All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

  • 1
    Call number: AWI Bio-20-93990
    Description / Table of Contents: Assumed comparable environmental conditions of early Mars and early Earth in 3.7 Ga ago – at a time when first fossil records of life on Earth could be found – suggest the possibility of life emerging on both planets in parallel. As conditions changed, the hypothetical life on Mars either became extinct or was able to adapt and might still exist in biological niches. The controversial discussed detection of methane on Mars led to the assumption, that it must have a recent origin – either abiotic through active volcanism or chemical processes, or through biogenic production. Spatial and seasonal variations in the detected methane concentrations and correlations between the presence of water vapor and geological features such as subsurface hydrogen, which are occurring together with locally increased detected concentrations of methane, gave fuel to the hypothesis of a possible biological source of the methane on Mars. Therefore the phylogenetically old methanogenic archaea, which have evolved under early Earth conditions, are often used as model-organisms in astrobiological studies to investigate the potential of life to exist in possible extraterrestrial habitats on our neighboring planet. In this thesis methanogenic archaea originating from two extreme environments on Earth were investigated to test their ability to be active under simulated Mars analog conditions. These extreme environments – the Siberian permafrost-affected soil and the chemoautotrophically based terrestrial ecosystem of Movile cave, Romania – are regarded as analogs for possible Martian (subsurface) habitats. Two novel species of methanogenic archaea isolated from these environments were described within the frame of this thesis. It could be shown that concentrations up to 1 wt% of Mars regolith analogs added to the growth media had a positive influence on the methane production rates of the tested methanogenic archaea, whereas higher concentrations resulted in decreasing rates. Nevertheless it was possible for the organisms to metabolize when incubated on water-saturated soil matrixes made of Mars regolith analogs without any additional nutrients. Long-term desiccation resistance of more than 400 days was proven with reincubation and indirect counting of viable cells through a combined treatment with propidium monoazide (to inactivate DNA of destroyed cells) and quantitative PCR. Phyllosilicate rich regolith analogs seem to be the best soil mixtures for the tested methanogenic archaea to be active under Mars analog conditions. Furthermore, in a simulation chamber experiment the activity of the permafrost methanogen strain Methanosarcina soligelidi SMA-21 under Mars subsurface analog conditions could be proven. Through real-time wavelength modulation spectroscopy measurements the increase in the methane concentration at temperatures down to -5 °C could be detected. The results presented in this thesis contribute to the understanding of the activity potential of methanogenic archaea under Mars analog conditions and therefore provide insights to the possible habitability of present-day Mars (near) subsurface environments. Thus, it contributes also to the data interpretation of future life detection missions on that planet. For example the ExoMars mission of the European Space Agency (ESA) and Roscosmos which is planned to be launched in 2018 and is aiming to drill in the Martian subsurface
    Type of Medium: Dissertations
    Pages: VI, 108 Blätter , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2015 , Table of contents Preface Table of contents Summary Zusammenfassung 1. Introduction 1.1. Environmental conditions on past and present Mars 1.2. Detection of methane on Mars 1.3. Methanogenic archaea 1.4. Description of study sites 1.5. Aims and approaches 1.6. Overview of the publications 2. Publication I: Methanosarcina soligelidi sp. nov., a desiccationandfreeze-thaw-resistant methanogenic archaeon from a Siberianpermafrost-affected soil 3. Publication II: Methanobacterium movilense sp. nov.,ahydrogenotrophic, secondary-alcohol-utilizing methanogen fromthe anoxic sediment of a subsurface lake 4. Publication III: Influence of Martian Regolith Analogs on the activityand growth of methanogenic archaea,with special regard to long-term desiccation 5. Publication IV: Laser spectroscopic real time measurements ofmethanogenic activity under simulated Martian subsurface conditions 6. Synthesis and Conclusion 6.1. Synthesis 6.2. Conclusion and future perspectives 7. References 8. Acknowledgments
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...