ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (16)
  • Electronic structure and strongly correlated systems  (5)
  • 1
    Publication Date: 2016-02-24
    Description: Author(s): L. Lin, H. M. Zhang, M. F. Liu, Shoudong Shen, S. Zhou, D. Li, X. Wang, Z. B. Yan, Z. D. Zhang, Jun Zhao, Shuai Dong, and J.-M. Liu Hexagonal LuFe O 3 has drawn a lot of research attention due to its contentious room-temperature multiferroicity. Due to the instability of hexagonal phase in the bulk form, most experimental studies focused on LuFe O 3 thin films which can be stabilized by strain using proper substrates. Here we report… [Phys. Rev. B 93, 075146] Published Tue Feb 23, 2016
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-20
    Description: Author(s): Wei Tang, Lei Chen, Wei Li, X. C. Xie, Hong-Hao Tu, and Lei Wang In addition to the celebrated Affleck-Ludwig entropy originating from the open boundaries of the path-integral manifold, recent research has shown that the entropy correction on nonorientable manifolds such as the Klein bottle is also a universal characterization of critical systems with an emergent conformal field theory (CFT). Here, the authors show that the Klein bottle entropy can be interpreted as a boundary effect by transforming the Klein bottle into an orientable manifold, whereby the Klein bottle entropy bears a resemblance to the Affleck-Ludwig entropy. The authors then propose a generic scheme to extract these universal boundary entropies from lattice models. Numerical results for the q -state Potts model are compared with the CFT predictions. [Phys. Rev. B 96, 115136] Published Tue Sep 19, 2017
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-25
    Description: Author(s): Z.-Y. Li, X. Li, J.-G. Cheng, L. G. Marshall, X.-Y. Li, A. M. dos Santos, W.-G. Yang, J. J. Wu, J.-F. Lin, G. Henkelman, T. Okada, Y. Uwatoko, H. B. Cao, H. D. Zhou, J. B. Goodenough, and J.-S. Zhou All single-valent oxide spinels are insulators. The relatively small activation energy in the temperature dependence of resistivity in vanadate spinels led to the speculation that the spinels are near the crossover from localized to itinerant electronic behavior, and the crossover could be achieved … [Phys. Rev. B 94, 165159] Published Mon Oct 24, 2016
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-15
    Description: Author(s): D. F. Shao (邵定夫), R. C. Xiao, W. J. Lu, H. Y. Lv, J. Y. Li, X. B. Zhu, and Y. P. Sun The transition-metal dichalcogenide 1 T − TaS 2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier dop… [Phys. Rev. B 94, 125126] Published Wed Sep 14, 2016
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-10
    Description: Author(s): Q. Fan, X. P. Shen, M. Y. Li, D. W. Shen, W. Li, X. M. Xie, Q. Q. Ge, Z. R. Ye, S. Y. Tan, X. H. Niu, B. P. Xie, and D. L. Feng We have studied the low-lying electronic structure of a new ThCr 2 Si 2 -type superconductor KNi 2 Se 2 with angle-resolved photoemission spectroscopy. Three bands intersect the Fermi level, forming complicated Fermi surface topology, which is sharply different from its isostructural superconductor K x Fe  2−... [Phys. Rev. B 91, 125113] Published Mon Mar 09, 2015
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Over the past twenty years, rainfall retrieval algorithms have been developed to retrieve rainfall and vertical hydrometeor structures from passive microwave observations by making use of the fact that weighting functions for various frequencies peak at different levels within a rainy atmosphere. GPROF is one of two TMI rainfall algorithms. It is physically based retrieval that finds the vertical hydrometeor profile that best fits the brightness temperatures in the available passive radiometer channels. Matching is achieved using a library of hydrometeor profiles generated by cloud-resolving models (CRMs). The hydrometeor profiles have a corresponding surface precipitation rate. The algorithm retrieves the hydrometeor profiles and associated surface rainfall using a Bayesian approach that gives the estimated expected values. The ability of CRMs to produce cloud structures that are reliable and representative of observed storms is crucial for the success of GPROF. The cloud mycrophysics are one of the keys to achieving this. In addition, CRMs have been a very useful tool for GPM-algorithm developers through Cloud-Radiation Simulations (CRS), one of the nine GPM disciplinary research themes. This paper will discuss how to generate consistent and comprehensive 4D cloud datasets from an improved (i.e., in regard to bulk and multi-moment microphysics) CRM for TRMM and GPM rainfall retrieval algorithm developers. These cloud datasets include CRM-simulated clouds and cloud systems from different geographic locations in the tropics and midlatitudes. By linking the CRM with a passive microwave radiative-transfer model and using satellite and airborne data, the performance of the "cloud physics" can be assessed and in turn modified and improved. This paper will also address how to assess and improve the performance of various latent and diabatic heating algorithms and develop an algorithm to retrieve the vertical structure of apparent moistening (Q2). Considering that the GPM will produce high (temporal and spatial) resolution heating and rainfall data, these algorithms will be used to obtain the temporal and spatial distributions of surface rainfall and the associated vertical heating and moistening profiles throughout the subtropical and midlatitudes.
    Keywords: Meteorology and Climatology
    Type: 3rd Global Precipation Mission Workshop; Jun 24, 2003 - Jun 26, 2003; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: Cloud physics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distribution below the clouds. Therefore, the size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral--bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.
    Keywords: Meteorology and Climatology
    Type: 2006 Joint Assembly; May 23, 2006 - May 26, 2006; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.
    Keywords: Meteorology and Climatology
    Type: IAMAS 2005; Aug 02, 2005 - Aug 12, 2005; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.
    Keywords: Meteorology and Climatology
    Type: 2nd International Workshop on NWP Model; May 17, 2004 - May 20, 2004; Seoul; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...