ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-13
    Description: Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.
    Keywords: Meteorology and Climatology
    Type: Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Relationship between sea surface temperature (SST) and cloud/water vapor reveals important information about radiative-climate feedbacks. Many previous studies have found that cloud amount and SST are positively correlated for SST between 28-29.5 C, for SST greater than 29.5 C, cloud amount actually decreases with increasing SST. The breakdown of SST-cloud correlation at 29.5 C was suggested to be related to the formation of localized hot spots with very high SST due to increased solar radiation in regions of strong subsidence forced by convection elsewhere. In this study, the breakdown is related to the radiative cooling in the subsidence regime over the cold pool surrounding the warm pool. We show model and observational evidence that radiative cooling over the cold pool limits the strength of SST-induced tropical circulation. As a result, occurrence of convection is also limited when SST contrast between the warm pool and cold pool is large.
    Keywords: Meteorology and Climatology
    Type: Hurricanes; May 29, 2000 - Jun 02, 2000; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-18
    Description: Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.
    Keywords: Meteorology and Climatology
    Type: AGU Fall Session; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-14
    Description: Advances in computing power allow atmospheric prediction and general circulation models to be run at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations. The representation of cloud microphysical processes is one of key components of these models. In addition, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). In the paper, we described different microphysics schemes that are used in Goddard Multi-scale Modeling System. There are three major models, Goddard Cumulus Ensemble (GCE), NASA Unified Weather Research Forecast (NU-WRF) and Multi-scale Modeling Framework (MMF) model, in this modeling system. The microphysics schemes are Goddard three class ice (3ICE) and four class (4ICE) scheme, Morrison two moments (2M) 3ICE, Colorado State University Regional Atmospheric Modeling System (RAMS) 2M five class ice (5ICE) and spectral bin microphysics schemes. The performance of these schemes are examined and compared with radar and satellite observation. In addition, the inter-comparison with different microphysics schemes are conducted. Current and future observations needed for microphysics schemes evaluation as well as major characteristics of current microphysics are discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64483 , Current Trends in the Representation of Physical Processes in Weather and Climate Models; 253-316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-ABS.7143.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-14
    Description: Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
    Keywords: Meteorology and Climatology
    Type: Submitted to GEWEX Newsletter
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...