ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: In 2012, the entry vehicle for the Mars Science Laboratory (MSL) mission was the largest and heaviest vehicle flown to another planet, designed to be able to withstand the largest heat fluxes in the Martian atmosphere ever attempted. The heatshield material that had been successfully used for all previous Mars missions had been baselined in the design, but during the development and qualification testing demonstrated catastrophic and unexplained failures. With only 10 months remaining before the original launch date, the TPS team led by NASA Ames designed and implemented a first-ever tiled, ablative heatshield. Highlights from MSL of the testing difficulties and innovations required to execute a new heatshield design will be presented, along with a sneak peak of the Mars 2020 mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN52600 , Semi-Therm 34; Mar 19, 2018 - Mar 23, 2018; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-27
    Description: The Common Probe Study was funded by the NASA's Planetary Science Division in the Science Mission Directorate in 2018 to investigate the feasibility of a common aeroshell design for atmospheric probe missions at Venus, Jupiter, Saturn, Uranus, and Neptune. The study involved 4 NASA Centers: Ames Research Center, Goddard Space Flight Center, Langley Research Center, and the Jet Propulsion Laboratory. The common aeroshell design that was studied was a 400 kg, 1.5 m diameter, 45-degree sphere cone shape with a high density heatshield material (Heatshield for Extreme Entry Environments Technology, or HEEET) and a parachute system to extract the descent vehicle. This size of aeroshell could accommodate a descent vehicle of 0.75 m diameter, which could encompass both Tier 1 and Tier 2 science instruments at each of the 5 destinations. Study methodology: First, a notional payload of instruments for each destination was defined based on the top priority measurements indicated by the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified that bounded the EFPA range.Next, 3-DoF simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Conical ribbon parachutes were sized based on heatshield separation dynamics. Aero-heating correlations were used to generate stagnation point convective and radiative heat flux profiles. High fidelity thermal response models for various TPS materials were used to size stagnation point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts.Based on these analyses, we have found that the common design is applicable for atmospheric probe missions for 4 out of the 5 destinations. Because of the unique gravity well for Jupiter, the entry environments are more severe resulting in heat loads an order of magnitude higher than for the other destinations.The next step is to determine what follow-on activities NASA should engage in. A questionnaire for the atmospheric probe community has been developed, with a focus on what size of aeroshell should be further analyzed (smaller or same diameter), and what incentives would make using such an aeroshell, if assembled and available, desirable to mission proposers.Preliminary results from this questionnaire will be presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN65864 , Workshop on In Situ Exploration of the Ice Giants; Feb 25, 2019 - Feb 27, 2019; Marseille; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Introduction: Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multiprobes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similarshaped aeroshells and concept of operations, namely a 45 sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. The current paradigm is to design a probe to meet specific mission requirements and to optimize mass, volume, and cost for a single mission. However, this methodology means repeated efforts to design an aeroshell for different destinations with minor differences. A new paradigm has been explored that has a "common probe" design that could be flown at these different destinations and could be assembled in advance with multiple copies, properly stored, and made available for future NASA missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN62760 , Meeting of the Venus Exploration Analysis Group (VEXAG); Nov 06, 2018 - Nov 08, 2018; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Exploration of Venus atmospheric entry trajectory space using a rigid aeroshell
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN9938 , International Planetary Probes Workshop; Jun 17, 2013 - Jun 21, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...