ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-18
    Description: As semiconductor circuits shrink to CDs below 0.1 nm, it is becoming increasingly critical to replace and/or enhance existing technology with nanoscale structures, such as nanowires for interconnects. Nanowires grown in plasmas are strongly dependent on processing conditions, such as gas composition and substrate temperature. Growth occurs at specific sites, or step-edges, with the bulk growth rate of the nanowires determined from the equation of motion of the nucleating crystalline steps. Traditional front-tracking algorithms, such as string-based or level set methods, suffer either from numerical complications in higher spatial dimensions, or from difficulties in incorporating surface-intense physical and chemical phenomena. Phase field models have the robustness of the level set method, combined with the ability to implement surface-specific chemistry that is required to model crystal growth, although they do not necessarily directly solve for the advancing front location. We have adopted a phase field approach and will present results of the adatom density and step-growth location in time as a function of processing conditions, such as temperature and plasma gas composition.
    Keywords: Solid-State Physics
    Type: 57th Annual Gaseous Electronics Conference; Sep 26, 2004 - Sep 29, 2004; Bunratty; Ireland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Instrumentation and Photography
    Type: ARC-E-DAA-TN32965 , International Planetary Probe Workshop; Jun 13, 2016 - Jun 17, 2016; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-18
    Description: Tungsten and titanium nitride films have long been grown by chemical vapor deposition (CVD) methods. However, there has been recent interest in low temperature growth using plasma enhanced CVD. For the present work, we focus on the radio frequency (BE) discharge characteristics of gas mixtures used in nitride deposition (for example, WF6 and ammonia). Because the radial variations for a standard 200 mm, parallel plate reactor are limited to a small zone near the edges of the electrodes, a 1-D (one-dimensional) analysis is considered. This model consists of a self-consistent, 3-D (three-dimensional) moment fluid simulation that solves the continuity, momentum, and energy equations for neutral and charged species. The results in terms of plasma structure, radical concentrations, and local deposition rate will be presented. We will also compare the 1-D results with those obtained from a 2-D hybrid plasma equipment model (HPEM) developed at the University of Illinois.
    Keywords: Nonmetallic Materials
    Type: Gaseous Electronics Conference; Oct 06, 1997 - Oct 11, 1997; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-18
    Description: Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.
    Keywords: Engineering (General)
    Type: American Vacuum Society Conference; Oct 20, 1997 - Oct 24, 1997; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The present study considers direct ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and heatshield diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DoF trajectory code, TRAJ. From these trajectories, the viable entry flight path angle space is determined through the use of mechanical and thermal performance limits on the thermal protection material and science payload; the thermal protection material of choice is entry-grade carbon phenolic, for which a material thermal response model is available. For mechanical performance, a 200 g limit is placed on the peak deceleration load experienced by the science instruments, and 10 bar is assumed as the pressure limit for entry-grade carbon-phenolic material. For thermal performance, inflection points in the total heat load distribution are used as cut off criteria. Analysis of the results shows the existence of a range of critical ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of the material rather than the deceleration load limit.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN7270 , IEEE Aerospace Conference; Mar 02, 2013 - Mar 09, 2013; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-20
    Description: This paper introduces the Mars Entry Descent and Landing Instrumentation 2 (MEDLI2) concept for NASAs Mars 2020 mission. Mars 2020 is a flagship-class mission, scheduled for launch in 2020, with science and technology objectives to help answer questions about habitability of Mars as well as to demonstrate technologies for future human expedition. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems (TPS) of the Mars 2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS (Thermal Protective System) performance data during the Entry Descent and Landing (EDL) phase of the mission.
    Keywords: Instrumentation and Photography
    Type: ARC-E-DAA-TN32966 , AIAA Aviation and Aeronautics Forum (Aviation 2018); Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: High level summary of ground test capabilities available at NASA Ames Research Center that can aid in the development and design of future Outer Planet (Saturn and Uranus) probe missions
    Keywords: Fluid Mechanics and Thermodynamics; Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN12519 , Outer Planets Assessment Group (OPAG) Meeting; Jan 13, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-18
    Description: Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.
    Keywords: Computer Operations and Hardware
    Type: Poster Presentation; Oct 01, 2001; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-17
    Description: NASA is anticipated to commission the next Planetary Science Decadal Survey (PSDS) with preparation expected in early calendar year 2020. The new PSDS will outline the priorities of science missions for the decade spanning 2023-2032. For the previous PSDS, the science and technology communities have been invited to submit white papers to the PSDS sub-panels as background information to guide the PSDS recommendations. The National Research Council has previously stated that white papers that represent the opinion of many authors from different institutions carried more significance and weight, and the recommendations from the previous PSDS attempted to reflect more of a consensus opinion. In 2009, a total of 4 white papers were submitted to the PSDS panels regarding thermal protection system (TPS) readiness for missions, as well as one on TPS instrumentation. The TPS readiness papers were co-authored by 90 individuals from many institutions. These white papers surveyed the TPS materials for both forebody and afterbody of a probe and analyzed the suitability of materials for missions to each destination. In addition, each paper outlined the ground testing required and ongoing technology development. Recommendations were provided for further technology development and ground test capability in order to fulfill future missions. Many improvements and changes have occurred in the past 10 years with regard to TPS materials and instrumentation. New materials have been developed and tested, such as the high density material Heat-shield for Extreme Entry Environment Technology (HEEET), and new capabilities for ground testing for high heating and high pressures have been added such as the 3-inch nozzle at the Ames arc jet. NASA has also flown several TPS instrumentation suites, such as MEDLI (Mars Science Laboratory Entry, Descent, and Landing Instrument) and EFT-1 (Exploration Flight Test-1). In order to provide the PSDS sub-panels with the most current information about the state-of-the-art suitability for TPS materials for entry missions, we are beginning to update and draft new white papers. We will present the outline for material to be covered in the white papers, and we invite all IPPW (International Planetary Probe Workshop) attendees to particiate in co-authoring these papers.
    Keywords: Spacecraft Design, Testing and Performance; Spacecraft Instrumentation and Astrionics
    Type: ARC-E-DAA-TN70291 , International Planetary Probe Workshop (IPPW 2019); Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in-situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45 deg sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 IPPW, NASA Headquarters postulated that a common aero-shell design could be used successfully for multiple destinations and missions. This "common probe" design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design.Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-DoF simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Aeroheating correlations were used to generate stagnation point convective and radiative heat flux profiles for several aeroshell shapes and entry masses. High fidelity thermal response models for various TPS materials were used to size stagnation point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN60861 , Outer Planets Assessment Group; Sep 11, 2018 - Sep 12, 2018; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...