.3 Nichtlineare Energiewechselwirkungen, Energieflüsse und Enstrophieflüsse 5 ZUSAMMENFASSUNG UND AUSBLICK Tabellenverzeichnis Abbildungsverzeichnis Variablen und Symbole Literaturverzeichnis Danksagung Anhang A.1 Hough-Funktionen und vertikale Strukturfunktionen A.2 Zugeordnete Legendre-Polynome und Kugelflächenfunktionen Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI G5-20-93987
    Type of Medium: Dissertations
    Pages: XVI, 91 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2015 , Table of Contents Acknowledgements Abstract Zusammenfassung List of figures and tables List of Abbreviations 1. Introduction 1.1. Preface and thesis organization 1.2. Research motivation and relevance 1.3. Background knowledge 1.3.1. Terrigenous sediments 1.3.2. Hala Lake 1.3.3. The North Pacific 1.3.4. The Bering Sea 1.4. Aims and objectives 1.5. Methodological overview 1.5.1. Fieldwork 1.5.2. Age-depth modeling 1.5.3. Key proxies: grain size and clay minerals 1.5.4. Supplementary methodology: remote sensing, seismic sub-bottom profiling and geochemistry 1.6. Overview and status of the manuscripts 2 Manuscript 1 : Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China Abstract 2.1. Introduction 2.2. Regional setting 2.3. Materials and methods 2.3.1. Remote sensing of the study area 2.3.2. Fieldwork 2.3.3. Radiocarbon dating of recovered sediment cores 2.3.4. Laboratory work 2.3.5. Statistical data treatment 2.4. Results and interpretation 2.4.1. Remote sensing on the spatial heterogeneity of lake ice and length of lake ice-free days 2.4.2. Seismic sub-bottom profiling 2.4.3. Age and sedimentary characteristics of the sediment core record 2.4.4. Grain-size modeling results 2.5. Discussion 2.5.1. Last Glacial Maximum (~24-17 cal. ka BP) 2.5.2. Time-equivalent of Heinrich Event 1 (~17-15.4 cal. ka BP) 2.5.3. Time-equivalent of Bolling-Allerod (~15.4-13 cal. ka BP) 2.5.4. Time-equivalent of Younger Dryas (~12.9-11.6 cal. ka BP) 2.5.5. Holocene (~11.6 cal. ka BP to present) 2.6. Conclusions Acknowledgments 3 Manuscript 2: Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and the Bering Sea: Implications and perspectives for palaeoenvironmental reconstructions Abstract 3.1. Introduction 3.2. Study area and regional setting 3.3. Material and methods 3.4. Results 3.4.1. Grain size distribution 3.4.2 Bulk mineralogy 3.4.3. Mineralogy of the clay fraction 3.5. Discussion 3.5.1. Sedimentary processes 3.5.2. Sediment provenance 3.5.3 Implications for palaeoenvironmental studies 3.6. Conclusions Acknowledgements 4 Manuscript 3: Provenance and dispersal of terrigenous sediments in the Bering Sea slope: Implications for late glacial land-ocean linkages Abstract 4.1. Introduction 4.2. Regional setting 4.3. Material and methods 4.4. Results and interpretation 4.4.1. Lithology and stratigraphy 4.4.2. Grain size distribution 4.4.3. Clay mineralogy 4.5. Discussion 4.5.1. Processes of terrigenous sediment supply 4.5.2. Detrital sediment sources 4.5.3. Detrital sediment supply and its relation to regionalpalaeoenvironmental changes 4.5.3.1. Time interval 32-15.7 ka BP: Background sedimentation at low sea level 4.5.3.2. Time interval 15.7-14.5 ka BP: Regional Meltwater Pulse 4.5.3.3. Time interval 14.5-12.9 ka BP: First biological bloom event 4.5.3.4. Time interval 12.9-6 ka BP: Cooling episode, rejuvenation of biological productivity and onset ofmodern conditions 4.5.4. Palaeoenvironmental implications 4.6. Conclusions Acknowledgements 5 Synthesis 5.1. The North Hemisphere synchronization of millennial climate oscillations during the last Glacial: teleconnections from Westerlies and thermohaline Circulation 5.2. The regional asynchronization of millennial climate oscillations during the last Glacial: discrepancy and "recording capacity" 5.3. Secondary connections between global climate transmissions: winter cyclone in the North Pacific 5.4. Future perspectives 6 References 7 Appendix Extended results: Core SO202-39-3 from the mid-latitude North Pacific 7.1. Material 7.2. Results 7.3. Oscillation of eolian sediment transport 7.4. Conclusions
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: 9789400706682 (e-book)
    Description / Table of Contents: This is the first comprehensive science-based textbook on the biology and ecology of the Baltic Sea, one of the world’s largest brackish water bodies. The aim of this book is to provide students and other readers with knowledge about the conditions for life in brackish water, the functioning of the Baltic Sea ecosystem and its environmental problems and management. It highlights biological variation along the unique environmental gradients of the brackish Baltic Sea Area (the Baltic Sea, Belt Sea and Kattegat), especially those in salinity and climate. The first part of the book presents the challenges for life processes and ecosystem dynamics that result from the Baltic Sea’s highly variable recent geological history and geographical isolation. The second part explains interactions between organisms and their environment, including biogeochemical cycles, patterns of biodiversity, genetic diversity and evolution, biological invasions and physiological adaptations. In the third part, the subsystems of the Baltic Sea ecosystem - the pelagic zone, the sea ice, the deep soft sea beds, the phytobenthic zone, the sandy coasts, and estuaries and coastal lagoons - are treated in detail with respect to the structure and function of communities and habitats and consequences of natural and anthropogenic constraints, such as climate change, discharges of nutrients and hazardous substances. Finally, the fourth part of the book discusses monitoring and ecosystem-based management to deal with contemporary and emerging threats to the ecosystem’s health.
    Type of Medium: 12
    Pages: 1 Online-Ressource (xxxi, 683 Seiten) , Illustrationen, Diagramme, Karten
    ISBN: 9789400706682 , 978-94-007-0668-2
    Language: English
    Note: Contents Part I The Baltic Sea environment 1 Brackish water as an environment / Hendrik Schubert, Dirk Schories, Bernd Schneider, and Uwe Selig 2 Why is the Baltic Sea so special to live in? / Pauline Snoeijs-Leijonmalm and Elinor Andrén Part II Ecological processes in the Baltic Sea 3 Biogeochemical cycles / Bernd Schneider, Olaf Dellwig, Karol Kuliński, Anders Omstedt, Falk Pollehne, Gregor Rehder, and Oleg Savchuk 4 Patterns of biodiversity / Pauline Snoeijs-Leijonmalm 5 Biological invasions / Sergej Olenin, Stephan Gollasch, Maiju Lehtiniemi, Mariusz Sapota, and Anastasija Zaiko 6 Genetic diversity and evolution / Risto Väinölä and Kerstin Johannesson 7 Physiological adaptations / Hendrik Schubert, Irena Telesh, Mikko Nikinmaa, and Sergei Skarlato Part III Subsystems of the Baltic Sea ecosystem 8 The pelagic food web / Agneta Andersson, Timo Tamminen, Sirpa Lehtinen, Klaus Jürgens, Matthias Labrenz, and Markku Viitasalo 9 Life associated with Baltic Sea ice / David N. Thomas, Hermanni Kaartokallio, Letizia Tedesco, Markus Majaneva, Jonna Piiparinen, Eeva Eronen-Rasimus, Janne-Markus Rintala, Harri Kuosa, Jaanika Blomster, Jouni Vainio, and Mats A. Granskog 10 Deep soft seabeds / Urszula Janas, Erik Bonsdorff, Jan Warzocha, and Teresa Radziejewska 11 The phytobenthic zone / Hans Kautsky, Georg Martin, and Pauline Snoeijs-Leijonmalm 12 Sandy coasts / Teresa Radziejewska, Jonne Kotta, and Lech Kotwicki 13 Estuaries and coastal lagoons / Hendrik Schubert and Irena Telesh Part IV Monitoring and ecosystem-based management of the Baltic Sea 14 Biological indicators / Michael L. Zettler, Alexander Darr, Matthias Labrenz, Sigrid Sagert, Uwe Selig, Ursula Siebert, and Nardine Stybel 15 Bio-optical water quality assessment / Susanne Kratzer, Piotr Kowalczuk, and Sławomir Sagan 16 Chemical pollution and ecotoxicology / Kari K. Lehtonen, Anders Bignert, Clare Bradshaw, Katja Broeg, and Doris Schiedek 17 Ecosystem health / Maria Laamanen, Samuli Korpinen, Ulla Li Zweifel, and Jesper H. Andersen 18 Ecosystem goods, services and management / Jan Marcin Węsławski, Eugeniusz Andrulewicz, Christoffer Boström, Jan Horbowy, Tomasz Linkowski, Johanna Mattila, Sergej Olenin, Joanna Piwowarczyk, and Krzysztof Skóra Subject index Taxonomy index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI G3-19-93211 ; AWI G3-19-93211(2. Ex.)
    Type of Medium: Dissertations
    Pages: viii, 220 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2019 , Table of Contents Abstract Zusammenfassung 1 Introduction 1.1 Scientific background 1.1.1 Permafrost - terrestrial and subsea 1.1.2 Subsea permafrost distribution 1.1.3 Relevance in the context of a changing Arctic 1.1.4 Influences on subsea permafrost 1.2 Hypotheses and objectives 1.3 Thesis organization 2 Detection of subsea permafrost degradation rates 2.1 An overview of geophysical methods and studies in subsea permafrost 2.2 Geophysical objectives 2.3 Passive seismic techniques 2.3.1 H/V passive seismics 2.3.2 Passive seismic interferometry 2.4 Instrument design & marine tests on Sylt 2.5 Arctic feasibility test site around Muostakh Island 2.6 Arctic deployment for wide area detection around Muostakh Island 3 Modelling of subsea permafrost degradation processes 3.1 An overview on subsea permafrost modelling 3.2 Salt distribution- mechanisms beyond diffusional transport 3.3 Open questions in salt transport and permafrost degradation 3.4 Modelling objectives 3.5 Study sites 3.5.1 Primary study site: Cape Mamontov Klyk 3.5.2 Secondary study sites: Buor Khaya & Muostakh Island 3.6 Developing a model for subsea permafrost 3.6.1 Thermal regime of the subsurface: governing equations of conductive heat transfer 3.6.2 Model definitions: concentration and thaw depth 3.6.3 Saline effect on the state of permafrost 3.6.4 Salt transport: governing equation & parameterizations 3.6.5 Modelling approach 3.6.6 Model testing 3. 7 Results: Influence of model parameters on subsea permafrost degradation 3.8 Discussion and implications 3.8.1 Modelled inundation parameters 3.8.2 Further factors affecting subsea permafrost degradation 3.8.3 Implications 4 From local to regional scale: Amending sparsely distributed temperature records 4.1 An overview of borehole temperature reconstruction . 4.2 On the transferability of ground to air temperatures . 4.3 Reconstruction objectives 4.4 Borehole sites and climate 4.5 Borehole temperatures 4.6 Inversion method 4.6.1 Forward model 4.6.2 Optimization 4.6.3 Sensitivity analysis 4.7 Results and discussion of the reconstruction from the permafrost boreholes 4.7.1 Recoverable period 4.7.2 Optimization 4.7.3 Surface temperature reconstructions and fit 4.7.4 Inversion method's impact on character of solution & sensitivity to temperature history parameterization 4.8 Discussion of spatial differences and implications 4.8.1 Comparison to other temperature data 4.8.2 Site differences 4.8.3 Methodological considerations 4.8.4 Implications 5 Conclusion and outlook 5.1 Outlook Appendices A Modelling tests for H/V method configuration Bibliography Acknowledgements
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...